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ABSTRACT 

Purpose: To determine differences in overall tumor responses measured by volumetric 

assessment and bioluminescence imaging (BLI) following exposure to uniform and non-

uniform radiation fields in an ectopic prostate tumour model. 

Materials and Methods: Bioluminescent human prostate tumor xenografts were 

established by subcutaneous implantation into male mice. Tumors were irradiated with 

uniform or non-uniform field configurations using conventional in vivo irradiation 

procedures performed using a 225 kVp generator with custom lead shielding. Tumor 

responses were measured using Vernier calipers and by BLI using an in vivo imaging 

system. Survival was defined as the time to quadroupling of pre-treatment tumor volume. 

Results: The correlation between BLI and tumor volume measurements was found to be 

different for un-irradiated (R = 0.61), uniformly irradiated (R = 0.34) and partially 

irradiated (R = 0.30) tumors. Uniformly irradiated tumors resulted in an average tumour 

growth delay of 60 days with median survival of 75 days, compared to partially irradiated 

tumors which showed an average growth delay of 24 days and median survival of 38 

days. 

Conclusions: 

Correlation between BLI and tumor volume measurements is lower for partially 

irradiated tumors than those exposed to uniform dose distributions. The response of 

partially irradiated tumors suggests non-uniformity in response beyond physical dose 

distribution within the target volume. Dosimetric uncertainty associated with 

conventional in vivo irradiation procedures prohibits their ability to accurately determine 

tumor response to non-uniform radiation fields and stresses the need for image guided 

small animal radiation research platforms. 

 



INTRODUCTION 

Small animal models are a fundamental tool for robust preclinical radiobiological 

investigations. Technological advances in the clinic, such as intensity modulated and 

image guided radiotherapy, have significantly outpaced those for the irradiation of 

laboratory animals under experimental conditions which has commonly been performed 

using fixed kilovoltage sources with custom lead shielding for beam targeting and 

sparing of normal tissues (Hillman et al, 2001; Know et al, 1992). 

This translational gap between experimental radiobiology and radiation oncology has 

been narrowed with the implementation of small animal image guided radiation research 

platforms (Verhaegen et al, 2011; Zhou et al, 2010; Wong et al, 2008) which combine 

high resolution cone beam computed tomography (CBCT) with orthovoltage radiation 

sources for accurate beam targeting allowing treatment of a defined target through a 

process analogous to that of contemporary clinical practice.  

The implementation of these platforms in the laboratory represents a significant 

advancement for in vivo radiobiological investigations enabling preclinical evaluation of 

novel regimes including hypofractionation, dose painting and drug radiation 

combinations. Furthermore, the development of small animal radiation research 

platforms with on board optical imaging will offer significant potential in radiation 

biology. 

A range of optical imaging and spectroscopy methods are widely used for radiobiological 

studies to determine cellular responses at the molecular level (Palmer et al, 2012). 

Bioluminescence imaging (BLI) is a highly sensitive, non-invasive in vivo imaging 

modality which measures photons generated by a luciferase reporter gene in the presence 

of the D-luciferin substrate injected prior to imaging (Inouye et al, 2010). BLI has been 

used to assess tumour burden in a range of preclinical models for localised and metastatic 



disease (O’Neill et al, 2010; Tuli et al, 2012; Al Nakouzi et al, 2012), however, its 

application in monitoring the efficacy of radiation exposure responses has been limited 

(Lee et al, 2010). 

In the present study, we aimed to compare tumour volume and BLI measurements to 

determine differences in overall tumor response following exposure to uniform and non-

uniform radiation fields in an ectopic prostate tumor model. This study also sought to 

provide in vivo support for the presence of out-of-field effects under non-uniform dose 

distributions. 

 

MATERIALS AND METHODS 

Cell culture  

PC-3-luc2 Bioware Ultra (Caliper Life Sciences, Runcorn, United Kingdom) is a stably 

transfected luciferase expressing variant of the human prostate cancer cell line PC-3 (Kaighn 

et al, 1979). Cells were grown in RPMI (Roswell Park Memorial Institute)-1640 medium 

with 10% fetal bovine serum, 1% penicillin / streptomycin (Gibco, Paisley, Scotland, UK) 

and maintained at 37°C in a humidified atmosphere of 95% air / 5% CO2. 

