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ABSTRACT

We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless
form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities.
We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and
laboratory experiments.
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1. INTRODUCTION

The study of astrophysical phenomena using laser-produced
plasma is a growing field of research (Remington et al. 1999;
Gregori et al. 2012; Savin et al. 2012; Meinecke et al. 2014).
Modern laser facilities can deliver large amounts of energy
in very short times, exceeding what is possible from more
conventional techniques such as gas guns or pulsed power
machines. Pressure near the laser spot (where most of the
laser energy is deposited) can reach values in excess of tens
of megabars and is comparable to the energy density of bound
electrons in atoms. Under these conditions, quantum processes
and radiation diffusion can also become important. Return
currents as well as steep density and pressure gradients produce
magnetic fields (Haines 1986a) that can modify the overall
transport of charged particles. These large deposited energies
then drive powerful shock waves into the ambient medium
(Foster et al. 2002; Robey et al. 2002; Klein et al. 2003; Hansen
et al. 2005). The process bears similarities to many astrophysical
phenomena where energy is impulsively released into the
interstellar medium, such as supernova remnants (Chevalier
et al. 1992), Herbig–Haro flows (Hartigan et al. 1987), and
accretion shocks (Miniati et al. 2000).

Laboratory experiments offer a viable complementary ap-
proach to both astrophysical observations (by providing, for
example, the means of directly measuring quantities of interest
not accessible by observation) and numerical calculations, thus
overcoming limitations in resolution and numerical viscosity,
and potentially addressing nonlinear aspects of the dynamical
evolution or validating simulation codes.

This is meaningful only if the relevant physics in the labo-
ratory is related to the astrophysical object. We refer to this as
a similarity relation between the two systems. The most obvi-
ous situation is one where the laboratory experiment reaches
the exact conditions found in the astrophysical object. This
has been exploited, for example, to study the equation of state
of planetary interiors (Jeanloz et al. 2007) and other compact
objects (Kritcher et al. 2008; Garcı́a Saiz et al. 2008). How-
ever, it is not always possible to reach the exact conditions that
we are interested in because the spatial, temporal, and energy
scales may be outside the range of what is directly reproducible
in an experiment. A similarity relation still exists if we can
show that the laboratory and astrophysical systems evolve in
a way that the governing equations are invariant under a scale

transformation; this requires the corresponding spatial, density,
pressure, time, and so on, values in one system to be mapped
onto the other system by multiplicative constants. This similarity
can be obtained via fluid equations (Ryutov et al. 1999) or even
at the kinetic level (Connor & Taylor 1977; Ryutov et al. 2012)
under some conditions. This paper concerns the magnetohydro-
dynamic (MHD) similarity and provides a general framework
to include effects arising from finite resistivity, thermal conduc-
tion, radiation diffusion, and quantum nonlocality.

Fluid similarity has previously been discussed, quite exten-
sively, by Ryutov and Falize (Ryutov et al. 1999, 2000, 2001,
2012; Falize et al. 2011a, 2011b). However, only selected as-
pects of the full governing equations have been investigated in
the previous work, i.e., viscous hydrodynamics, radiative ef-
fects, or resistive MHD. The aim of the present work is thus to
bring all of the different elements of the equations together in
a simple conceptual form. We consider here the most general
form of the fluid equations, including magnetic, radiative, and
quantum effects, which are therefore applicable to a wide range
of cases. By rewriting these equations in a dimensionless form
we derive a set of characteristic ratios containing the details of
the microscopic properties of the fluid at a given scale. Val-
ues of these ratios tell us how important local properties are in
determining the overall fluid motion.

We introduce the full set of fluid equations in Section 2 and
specialize them for the case of an optically thick plasma in
Section 3. In Section 3 we also discuss the Bohm potential and
the inclusion of quantum dynamics in the fluid model. This can
become important for exotic matter, such as inside neutron stars
or white dwarfs. Section 4 describes the dimensionless analysis,
and in Section 5 we derive the dimensionless fluid equations
for the optically thick case. The optically thin equations are
instead given in Section 6. Section 7 discusses the different
dimensionless numbers and their relevance to experiments. In
Section 8 we compare some laboratory experiments with their
astrophysical counterparts and apply similarity in the context
of our dimensionless analysis. We draw our conclusions in
Section 9.

2. GENERAL EQUATIONS

Although the equations of fluid dynamics are the same ev-
erywhere in the universe, there is no guarantee that a laboratory
fluid would behave in the same manner as an astrophysical fluid.
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The two systems will exhibit the same dynamics only under
some specific conditions. In order to explicitly extract such rela-
tions, we first write the full set of MHD equations in the presence
of heat conduction, radiation diffusion, and quantum effects
(Zeldovich et al. 1966; Drake 2006; McClarren et al. 2010;
Haas 2011). We assume the plasma is described by a single
fluid but with appropriate transport coefficients that are derived
from kinetic theory (Chapman & Cowling 1970).

2.1. Continuity Equation

The equation for the conservation of mass is given by:

∂ρ

∂t
+ ∇ · ρu = 0, (1a)

where ρ is the mass density, t the time, and u the fluid velocity.

2.2. Momentum Equation

The equation for conservation of momentum reads as

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ΦBohm +∇ ·σ ν + FEM +frad, (1b)

where p is the fluid (ram) pressure, ΦBohm the quantum Bohm
potential, σ v the stress tensor, FEM electromagnetic volume
forces (the interaction of charged particles and electromagnetic
(EM) fields), and frad the volume force of radiation on matter.
This equation shows that, in the most general case, the momen-
tum associated with a fluid element can change not only by the
inertial term and the pressure gradient but also because of ex-
change effects (the Bohm potential contribution), viscous drag,
and radiative forces. Each one of these nonideal terms will be
discussed in detail in the following sections. We also note that
in Equation (1b) the radiation force on matter, frad, in its most
general form, includes effects from absorption and scattering
(Shu 1992).

2.3. Energy Equation

The equation for conservation of energy is

∂

∂t

(
ρε +

ρu2

2
+ ER

)
+ ∇ ·

[
ρu

(
ε +

u2

2

)
+ pu

]
= −∇ · H − J · E + ΦBohm · u − frad · u, (1c)

where ε is the specific internal energy, ER the energy density of
the radiation field, H the energy flux from nonideal terms, J
the current density, and E the electric field. The nonideal energy
flux is

H = FR + (pR + ER) u + Q − σ ν · u, (1d)

where FR is the radiative energy flux, pR the radiation pressure,
and Q the heat flux. Here we have distinguished between
the radiative enthalpy flux associated with the matter motion,
(ER + pR)u, and the radiative energy flux in the rest frame of
the fluid, FR (see discussion in Shu 1992).

