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Abstract

Collisions are an innate part of the function of many musicalinstruments. Due to the nonlinear nature of contact
forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis.
Finite difference schemes and other time-stepping algorithms used formusical instrument modelling purposes are
normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-
analytic functions of the phase space variables, algorithmstability can rarely be established this way. This paper
presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed
numerical formulations follow from discretising Hamilton’s equations of motion, generally leading to an implicit
system of nonlinear equations that can be solved with Newton’s method. The approach is first outlined for point
mass collisions and then extended to distributed settings,such as vibrating strings and beams colliding with rigid
obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated
with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the
results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of
string instrument.

Keywords: Energy conservation, finite differences, musical instruments

1. Introduction

When studying the vibrational behaviour of musical instruments or other sounding objects, collisions are often
encountered. These can occur either in a confined space [1] (e.g. hammer-string interaction, mallet impacts) or in a
more distributed manner [2], such as the coupling between the snares and the membrane of a snare drum. The former
can usually be modelled in lumped form, suppressing the computation of the interaction forces to a single point,
whereas the latter require considering variations along spatial coordinates. In both cases, the impactive interaction
represents an important nonlinear element that is closely linked to the characteristics and/or the expressive control of
the instrument [3].
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Contact modelling has undergone extensive study, including various proposed time-stepping methods for the sim-
ulation of vibro-impact phenomena. A fundamental distinction between two different classes herein stems from
whether or not an interpenetration is allowed between the contacting objects. A perfectly rigid contact involves a
non-penetration condition of the form

ya − yb ≥ 0, (1)

where a moving body with positionya collides with another body located below it, atyb. The use of Lagrange
multipliers is common in conjunction with this approach andfinite element simulations [4]. When penetration (which
can be equivalently considered as the compression of the impacting objects) is allowed, a repelling force can be
defined using a penetration function

P(χ) = h(χ) χ (2)

whereχ = yb − ya andh(χ) denotes the Heaviside step function. This is referred to asa penalty approach [5], the
validity of which is subject to constraints on impact velocity and penetration level [6]. Using either of the above
methodologies, existence and uniqueness of solutions has been proven only for a small number of special cases [7].

The penalty approach commonly appears in musical acousticsproblems in the form of a one-sided power law
[8, 9], where, starting from Hertz’s contact law, the impactforce takes the form

f (χ) = kc⌊χ
α⌋ (3)

where⌊χα⌋ = h(χ) χα, kc is a stiffness coefficient and the power law exponentα ≥ 1 depends on the local shape
of the contact surface. These parameters are often determined empirically, and good agreement with measurements
has been found for several cases [1, 10–12]. A version of Eq. (3) with impact friction is possible in the form of the
Hunt-Crossley model [13–15], which has also found use in various other engineering fields (e.g. robotics [16]).

When simulation is required to solve collision problems, the power law needs to be incorporated into a numerical
formulation. Most of the relevant time-stepping methods found in the musical acoustics and sound computing litera-
ture are based on finite differences [8, 10] or closely related methods such as the trapezoidal rule [14], the Newmark-
beta method [11], or Verlet integration [17, 18]. In distributed settings, discretisation is sometimes performed after
first casting the linear part of the problem in modal form [19,20]. While many successful simulation results have
been obtained, and stability can even be shown for some specific cases or under specific assumptions (see e.g. [21]),
the formulation of a more general class of numerical schemesfor impact modelling is still considered as an open and
difficult problem [8, 17]. Sound-related collisions have also been simulated with digital waveguides [22–25], wave
digital filters [26] and hybridisations thereof [27, 28]. Stability in such wave-variable models is generally analysed
and controlled through passivity of the individual scattering units. However, provably stable formulations of this type
for distributed impact governed by Eq. (3) are yet to appear.