 

Animals, tumor implantation and maintenance 

6-8 week old male Fox Chase SCID (Severe combined immunodeficient) mice (Charles 

River Laboratories, Oxford, United Kingdom) were used as a xenograft model for PC-3-

luc2 cells. 1.5 x 106 cells in 100 μl of PBS (phosphate buffered saline) were implanted 

intra-dermally on to the flank of animals under inhalant anaesthesia. 5 animal were 

assigned to each experimental group (control, uniform irradiated, partially irradiated). 

Animals received food and water ad libitum. All experimental procedures were carried 



out in accordance with United Kingdom Home office approved protocols for in vivo 

experimentation.  

 

Irradiation procedure 

Tumors were grown for 4-8 weeks until reaching a pre-treatment volume of around 100 

mm3. Animals were assigned to three treatment groups, un-irradiated controls, 8 Gy 

irradiated animals delivered as a uniform field and 8 Gy irradiated animals delivered as 

non-uniform field in which 40-60% of the tumor volume was irradiated. Animals were 

restrained and custom lead shielding used to expose the complete or partial tumour 

volume to 225 kVp X-rays using a X-Rad 225 generator (Precision X-ray Inc, North 

Branford, Connecticut, USA).  A dose profile was generated using Gafchromic RTQA2 

film (Ashland, Covington, Kentucky, USA) placed under the lead shielding which show 

scattered dose fell to less than 10% of the target dose within 1 cm off axis as shown in 

figure 1. Animals were irradiated at a dose rate of 0.52 Gy min-1.  

 

Tumour volume measurements and BLI 

Tumor volume was determined three times a week from Vernier caliper measurements 

in three orthogonal dimensions. Tumour bearing mice were imaged weekly using an 

IVIS 100 (Caliper Life Sciences). Animals were intraperitoneally injected with D-

luciferin potassium salt (Caliper Life Sciences) at a concentration of 150 mg/kg and 

imaged 15 minutes after injection as determined from BLI kinetic studies in the same 

tumor model. The distribution of detected photons was overlaid onto a grayscale 

photographic image and a region of interest (ROI) manually selected. Signal intensity 

was quantified in photons/second/squared centimetre/steradian (p/s/cm2/Sr) for a ROI 



selected manually by applying the same threshold to each of the images using Living 

Image Software (Caliper Life Sciences). 

 

Statistical Analysis 

The correlation between tumour volume and BLI measurements was assessed using a 

linear regression of the form 𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑐𝑐, where x is the measured volume, y the BLI 

value, m the slope and c the y-intercept of the linear fit of the data. Significant 

correlation was evaluated using a two-tailed t test on m, with a significance threshold of 

0.05. All calculations were carried out using (GraphPad Prism, Version 5.01). 

 

RESULTS 

Correlation of tumor volume and BLI measurements 

Correlation of tumor volume and BLI measurements was determined for control, 

uniformly irradiated and partially irradiated tumours in a heterotopic prostate xenograft 

model. Photon emission from a manually selected region of interest showed maximum 

flux at 15 - 20 minutes after intraperitoneal injection of D-luciferin in animals pre-

treatment. Control and irradiated animals showed no significant difference in the kinetics 

of bioluminescence signal at the beginning of the experiment or when maximum 

tolerated tumour volume was reached at the end of the experiment (data not shown).  

Comparison of BLI and tumour volume for control, uniformly irradiated and partially 

irradiated tumours is shown in figure 2. Linear regression analysis showed significant 

correlation between tumor volume and BLI for control tumors (R = 0.6123). A less 

strong correlation between tumor volume and BLI was observed for uniformly irradiated 

tumours (R = 0.3417) and the least significant correlation shown for partially irradiated 

tumors (40 – 60% tumour volume; R = 0.3063). Significance testing of these correlation 



coefficients using a t-test indicated statistically significant correlation for control (p = 

0.01) and uniformly irradiated animals (p = 0.02) but no significant relationship for 

partially exposed tumors (p = 0.08).  

Tumor growth delay and overall survival 

Tumor volume measurements are shown for control, uniformly irradiated and partially 

irradiated animals in figure 3a. Comparing the data for control with uniformly irradiated 

tumours showed a significant growth delay of around 60 days which is reflected in the 

median survival of 14 and 75 days respectively as shown in figure 3b. Comparison of 

control with partially uniformly irradiated tumours showed a significant growth delay of 

around 24 days which is reflected in the median survival of 14 and 38 days respectively 

as shown in figure 3b. The mean fractional uncertainty in tumor volume measurements 

was found to be 0.12 for control animals compared to 0.26 for partially irradiated and 

0.24 for uniformly irradiated animals.  