Differently from previous work, the above equations correctly
describe quantum effects, which become important for high-
density fluids (Schmidt et al. 2012), when the number density
reaches values �1024 cm−3, as in white dwarfs or neutron
star matter or at small scales. This means that Pauli blocking,
tunneling, and wave-packet spreading begin to exert an effective
quantum pressure to the system (Haas 2011). This approach
follows from the fact that deterministic equations can be used

Table 1
Numerical Values for the Braginskii Coefficients for Various Values of Z,

Adapted from Braginskii (1965)

Z = 1 Z = 2 Z = 3 Z = 4 Z → ∞
β ′′

0 3.053 1.784 1.442 1.285 0.877
δ0 3.7703 1.0465 0.5814 0.4106 0.0961
β ′′

1 1.5 1.5 1.5 1.5 1.5
δ1 14.79 10.80 9.618 9.055 7.482

to describe both single-particle and many-body distribution
functions in the quantum limit if an appropriate potential
is introduced in the hydrodynamic equations (Bohm 1952;
Mostacci et al. 2008). See Section 3.1 below for more detail.

2.4. Induction Equation

Starting from Ohm’s law, and neglecting displacement cur-
rent, we obtain

∂ B
∂t

= ∇ × (u × B) + η∇2 B +
m

e(1 + Z)

∇p × ∇ρ

ρ2

+ ∇ ×
(

B × τei

me

β ′′
1 χ2 + β ′′

0

Δ
∇T

)
, (1e)

where B is the magnetic field, η the magnetic diffusivity
(η = 1/σ0μ0 where σ0 is the electric conductivity and μ0
the vacuum permeability), m the average mass per particle,
me the electron mass, e the elementary charge, Z the degree of
ionization, τei the electron–ion collision time, Δ = χ4+δ1χ

2+δ0
(where χ = ωceτei is the Hall parameter and ωce is the electron
cyclotron frequency), T the fluid temperature, and β ′′

0 , β ′′
1 , δ0,

and δ1 are Braginskii coefficients (Braginskii 1965). Values for
the Braginskii coefficients are given in Table 1.

In addition to magnetic diffusion (second term on the right-
hand side of Equation (1e)), we have written the induction
equation to include baroclinic generation of the magnetic field
via the Biermann battery mechanism (Biermann 1950; Kulsrud
& Zweibel 2008) and advection of the magnetic field due to
the Nernst effect (Haines 1986a). These are the last two terms
on the right-hand side of Equation (1e), respectively. In many
laboratory and astrophysical scenarios, these terms represent
the next-highest-order correction to Ohm’s law (Haines 1986b;
Nishiguchi et al. 1985). Although Ohm’s law contains several
additional terms (Haines 1986a), here we restrict it to the
case of small magnetic fields, where zeroth-order (Biermann
battery) and first-order (Nernst) terms have been shown to be
the dominant mechanism for magnetic field generation in many
plasma experiments (Manuel et al. 2013).

3. OPTICALLY THICK SOURCE TERMS

Under the conditions of optically thick radiation, the source
terms in Equations (1b), (1c), and (1d) are explicitly given by

− ∇pR = frad (2a)

pR = ER

3
= 4σT 4

3c
(2b)

ΦBohm = h̄2ρ

2memi

∇
(∇2√ρ√

ρ

)
(2c)

2
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σ ν = ρν

[
∇u + (∇u)T − 2

3
(∇ · u)I

]
+ ζ (∇ · u)I (2d)

FEM = ρC E + J × B (2e)

FR = −16σT 3

3κRρ
∇T (2f)

Q = −κth∇T = −χthρcp∇T

= − χthρkBγ

m(γ − 1)
∇T (2g)

where σ is the Stefan–Boltzmann constant, c the speed of light,
h̄ the reduced Planck’s constant, mi the ion mass, ν the kinematic
viscosity with ν = μ/ρ, with μ being the (dynamic) viscosity,
I the identity tensor, and ζ the second coefficient of viscosity,
ρC the charge density, κR the Rosseland mean opacity, κth the
coefficient of heat conduction, χth the kinematic coefficient of
thermal diffusivity, cp the specific heat capacity at constant
pressure, kB Boltzmann’s constant, and γ the adiabatic index.

When the fluid is optically thick, we can reduce the pressure
tensor to a scalar radiation pressure and write it in terms of an
isotropic energy density. Equation (2a) is thus only applicable
in this limit. Equation (2b) represents the isotropic thermal
radiation pressure within the plasma and the related energy
density of that radiation assuming a Planck distribution (Castor
2004). Equation (2f) gives the radiative energy flux, within the
local thermodynamic equilibrium (LTE) approximation. In this
form, it corresponds to the Rosseland heat flux (Castor 2004;
Drake 2006). Clearly, these equations are not applicable to the
case of optically thin systems or when there is an optically
thin preshock material but optically thick postshock material
(McClarren et al. 2010). We will discuss the optically thin case
in Section 6 below.

The quantum potential is explicitly given in Equation (2c).
A derivation of this term is given in Section 3.1. Equation (2d)
gives the form of the stress tensor. This form does not assume
that the fluid is incompressible, i.e., ∇ · u does not have to
be equal to zero (Drake 2006). It also considers the effects
of viscosity to the second order. Equation (2e) defines the
electromagnetic (Lorentz) force on the system in standard form.
Finally, Equation (2g) describes the thermal heat flux in the
diffusive limit (Landau & Lifshitz 1959).

3.1. Quantum Potential

Given the presence of the Bohm potential in the above
equations and the fact that this term is often omitted, it is
important to give a detailed explanation and derivation of its
appearance. It arises from rewriting the Schrödinger equation in
polar form with a wavefunction given by

φ = ReiS/h̄,

where R and S are real-valued functions. The Schrödinger
equation can be thus divided into an imaginary part

∂R

∂t
= − 1

2m

(
R∇2S + 2∇R · ∇S

)
, (3)

and a real part

∂S

∂t
= −

[
(∇S)2

2m
+ V + Q

]
, (4)

where V is the external potential and

Q = − h̄2

2m

∇2R

R
.

