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IDEALS OF A(G) AND BIMODULES OVER MAXIMAL

ABELIAN SELFADJOINT ALGEBRAS

M. ANOUSSIS, A. KATAVOLOS AND I. G. TODOROV

To the memory of Bill Arveson, with gratitude

Abstract. This paper is concerned with weak* closed masa-bimodules
generated by A(G)-invariant subspaces of VN(G). An annihilator for-
mula is established, which is used to characterise the weak* closed sub-
spaces of B(L2(G)) which are invariant under both Schur multipliers
and a canonical action of M(G) on B(L2(G)) via completely bounded
maps. We study the special cases of extremal ideals with a given null
set and, for a large class of groups, we establish a link between relative
spectral synthesis and relative operator synthesis.

1. Introduction

Let G be a locally compact group. The algebra M cbA(G) of completely
bounded multipliers of the Fourier algebra A(G), introduced in [4], has
played a pivotal role in both Harmonic Analysis and Operator Algebra The-
ory. It was shown by J. E. Gilbert and by M. Bożejko and G. Fendler in [3]
(see also [16] and [30]) that the map N which sends a function f : G→ C to
the function Nf : G×G→ C given by Nf(s, t) = f(ts−1), carries M cbA(G)
isometrically into the algebra of Schur multipliers S(G) on G×G. This re-
sult has led to fruitful interaction between the two areas, see e.g. [25], [22]
and [30].

The weak* closed subspaces of the von Neumann algebra VN(G) that
are invariant under A(G) are precisely the annihilators of (closed) ideals
J ⊆ A(G). On the other hand, the weak* closed subspaces of the space
B(L2(G)) of bounded operators on L2(G) which are invariant under all Schur
multipliers are precisely the (weak* closed) masa-bimodules in B(L2(G)),
that is, invariant under the map T → MfTMg where f, g ∈ L∞(G) (or,
under left and right compostion with multiplication operators from L∞(G)).

Thus, given a closed ideal J ⊆ A(G), there are two natural ways to
construct a weak* closed masa-bimodule in B(L2(G)): (a) one may first
consider the norm closed masa-bimodule Sat(J) of T (G) suitably generated
by N(J) and then take the annihilator of Sat(J) in B(L2(G)), or (b) one
may first take the annihilator J⊥ of J in VN(G) and then generate a weak*
closed masa-bimodule Bim(J⊥). One of our main results, Theorem 3.2,
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is that these two operations have the same outcome; in other words, the
diagram

J
⊥−→ J⊥

↓ ↓
Sat(J)

⊥−→ Bim(J⊥)

is commutative. The proof uses the techniques developed by J. Ludwig, N.
Spronk and L. Turowska in [31] and [20]. Some of the results in Section 3 also
appear in the aforementioned papers; we have chosen to present complete
arguments in order to clarify some details.

Using this result, we present a unified approach to some problems of
Harmonic Analysis on G. In particular, in Section 5, we look at the special
cases where J is the minimal, or the maximal, ideal of A(G) with a given
null set E ⊆ G. The main result here is Theorem 5.3; as a corollary, we
obtain the result established in [20] that if A(G) possesses an approximate
identity then a closed set E ⊆ G satisfies spectral synthesis if and only if
the set E∗ = {(s, t) : ts−1 ∈ E} satisfies operator synthesis.

The connection between spectral synthesis and operator synthesis was
discovered by W. B. Arveson in [1]. The above result is due to J. Froelich
[11] for G abelian and to N. Spronk and L. Turowska [31] for G compact.
J. Ludwig and L. Turowska [20] show that a closed subset E of a locally
compact group G satisfies local spectral synthesis if and only if E∗ satisfies
operator synthesis; local spectral synthesis coincides with spectral synthesis
when A(G) has an approximate identity.

Spectral synthesis relative to a fixed A(G)-invariant subspace of VN(G)
was introduced for locally compact groups by E. Kaniuth and A.T. Lau in
[17]. In [26], the authors define relative operator synthesis for subsets of
G × G, where G is compact, and link it to relative spectral synthesis. In
Section 6, using our results, and assuming that the A(G)-invariant subspace
of VN(G) is weak* closed we prove an analogous relation for locally compact
groups for which A(G) possesses an approximate identity. We note that this
class contains, but is larger than, the class of amenable groups.

As another application, we are able to identify the weak* closed subspaces
of B(L2(G)) that are invariant under both Schur multiplication and an action
of the measure algebra M(G). More precisely, let Γ : M(G)→ B(B(L2(G)))
be the representation of M(G) given by

Γ(µ)(T ) =

∫
G
ρrTρ

∗
rdµ(r), T ∈ B(L2(G)).

This action was studied by F. Ghahramani, M. Neufang, Zh.-J. Ruan, R.
Smith, N. Spronk and E. Størmer in [12], [21], [22], [29], [32], among others.

The maps Γ(µ) are precisely those weak* continuous completely bounded
maps on B(L2(G)) that are VN(G)-bimodule maps and leave the multipli-
cation masa invariant [21], [22]. In Section 4, we show that the set L of
all weak* closed subspaces of B(L2(G)) that are invariant under both S(G)
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and Γ(M(G)) consists precisely of the masa-bimodules of the form Bim(J⊥),
where J ⊆ A(G) is a closed ideal; we also determine the lattice structure of
L.

In the presence of an approximate identity in A(G), we show that the
generating invariant subspace of a bimodule of the form Bim(X ) can be
recovered by taking the intersection with VN(G). Thus, the map X →
Bim(X ) from the class of weak* closed invariant subspaces of VN(G) to the
class of weak* closed masa bimodules of B(L2(G)) is in this case one-to-one.

2. Preliminaries

If (X,m) is a σ-finite measure space, we write Lp(X) for Lp(X,m). For
φ ∈ L∞(X), let Mφ be the operator on L2(X) of multiplication by φ. The
collection DX = {Mφ : φ ∈ L∞(X)} is a maximal abelian selfadjoint algebra
(masa, for short).

Let X and Y be standard Borel spaces (that is, Borel isomorphic to
Borel subsets of complete separable metric spaces), equipped with σ-finite
measuresm and n. A subset E ⊆ X×Y is called marginally null if E ⊆ (X0×
Y ) ∪ (X × Y0), where m(X0) = n(Y0) = 0; we write E ' ∅. Two functions
h1, h2 : X × Y → C are said to be equal marginally almost everywhere
(m.a.e.) or marginally equivalent if the set {(x, y) : h1(x, y) 6= h2(x, y)} is
marginally null.

Let T (X,Y ) be the projective tensor product L2(X)⊗̂L2(Y ). Every ele-
ment h ∈ T (X,Y ) is an absolutely convergent series

h =
∞∑
i=1

fi ⊗ gi, fi ∈ L2(X), gi ∈ L2(Y ), i ∈ N,

where
∑∞

i=1 ‖fi‖
2
2 < ∞ and

∑∞
i=1 ‖gi‖

2
2 < ∞. Such an element h may be

considered either as a function h : X × Y → C, defined marginally almost
everywhere and given by

h(x, y) =

∞∑
i=1

fi(x)gi(y),

or as an element of the predual of the space B(L2(X), L2(Y )) of all bounded
linear operators from L2(X) into L2(Y ) via the pairing

〈T, h〉t :=
∞∑
i=1

(Tfi, ḡi) .

We denote by ‖h‖t the norm of h ∈ T (X,Y ) and note that if φ ∈ L∞(X)
and ψ ∈ L∞(Y ), then the function (φ⊗ψ)h belongs to T (X,Y ); thus, T (G)
has a natural (L∞(X), L∞(Y ))-module structure.

Let S(X,Y ) be the multiplier algebra of T (X,Y ); by definition, a mea-
surable function w : X×Y → C belongs to S(X,Y ) if the map mw : h→ wh
leaves T (X,Y ) invariant, that is, if wh is marginally equivalent to a function
from T (X,Y ), for every h ∈ T (X,Y ). The elements of S(X,Y ) are called
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(measurable) Schur multipliers. The closed graph theorem can be used to
show that mw is automatically a bounded operator; hence it has a dual

Sw : B(L2(X), L2(Y ))→ B(L2(X), L2(Y )),

given by

〈Sw(T ), h〉t = 〈T,wh〉t , h ∈ T (X,Y ), T ∈ B(L2(X), L2(Y )).