Seeking a more rigorous numerical treatment of vibro-impact problems, the mathematical physics literature sug-
gests that two distinct directions can be taken. One approach is to design a method such that the total energy is
maintained, leading to energy conserving schemes [29, 30].Alternatively, one may choose to preserve another invari-
ant of the physical system, the symplectic structure [31], thus deriving symplectic numerical schemes, some of which
have recently been applied to musical instrument sound synthesis [17, 18]. It has been shown that in general only one
of the above properties can be preserved [32]. Although bothapproaches can establish the stability of a numerical
algorithm, symplectic schemes allow an oscillating energythat can distort the amplitude of lossless systems. Such
schemes are therefore particularly suited to the study of families of trajectories and long-term behaviour of dynamical
systems, while the use of energy preserving schemes has beenindicated as more suitable for oscillatory problems
[33].

Energy based methods for constructing time-stepping algorithms can be generally classified into two categories,
as explained in [34]; those yielding schemes that attempt toconserve an energy-like, positive definite quantity and
those that aim to conserve the actual energy of the system at each time step. In strict physical terms, only the latter can
be specified as ‘energy conserving schemes’. For the sake of clarity, the former energy based methods will be referred
to as ‘energy methods’ in the remaining of this manuscript. This distinction is made more clear in Section 3.2, where
conserved numerical quantities for both types of methods are compared.

The past decade has seen a substantial uptake of such ‘energy methods’ in application to nonlinear problems
encountered in musical acoustics, most notably by Bilbao [8]. The merits of this approach—which requires identifying
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a numerical counterpart of the system Hamiltonian—come to the fore whenever the studied vibrational behaviour is
intrinsically nonlinear, as is the case for various percussion instruments [35, 36]. However, one-sided power laws
such as that in Eq. (3) are non-analytic functions of the phase-space variables, making it far from straightforward
to derive schemes for which an invariant, numerical energy-like quantity exists [8]. The present authors propose to
address this by first reformulating the system in its Hamiltonian form [30, 37], and discretise this rather than Newton’s
equations of motion, in order to construct an ‘energy conserving scheme’. This approach bears resemblance to that
taken by Greenspan in discretising nonlinear lumped systems [38], and a similar strategy has recently been applied
in extended form by Chabassier et al. to the simulation of nonlinear string vibrations [39]. Preliminary results of the
application to collision problems have been reported by thecurrent authors in [40], focusing on simulation of a point
mass interacting with a barrier. The present study extends this to distributed interaction by modelling of a stiff string
colliding with a (nearly) rigid obstacle, which has direct application to simulation and sound synthesis of various
string instruments.

Since the stability analysis is carried out by virtue of the preservation of an invariant energy, frictional forces
are initially neglected in the derivation and analysis of the numerical schemes. A way to introduce damping in
compatibility with all presented algorithms is shown towards the end of this paper, which is organised as follows.
Section 2 outlines the proposed methodology through the case of a simple one-mass system involving collisions, with
specific focus on proving convergence and energy conservation, further supported by numerical examples. A similar
treatment is then adopted in Section 3 for distributed collisions, which involves discussion of additional aspects such
as matrix formulation, dispersion, and boundary conditions. Section 4 presents a case study on the interaction of a
tanpura string with a curved bridge and Section 5 evaluates the main findings within the context of musical acoustics
and sound synthesis.

2. Lumped contact

An elemental, frictionless model is defined, in which a gravity-sensitive massm attached to a spring of constantk
is colliding with a rigid barrier positioned aty = yc. Assuming the impact force to be of the form given in the previous
section (withχ = yc − y), the motion of the mass is governed by

m
d2y
dt2
= kc⌊(yc − y)α⌋ − ky + mg0 (4)

whereg0 is the gravitational acceleration (taken negative). Considering an energetic description, the Lagrangian of
the system governed by Eq. (4), defined as the difference between kinetic energyT and potential energyV, is

L(y, ẏ) =
1
2

mẏ2 −
k
2

y2 −
kc

α + 1
⌊(yc − y)α+1⌋ + mg0y. (5)

Defining the conjugate momentump = ∂L/∂ẏ and taking the Legendre transformation of the Lagrangian yields the
Hamiltonian of the system

H(y, p) =
p2

2m
+

k
2

y2 +
kc

α + 1
⌊(yc − y)α+1⌋ − mg0y = T (p) + V(y). (6)