If we now identify, using the correspondence to the classical
limit, R2 = ρ, and u = ∇S/m, then Equation (3) can be re-
expressed as a continuity equation, and Equation (4) has the form
of an energy equation with the classical potential corrected by
the quantum term Q. This leads, for example, to the inclusion
of ρQ/m as an energy-density correction in the momentum
equation.

In general the equations with quantum potential correction
are written separately for the ion and electron species (Haas
2011). For simplicity, we start by considering the case of an
ideal fluid where the source terms are only the pressure gradient
and electromagnetic forces:

∂ue

∂t
+ ue · ∇ue = − ∇pe

mene

− e

me

(E + ue × B)

+
h̄2

2m2
e

∇
(∇2√ne√

ne

)
, (5a)

∂ui

∂t
+ ui · ∇ui = − ∇pi

mini

+
e

mi

(E + ui × B)

+
h̄2

2m2
i

∇
(∇2√ni√

ni

)
, (5b)

where ne (ni), ue (ui ), and pe (pi) are the electron (ion) number
density, velocity, and pressure, respectively. Quantities with no
subscript are instead used to describe average fluid properties.
By defining an average mass density and fluid velocity as

ρ = mene + mini, u = meneue + miniui

mene + mini

,

we can combine Equations (5a) and (5b) into a single fluid
description by multiplying each one by neme and nimi , respec-
tively, and by adding them together. The resulting momentum
equation is

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + J × B +
h̄2ρ

2memi

∇
(∇2√ρ√

ρ

)
,

(6)

which has the same form of the quantum potential as seen
in Equation (2c). In this derivation we have assumed quasi-
neutrality and taken the total pressure to be the sum of the
electron and ion pressures, that is, pe + pi = p.

4. DIMENSIONLESS ANALYSIS

We now rescale the variables in the hydrodynamic equations
by a corresponding characteristic value. This allows us to rewrite
the equations in an invariant form, and the detail associated
with the physical dimensions of the system is contained in a
series of dimensionless numbers, which represent ratios of those
characteristic values. We write the velocity, position, time, and
density as

u → u0u∗, r → �0r∗, t → �0

u0
t∗, ρ → ρ0ρ

∗,

3
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where u0, �0, and ρ0 are the characteristic velocity, length, and
density of the system, respectively. From now on we will use the
convention that starred quantities (i.e., u∗) are dimensionless,
and quantities with subscript 0 (i.e., u0) correspond to a
characteristic value for that variable. The above assumptions
imply

∂

∂t
→ u0

�0

∂

∂t∗
, ∇ → ∇∗

�0
.

Similarly, we can set

p → p0p
∗, B → B0 B∗, ε → ε0ε

∗.

However, the choice of the values for p0, B0, and ε0 is not
arbitrary. To see this, we consider the momentum Equation (1b)
but with the only source terms being the pressure gradient and
magnetic field (i.e., in the ideal MHD limit). Using the relation
J × B = (B · ∇)B/μ0 − ∇(B2/2μ0), we can rewrite the
momentum Equation (1b) as

ρ0ρ
∗
(

u0

�0

∂u0u∗

∂t∗
+ u0u∗ · ∇

�0

∗
u0u∗

)
= − ∇

�0

∗
p0p

∗

+
B2

0

�0μ0

[
(B∗ · ∇∗)B∗ − ∇∗ B∗2

2

]
.

Noticing the common factor of u2
0ρ0/�0 on the left and dividing

through gives

ρ∗
(

∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= − p0

ρ0u
2
0

∇∗p∗

+
B2

0

μ0ρ0u
2
0

[
(B∗ · ∇∗)B∗ − ∇∗ B∗2

2

]
. (7)

Because we require this equation to have the same form
as Equation (1b), that is, to be invariant under the scaling
transformation, this means that p0 ≡ ρ0u

2
0 and B0 ≡ u0

√
μ0ρ0.

We see that the reference magnetic field has a value such that
the fluid velocity and the Alfvén velocity (Alfvén 1942) are the
same.

We can follow a similar procedure to determine the value for
ε0. Using the energy Equation (1c) in the ideal case with no
source terms, we get

u0

�0

∂

∂t∗

(
ρ0ε0ρ

∗ε∗ +
ρ0u

2
0ρ

∗u∗2

2

)

= − ∇
�0

∗
·
[
ρ0u0ρ

∗u∗
(

ε0ε
∗ +

u2
0u

∗2

2

)
+ ρ0u

2
0p

∗u0u∗
]
.

Dividing through by a factor of u3
0ρ0/�0 we obtain

∂

∂t∗

(
ε0

u2
0

ρ∗ε∗ +
ρ∗u∗2

2

)

= −∇∗ ·
[
ρ∗u∗

(
ε0

u2
0

ε∗ +
u∗2

2

)
+ p∗u∗

]
.

Again, we require this to be invariant under the scaling
transformation, which leads to ε0 ≡ u2

0.
This simple exercise has shown that the equations of ideal

MHD are indeed invariant under scaling. This applies for any
choice of the scaling transformation. In reality, the case is

more complex because neither the laboratory system nor the
astrophysical one can be assumed to always evolve under ideal
conditions. To see this, we consider Equation (1e) with the
inclusion of the resistive, baroclinic, and Nernst terms. By
applying the transformation defined above, with the additional
inclusion of a temperature scaling T → T0T

∗, we have

u0

�0

√
μ0ρ0u0

∂ B∗

∂t∗
= −u0

�0

√
μ0ρ0u0∇∗ × (u∗ × B∗)

+ η
u0

�2
0

√
μ0ρ0u0∇∗2 B∗ +

mu2
0

e�2
0(1 + Z)

∇∗p∗ × ∇∗ρ∗

ρ∗2

+
√

μ0ρ0u0T0

�2
0

τei

me

β ′′
1 χ2 + β ′′

0

Δ
∇∗ × (

B∗ × ∇∗T ∗) .