If φ ∈ L∞(X) and ψ ∈ L∞(Y ), one finds that Sφ⊗ψ(T ) = MψTMφ, T ∈
B(L2(X), L2(Y )). It follows that if k ∈ L2(Y ×X), Tk is the Hilbert-Schmidt
operator from L2(X) into L2(Y ) given by (Tkf)(y) =

∫
X k(y, x)f(x)dm(x)

(f ∈ L2(X)) and w ∈ S(X,Y ), then Sw(Tk) = Tw[k where w[ : Y ×X → C
is the function w[(x, y) = w(y, x).

It can be shown ([23], see also [13, 18] and [30]) that w ∈ S(X,Y ) if and
only if w can be represented in the form

w(x, y) =

∞∑
k=1

ak(x)bk(y), for almost all (x, y) ∈ X × Y,

where (ak)k∈N ⊆ L∞(X) and (bk)k∈N ⊆ L∞(Y ) are sequences of functions
with esssupx∈X

∑∞
k=1 |ak(x)|2 < ∞ and esssupy∈Y

∑∞
k=1 |bk(y)|2 < ∞. In

this case,

Sw(T ) =
∞∑
k=1

MbkTMak , T ∈ B(L2(X), L2(Y )),

where, for every T ∈ B(L2(X), L2(Y )), the series converges in the weak*

topology. We write w =
∞∑
k=1

ak ⊗ bk as a formal series. Moreover, the norm

of Sw as an operator on B(L2(X), L2(Y )) (which of course also equals the
norm of the operator mw on T (X,Y )) is given by

‖Sw‖ = inf


∥∥∥∥∥
∞∑
k=1

|ak|2
∥∥∥∥∥
1/2

∞

∥∥∥∥∥
∞∑
k=1

|bk|2
∥∥∥∥∥
1/2

∞

: all rep’s w =
∞∑
k=1

ak ⊗ bk


We denote this quantity by ‖w‖S. Note that if w =

∞∑
k=1

ak ⊗ bk ∈ S(X,Y )

then w[ =
∑∞

k=1 bk ⊗ ak ∈ S(Y,X) and ‖w‖S =
∥∥w[∥∥

S
.

If w ∈ S(X,Y ), the operator Sw is a (DY ,DX)-module map, while the
operator mw is a (L∞(X), L∞(Y ))-module map. In fact, a weak* closed
subspace U ⊆ B(L2(X), L2(Y )) is a masa-bimodule in the sense that BTA ∈
U for all A ∈ DX , B ∈ DY and T ∈ U , if and only if U is invariant under
the mappings Sw, w ∈ S(X,Y ) [6, Proposition 3.2]. It follows by duality
that a norm closed subspace V ⊆ T (X,Y ) is an (L∞(X), L∞(Y ))-module if
and only if it is invariant under the mappings mw, w ∈ S(X,Y ).

Throughout, G will denote a second countable locally compact group.
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We now summarise some results from non-commutative harmonic anal-
ysis. All spaces Lp(G) are with respect to left Haar measure m; dm(x) is
shortened to dx and the modular function is denoted by ∆. If A,B ⊆ G
we write A−1 = {x−1 : x ∈ A} and AB = {xy : x ∈ A, y ∈ B}. Denote by
λ : G → B(L2(G)), s → λs, the left regular representation and write (f, g)
for the inner product of the elements f, g ∈ L2(G). We set T (G) = T (G,G),
B(L2(G)) = B(L2(G), L2(G)) and S(G) = S(G,G). The group von Neu-
mann algebra of G is the algebra

VN(G) = span{λx : x ∈ G}−w∗,

acting on L2(G), while the Fourier algebra A(G) of G [9] is the (commuta-
tive, regular, semi-simple) Banach algebra consisting of all complex functions
u on G of the form

(1) u(x) = (λxξ, η), x ∈ G, where ξ, η ∈ L2(G).

Multiplication in A(G) is pointwise, while the norm ‖u‖ of an element u ∈
A(G) is the infimum of the products ‖ξ‖2‖η‖2 over all representations (1)
of u. The spectrum of A(G) is identified with G via point evaluations.

Every element τ of the dual A(G)∗ defines a bounded operator Tτ on
L2(G) by the formula

〈τ, u〉a := (Tτξ, η)

(the symbol 〈·, ·〉a is used to denote the duality between A(G) and A(G)∗),
where u ∈ A(G) is given by (1). The map

τ → Tτ : A(G)∗ → B(L2(G))

sends A(G)∗ isometrically and weak* homeomorphically onto VN(G).
Note that the spaces A(G)∗ and VN(G) are usually identified in the lit-

erature and the map τ → Tτ is suppressed; we have chosen to retain it in
order to emphasize the different dualities used in this paper. The algebra
VN(G) is a Banach A(G)-module under the operation

(u, Tτ )→ uTτ = Tτ ′ ,

where τ ′ is defined by the relation〈
τ ′, v

〉
a

= 〈τ, uv〉a , v ∈ A(G).

The predual P : T (G) → A(G) of the map τ → Tτ : A(G)∗ → B(L2(G))
is the contraction given by

(2) 〈τ, P (h)〉a = 〈Tτ , h〉t , τ ∈ A(G)∗, h ∈ T (G).

To obtain an explicit formula for P , take τ such that Tτ = λs and recall
that 〈τ, u〉a = u(s), s ∈ G. If h ∈ T (G) is of the form h =

∑∞
i=1 fi ⊗ gi,
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where
∑∞

i=1 ‖fi‖22 <∞ and
∑∞

i=1 ‖gi‖22 <∞, then

P (h)(s) = 〈τ, P (h)〉a = 〈λs, h〉t =
∞∑
i=1

(λsfi, ḡi)

=
∞∑
i=1

∫
G
fi(s

−1t)gi(t)dt =

∫
G

∞∑
i=1

fi(s
−1t)gi(t)dt

by Proposition 3.3 below. Thus

(3) P (h)(s) =

∫
G
h(s−1t, t)dt, s ∈ G.

The space A(G) has a canonical operator space structure arising from its
identification with the predual of VN(G) (the reader is referred to [7], [24],
[25] for the basic notions of operator space theory). We write

MA(G) = {v : G→ C : vu ∈ A(G) for all u ∈ A(G)}
for the multiplier algebra of A(G); the set of all v ∈ MA(G) for which the
map u→ vu on A(G) is completely bounded will be denoted M cbA(G) and
equipped with the completely bounded norm.

Define

N : L∞(G)→ L∞(G×G) by N(f)(x, y) = f(yx−1).

We warn the reader that our definition of the map N differs from the one
used in [31, 20], where the expression f(xy−1) is used instead of f(yx−1).

The following result [3], [30] (see also [16]) will be used in the sequel.

Theorem 2.1. The map u → N(u) is an isometry from M cbA(G) into
S(G). Moreover, N(M cbA(G)) equals the space of those w ∈ S(G) for
which w(sr, tr) = w(s, t) for every r ∈ G and marginally almost all s, t.

If G is compact then T (G) contains the constant functions, and Theorem
2.1 implies that N takes values in T (G).

If u ∈ A(G), h ∈ T (G) and t ∈ G then, using (3), we have

P (N(u)h)(t) =

∫
N(u)(t−1s, s)h(t−1s, s)ds

=

∫
u(s(t−1s)−1)h(t−1s, s)ds = u(t)P (h)(t)

so P (N(u)h) = uP (h).(4)

3. Ideals and bimodules

The main result of this section is the annihilator formula of Theorem
3.2. We start by explaining its main ingredients. Given a closed ideal
J of A(G), we will abuse notation and identify its annihilator J⊥ with a
(weak* closed) subspace of VN(G). The space J⊥ is invariant, that is, it
is an A(G)-submodule of VN(G); it is easy to see that every weak* closed
invariant subspace of VN(G) arises in this way. Similarly, there is a bijective
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correspondence between the class of all norm closed L∞(G)-bimodules in
T (G) and the class of all weak* closed masa-bimodules in B(L2(G)), given
by taking annihilators and pre-annihilators.

Given any weak* closed invariant subspace X of VN(G), we let Bim(X ) ⊆
B(L2(G)) be the weak* closed masa-bimodule generated by X . It is not hard
to see that

Bim(X ) = [S(G)X ]
w∗
.

Note that if U ⊆ B(L2(G)) is a weak* closed masa-bimodule then U ∩
VN(G) is a weak* closed invariant subspace of VN(G); indeed, if u ∈ A(G)
and T ∈ U ∩VN(G) then uT = SN(u)(T ).