This equals the total energy of the system and is constant in this case due to the absence of frictional or external
(non-conservative) forces. The corresponding Hamilton’sequations of motion are [37]

dy
dt
=
∂H(y, p)
∂p

=
∂T (p)
∂p

(7a)

dp
dt
= −

∂H(y, p)
∂y

= −
∂V(y)
∂y

. (7b)
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2.1. Numerical formulation

Amongst the various possible ways of solving the system numerically, a notable example regularly employed in
musical and speech acoustics is the trapezoidal rule, whichyields an implicit scheme [14]. Another possibility is to
factorise the collision force term in the right-hand side ofEq. (4) intokc(yc − y) · ⌊(yc − y)α−1⌋ and apply an averaging
operator to the first term of this product, while approximating the left-hand side term of Eq. (4) with a centred
difference term. This yields a scheme that allows an explicit update form [8]. Both schemes are unconditionally stable
in the absence of the nonlinear collision term. However in neither is the energy of the numerical system preserved
through transitions ofy acrossyc, and for the explicit scheme the stability within compressed-state simulation phases
is ensured only for specific integer exponent values [8].

A more general treatment follows from discretising the Hamiltonian rather than the Newtonian description. If
yn denotes the value of variabley at timen∆t, with ∆t being the sampling interval, employing mid-point derivative
approximations for all terms in Eq. (7) yields

yn+1 − yn

∆t
=

T (pn+1) − T (pn)
pn+1 − pn

(8a)

pn+1 − pn

∆t
= −

V(yn+1) − V(yn)
yn+1 − yn

. (8b)

Settingqn = pn∆t/(2m) andξ = ∆t2/(2m) allows writing scheme (8) as

yn+1 − yn = qn+1 + qn (9a)

qn+1 − qn = −ξ
V(yn+1) − V(yn)

yn+1 − yn
. (9b)

Solving Eq. (9) is facilitated by defining the auxiliary variable

s = yn+1 − yn = qn+1 + qn (10)

which gives
qn+1 = s − qn, yn+1 = yn + s. (11)

Substituting into Eq. (9b) gives a nonlinear function ins

F(s) = ξ
V(yn + s) − V(yn)

s
+ s − 2qn = 0 (12)

with
lim
s→0

F(s) = ξV ′(yn) − 2qn (13)

whereV ′ signifies taking the derivative ofV with respect to displacement, hence there is no singularityin F(s). In
comparison, the application of the trapezoidal rule results in an implicit scheme of exactly the same form, but with
the nonlinear equation to be solved defined as

Ftr(s) = ξ
V ′(yn + s) + V ′(yn)

2
+ s − 2qn = 0 (14)

whereas application of the implicit midpoint rule, which isa symplectic method [31], yields

Fmr(s) = ξ V ′
(
2yn + s

2

)
+ s − 2qn = 0. (15)

Note that equations (12), (14) and (15) are equivalent for any potentialV that defines a linear forcef =
∂V
∂y

, for exam-

ple whenkc = 0. However for any nonlinear force function, such as that defined for contact, these expressions—and
therefore the resulting numerical schemes—are distinct.
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2.2. Numerical solution

Solution of the numerical scheme relies on finding a physically correct root of Eq. (12), which is subsequently
used to updatey andq at each time step using Eq. (11). For robustness of the scheme, it is useful to know that the
function (12) has a unique solution, which can be shown as follows. From the definition ofF(s) it follows that

dF
ds
= 1+ ξ

s V ′(yn + s) − V(yn + s) + V(yn)
s2

(16)

with lim
s→0

dF
ds = 1+ ξ

2V ′′(yn). Demonstrating thatdF
ds ≥ 1 proves thatF(s) always has a single root. This is equivalent to

showing that
V(yn + s) ≤ V(yn) + s V ′(yn + s) (17)

which holds by definition∀ yn ∈ R, since the potentialV is a convex function ofy. Hence a unique solution of Eq. (12)
can be found using the Newton-Raphson method, which is globally convergent for a convex function [41]. This can
be shown to hold forF by writing

d2F
ds2
= ξ

Q(s)
s3

, (18)

where
Q(s) = s2V ′′(yn + s) − 2sV ′(yn + s) + 2V(yn + s) − 2V(yn). (19)