Dividing through by u2
0
√

μ0ρ0/�0,

∂ B∗

∂t∗
= ∇∗ × (u∗ × B∗) +

1

ReM

∇∗2 B∗

+
1

Bi

∇∗p∗ × ∇∗ρ∗

ρ∗2
+

1

Ne
∇∗ × (

B∗ × ∇∗T ∗) , (8)

where can recognize the magnetic Reynolds number as

ReM = u0�0

η
,

which represents the ratio of magnetic advection to magnetic
diffusion, and the dimensionless numbers

Bi = e
√

μ0ρ0�0(1 + Z)

m
, Ne = u0�0me

T0τei

Δ
β ′′

1 χ2 + β ′′
0

,

which we will refer to as the Biermann number and Nernst
number, respectively. These numbers represent the importance
of magnetic field generation, due to the presence of electron
currents, compared to magnetic field advection.

This shows that the equations of resistive MHD are scale
invariant only if ReM , Bi, and Ne are the same in both the
laboratory and astrophysical systems or, alternatively, very large
in both systems, such that these terms are negligible.

5. SIMILARITY FOR NONIDEAL EQUATIONS
IN THE OPTICALLY THICK CASE

We must now consider the full system of Equations (1c)
and (1d). In order to proceed, we need to define additional
scaling variables for current density, electric field, and charge:

J → J0 J∗, E → E0 E∗, ρC → ρC0ρ
∗
C.

5.1. Momentum Equation

We start with the momentum Equation (1b) and use the above
scaling transformations by dividing through a common factor
ρ0u

2
0/�0. After manipulation (for a more detailed derivation

please see Appendix A) we get

ρ∗
(

∂u∗

∂t∗
+ u∗ · ∇∗u∗

)

= −∇∗
[
p∗ +

1

R
T ∗4

]
+

1

HQ

ρ∗∇∗
(∇∗2√ρ∗

√
ρ∗

)

4
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+ ∇∗ ·
{

1

Re

[
∇∗u∗ + (∇∗u∗)T − 2

3
(∇∗ · u∗)I

]

+
1

Reζ

(∇∗ · u∗)I

}
+

1

ΩR

ρ∗
C E∗ +

1

ΩH

J∗ × B∗. (9)

The Mihalas number (R) represents the ratio of ram pressure
to radiation pressure, and it is related to the more familiar
Boltzmann (Bo) number by

R = ρ0u
2
0

4σT 4
0 /3c

= 3c

4u0

γ − 1

γ
Bo, (10)

where Bo = ρ0cpT0u0/σT 4
0 . Here, we have used kBT0 ∼ mu2

0
and cp ∼ γ kB/m(γ −1). The Boltzmann number gives the ratio
of the enthalpy flux to the radiation flux.

The importance of quantum effects to classical ones within
the system is described by the number

HQ = 2memi�
2
0u

2
0

h̄2 , (11)

which we will refer to as the Bohm number. We can also
recognize the Reynold’s number, the ratio of viscous to inertial
effects, and its obvious extension when considering the second
coefficient of viscosity:

Re = ρ0u0�0

μ
; Reζ = ρ0u0�0

ζ
. (12)

From charge conservation, ρC0 = J0/u0, it follows that

ΩR = ρ0u
2
0

ρC0�0E0
= ρ0u

3
0

J0E0�0
, (13)

which represents the ratio between Ohmic and convective heat
transfer, which we call the ohmic number. The ratio between
convective transport and Hall diffusion is expressed by the
coefficient

ΩH = u0
√

μ0ρ0

J0�0
= μ0ρ0u

2
0

J0B0�0
, (14)

which we refer to as the Hall number.

5.2. Energy Equation

Following the same approach as before, but now using the
energy Equation (1c) and dividing through by a common factor
of ρ0u

3
0/�0, the dimensionless energy equation can thus be

written as (see Appendix B)

∂

∂t∗

(
ρ∗ε∗ +

ρ∗u∗2

2
+

3

R
T ∗4

)
+ ∇∗ ·

[
ρ∗u∗

(
ε∗ +

u2

2

)
+ p∗u∗

]

= ∇∗ ·
{

1

Πthick

T ∗3

ρ∗ ∇∗T ∗ − 3

R
T ∗4u∗ +

1

Pe

γ

γ − 1
ρ∗∇∗T ∗

+
1

Re

[
∇∗u∗ + (∇∗u∗)T − 2

3
(∇∗ · u∗)I

]
· u∗

+
1

Reζ

(∇∗ · u∗)I · u∗
}

− 1

ΩR

J∗ · E∗

+
1

HQ

ρ∗∇∗
(∇∗2√ρ∗

√
ρ∗

)
· u∗ − 1

R
T ∗4∇∗ · u∗. (15)

Analogous to the momentum equation, we have new dimen-
sionless numbers. We define the radiation number, Πthick, which
is related to the Boltzmann number (in the same way as the
Mihalas number, above) by

Πthick = 3κRρ2
0�0u

3
0

16σT 4
0

(
= 3�0

16λR

γ − 1

γ
Bo

)
. (16)

This number describes the importance of material energy flux
compared to the radiative energy flux, weighted by the ratio
of the mean free path of the radiation, λR = 1/κRρ0, to the
characteristic length scale of the system. The Péclet number
gives the importance of thermal diffusion against convective
transport:

Pe = �0mu3
0

χthkBT0
= �0u0

χth
, (17)

where we have used again the relation kBT ∼ mu2
0.

6. SIMILARITY FOR NONIDEAL EQUATIONS
IN THE OPTICALLY THIN CASE

It is worth noting that the Mihalas and radiation numbers
as shown above rely on the material in question being optically
thick to radiation. The form of the equations as formulated so far
cannot be used in the presence of an optically thin plasma. The
scaling relations in the optically thin case have been discussed in
terms of cooling functions and characteristic timescales (Ryutov
et al. 1999, 2001) and using Lie group theory (Falize et al.
2011b). Moreover, in the special situation of thick–thin radiation
transport a more complex treatment is required (McClarren
et al. 2010).

Under optically thin conditions, the source terms relating to
radiation can be written as

pR = 0 (18a)

frad = 0, (18b)

where the transfer of momentum to the plasma by radiation is
zero, by definition, because the plasma is optically thin, and
the remaining radiation terms, relating to radiative energy flux
(Equation (19)), are written in terms of a cooling function

LΛ = ∂ER

∂t
+ ∇ · [FR + ERu] ≈ ρκP σT 4. (19)

This can be approximated with a form that is similar to the
optically thick case (Equation (2b)), where κP is the Planck
opacity (Falize et al. 2011b).