Given a closed ideal J ⊆ A(G), we wish to define, similarly, a norm closed
L∞(G)-bimodule in T (G) “generated by” J . To this end, suppose first that
G is compact. Then, as pointed out in Section 2, N(J) ⊆ T (G). Hence, one
may consider the norm closed L∞(G)-bimodule of T (G) generated by N(J),

that is, the space [S(G)N(J)]
‖·‖t

. If G is not compact, the map N does not
take values in T (G) but in S(G). However, if u ∈ A(G) then N(u) belongs
to T (G) ’locally’ in the sense that N(u)χL×L ∈ T (G) for every compact
subset L ⊆ G (indeed, for such L, the function χL×L is in T (G) and since
N(u) is a multiplier of T (G), the claim follows). Hence we may consider the
closed L∞(G)-bimodule of T (G) generated by the set

{N(u)χL×L : u ∈ J, L compact, L ⊆ G}.
We will denote this bimodule by Sat(J). This bimodule may also be written
as follows

Proposition 3.1. If J ⊆ A(G) is a closed ideal, then

Sat(J) = [N(J)T (G)]
‖·‖t

.

Proof. It is clear that Sat(J) ⊆ [N(J)T (G)]
‖·‖t

. For the converse, consider
u ∈ J and h ∈ T (G). It follows from Lemma 3.13 below that there are
compact subsets Kn and Ln of G such that hχKn×Ln ∈ S(G) and h is
the ‖ · ‖t-limit of the sequence (hχKn×Ln)n. Set Mn = Kn ∪ Ln. Then
hχKn×Ln = hχKn×LnχMn×Mn and N(u)h = limnN(u)hχKn×LnχMn×Mn .
But N(u)χMn×Mn ∈ Sat(J) and hχKn×Ln ∈ S(G). Thus

N(u)h = lim
n→∞

N(u)hχKn×LnχMn×Mn ∈ Sat(J).

�

The rest of the section is devoted to the proof of the following theorem.

Theorem 3.2. Let J ⊆ A(G) be a closed ideal. Then Sat(J)⊥ = Bim(J⊥).

We need several preliminary results.

Proposition 3.3. Let h =
∑∞

i=1 fi ⊗ gi ∈ T (G) and s, t ∈ G. Then the
function hs,t : G → C given by hs,t(r) = h(sr, tr), r ∈ G, belongs to L1(G)
and ‖hs,t‖1 ≤ ‖h‖t.
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In particular, the sequence (un)n∈N where un(r) =
∑n

i=1 fi(sr)gi(tr), con-
verges in the norm of L1(G) and hence, for all f ∈ L∞(G),∫

G
f(r)h(sr, tr)dr =

∞∑
i=1

∫
f(r)fi(sr)gi(tr)dr .

Proof. The argument below is due to Ludwig - Turowska [20, Proof of The-
orem 4.11]. We reproduce it for completeness: For each s, t ∈ G, applying
the Cauchy-Schwartz inequality, we obtain∫

G
|h(sr, tr)|dr ≤

∫
G

∞∑
i=1

|fi(sr)gi(tr)|dr

≤
∫
G

( ∞∑
i=1

|fi(sr)|2
)1/2( ∞∑

i=1

|gi(tr)|2
)1/2

dr

≤

( ∞∑
i=1

∫
G
|fi(sr)|2dr

)1/2( ∞∑
i=1

∫
G
|gi(tr)|2dr

)1/2

=

( ∞∑
i=1

‖fi‖22

)1/2( ∞∑
i=1

‖gi‖22

)1/2

<∞.

Taking the infimum over all representations of h, we obtain

(5) ‖hs,t‖1 ≤ ‖h‖t .
The remaining assertions are clear from this inequality after an application
of the Lebesgue Dominated Convergence Theorem. �

Denote by Ĝ the set of (equivalence classes of) unitary irreducible rep-

resentations of G. For π ∈ Ĝ, write Hπ for the Hilbert space where the
representation π acts. Fixing an orthonormal basis {en}n∈Nπ of Hπ (where
Nπ is either finite or equals N), we write uπi,j(r) = (π(r)ej , ei) for the coeffi-
cients of π.

Let π ∈ Ĝ and h ∈ T (G). Define

hr(s, t) = h(sr, tr), r, s, t ∈ G;

hπ(s, t) =

∫
G
hr(s, t)π(r)dr ∈ B(Hπ);

h̃π(s, t) = π(s)hπ(s, t) =

∫
G
hr(s, t)π(sr)dr ∈ B(Hπ),

where the integrals are understood in the weak sense. We also let

hπi,j(s, t) = (hπ(s, t)ej , ei) =

∫
G
hr(s, t)u

π
i,j(r)dr;

h̃πi,j(s, t) =
(
h̃π(s, t)ej , ei

)
=

∫
G
hr(s, t)u

π
i,j(sr)dr.(6)
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If φ is a function on G, we denote by φ̌ the function given by φ̌(s) = φ(s−1),
s ∈ G.

Lemma 3.4. Let h ∈ T (G). Then h̃πi,j ∈ S(G) and
∥∥∥h̃πi,j∥∥∥

S
≤ ‖h‖t.

Proof. When h = f ⊗ g is an elementary tensor, (6) gives

h̃πi,j(s, t) =

∫
G
f(x)uπi,j(x)g(ts−1x)dx = φ(st−1),

where φ = (fuπi,j) ∗ ǧ ∈ A(G). Thus,

h̃πi,j(s, t) = φ̌(ts−1) = (Nφ̌)(s, t)

and so, since φ̌ ∈ A(G) ⊆ M cbA(G), Theorem 2.1 shows that h̃πi,j is in

S(G) and that
∥∥∥h̃πi,j∥∥∥

S
=
∥∥φ̌∥∥

McbA(G)
. Now A(G) embeds contractively in

M cbA(G) [4] and so∥∥φ̌∥∥
McbA(G)

≤
∥∥φ̌∥∥

A(G)
= ‖φ‖A(G) ≤

∥∥fuπi,j∥∥2 ‖g‖2 .
Thus, ∥∥∥h̃πi,j∥∥∥

S
≤
∥∥fuπi,j∥∥2 ‖g‖2 ≤ ‖f‖2 ‖g‖2 = ‖h‖t .

The same inequality holds for linear combinations
∑N

n=1 fn⊗ gn, and hence

the linear operator Φ given by Φ(h) = h̃πi,j , defined on the algebraic tensor

product L2(G) ⊗ L2(G) extends to a bounded operator Φ : T (G) → S(G);
clearly, ‖Φ(h)‖S ≤ ‖h‖t.

Now let h =
∑∞

i=1 fi ⊗ gi be an arbitrary element of T (G), and set hn =∑n
i=1 fi⊗gi, n ∈ N; we show that Φ(h) = h̃πi,j . Since hn →n→∞ h in T (G), we

have that Φ(hn) →n→∞ Φ(h) in S(G) and hence Φ(hn)χL×L → Φ(h)χL×L
in T (G) for every compact set L ⊆ G. By [28, Lemma 2.1], a subsequence
of (Φ(hn)χL×L)n∈N converges m.a.e. to Φ(h)χL×L.

On the other hand, Proposition 3.3 shows that Φ(hn) →n→∞ h̃πi,j point-

wise. It follows that Φ(h) = h̃πi,j . �

The proof of the following lemma, which follows readily from the defini-
tions, is left to the reader.

Lemma 3.5. (i) If h ∈ S(G) then hr ∈ S(G) and ‖hr‖S = ‖h‖S.
(ii) If h ∈ T (G) then hr ∈ T (G) and ‖hr‖t ≤ ∆(r)−1‖h‖t.

We do not know if hπi,j always defines a Schur multiplier; however, it
suffices for our purposes to show that its restriction to a compact set does
define a Schur multiplier; this is done in Lemma 3.8. In Lemma 3.12 we
express this restriction in terms of h̃πk,j .

We thank the referee for the following remark.
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Remark 3.6. If h ∈ S(G) is compactly supported, say supph ⊂ K × K
where K ⊆ G is compact, then h ∈ T (G).

Proof. Indeed, given ε > 0, writing h =
∑

n ϕn ⊗ ψn with∥∥∥∥∥∑
n

|ϕn|2
∥∥∥∥∥
∞

∥∥∥∥∥∑
n

|ψn|2
∥∥∥∥∥
∞

< (‖Sh‖+ ε)2,

we have

‖h‖2t ≤

(∑
n

‖ϕn‖2‖ψn‖2

)2

≤

(∑
n

∫
K
|ϕn|2

)(∑
n

∫
K
|ψn|2

)

=

(∫
K

∑
n

|ϕn|2
)(∫

K

∑
n

|ψn|2
)

≤ m(K)2

∥∥∥∥∥∑
n

|ϕn|2
∥∥∥∥∥
∞

∥∥∥∥∥∑
n

|ψn|2
∥∥∥∥∥
∞

= m(K)2(‖Sh‖+ ε)2.