Since dQ
ds = s2V ′′′(yn + s) ≥ 0 for any potential with convex first derivative (which holds∀α ≥ 1), Q(s) is a mono-

tonically increasing function going through the origin, which from Eq. (18) implies thatd
2F

ds2 ≥ 0. This also holds in

the limit, in that lim
s→0

d2F
ds2 =

ξ

3V ′′′(s) ≥ 0. The number of iterations required for the solution of Eq. (12) can be kept low

(typically below 6) by using the previous value ofs as the initial guess.

2.3. Conservation of energy

The principal advantage of the presented scheme is that it inherently conserves the total energy of the numerical
system, which is readily demonstrated by rewriting Eq. (8) as

1
∆t

(yn+1 − yn)(pn+1 − pn) = T (pn+1) − T (pn) (20a)

1
∆t

(yn+1 − yn)(pn+1 − pn) = −V(yn+1) + V(yn) (20b)

and substituting by parts, which yields

T (pn+1) + V(yn+1) = T (pn) + V(yn) ⇒ H(yn+1, pn+1) = H(yn, pn). (21)

This states that energy is conserved across each time step. Note that neither the above conservation proof nor the proof
of global convergence to a unique solution relies on any assumptions regarding the range of the parameter values.

2.4. Accuracy

Beyond energy analysis, the immediate next question to explore is how well the scheme approximates the continuous-
time model. While standard finite difference procedures [42] may be used to show that the scheme is of second order
accuracy, further insight can be obtained by inspecting themanner in which the inherent approximation errors manifest
themselves in the simulation results. For the case of linearoscillation (kc = 0, k > 0), the system has a natural fre-
quency of oscillation (ω0 = k/m), which is however not preserved in the numerical model. This can be established by
substituting a single-frequency test solution of the formyn = esa∆t, qn = Besa∆t, into Eq. (9a). Using thatyn−1 = z−1yn,
wherez = ejωd∆t, it follows that any continuous-domain complex frequencysa = jωa maps to the discrete-domain
complex frequencyz as:

sa = B
1− z−1

1+ z−1
= jB tan(ωd∆t/2) (22)
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Figure 1: Inspection of the numerical approximation error.(a) Mapping between continuous-domain frequencyωa and discrete-domain frequency
ωd for linear oscillation [kc = 0]. (b) Effective repelling force for differently sized impact momenta, withα = 1.

whereB = 2/T . The above relationship is associated with the use of the bilinear transform in digital filter design [43];
indeed, as can be seen from expanding Eq. (12) and (14), forkc = 0 the scheme in Eq. (9) is equivalent to that obtained
with the trapezoidal rule. The associated warping of the frequency axis is shown in Fig. 1(a). The resonance shift may
be pre-compensated for by settingk to a higher value such that the numerical model possesses thecorrect resonance
frequency, but such pre-warping has less significance in a nonlinear setting, and in addition does not extend readily to
distributed problems. The approximation error can nevertheless generally be reduced by decreasing the time step∆t,
at the cost of more computational effort.

The above frequency-domain analysis applies only to the linear dynamics of the system. Forkc > 0, the error
committed within the nonlinear part of the system may be directly observed through the approximation of the repelling
force. From Eq. (8b), the effective repelling force at timet = (n + 1

2)∆t is

f =
kc

α + 1

[
⌊(yc − yn − s)α+1⌋ − ⌊(yc − yn)α+1⌋

s

]
. (23)

Note thats = qn+1+qn can be thought of as twice the mid-point valueqn+1/2, thus representing a normalised measure of
impact momentum. Fig. 1(b) shows a zoom-in of the (normalised) effective repelling force (f /kc) for three different
impact momentum values, as directly evaluated from Eq. (23)against the mid-point compressionχn+1/2 = yc −