The dimensionless momentum and energy equations now
read as follows.

6.1. Momentum Equation

ρ∗
(

∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= −∇∗p∗ +

1

HQ

ρ∗∇∗
(∇∗2√ρ∗

√
ρ∗

)

+ ∇∗ ·
{

1

Re

[
∇∗u∗ + (∇∗u∗)T − 2

3
(∇∗ · u∗)I

]

+
1

Reζ

(∇∗ · u∗)I
}

+
1

ΩR

ρ∗
C E∗ +

1

ΩH

J∗ × B∗ (20)
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Table 2
List of Scaling Variables and Dimensionless Numbers

Characteristic Quantity Definition

Length �0

Velocity u0

Density ρ0

Current density J0

Electric field E0

Temperature T0

Time t0 = �0/u0

Pressure p0 = ρ0u
2
0

Magnetic field B0 = u0
√

μ0ρ0

Specific internal energy ε0 = u2
0

Charge density ρC0 = J0/u0

Reynolds number Re = ρ0u0�0/μ

Reynolds number (bulk) Reζ = ρ0u0�0/ζ

Magnetic Reynolds number ReM = u0�0/η

Biermann number Bi = e(1 + Z)
√

μ0ρ0�0/m

Nernst number Ne = u0�0meΔ/T0τei (β ′′
1 χ2 + β ′′

0 )
Mihalas number R = 3cρ0u

2
0/4σT 4

0
Radiation number (Thick) Πthick = 3�0ρ0u

3
0/16λRσT 4

0
Radiation number (Thin) Πthin = λP ρ0u

3
0/�0σT 4

0
Péclet number Pe = �0u0/χth

Ohmic number ΩR = ρ0u
3
0/J0E0�0

Hall number ΩH = μ0ρ0u
2
0/J0B0�0

Bohm number HQ = 2memiu
2
0�

2
0/h̄

2

6.2. Energy Equation

∂

∂t∗

(
ρ∗ε∗ +

ρ∗u∗2

2

)
+ ∇∗ ·

[
ρ∗u∗

(
ε∗ +

u2

2

)
+ p∗u∗

]
= ∇∗

·
{

1

Pe

γ

γ − 1
ρ∗∇∗T ∗ +

1

Re

[
∇∗u∗ + (∇∗u∗)T − 2

3
(∇∗ · u∗)I

]

· u∗ +
1

Reζ

(∇∗ · u∗)I · u∗
}

− 1

ΩR

J∗ · E∗

+
1

HQ

ρ∗∇∗
(∇∗2√ρ∗

√
ρ∗

)
· u∗ − 1

Πthin
ρ∗T ∗4 (21)

As for the optically thick case, we recover a set of dimen-
sionless characteristic numbers. The only difference is that the
radiation term is now altered, and the proper number to use in
this case is

Πthin = u3
0

κpσ�0T
4

0

= λP

�0

ρ0u
3
0

σT 4
0

(
= λP

�0

γ − 1

γ
Bo

)
,

which has a similar form to the radiation number for the optically
thick case. It is a measure of the ratio between the material
and radiative energy fluxes, weighted by the ratio of the mean
free path, λP = 1/κP ρ0, to the characteristic length scale of
the system �0. However, please note that the ratio between the
radiation mean free path and �0 is reversed when going from the
optically thick to the optically thin regime.

7. DISCUSSION

A summary of the scaling variables and all of the dimension-
less number is given in Table 2. As discussed earlier, similarity
between the laboratory and astrophysical object is achieved if
the dimensionless numbers are the same or sufficiently large
in both systems (the ideal MHD case). Under either of these
conditions, we take �

(1)
0 , u

(1)
0 , ρ

(1)
0 , J

(1)
0 , E

(1)
0 , and T

(1)
0 as the

characteristic scaling parameters for the laboratory experiment.
The astrophysical system has corresponding values given by

�
(2)
0 = ga�

(1)
0 , u

(2)
0 = gbu

(1)
0 , ρ

(2)
0 = gcρ

(1)
0 ,

J
(2)
0 = gdJ

(1)
0 , E

(2)
0 = geE

(1)
0 , T

(2)
0 = gf T

(1)
0 ,

where ga,b,c,d,e,f are scaling constants. From this set of param-
eters, we can scale all of the other characteristic quantities as

t
(2)
0 = ga

gb

t
(1)
0 , p

(2)
0 = gcg

2
bp

(1)
0 , B

(2)
0 = gb

√
gcB

(1)
0 ,

ε
(2)
0 = g2

bε
(1)
0 , ρ

(2)
C0

= gd

gb

ρ
(1)
C0

.

All of the details concerning the microphysics of the two systems
are thus contained only in the dimensionless numbers given in
Table 2. In order to evaluate these numbers, let us assume the
plasma is in thermodynamic equilibrium at temperature T (in
eV) and carries a mass density ρ (in g/cm3) from ions of atomic
mass A and charge Z. The magnetic field is B (in G). Charge
neutrality implies an equal number of negative charges carried
by mobile electrons. These assumptions are applicable to both
the laboratory and astrophysical plasmas. Following Ryutov
et al. (1999) and Huba (2002), the kinematic viscosity is

ν (cm2 s−1) = Min

{
3.3 × 10−5 A1/2T 5/2

Z4ρΛ

2.8 × 1043 ρ2Λ
A5/2Z2B2T 1/2

}
, (22)

where Λ is the Coulomb logarithm. The thermal diffusivity is
(Ryutov et al. 1999)

χth (cm2 s−1) = Min

{
3.3 × 10−3 AT 5/2

Z(Z+1)ρΛ
8.6 × 109 A1/2T

ZB

}
. (23)

The magnetic diffusivity can be written as (Lifshitz & Pitaevskii
1981)

η (cm2 s−1) = 2.4 × 105 ZΛ
T 3/2

. (24)

The electron–ion collision time is given by (Huba 2002)

τei (s) = 5.2 × 10−16 A2T 3/2

Z2ρΛ
. (25)

In the case of a fully ionized plasma, the Rosseland opacity is
only determined by the free–free absorption, thus (Zeldovich
et al. 1966)

κR (cm2 g−1) = 4.4 × 108 Z3ρ

A2T 7/2
. (26)

For typical astrophysical plasmas, the Planck opacity is
(Sutherland & Dopita 1993)