�

For the next lemma, recall (see for example [2] or [30, Section 3]) that
S(G) can be identified with the weak* Haagerup tensor product L∞(G)⊗w∗h
L∞(G) which coincides with the dual of the Haagerup tensor product L1(G)
⊗hL1(G), the duality being given by

(7) 〈w, f ⊗ g〉 =

∫∫
w(s, t)f(s)g(t)dsdt, w ∈ S(G), f, g ∈ L1(G).

Lemma 3.7. Let L ⊆ G be a compact set. If h ∈ S(G) is supported in a
compact set K ×K, then the function r → 〈(χL×Lhr), ω〉 is continuous for
every ω ∈ L1(G)⊗h L1(G).

Proof. For ω = f ⊗ g where f, g ∈ L1(G), we have

〈(χL×Lhr), ω〉 =

∫∫
χL(s)χL(t)h(sr, tr)f(s)g(t)dsdt

=

∫∫
χL(sr−1)χL(tr−1)h(s, t)∆(r)−1f(sr−1)∆(r)−1g(tr−1)dsdt

But, as r → e, the function s → χL(sr−1)f(sr−1)∆(r−1) tends to χLf in
the norm of L1(G); similarly for χLg. Therefore, since h is bounded,

〈(χL×Lhr), ω〉 →r→e

∫∫
χL(s)h(s, t)χL(t)f(s)g(t)dsdt.

It follows that r → 〈(χL×Lhr), ω〉 is continuous for every finite sum ω =∑
fn ⊗ gn. Since such elements ω form a dense subset of L1(G) ⊗h L1(G),

and ‖h‖S = ‖hr‖S for all r ∈ G (Lemma 3.5 (i)), the conclusion follows. �
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Suppose h ∈ S(G) is supported in a compact set K×K and let u : G→ C
be bounded and continuous. For a compact set L ⊆ G, let

wh,L(s, t) = χL×L(s, t)

∫
G
h(sr, tr)u(r)dr(8)

= χL×L(s, t)

∫
G
h(sr, tr)u(r)χL−1K(r)dr

(the second equality follows from the fact that sr ∈ K forces r ∈ s−1K ⊆
L−1K if s ∈ L). In the next lemma, we show that wh,L ∈ S(G). First note
that, since h ∈ S(G), the function r → 〈(χL×Lhr), ω〉 is bounded and hence
the integral

∫
〈(χL×Lhr), ω〉u(r)χL−1K(r)dr exists.

Lemma 3.8. If h ∈ S(G) is compactly supported, then for every compact
L ⊆ G and every bounded continuous function u : G → C, the function
wh,L defined in (8) is a Schur multiplier. In particular, χL×Lh

π
i,j is a Schur

multiplier.

Proof. Suppose h is supported in a compact set K ×K. By Lemmas 3.5(i)
and 3.7, the linear mapping

L1(G)⊗h L1(G)→ C : ω →
∫
〈(χL×Lhr), ω〉u(r)χL−1K(r)dr

is bounded with norm not exceeding ‖h‖S ‖u‖∞m(L−1K); hence it defines

an element vh,L ∈ (L1(G)⊗h L1(G))∗ = S(G), that is

〈vh,L, ω〉 =

∫
G
〈(χL×Lhr), ω〉u(r)χL−1K(r)dr,(9)

for all ω ∈ L1(G)⊗h L1(G).
We will show that vh,L = wh,L almost everywhere.
By (7) and (9), if ω = f ⊗ g with f, g ∈ L1(G) then, applying Fubini’s

theorem (note that the integration with respect to r is over a compact set),
we obtain∫∫

vh,L(s, t)f(s)g(t)dsdt = 〈vL, ω〉 =

∫
〈(χL×Lhr), ω〉u(r)χL−1K(r)dr

=

∫ (∫∫
(χL×Lhr)(s, t)f(s)g(t)dsdt

)
u(r)χL−1K(r)dr

=

∫∫ (∫
(χL×Lhr)(s, t)u(r)χL−1K(r)dr

)
f(s)g(t)dsdt

=

∫∫
wh,L(s, t)f(s)g(t)dsdt.

This shows that the function vh,L −wh,L annihilates the algebraic tensor
product L1(G)⊗L1(G), hence all of L1(G×G). It follows that it is zero as
an element of L∞(G×G). �
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Corollary 3.9. Suppose h ∈ S(G) is compactly supported. For every
continuous bounded function u : G → C, every T ∈ B(L2(G)) and every
f, g ∈ L2(G) supported in a compact set L ⊆ G we have

(Swh,L(T )f, g) =

∫
G
u(r)(Shr(T )f, g)dr,

where wh,L is as in (8). In particular,

(Shπi,jχL×L(T )f, g) =

∫
G
uπi,j(r)(Shr(T )f, g)dr

for all π ∈ Ĝ and all i, j ∈ Nπ.

Proof. Let K ⊆ G be a compact set such that supph ⊆ K × K. Suppose
first that T = Tk is a Hilbert-Schmidt operator (here k ∈ L2(G×G)). Using
Fubini’s theorem, we have

(Swh,L(Tk)f, g) =

∫
G×G

wh,L(s, t)k(t, s)f(s)g(t)dsdt

=

∫
G×G

(∫
L−1K

h(sr, tr)u(r)dr

)
k(t, s)f(s)g(t)dsdt

=

∫
L−1K

u(r)

(∫
G×G

h(sr, tr)k(t, s)f(s)g(t)dsdt

)
dr

=

∫
L−1K

u(r)(Shr(Tk)f, g)dr .

If T is arbitrary, let (Tn) be a sequence of Hilbert-Schmidt operators (with
operator norms uniformly bounded by ‖T‖) such that Tn → T in the weak*
topology. Then

(Swh,L(Tn)f, g)→ (Swh,L(T )f, g)

by the weak* continuity of Swh,L . On the other hand, since

|(Shr(Tn)f, g)| ≤ ‖Tn‖‖f‖2‖g‖2‖hr‖S ≤ ‖T‖‖f‖2‖g‖2‖h‖S

and L−1K has finite Haar measure, the Lebesgue Dominated Convergence
Theorem implies that∫

G
u(r)(Shr(Tn)f, g)dr →

∫
G
u(r)(Shr(T )f, g)dr.

The conclusion follows. �

Lemma 3.10. If h ∈ T (G) then∑
k∈Nπ

∥∥∥h̃πk,j∥∥∥2
S
≤ ‖h‖2t .(10)
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Proof. Suppose first that h is an elementary tensor, say h = φ ⊗ ψ, and

recall that in this case
∥∥∥h̃πk,j∥∥∥

S
≤
∥∥∥uπk,jφ∥∥∥

2
‖ψ‖2 (see the proof of Lemma

3.4). Now∑
k

∥∥uπi,kφ∥∥2 =
∑
k

∫
G
|uπi,k(s)φ(s)|2ds =

∫
G

∑
k

|(π(s)ek, ei)|2|φ(s)|2ds

=

∫
G

∑
k

|(ek, π(s−1)ei)|2|φ(s)|2ds

=

∫
G

∥∥π(s−1)ei
∥∥2 |φ(s)|2ds =

∫
G
|φ(s)|2ds = ‖φ‖22

and so
∑

k

∥∥∥h̃πk,j∥∥∥2
S
≤ ‖h‖2t .

The same estimate persists when h is a finite sum h =
∑

l φl ⊗ ψl:∑
k

∥∥∥h̃πk,j∥∥∥2
S
≤

∑
k

(∑
l

∥∥uπk,jφl∥∥2 ‖ψl‖2
)2

≤
∑
l

∑
k

∥∥uπk,jφl∥∥22∑
l

‖ψl‖22

=
∑
l

‖φl‖22
∑
l

‖ψl‖22 .

In particular,
N∑
k=1

‖h̃πk,j‖2S ≤ ‖h‖2t for all N ∈ Nπ. Since the map h → h̃πk,j :

T (G) → S(G) is contractive (see Lemma 3.4), the last inequality holds for
all h ∈ T (G). But N is arbitrary, and so (10) is proved for an arbitrary
h. �

We thank V. S. Shulman and L. Turowska for letting us include a proof
of the following lemma from an earlier version of [27].

Lemma 3.11. For each k and π ∈ Ĝ, the functions
∞∑
l=m

|uπk,l|2 converge to

zero uniformly on compact sets, as m→∞.