(yn+1+ yn)/2, and comparing to the corresponding theoretical term⌊(χn+1/2)α⌋. As can be seen, the scheme effectively
smoothes the curve aroundχ = 0. Forα = 1, this leads to a continuously differentiable force function, whereas the
original force function was not differentiable atχ = 0. For arbitraryα ≥ 1, the numerical model effectively replaces a
force function of classCα−1 with one ofCα. The discrepancy between the effective repelling force and its theoretical
counterpart decreases rapidly with decreasing impact momentum size (by 1/s), and the scheme converges to Eq. (3)
in the limit:

lim
s→0

f = kc⌊χ
α⌋. (24)

Given thats→ 0 when∆t → 0, this also demonstrates that the numerical model is consistent with theory.

2.5. Numerical examples of lumped system simulations

Adopting the expression ofV from Eq. (6), the general form ofF(s) can be expanded to

F(s) =

(
1+ ξ

k
2

)
s + 2

(
ξ

k
2

yn − qn

)
− ξmg0 +

βc

α + 1
⌊(yc − yn − s)α+1⌋ − ⌊(yc − yn)α+1⌋

s
(25)

whereβc = ξ kc. The code used for generating the results presented here directly solves this equation.
The most basic model described by Eq. (4) involves a single collision of a point mass with a rigid barrier (in

the absence of gravity) and can be formulated by settingk = 0 andg0 = 0. This example places the focus on the
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Figure 2: Collision of a mass (m = 0.1 kg) with a rigid barrier simulated using the presented energy conserving scheme (EC), the partially
stable explicit scheme (PSE), the trapezoidal rule (TR) andthe midpoint rule (MR). The stiffness is chosen askc = 5000 N m−1 with α = 1 and
fs = ∆t−1 = 44.1 kHz. Top: mass displacement with initial positiony0 = 0.1 m and momentump0 = −0.2 kg m s−1. Bottom: the energy erroren.

nonlinear part ofF(s). Existence and uniqueness of solutions, as well as conservation of energy are inherited from the
general model for this and any subsequent example. However,due to quantisation in finite-precision arithmetic, the
Hamiltonian can, at best, be preserved to machine precisionin implementations on digital processors. It is therefore
of interest to observe the resulting energy error, expressed in terms of the deviation ofHn = H(yn, pn) from the initial
energyH0, which in normalised form reads

en =
Hn − H0

H0
. (26)

It is worth noting here that quantisation generally resultsinto a random-like signalen which, if zero mean, will not
cause an energy shift over time.

Fig. 2 compares the proposed energy conserving (EC) scheme (9) to the trapezoidal rule (TR), the midpoint rule
(MR) and the partially stable explicit finite difference scheme (PSE) presented in [8], in terms of the simulated mass
trajectory and the associated energy error size. The lower plot in Fig. 2 indicates that the PSE, TR and MR schemes
can introduce energy jumps, which are observed here at the point of decoupling with the barrier. This artefact is
avoided with the EC scheme, with the energy error barely exceeding machine precision levels.

The reduced scheme corresponding to a single mass-wall collision is described using only two parameters, namely
α andβc. In order to get a more complete view of the energy preservation properties of the proposed scheme, its
performance is analysed across a range of values for these parameters, corresponding to different levels of interaction
between the mass and the barrier. To ensure a meaningful comparison, the calculations are made independent of the
collision duration and the initial energy of the system, using the following energy preservation metric:

P =

n2∑

n=n1

|Hn+1 − Hn|

(n2 − n1 + 1)H0
(27)

where the collision occurs in the interval [n1, n2]. P can be thought of as the mean energy deviation per sample during
the contact period, thus excluding periods during which energy deviations are expected to be negligible. As depicted
in Fig. 3 the preservedness is only mildly dependent on the model parameters, and structurally retains very low values.