 

DISCUSSION 

This study aimed to determine differences in the overall tumor response measured by 

volumetric assessment and BLI in un-irradiated and irradiated tumors exposed to 

uniform or non-uniform radiation fields. These experiments were conducted in the 

context of assessing BLI as a means to determine the effective spatial dependency of 

radiobiological effects occurring outside of the primary treatment field and to assess if 

this could be achieved using convention in vivo irradiation configurations.  

Tumors were implanted intra-dermally to minimise physical limitations of tissue depth, 

photon signal impedance and to improve tumour target definition. As the kinetics of 

luciferase is an important consideration in BLI studies, this was determined in animals 

pre- and post-irradiation. In agreement with previous reports (Kemper et al 2006; 



Burgos et al, 2003), maximum photon flux was observed 15 minutes post injection for 

both the control and irradiated animals. Time taken for acquisition of BLI was 

comparable to that of caliper measurements with both taking less than 1 minute.  

BLI is a powerful non-invasive tool for imaging of tumor burden in small animals 

(Klerk et al, 2007). Consistent with other reports (Klerk et al, 2007; Paroo et al, 2004), 

significant correlation between bioluminescence and tumour volume was observed for 

control tumours (R = 0.6123, p = 0.01) indicating utility of BLI for quantitative 

assessment of tumour burden. Correlation between these measurements decreased for 

uniformly irradiated tumours (R = 0.3417, p = 0.02) suggesting BLI is less accurate in 

predicting volume for irradiated ectopic tumours. We postulate that the observed 

differences in predictive power between control and irradiated tumours is a consequence 

of inaccuracies associated with caliper measurements as areas of necrosis and oedema 

may be measured in addition to viable tumour cells. In addition, similar discrepancy 

between BLI signal and tumor volume measured by magnetic resonance (MR) was 

reported by Jost et al, (2009) in an orthotopic brain tumor model showing poor 

correlation with very low BLI signal for very large tumor volumes. 

There may be significant biological heterogeneity in factors impacting on radiation 

response such as radiation induced cell death, damage to the tumour vascular damage 

and surrounding normal tissue and regions of hypoxia. These factors may also in part 

explain the poor correlation observed in partially irradiated tumours (R = 0.3063, p = 

0.08). Given the assumption of symmetrical tumors when using orthogonal 

measurements to calculate tumour volume, the relationship may be unsurprising. BLI 

may be a more accurate means of determining response to partial radiation fields where 

asymmetrical tumor volumes may result.  



Considering the differences in dose distributions between partially and uniformly 

irradiated tumors, this may also suggest a significant underlying biological component 

in response similar to the out-of-field effects observed in vitro in several studies from 

our laboratory (Trainor et al, 2012; Butterworth et al, 2011). Notably, the growth delay 

seen in partially-irradiated tumours (roughly 3 doubling times) is greater than would be 

expected even for complete killing of the irradiated portion of the tumour, this indicates 

a significant reduction in viability for out-of-field cells also. Further interpretation of the 

data from this study in the context of out-of-field effects is limited as the low spatial 

resolution of both the irradiation technique and BLI may be insufficient to detect 

significant variation in response occurring out-of-field.  

An improved approach may be the combination of BLI with accurate dose distributions 

offered through small animal image guided radiotherapy platforms. Furthermore, the 

development of tomographic optical imaging systems allowing the acquisition of BLI 

from multiple angles with reconstruction algorithms applying models of photon 

transport is likely to offer improved resolution in three dimensions. Although ectopic 

tumor models remain important experimental tools in biological sciences they fail to 

accurately recapitulate the tumour microenvironment in situ. To investigate tumour 

development and response to complex radiation fields delivered typically during 

advanced radiotherapy, the application of orthotopic tumour models may be more 

biologically relevant in recapitulating the tumor microenvironment. 

In summary, the data in this study show a clear correlation between tumor volume and 

BLI intensity. However, there may be significant inter-tumoral and inter-animal 

variations which may impact on absolute signal intensity particularly following 

irradiation. This study shows conventional in vivo radiation procedures using lead 

shielding are insufficient in accurately determining tumor responses to non-uniform 



radiation fields, stressing the need for the application of more accurate image guided 

small animal irradiation platforms in such investigations.  
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