Proof. It suffices to consider the case where Hπ is infinite dimensional. Fix
k ∈ N and let

fm(r) =

∞∑
l=m

|uπk,l(r)|2 =

∞∑
l=m

|(π(r)ek, el)|2 = ‖Pmπ(r)ek‖2 ,

where Pm is the projection on the closed subspace generated by {el : l ≥ m}.
Since the function r → π(r)ek : G→ Hπ is continuous, so is the function

r → Pmπ(r)ek : G→ Hπ; thus each fm is a continuous function.
Since (Pm)m∈N decreases to 0, the sequence (fm(r))m∈N decreases to 0

for each r ∈ G. By Dini’s Theorem, the convergence is uniform on compact
subsets of G. �
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Lemma 3.12. Assume h ∈ T (G). Let π ∈ Ĝ and i, j ∈ Nπ. For each
compact set L ⊆ G, and all f, g ∈ L2(G), we have that

hπi,j(χLf ⊗ χLg) =
∑
k

(ǔπi,k ⊗ 1)h̃πk,j(χLf ⊗ χLg)

and
h̃πi,j(χLf ⊗ χLg) =

∑
k

(uπi,k ⊗ 1)hπk,j(χLf ⊗ χLg)

in the norm of T (G).

Proof. We prove the first formula; the second follows similarly. We show
first that the series

(11)
∑
k

(ǔπi,k ⊗ 1)h̃πk,j(χLf ⊗ χLg)

converges in the norm of T (G). Fix ε > 0 and let T ∈ B(L2(G)) be a
contraction. For all n < m,

m∑
k=n

∥∥(ǔπi,kχLf)
∥∥2 =

m∑
k=n

∫
L
|ǔπi,k(r)|2|f(r)|2dr =

∫
L

m∑
k=n

|ǔπi,k(r)|2|f(r)|2dr

≤‖f‖22 sup
r∈L−1

m∑
k=n

|uπi,k(r)|2.

Using Lemma 3.11, we can choose n < m so that

(12)
m∑
k=n

∥∥(ǔπi,kχLf)
∥∥2 < ε2‖h‖−2t ‖χLg‖−2.

By the Cauchy-Schwarz inequality,∣∣∣∣∣
〈
T,

m∑
k=n

(ǔπi,k ⊗ 1)h̃πk,j(χLf ⊗ χLg)

〉∣∣∣∣∣
2

≤

(
m∑
k=n

∣∣∣(Sh̃πk,j (T )(ǔπi,kχLf), χLg
)∣∣∣)2

≤

(
m∑
k=n

∥∥∥Sh̃πk,j (T )(ǔπi,kχLf)
∥∥∥ ‖χLg‖)2

≤
m∑
k=n

∥∥∥Sh̃πk,j (T )
∥∥∥2 m∑

k=n

∥∥(ǔπi,kχLf)
∥∥2 ‖χLg‖2 < ε,

where for the last inequality we have used (12) and Lemma 3.10. It follows
that the series (11) converges in the norm of T (G); let Λ be its sum. By [28,
Lemma 2.1], there exists a sequence of partial sums of (11) that converges
marginally almost everywhere to Λ.

On the other hand, for every s, t ∈ G, we have

hπi,j(s, t) = (hπ(s, t)ej , ei) = (h̃π(s, t)ej , π(s)ei)

=
∑
k

(h̃π(s, t)ej , ek)(ek, π(s)ei) =
∑
k

uπi,k(s
−1)h̃πk,j(s, t) ,
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and hence the series (11) converges pointwise to the function hπi,j(χLf⊗χLg).

It follows that Λ = hπi,j(χLf ⊗ χLg) and the proof is complete. �

Lemma 3.13. Let S ⊆ T (G) be a norm closed L∞(G)-bimodule. Each
h ∈ S is the norm limit of a sequence (hn) with hn = hχKn×Ln ∈ S ∩S(G)
where Kn and Ln are compact sets.

Proof. Let h =
∑∞

i=1 fi ⊗ gi, where
∑∞

i=1 ‖fi‖
2
2 and

∑∞
i=1 ‖gi‖

2
2 are finite.

Given n ∈ N, let

An =

{
s ∈ G :

∞∑
i=1

|fi(s)|2 ≤ n

}
, Bn =

{
t ∈ G :

∞∑
i=1

|gi(t)|2 ≤ n

}
and choose compact sets Kn ⊆ An and Ln ⊆ Bn such that m(An\Kn) < 2−n

and m(Bn \ Ln) < 2−n. Setting hn = hχKn×Ln , we see that
(a) hn ∈ S because S is an L∞(G)-bimodule, and
(b) hn ∈ S(G) because hn(s, t) =

∑∞
i=1(χKnfi)(s)(χLngi)(t) (s, t ∈ G),

where
∑∞

i=1 |(χKnfi)(s)|2 ≤ n and
∑∞

i=1 |(χLngi)(t)|2 ≤ n a.e..
It is straightforward to see that ‖h− hn‖t → 0. �

Lemma 3.14. Let h ∈ T (G) be supported in a compact set K ×K. Then
h belongs to the T (G)-closed linear span of

{χK×Khπi,j : π ∈ Ĝ, i, j ∈ Nπ}.

Proof. Suppose T ∈ B(L2(G)) satisfies〈
T, χK×Kh

π
i,j

〉
t

= 0 for all π ∈ Ĝ, i, j ∈ Nπ.

We will show that 〈T, h〉t = 0.
Recall that hπi,j(s, t) =

∫
G h(sr, tr)uπi,j(r)dr. We may write χK×Kh

π
i,j in

the form
χK×Kh

π
i,j = χK×K(χK−1Ku

π
i,j∆

−1) ? h

where ? is the action of L1(G) on T (G) given by

(g ? h)(s, t) :=

∫
G
h(sr, tr)g(r)∆(r)dr

which satisfies ‖g ? h‖T (G) ≤ ‖g‖L1(G) ‖h‖T (G). Thus the hypothesis gives〈
SχK×K (T ), (χK−1Ku

π
i,j∆

−1) ? h
〉
t

=
〈
T, χK×K(χK−1Ku

π
i,j∆

−1) ? h
〉
t

= 0.

Now let f be a continuous function supported in the compact set K−1K.
Then f∆ is continuous and vanishes outside K−1K; hence it is the limit,
uniformly in K−1K, of a sequence (gn) of linear combinations of coeffi-
cients uπi,j of irreducible representations π of G (see [10, Theorem 3.27, 3.31

and Proposition 3.33] or [5, 13.6.5 and 13.6.4]). Hence gn∆−1 → f uni-
formly in K−1K (observe that ∆−1 is continuous, hence bounded, on com-
pact sets). Each gn is a linear combination of coefficients uπi,j and therefore〈
SχK×K (T ), (χK−1Kgn∆−1) ? h

〉
t

= 0 for each n. Since f = fχK−1K , it fol-

lows that
〈
SχK×K (T ), f ? h

〉
t

= 0. Now let {fα} be an approximate identity
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for L1(G) consisting of non-negative continuous functions with ‖fα‖1 = 1, all
supported in K−1K. Then a standard argument shows that ‖fα ? h− h‖t →
0 and we obtain

〈T, h〉t = 〈T, χK×Kh〉t =
〈
SχK×K (T ), h

〉
t

= lim
α

〈
SχK×K (T ), fα ? h

〉
t

= 0

which proves the lemma. �

We now proceed to the proof of Theorem 3.2. We first show that

(13) Sat(J) ⊆ (Bim(J⊥))⊥.

Let u ∈ J , h ∈ T (G), w ∈ S(G) and T ∈ J⊥ ⊆ VN(G). Then, if τ ∈ A(G)∗

satisfies P ∗(τ) = T , using (4), we have

〈Sw(T ), N(u)h〉t = 〈T,N(u)wh〉t = 〈P ∗(τ), N(u)wh〉t
= 〈τ, P (N(u)wh)〉a = 〈τ, uP (wh)〉a = 0

since u ∈ J and P (wh) ∈ A(G), hence uP (wh) ∈ J . Thus, Sw(T ) annihilates
Sat(J) by Proposition 3.1. Since {Sw(T ) : T ∈ J⊥, w ∈ S(G)} generates
Bim(J⊥), (13) is established.

For the reverse inclusion, suppose that h ∈ (Bim(J⊥))⊥. By Lemma
3.13, we may assume that there exists a compact set K ⊆ G such that
supph ⊆ K ×K and h ∈ S(G) ∩ (Bim(J⊥))⊥.

The steps of the argument are the following:

Step 1. If T ∈ J⊥ then Shr(T ) = 0 for every r ∈ G.