Let us now consider a ball falling under gravity and bouncingon the floor (atyc = 0). This can be modeled by
settingg0 = −9.81 m s−2 andk = 0. Fig. 4 (left) shows the results of such a simulation forα = 3.5. In accordance
with the conservation of energy in the absence of losses, theball keeps bouncing back to its initial height.
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Figure 4: Left: Simulation of a lossless bouncing ball undera gravitational force withkc = 1011 andα = 3.5: (a) Displacement (b) the corre-
sponding energy components and (c) the energy erroren. Right: Simulation of a lossless oscillating unit mass attached to a spring of stiffness
k = (2π440)2 N m−1. A repelling force becomes active wheny < 0.93 mm, following a quadratic power law withkc = 2.5×1010: (d) Displacement
(e) the corresponding energy components and (f) the energy error en.

The system becomes more relevant to musical acoustics when the moving element can store potential energy,
facilitating oscillatory behaviour. In the lumped model this is effected by setting the stiffnessk to a positive value. For
an initial displacement value greater than the barrier position yc, the scheme will now simulate a series of periodic
interactions. Fig. 4 (right) shows an example forα = 2. As can be seen, the repetitive impacts do not cause an
accumulative energy shift, and the energy is conserved to machine precision. This was observed for a large number
of simulations with different parameters and long simulation times.

2.6. Aliasing

Due to the heavy nonlinear character of the contact force as afunction of displacement, any oscillation of the mass
with barrier contact involves the generation of a series of overtones, which can potentially lead to significant aliasing in
the simulation. To exemplify this, a series of simulations were performed, without gravity, for exponentially increasing
k values. This means that the ‘system resonance’ (i.e. the frequency of oscillation of the discrete model in the absence
of collision) and the aforementioned overtones increase with each increase ink. Fig. 5(a) shows an example of the
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magnitude spectrum of the resulting momentum signal as a function of frequency for∆t = 1/44.1ms, plotted against
the system resonance frequency. The aliasing terms can clearly be identified as the mirrored frequency components.
This problem can be addressed by oversampling; Fig. 5(b) shows the spectrum for the same set of simulations but
using∆t = 1/176.4ms, in which case the amplitudes of the overtones nearer theNyquist frequency are small enough
to avoid significant aliasing within the audible frequency range.

Figure 5: Magnitude spectrum of the calculated momentum signal as a function of frequency and system resonance with the sampling frequency
set to (a) 44.1 kHz and (b) 176.4 kHz. The used parameters arekc = 2 · 1010, α = 2.3, m = 0.001 kg,yc = −0.05m. The simulation was run for
k successively equalling 30000· 1.01ι, ι = 1,2 . . . 200, and the initial conditiony = 0.1 m, p = −0.1 m/s atn = 0 was applied in each simulation.
Each spectrum is computed by applying an FFT to 1 second of simulation output.

3. Distributed contact

The methodology to derive numerical schemes presented above can also be applied to distributed systems. Given
the relevance of impactive interaction to string instrument vibrations, a useful representative case is that of a stiff

string, the free transverse vibrations of which are governed by [44]

ρA
∂2y
∂t2
= τ

∂2y
∂x2
− EI

∂4y
∂x4

(28)

whereρ, τ, andA respectively are the mass density, tension, and cross-sectional area, whileE andI denote the Young’s
modulus and the moment of inertia. This Euler-Bernoulli model can also represent a flexible string or ideal beam,
by nulling EI or τ, respectively. Collisions with a distributed barrier can be included by adding a force density term
of the form of Eq. (3) to the right hand side of Eq. (28), whereyc(x) now represents the barrier profile. Hamilton’s
equations of motion for this system are then given by

∂p
∂t
=

∂

∂x

(
∂H

∂u

)
−
∂2

∂x2

(
∂H

∂v

)
−
∂H

∂y
(29a)

∂y
∂t
=
∂H

∂p
(29b)

where

H(y, p, u, v) =
1
2

p2

ρA
+

1
2
τu2 +

1
2

EIv2 +
kc

α + 1
⌊(yc − y)α+1⌋ = T (p) +Vτ(u) +Vs(v) +Vc(y) (30)

with

u =
∂y
∂x

and v =
∂2y
∂x2

. (31)

A derivation of these equations from a variational principle can be found in [45], where the simulation of an ideal,
simply supported string is considered.H is the Hamiltonian density as a function of the local displacementy and
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Figure 6: The discretised string at timesn∆t and (n + 1)∆t.