κP (cm2 g−1) = 1.8 × 1013 Zρ

A2T 4
, (27)

and for bremsstrahlung-dominated cooling (Ryutov et al. 1999)

κP (cm2 g−1) = 3.1 × 1010 Z2ρ

A2T 7/2
. (28)

At higher densities (near and above solid) and when line
radiation transport must be included in the calculations, the
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Table 3
List of Coefficient Values for Rosseland Opacity from Equation (29)

Material κ0 α β

CH 2.00 × 106 0.14 −2.00
Al 1.04 × 108 0.48 −2.48
Ti 3.07 × 107 0.39 −2.21
Fe 6.29 × 107 0.31 −2.27
Cu 5.93 × 107 0.29 −2.21
Mo 1.99 × 106 0.22 −1.49
Sn 3.70 × 106 0.16 −1.57
Xe 2.00 × 108 0.00 −2.00
Ba 5.89 × 106 0.14 −1.62
Eu 2.89 × 106 0.09 −1.45
W 5.59 × 105 0.01 −1.12
Au 6.00 × 106 0.30 −1.50
Pb 4.11 × 105 0.00 −1.05
U 7.76 × 105 0.04 −1.14

Note. Adapted from Tsakiris & Eidmann (1987) and Drake (2006).

Table 4
List of Coefficient Values for Planck Opacity from Equation (29)

Material κ0 α β

CH 2.00 × 105 0.00 −1.00
Al 6.01 × 108 0.48 −2.42
Ti 1.40 × 108 0.44 −2.07
Fe 2.22 × 108 0.38 −2.13
Cu 2.31 × 108 0.36 −2.22
Mo 1.54 × 107 0.31 −1.56
Sn 1.91 × 107 0.23 −1.59
Xe 3.00 × 109 0.00 −2.00
Ba 2.77 × 107 0.24 −1.64
Eu 1.68 × 107 0.24 −1.54
W 3.06 × 106 0.20 −1.23
Au 3.33 × 106 0.17 −1.23
Pb 4.17 × 106 0.16 −1.27
U 1.04 × 107 0.19 −1.42

Note. Adapted from Tsakiris & Eidmann (1987) and Drake (2006).

Rosseland and Planck opacities are tabulated as (Tsakiris &
Eidmann 1987)

κP,R (cm2 g−1) = κ0ρ
αT β, (29)

where κ0, α, and β are material-dependent constants (see
Tables 3 and 4). The Rosseland and Planck opacities are bound
to a maximum value given by (Tsakiris & Eidmann 1987)

κmax
P,R (cm2 g−1) = 6.1 × 106 Z

AT
. (30)

Even in the case that the dimensionless numbers are large in
both the laboratory and astrophysical systems, their magnitude
can be very different. It is then important to quantify the error
in fluid variables in the ideal MHD approximation due to finite
values for such dimensionless numbers. For the optically thick
case, we have

ΔB

Bid
∼

(
1

Re2
M

+
1

Bi2
+

1

Ne2

)1/2

, (31)

Δρu

(ρu)id
∼

(
1

R2
+

1

H2
Q

+
1

Re2
+

1

Re2
ζ

+
1

Ω2
R

+
1

Ω2
H

)1/2

, (32)

Table 5
Example of Scaling under Radiative Conditions from the Laboratory (Pak

et al. 2013) to a Supernova Shock Breakout

Characteristic Quantity Lab Astro

Length 100 μm 1.0 × 108 km
Velocity 300 km s−1 3.0 × 103 km s−1

Density 1 g cm−3 1.7 × 10−9 g cm−3

Temperature 250 eV 1000 eV

Time 300 ps 9 hr
Pressure (Ram) 90 TPa 15 MPa

Reynolds number 4.0 ×106 1.9 × 1012

Magnetic Reynolds number 8.7 1.0 × 1020

Biermann number 130 5.2 × 1013

Nernst number 0.1 1.3 × 106

Mihalas number 5,000 3.3 × 10−6

Radiation number (Thick) 0.5 2.7 × 10−4

Péclet number 1,200 3.6 × 109

Bohm number 6.4 ×1019 2.5 × 1048

Δρε

(ρε)id
∼

(
1

R2
+

1

Π2
thick

+
1

Pe2
+

1

H2
Q

+
1

Re2
+

1

Re2
ζ

+
1

Ω2
R

)1/2

,

(33)

where Bid, (ρu)id, and (ρε)id refer to the magnetic field, momen-
tum, and energy, respectively, in the ideal MHD approximation.
Similar relations can be straightforwardly derived for optically
thin plasmas.

8. EXPERIMENTAL COMPARISON

In this section we apply the scaling relations to a few recent
experiments and discuss how they can be used to meaningfully
describe astrophysical environments. We focus our attention to
the case when radiation becomes important, mainly because, as
we will see below, this is where similarity between the laboratory
and the astrophysical systems is difficult to achieve. By contrast,
in the absence of significant radiative effects, hydrodynamic or
MHD similarities have been successfully applied to a wide range
of problems. A comprehensive review of laboratory astrophysics
experiments is given by Remington et al. (1999, 2006); Drake
(2006); Savin et al. (2012).

First, we consider a recent implosion experiment on the
National Ignition Facility (NIF) laser (Pak et al. 2013), which is
related to shock waves in core-collapse supernova explosions
surrounded by an optically thick envelope or wind. Typical
values for these types of systems are given, based on values from
Katz et al. 2010, in Table 5. Although the experiment can indeed
reproduce the supernova shock in many aspects, the similarity
breaks down when considering the Mihalas number and is only
marginally satisfied for magnetic transport (because of diffusion
and advection along the temperature gradient rather than with
the fluid flow, as in the astrophysical case). This means that
the radiation pressure is significantly smaller than the material
pressure in the laboratory, and it does not change the form
of the energy equation, unlike the astrophysical case where
radiation pressure is much more important than the material
pressure. Even if R � 1 in the laboratory, the effect of radiation
can be important due to radiation flux in the energy equation,
but in this case, the large difference in the radiation number
makes the similarity marginally satisfied. This example shows
that radiation-dominated environments are still challenging to
achieve even on the currently available largest laser facilities.