Proof. A direct verification using relation (3) shows that if r ∈ G then
∆(r)−1P (h) = P (hr). By Lemma 3.5 (i), hr ∈ S(G). It suffices to prove
that (Shr(T )ξ, η) = 0 whenever ξ and η are in L∞(G)∩L2(G). In this case,
w := ξ ⊗ η̄ is in T (G) ∩S(G) and, if τ ∈ A(G)∗ is such that Tτ = T , then

(Shr(T )ξ, η) = 〈Shr(T ), w〉t = 〈T, hrw〉t = 〈τ, P (hrw)〉a
= ∆(r)−1〈τ, P (hwr−1)〉a = ∆(r)−1〈T, hwr−1〉t
= ∆(r)−1〈Swr−1 (T ), h〉t = 0,

since h annihilates Bim(J⊥). Hence, Shr(T ) = 0 for every r ∈ G.

Step 2. If T ∈ J⊥ then SχL×Lhπi,j (T ) = 0 for all π ∈ Ĝ, all i, j, and all

compact sets L ⊆ G.

This follows from Step 1 and Corollary 3.9.

Step 3. If T ∈ J⊥ then Sh̃πi,j
(T ) = 0.

Proof. Step 2 and Lemma 3.12 imply that, for every f, g ∈ L2(G) and
every compact set L ⊆ G, we have

(Sh̃πi,j
(T )χLf, χLg) =

∞∑
k=1

(SχL×Lhπk,j (T )uπi,kχLf, χLg) = 0.
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This implies that Sh̃πi,j
(T ) = 0.

Step 4. If π ∈ Ĝ and L is a compact subset of G, then h̃πi,jχL×L ∈ Sat(J)
for all i, j.

Proof. Since h̃πi,j ∈ S(G) (Lemma 3.4) and h̃πi,j(sr, tr) = h̃πi,j(s, t), Theo-

rem 2.1 implies that h̃πi,j = N(v), for some v ∈ M cbA(G). We claim that

vA(G) ⊆ J . Indeed, for every τ ∈ J⊥ and every w ∈ T (G), we have, by
Step 3,

0 = 〈Sh̃πi,j (Tτ ), w〉t = 〈SN(v)(Tτ ), w〉t = 〈Tτ , N(v)w〉t
= 〈τ, P (N(v)w)〉a = 〈τ, vP (w)〉a

where we have used relation (4). Note that vP (w) ∈ A(G) since P (w) ∈
A(G) and v ∈M cbA(G). This equality shows, by the Hahn-Banach theorem,
that vP (w) ∈ J . Thus, since P is surjective, vA(G) ⊆ J . We may choose
w ∈ T (G) such that u := P (w) satisfies u|LL−1 = 1. Then N(u)χL×L =
χL×L and so

h̃πi,jχL×L = N(v)χL×L = N(v)N(u)χL×L = N(vu)χL×L.

But vu = vP (w) ∈ J . Thus, h̃πi,jχL×L ∈ Sat(J).

Step 5. If π ∈ Ĝ and L is a compact subset of G, then hπi,jχL×L ∈ Sat(J)
for all i, j.

Proof. This is a direct consequence of Lemma 3.12.

Step 6. h ∈ Sat(J).

Proof. By Lemma 3.14, h is in the T (G)-norm closed linear span of elements
of the form hπi,jχL×L, so h ∈ Sat(J).

The proof of Theorem 3.2 is complete.

4. Jointly invariant subspaces

In this section, we characterise the common weak* closed invariant sub-
spaces of Schur multipliers and a class of completely bounded maps arising
from a canonical representation of the measure algebra of G.

Let ρ : G → B(L2(G)), r → ρr, be the right regular representation of

G on L2(G), that is, the representation given by (ρrf)(s) = ∆(r)1/2f(sr),
s, r ∈ G, f ∈ L2(G).

Let M(G) be the Banach algebra of all bounded complex Borel measures
on G. Following [22] (see also [29]), we define a representation Γ of M(G)
on B(L2(G)) by letting

Γ(µ)(T ) =

∫
G
ρrTρ

∗
rdµ(r), T ∈ B(L2(G)),

the integral being understood in the weak sense (that is, for every h ∈ T (G)
and every T ∈ B(L2(G)) the formula 〈Γ(µ)(T ), h〉t =

∫
G〈ρrTρ

∗
r , h〉tdµ(r)
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holds). This representation was studied by E. Størmer [32], F. Ghahramani
[12], M. Neufang [21] and M. Neufang, Zh.-J. Ruan and N. Spronk [22],
among others.

Denote, as is customary, by Adρr the map on B(L2(G)) given by Adρr(T )
= ρrTρ

∗
r , T ∈ B(L2(G)); since Adρr is a (bounded) weak* continuous map,

it has a (bounded) predual θr : T (G)→ T (G).

Lemma 4.1. Let r ∈ G. Then θr(h) = ∆(r−1)hr−1, for every h ∈ T (G).

Proof. By linearity and continuity (see Lemma 3.5 (ii)), it suffices to check
the formula when h is an elementary tensor, say h = f ⊗ ḡ for some f, g ∈
L2(G). For T ∈ B(L2(G)), we have

〈T, θr(h)〉t = 〈Adρr(T ), h〉t = 〈ρrTρr−1 , f ⊗ ḡ〉t = (T (ρr−1f), ρr−1g)

= 〈T, (ρr−1f)⊗ ρr−1g〉t.

However, if s, t ∈ G then

(ρr−1f ⊗ ρr−1g)(s, t) = (ρr−1f)(s)(ρr−1g)(t) = ∆(r−1)f(sr−1)ḡ(tr−1)

= ∆(r−1)hr−1(s, t).

The proof is complete. �

Lemma 4.2. Let V ⊆ T (G) be a norm closed L∞(G)-bimodule such that
θr(V ) ⊆ V for each r ∈ G. Then there exists a closed ideal J ⊆ A(G) such
that V = Sat(J).

Proof. Let

J = {u ∈ A(G) : N(u)χL×L ∈ V for every compact set L ⊆ G}.

Since A(G) embeds contractively into M cbA(G) and the map N is continu-
ous, it is clear that J is a closed subspace of A(G). We check that J is an
ideal: if u ∈ J , v ∈ A(G) and L ⊆ G is a compact subset, then

N(uv)χL×L = (Nu)(Nv)χL×L ∈ S(G)V ⊆ V

since N(v) ∈ S(G) by Theorem 2.1 and V , being a closed L∞(G)-bimodule,
is invariant under S(G).

Clearly Sat(J) ⊆ V . To show that V ⊆ Sat(J), let h ∈ V . By Lemma
3.13, we may assume that supph ⊆ K×K and h ∈ S(G)∩V for some com-
pact set K ⊆ G. In order to conclude that h ∈ Sat(J) it suffices, by Lemma
3.14, to prove that hπi,jχL×L ∈ Sat(J) for every irreducible representation π
of G, every i, j ∈ Nπ and every compact set L ⊆ G.

The function r → uπi,j(r)hr, G → T (G), is continuous (Lemma 3.5(ii))
and hence the integral

ω :=

∫
L−1K

uπi,j(r)hrdr =

∫
L−1K

uπi,j(r)∆(r)θr(h)dr
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exists as a Bochner integral and defines an element of T (G). The second
equality shows that ω is in the closed linear span of {θr(h) : r ∈ G}. But V
is invariant under θr, and hence ω ∈ V .

We claim that χL×Lω = χL×Lh
π
i,j . To see this, let T = Tk be a Hilbert-

Schmidt operator of the form k = f ⊗ g with f, g ∈ L2(G). Then

〈χL×Lω, T 〉t =

∫
L−1K

uπi,j(r) 〈χL×Lhr, T 〉t dr

=

∫
L−1K

∫∫
G×G

uπi,j(r)χL×L(s, t)hr(s, t)f(t)g(s)dsdtdr

=
〈
χL×Lh

π
i,j , T

〉
t

(the last equality follows as in the proof of Corollary 3.9). This proves the
claim.

Thus χL×Lh
π
i,j is in V . Since V is a norm closed L∞(G) bimodule, using

Lemma 3.12 we conclude that χL×Lh̃
π
i,j ∈ V . By Theorem 2.1, since h̃πi,j ∈

S(G), there exists v ∈M cbA(G) such that h̃πi,j = N(v).

We claim that vA(G) ⊆ J . Indeed, for every u ∈ A(G), if L ⊆ G is a
compact set,

χL×LN(vu) = (χL×Lh̃
π
i,j)N(u) ∈ VS(G) ⊆ V

and thus vu ∈ J by the definition of J .
Since P is surjective, we may choose w ∈ T (G) such that u := P (w)

satisfies u|LL−1 = 1. Then N(u)χL×L = χL×L and so

h̃πi,jχL×L = N(v)χL×L = N(v)N(u)χL×L = N(vu)χL×L.

Since vA(G) ⊆ J , we obtain vu = vP (w) ∈ J . Thus, h̃πi,jχL×L ∈ Sat(J).

Using Lemma 3.12 again, we obtain χL×Lh
π
i,j ∈ Sat(J) and the proof is

complete. �

Theorem 4.3. Let U ⊆ B(L2(G)) be a weak* closed subspace. The following
are equivalent:

(i) the space U is invariant under the mappings Sw and Γ(µ), for all
w ∈ S(G) and all µ ∈M(G);

(ii) the space U is invariant under the mappings Sw and Adρr, for all
w ∈ S(G) and all r ∈ G;

(iii) there exists a closed ideal J ⊆ A(G) such that U = Bim(J⊥).

Proof. (i)⇒(ii) This follows by choosing µ to be the point mass at r ∈ G.
(ii)⇒(iii) Let V = U⊥; then V is a norm closed subspace of T (G), invariant
under the maps of the form mw (w ∈ S(G)) and θr (r ∈ G). By Lemma
4.2, there exists a closed ideal J ⊆ A(G) such that V = Sat(J). Hence
U = Bim(J⊥) by Theorem 3.2.

(iii)⇒(i) Let T ∈ U and µ ∈M(G). To show that Γ(µ)(T ) ∈ U it suffices,
by Theorem 3.2, to show that 〈Γ(µ)(T ), w〉t = 0 for every w ∈ Sat(J). But,
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if w ∈ Sat(J) then, for all r ∈ G,

〈ρrTρ∗r , w〉t = 〈T, θr(w)〉t = 0

since Sat(J) is clearly θr-invariant. It follows that

〈Γ(µ)(T ), w〉t =

∫
G
〈ρrTρ∗r , w〉tdµ(r) = 0 .

Since U = Bim(J⊥) is invariant under all Schur multipliers, the proof is
complete. �

Corollary 4.4. Let L be the set of all weak* closed subspaces of B(L2(G))
which are invariant under both S(G) and Γ(M(G)). Then

L = {Bim(J⊥) : J ⊆ A(G) a closed ideal}
and L is a lattice under the operations of intersection and closed linear span
∨. Moreover,

Bim(J⊥1 ) ∩ Bim(J⊥2 ) = Bim((J1 + J2)
⊥),

Bim(J⊥1 ) ∨ Bim(J⊥2 ) = Bim((J1 ∩ J2)⊥).

Proof. The description of L is contained in Theorem 4.3. The first identity
will be proved in Proposition 6.1. The inclusion Bim(J⊥1 ) ∨ Bim(J⊥2 ) ⊆
Bim((J1 ∩ J2)⊥) is trivial. The reverse inclusion follows directly from the

definition of Bim and the fact that (J1 ∩ J2)⊥ = J⊥1 + J⊥2
w∗

. �

Lemma 4.5. Assume that A(G) has a (possibly unbounded) approximate
identity. Then J⊥ = Bim(J⊥) ∩VN(G) for every ideal J of A(G).

Proof. Let T ∈ Bim(J⊥) ∩ VN(G). Since T is in VN(G), it is of the form
T = P ∗(τ) for some τ ∈ A(G)∗ (see relation (2)). By Theorem 3.2, T ∈
(Sat(J))⊥. By Proposition 3.1, for all v ∈ J and all h ∈ T (G),

0 = 〈T, (N(v)h〉t = 〈P ∗(τ), N(v)h〉t = 〈τ, P (N(v)h)〉a = 〈τ, vP (h)〉a
(using relation (4)). Since A(G) has an approximate identity and the map
P : T (G) → A(G) is surjective, there is a net (hi) in T (G) such that
vP (hi) → v in A(G). It follows that 〈τ, v〉a = 0 for all v ∈ J and therefore

T ∈ J⊥ as claimed. �

Remark 4.6. It follows from Theorem 4.3 that Bim maps the set of all
weak* closed A(G)-invariant subspaces in VN(G) onto the set of all weak*
closed masa-bimodules in B(L2(G)) which are invariant under conjugation
by ρr, r ∈ G.

Using Theorem 3.2 we see that Sat maps the set of all closed ideals of
A(G) onto the set of all closed L∞(G)-bimodules in T (G) which are invariant
under h→ hr.

Combining this with Lemma 4.5 gives the following:

Corollary 4.7. If A(G) has an approximate identity, the maps Bim and
Sat are bijective.
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Note that the class of groups for which A(G) possesses an approximate
identity contains, but is strictly larger than, the class of all amenable groups
(see [20, Remark 4.5] for a relevant discussion). It is unknown whether this
class contains all locally compact groups; it does contain those groups having
the ‘approximation property’ of Haagerup and Kraus [14]. It is now known
that there are groups failing the approximation property [19, 15].

Question 4.8. Does the conclusion of Lemma 4.5 hold for an arbitrary
second countable locally compact group?

Remark Theorem 4.3 describes the class of all weak* closed subspaces
of B(L2(G)) which are invariant under Γ(M(G)) and under all Schur mul-
tipliers. If instead we consider only invariant Schur multipliers, namely
N(M cbA(G)), we obtain a strictly larger class; consider, for example, VN(G).

5. The extremal bimodules

In this section, we relate Theorem 3.2 to the extremal masa-bimodules
associated with a subset of G×G “of Toeplitz type”. We start by recalling
some notions and results from [1] and [8] in the special case that we will use.

A subset E of G × G is called ω-open if it is marginally equivalent to
the union of a countable set of Borel rectangles. The complements of ω-
open sets are called ω-closed. If F ⊆ G×G is an ω-closed set, an operator
T ∈ B(L2(G)) is said to be supported by F if

(A×B) ∩ F ' ∅ =⇒ P (B)TP (A) = 0,

for all measurable rectangles A × B ⊆ G × G, where P (A) denotes the
orthogonal projection from L2(G) onto L2(A). Given a masa-bimodule U ,
there exists a smallest, up to marginal equivalence, ω-closed subset F ⊆
G × G such that every operator in U is supported by F ; we call F the
support of U . Given an ω-closed set F ⊆ G × G, there exists [1] a largest
weak* closed masa-bimodule Mmax(F ) and a smallest weak* closed masa-
bimodule Mmin(F ) with support F . The masa-bimodule Mmax(F ) is the
space of all T ∈ B(L2(G)) supported on F . We say that an ω-closed set
F ⊆ X × Y satisfies operator synthesis if Mmax(F ) = Mmin(F ).

Let F be an ω-closed subset of G×G; define

Φ(F ) = {ψ ∈ T (G) : ψχF = 0 m.a.e.}

and

Ψ(F ) = {ψ ∈ T (G) : ψ vanishes on an ω-open neighbourhood of F}‖·‖t .

It was shown in [28] that Φ(F )⊥ = Mmin(F ) and Ψ(F )⊥ = Mmax(F ). For
an L∞(G)-bimodule V in T (G), we let null(V ) be the largest, up to marginal
equivalence, ω-closed subset F of G × G such that h|F = 0 for all h ∈ V
[28]. Then a closed L∞(G)-bimodule V ⊆ T (G) satisfies Ψ(F ) ⊆ V ⊆ Φ(F )
if and only if null(V ) = F .
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For a closed set E ⊆ G, let

I(E) = {f ∈ A(G) : f(x) = 0, x ∈ E} and J(E) = J0(E),

where J0(E) = {f ∈ A(G) : f vanishes on a neighbourhood of E}.

If J ⊆ A(G) is a closed ideal, denote by Z(J) the set of common zeroes of
functions in J :

Z(J) = {s ∈ G : f(s) = 0 for all f ∈ J}.

Then J(E) ⊆ J ⊆ I(E) if and only if Z(J) = E. If J(E) = I(E) then one
says that E satisfies spectral synthesis.

For a subset E ⊆ G, we set

E∗ = {(s, t) : ts−1 ∈ E}.

The relation between the notions of a null set and a zero set is described
in the next proposition.

Proposition 5.1. Let J ⊆ A(G) be a closed ideal. Then null(Sat(J)) =
(Z(J))∗.

Proof. Let E = Z(J). By the definition of Sat(J), using [28, Lemma 2.1]
every element h of Sat(J) is a m.a.e. limit of a sequence of finite sums of
elements of the form φiN(ui)χLi×Li , where φi ∈ S(G), ui ∈ J and Li is a
compact subset of G. But N(u)χL×L vanishes on E∗ for every u ∈ J and
every compact subset L of G. Thus h vanishes m.a.e. on E∗ and it follows
that E∗ ⊆ null Sat(J).