7
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Table 6
Comparison of Laboratory Experiment to an Astrophysical Case

(Herbig–Haro Object)

Characteristic Quantity Lab Astro

Length 150 μm 1.4 ×106 km
Velocity 500 km s−1 35 km s−1

Density 1 ×10−4 g cm−3 6.6 ×10−10 g cm−3

Temperature 100 eV 15 eV

Time 300 ps 0.5 days
Pressure (Ram) 25 GPa 810 Pa

Reynolds number 1800 1.8 × 107

Magnetic Reynolds number 160 1.56 × 1016

Biermann number 3.8 1.9 × 109

Nernst number 1.9 × 10−4 12
Radiation number (Thin) 460 4.4 × 10−6

Péclet number 3.4 3.4 × 104

Bohm number 6.2 × 1015 6.2 × 1049

Note. From Tikhonchuk et al. (2008).

Radiative jets and outflows are present in several young stellar
objects (Reipurth & Bally 2001). Among more recent work, we
focus on the experiment by Tikhonchuk et al. (2008), who claim
to have good scaling between their experiment and astrophysics
and have entered a regime where radiative effects are important.
The scaling relations and corresponding dimensionless numbers
are given in Table 6. We indeed see that in this specific case, the
experiment succeeds in matching the trend, if not magnitude,
of many of the dimensionless numbers. However, the radiation
number remains too large compared to the astrophysical case:
the material energy flux in the laboratory is dominating over the
radiation flux. Similarity is partially satisfied when considering
magnetic Reynolds and Biermann numbers, suggesting that the
magnetic field diffusion is negligible, but the difference in the
Nernst number indicates the importance of thermal advection in
the laboratory case.

Other experiments have been able to better match values
relating to radiative effects. In the experiments by Krauland et al.
(2013a, 2013b) the values of Πthin are similar in the experimental
and astrophysical cases: ∼0.03 and ∼1, respectively. Thus the
radiative and material energy fluxes are comparable within an
order of magnitude. This is characteristic of the more complex
optically thick postshock, optically thin preshock conditions
found, for example, in accretion processes in interacting binary
star systems.

It is also important to note that, although values of these
characteristic ratios can lead to one process dominating over
the other (e.g., the effects of radiative flux are greater than
those from material flux in the laboratory; see Table 5), their
ratio could be many orders of magnitude different from the
astrophysical case. A well-scaled experiment would show, at
least, the correct trend in the ratio of the characteristic values
(i.e., large if the value for the astrophysical case is large, or vice
versa) for all quantities.

Another aspect of the scaling relations that is worth discussing
is the importance of the Bohm potential. Although this term
is of no significance in the tenuous interstellar plasma, it can
become important when considering small scales or compact
objects, particularly for densities exceeding 1023–1029 cm−3

(Haas 2011), which are found, for example, in white dwarfs and
neutron stars.

This is particularly relevant when considering, for exam-
ple, Kolmogorov turbulence (Kolmogorov 1991). In the inertial

Table 7
Typical Parameters for White Dwarf Stars, Adapted

from Lai (2001) and Zingale et al. (2009)

Characteristic Quantity Astro

Length 103 km
Velocity 50 km s−1

Density 107 g cm−3

Temperature 10 keV

�q/�ν 50

range ρu3
�/� = ε̇ = constant, where u� is the characteristic

velocity at scale �, and ε̇ is the total power injected into turbu-
lence. Hence the characteristic eddy turnover rate at scale � is
u�/� ∼ (ε̇/ρ)1/3�−2/3. Quantum effects are expected to become
important when h̄2/2me�

2 ∼ mu2
�, which defines the scale

�q 
(

h̄2

2mem

)3/8 (ρ

ε̇

)1/4
. (34)

We also notice that the rate of viscous dissipation on a scale � is
given by ν/�2. Equating this to the eddy turnover rate, we deter-
mine the scale at which viscous dissipation becomes dominant:

�ν  ν3/4
(ρ

ε̇

)1/4
, (35)

and quantum effects will lie within the inertial range if
�q > �ν , or

ν (cm2 s−1) <
1.9 × 10−4

A1/2
. (36)

Because the viscosity decreases as a function of the density,
it is then obvious to expect that quantum effects will become
more important at higher densities. Similar considerations apply
to the resistive scale. If the above conditions are satisfied, we
would see some change in the structure of turbulence below the
scale �q . This can become important when considering the fluid
core of white dwarf stars (Bildsten 2001), as shown in Table 7.

9. CONCLUDING REMARKS

In this paper we have provided a comprehensive description
of the MHD scaling in the presence of quantum, resistive, and
radiative effects. The dimensionless form of these equations
reveals a set of characteristic numbers that can be used to
quantify the departure from the ideal fluid behavior. The
scale-invariance properties of the MHD equations have been
successfully exploited to describe astrophysical phenomena in
a variety of laboratory experiments (Remington et al. 1999;
Drake 2006; Savin et al. 2012), and here we have provided a
unified theoretical framework that is common to all of these
experiments and can be applied to the planning and analysis of
future ones.

The research leading to these results has received funding
from the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement No. 256973. Partial support from AWE
plc is also acknowledged. The authors would like to thank
the anonymous referee for important insights provided into the
manuscript.

The derivation of the dimensionless form of the momentum
and energy equations (in the optically thick regime) is outlined
here in detail.
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APPENDIX A

MOMENTUM EQUATION

Considering each term separately, we have

ρ

(
∂u
∂t

+ u · ∇u
)

→ ρ0u
2
0

�0
ρ∗

(
∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
(A1a)

− ∇
(

p +
4σT 4

3c

)
→ −ρ0u

2
0

�0
∇∗

(
p∗ +

4σT 4
0

3ρ0u
2
0c

T ∗4

)
(A1b)

h̄2ρ

2m2
∇

(∇2√ρ√
ρ

)
→ ρ0u

2
0

�0

(
h̄

�0u0

√
2m

)2

ρ∗∇∗
(∇∗2√ρ∗

√
ρ∗

)
(A1c)

∇ ·
{
ρν

[
∇u + (∇u)T − 2

3
(∇ · u)I

]
+ ζ (∇ · u)I

}

→ ρ0u
2
0

�0
∇∗ ·

{
μ

ρ0u0�0

[
∇∗u∗ + (∇∗u∗)T − 2

3
(∇∗ · u∗)I

]

+
ζ

ρ0u0�0
(∇∗ · u∗)I

}
(A1d)

ρC E+ J×B → ρ0u
2
0

�0

(
ρC0�0E0

ρ0u
2
0

ρ∗
C E∗ +

J0�0

u0
√

μ0ρ0
J∗ × B∗

)
.