Conversely, suppose that (s, t) 6∈ E∗, that is, ts−1 6∈ E. Let U be a
compact neighbourhood of ts−1 disjoint from E and let v ∈ A(G) be a
function vanishing on an open neighbourhood of E such that v|U = 1 [9,
Lemma 3.2]. Then v ∈ J and, if K,L ⊆ G are compact neighbourhoods
of s and t such that LK−1 ⊆ U , then (Nv)χU×U takes the value 1 on
K×L. Thus every (s, t) 6∈ E∗ has a relatively compact open neighbourhood
W(s,t) ⊆ K ×L disjoint from null Sat(J) up to a marginally null set. Taking
a countable subcover of the cover {W(s,t)} of (E∗)c we obtain an ω-open
neighbourhood of (E∗)c disjoint from null Sat(J) up to a marginally null
set. It follows that null Sat(J) ⊆ E∗ up to a marginally null set and the
proof is complete. �

Corollary 5.2. Let V ⊆ T (G) be a norm closed L∞(G)-bimodule such that
if h ∈ V then hr ∈ V , for every r ∈ G. Then there exists a closed subset
E ⊆ G such that nullV = E∗.

Proof. By Lemma 4.2, there exists an ideal J ⊆ A(G) such that V = Sat(J).
Let E = Z(J); by Proposition 5.1, nullV = E∗. �

Theorem 5.3. Let E ⊆ G be a closed set. The following hold:
(i) Bim(I(E)⊥) = Mmin(E∗);
(ii) Bim(J(E)⊥) = Mmax(E∗).
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Proof. (i) By Theorem 3.2, Bim(I(E)⊥)⊥ = Sat(I(E)). By Proposition 5.1,
null Sat(I(E)) = E∗ and hence Mmin(E∗) ⊆ Bim(I(E)⊥) by the minimality
of Mmin(E∗).

To prove the reverse inclusion, let T = Tτ ∈ I(E)⊥ and w ∈ S(G). If
h ∈ T (G) vanishes on E∗ then wh vanishes on E∗. Relation (3) now shows
that P (wh) ∈ I(E) and so

〈Sw(T ), h〉t = 〈T,wh〉t = 〈τ, P (wh)〉a = 0,

showing that Sw(T ) ∈ Φ(E∗)⊥ = Mmin(E∗). Thus, Bim(I(E)⊥) ⊆Mmin(E∗)
and the proof is complete.

(ii) Observe that for each v ∈ J0(E) and each compact set L ⊆ G, the
element N(v)χL×L is in Ψ(E∗). By continuity of the map N , the same holds
for v ∈ J(E). It follows from the definition of Sat(J(E)) that Sat(J(E)) ⊆
Ψ(E∗).

On the other hand, by Proposition 5.1, null Sat(J(E)) = E∗ and, since
Sat(J(E)) is a closed L∞(G)-bimodule, the minimality property of Ψ(E∗)
shows that Ψ(E∗) ⊆ Sat(J(E)).

Hence Sat(J(E)) = Ψ(E∗). By [28] and Theorem 3.2, Bim(J(E)⊥) =
Mmax(E∗). �

It is worthwhile to isolate the following characterisation of reflexive jointly
invariant subspaces, which is is an immediate consequence of Theorem 4.3.

Theorem 5.4. Let U ⊆ B(L2(G)) be a reflexive subspace. Then U is in-
variant under all mappings Sw, w ∈ S(G) and Adρr, r ∈ G, if and only if
there exists a closed set E ⊆ G such that U = Mmax(E∗).

As a corollary to Theorem 5.3, we obtain the following result of [20]:

Theorem 5.5 ([20]). Assume that A(G) has an approximate identity. Then
a closed set E ⊆ G satisfies spectral synthesis if and only if the set E∗ ⊆
G×G satisfies operator synthesis.

Proof. Assume E satisfies spectral synthesis. Then I(E) = J(E) and it
follows from Theorem 5.3 that Mmin(E∗) = Mmax(E∗). Conversely, if
Mmin(E∗) = Mmax(E∗) then, by Theorem 5.3, Bim(I(E)⊥) = Bim(J(E)⊥)
and now, by Lemma 4.5, I(E) = J(E). �

Question 5.6. Let E ⊆ G be a closed subset. Is every weak* closed masa-
bimodule U with Mmin(E∗) ⊆ U ⊆Mmax(E∗) of the form U = Bim(J⊥) for
some closed ideal J ⊆ A(G)?

In view of Theorem 4.3, the above question asks, in other words, whether
there exist closed sets E ⊆ G such that E∗ supports a weak* closed masa-
bimodule not invariant under conjugation by the unitaries ρs, s ∈ G (see
Section 4). If such a set exists, it will necessarily be non-synthetic; for if E is
synthetic, then Theorem 5.5 gives Mmin(E∗) = Mmax(E∗) and consequently
no such bimodule exists.
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6. Relative synthesis

In this section, we obtain an extension of Theorem 5.5 which links relative
spectral synthesis to relative operator synthesis. Theorem 6.2 was proved by
K. Parthasarathy and R. Prakash in [26, Theorem 4.6] under the assumption
that X is an A(G)-invariant subspace of VN(G) and G is compact. In our
result we assume that X is weak* closed and A(G) possesses an approximate
identity.

We recall the relevant definitions. Let X ⊆ VN(G) be an A(G)-invariant
subspace. A closed subset E ⊆ G is called X -spectral [17] if X ∩ J(E)⊥ =
X ∩ I(E)⊥. This notion has a natural operator theoretic version: if U is
a weak* closed masa-bimodule and F is an ω-closed set, we say that F is
U-operator synthetic if U ∩Mmin(F ) = U ∩Mmax(F ). The latter notion was
defined in [26] for subsets of G×G, where G is a compact group.

Proposition 6.1. (i) Let X1 and X2 be weak* closed invariant subspaces
of VN(G). Then Bim(X1 ∩ X2) = Bim(X1) ∩ Bim(X2).

(ii) Let J1 and J2 be closed ideals of A(G). Then Sat(J1) ∩ Sat(J2) =
Sat(J1 ∩ J2).

Proof. (i) Let Ji ⊆ A(G) be a closed ideal with J⊥i = Xi, i = 1, 2. Let

J = J1 + J2; then J is the smallest closed ideal of A(G) containing both J1
and J2. Note that

(14) Sat(J1)
⊥ ∩ Sat(J2)

⊥ ⊆ Sat(J)⊥.

Indeed, if T ∈ B(L2(G)) annihilates both Sat(J1) and Sat(J2) then, by
Proposition 3.1, T annihilates N(J1)T (G) and N(J2)T (G), hence their sum;
continuity of the map N shows that T must annihilate N(J)T (G) and hence
Sat(J).

It is obvious that Bim(X1 ∩ X2) ⊆ Bim(X1) ∩ Bim(X2). Suppose that
T ∈ Bim(X1) ∩ Bim(X2). By Theorem 3.2 and (14), T ∈ Bim(J⊥). But
Bim(J⊥) ⊆ Bim(J⊥1 ∩ J⊥2 ) = Bim(X1 ∩ X2), since Ji ⊆ J , i = 1, 2. Thus,
T ∈ Bim(X1 ∩ X2) and the proof is complete.

(ii) It follows from Corollary 4.4 and Theorem 3.2 that

Sat(J1)⊥ + Sat(J2)⊥
w∗

= Sat(J1 ∩ J2)⊥.

Taking pre-annihilators, the result follows. �

Theorem 6.2. Assume that A(G) possesses an approximate identity. Let
E ⊆ G be a closed set, X ⊆ VN(G) a weak* closed invariant subspace and
U = Bim(X ). The following are equivalent:

(i) E is X -spectral;
(ii) E∗ is U-operator synthetic.

Proof. Suppose E is X -spectral. Then X ∩J(E)⊥ = X ∩ I(E)⊥. By Propo-
sition 6.1 and Theorem 5.3, U ∩Mmin(E∗) = U ∩Mmax(E∗). Thus, E∗ is
U-operator synthetic.
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Conversely, suppose E∗ is U-operator synthetic. Then

U ∩Mmin(E∗) ∩VN(G) = U ∩Mmax(E∗) ∩VN(G).

By Lemma 4.5 and Theorem 5.3, X ∩ J(E) = X ∩ I(E), that is, E is X -
spectral. �
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