(A1e)
If we divide through by the common term ρ0u

2
0/�0, we obtain

Equation (9).

APPENDIX B

ENERGY EQUATION

Considering again each term separately as we have done for
the momentum equation

∂

∂t

(
ρε +

ρu2

2
+

4σT 4

c

)
→ ρ0u

3
0

�0

∂

∂t∗

×
(

ρ∗ε∗ +
ρ∗u∗2

2
+

4σT 4
0

ρ0u
2
0c

T ∗4

)
, (B1a)

∇ ·
[
ρu

(
ε +

u2

2

)
+ pu

]
→ ρ0u

3
0

�0
∇∗

·
[
ρ∗u∗

(
ε∗ +

u2

2

)
+ p∗u∗

]
, (B1b)

∇ ·
(

16σT 3

3κRρ
∇T

)
→ ρ0u

3
0

�0
∇∗ ·

(
16σT 4

0

3κRρ2
0�0u

3
0

T ∗3

ρ∗ ∇∗T ∗
)

,

(B1c)

− ∇ ·
(

3σT 4

c

)
· u → −ρ0u

3
0

�0
∇∗ ·

(
4σT 4

0

ρ0u
2
0c

T ∗4

)
· u∗, (B1d)

∇ ·
[

χthρkBγ

m(γ − 1)
∇T

]
→ ρ0u

3
0

�0
∇∗ ·

[
χthkBT0γ

�0mu3
0(γ − 1)

ρ∗∇∗T ∗
]

(B1e)

∇ ·
{
ρν

[
∇u + (∇u)T − 2

3
(∇ · u)I

]
+ ζ (∇ · u)I

}
· u

→ ρ0u
3
0

�0
∇∗ ·

{
μ

ρ0u0�0

[
∇∗u∗ + (∇∗u∗)T − 2

3
(∇∗ · u∗)I

]

+
ζ

ρ0u0�0
(∇∗ · u∗)I

}
· u∗ (B1f)

J · E → ρ0u
3
0

�0

J0E0�0

ρ0u
3
0

J∗ · E∗ (B1g)

h̄2ρ

2m2
∇

(∇2√ρ√
ρ

)
· u → ρ0u

3
0

�0

(
h̄

u0�0

√
2m

)2

× ρ∗∇∗
(∇∗2√ρ∗

√
ρ∗

)
· u∗ (B1h)

− 4σT 4

3c
∇ · u → −ρ0u

3
0

�0

(
4σT 4

0

3cu2
0ρ0

)
T ∗4∇∗ · u∗ (B1i)

The factor ρ0u
3
0/�0 has been isolated from each term. If we

divide through by this, we then obtain Equation (15).

APPENDIX C

FULL EQUATIONS

Here we give a full summary of all of the dimensionless
equations of magneto-quantum-resistive hydrodynamics:

C.1. Continuity Equation

∂ρ∗

∂t∗
+ ∇∗ · ρ∗u∗ = 0,

C.2. Induction Equation

∂ B∗

∂t∗
= ∇∗ × (u∗ × B∗) +

1

ReM

∇∗2 B∗ +
1

Bi

∇∗p∗ × ∇∗ρ∗

ρ∗2

+
1

Ne
∇∗ × (

B∗ × ∇∗T ∗)

C.3. Momentum Equation (Optically Thick)

ρ∗
(

∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= −∇∗

[
p∗ +

1

R
T ∗4

]

+
1

HQ

ρ∗∇∗
(∇∗2√ρ∗

√
ρ∗

)
+ ∇∗ ·

{
1

Re

[
∇∗u∗ + (∇∗u∗)T

− 2

3
(∇∗ · u∗)I

]
+

1

Reζ

(∇∗ · u∗)I
}

+
1

ΩR

ρ∗
C E∗

+
1

ΩH

J∗ × B∗
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C.4. Momentum Equation (Optically Thin)

ρ∗
(

∂u∗

∂t∗
+ u∗ · ∇∗u∗

)
= −∇∗p∗ +

1

HQ

ρ∗∇∗
(∇∗2√ρ∗

√
ρ∗

)

+ ∇∗ ·
{

1

Re

[
∇∗u∗ + (∇∗u∗)T − 2

3
(∇∗ · u∗)I

]

+
1

Reζ

(∇∗ · u∗)I
}

+
1

ΩR

ρ∗
C E∗ +

1

ΩH

J∗ × B∗

C.5. Energy Equation (Optically Thick)

∂

∂t∗

(
ρ∗ε∗ +

ρ∗u∗2

2
+

3

R
T ∗4

)
+ ∇∗ ·

[
ρ∗u∗

(
ε∗ +

u2

2

)
+ p∗u∗

]

= ∇∗ ·
{

1

Πthick

T ∗3

ρ∗ ∇∗T ∗ − 3

R
T ∗4 · u∗ +

1

Pe

γ

γ − 1
ρ∗∇∗T ∗

+
1

Re

[
∇∗u∗ + (∇∗u∗)T − 2

3
(∇∗ · u∗)I

]
· u∗

+
1

Reζ

(∇∗ · u∗)I · u∗
}

− 1

ΩR

J∗ · E∗

+
1

HQ

ρ∗∇∗
(∇∗2√ρ∗

√
ρ∗

)
· u∗ − 1

R
T ∗4∇∗ · u∗

C.6. Energy Equation (Optically Thin)

∂

∂t∗

(
ρ∗ε∗ +

ρ∗u∗2

2

)
+ ∇∗ ·

[
ρ∗u∗

(
ε∗ +

u2

2

)
+ p∗u∗

]

= ∇∗ ·
{

1

Pe

γ

γ − 1
ρ∗∇∗T ∗ +

1

Re

[
∇∗u∗ + (∇∗u∗)T

− 2

3
(∇∗ · u∗)I

]
· u∗ +

1

Reζ

(∇∗ · u∗)I · u∗
}

− 1

ΩR

J∗ · E∗ +
1

HQ

ρ∗∇∗
(∇∗2√ρ∗

√
ρ∗

)
· u∗ − 1

Πthin
ρ∗T ∗4
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