momentum densityp = ρA ∂y/∂t and the spatial derivativesu andv. The total energy of the system with a string of
lengthL is the integral

H =
∫ L

x=0
H(y, p, u, v)dx. (32)

3.1. Numerical formulation
Following the methodology of the previous section, mid-point derivative approximations are again employed to

derive a numerical scheme, whereyn
m now denotes the value of variabley at positionx = m∆x and timet = n∆t, ∆x

being the spatial sampling interval (see Fig. 6). RewritingEq. (29) using the separation of the energies in Eq. (30),
Hamilton’s equations are approximated by

pn+1
m − pn

m

∆t
=

{
∂Vτ

∂u

}n+ 1
2

m+ 1
2

−

{
∂Vτ

∂u

}n+ 1
2

m− 1
2

∆x
−

{
∂Vs

∂v

}n+ 1
2

m+1

− 2

{
∂Vs

∂v

}n+ 1
2

m

+

{
∂Vs

∂v

}n+ 1
2

m−1

∆x2
−
Vc(yn+1

m ) − Vc(yn
m)

yn+1
m − yn

m
(33a)

yn+1
m − yn

m

∆t
=
T (pn+1

m ) − T (pn
m)

pn+1
m − pn

m
(33b)

where, for example,
{
∂Vτ

∂u

}n+ 1
2

m+ 1
2

=

Vτ(un+1
m+ 1

2

) −Vτ(un
m+ 1

2

)

un+1
m+ 1

2

− un
m+ 1

2

(34)

approximates the partial derivative ofVτ with respect tou. It is useful here to introduce the forward and backward
space shift operators, through their action onyn

m, as

δ+yn
m =

yn
m+1 − yn

m

∆x
, δ−yn

m =
yn

m − yn
m−1

∆x
. (35)

Using the following approximations foru andv

un
m+ 1

2
= δ+yn

m, un
m− 1

2
= δ−yn

m, vn
m = δ+δ−yn

m = δ∆yn
m (36)

a scheme centred at timet = (n + 1/2)∆t and positionx = m∆x is obtained

pn+1
m − pn

m

∆t
=
τ

2
δ∆(yn+1

m + yn
m) −

EI
2
δ2
∆(y

n+1
m + yn

m) −
kc

α + 1

⌊(ycm − yn+1
m )α+1⌋ − ⌊(ycm − yn

m)α+1⌋

yn+1
m − yn

m
(37a)

yn+1
m − yn

m

∆t
=

1
ρA

pn+1
m + pn

m

2
(37b)

whereycm denotes the location of the collision boundary at the position x = m∆x. In matrix form this can be written
as

pn+1 − pn = φD2

(
yn+1 + yn

)
− ψD4

(
yn+1 + yn

)
−̟S−1

(
⌊(yc − yn+1)α+1⌋ − ⌊(yc − yn)α+1⌋

)
(38a)

θ
(
yn+1 − yn

)
= pn+1 + pn. (38b)
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whereS= diag(yn+1 − yn) is a diagonal matrix,

φ =
τ∆t

2∆x2
, ψ =

EI∆t
2∆x4

, ̟ =
kc∆t
α + 1

, θ =
2ρA
∆t

(39)

andyn, yc
n andpn are column vectors holding displacement, barrier profile and momentum values. Under the assump-

tion of simply supported boundary conditions on both ends ofthe system, these vectors hold the values ofN interior
nodes on the string (i.e. fromy1 to yN), andD2 then is anN × N tridiagonal matrix:

D2 =



−2 1 0

1
. . .

. . .

. . .
. . . 1

0 1 −2


(40)

which implements the second spatial derivative of the string state, withD4 = D2D2. Analogous to the lumped model
derivations, it is convenient to rewrite the scheme using a scaled momentum variableqn = pn/θ. Also substituting
D = (β4D4 − β2D2) then gives

qn+1 − qn = −D
(
yn+1 + yn

)
− ζS−1

(
⌊(yc − yn+1)α+1⌋ − ⌊(yc − yn)α+1⌋

)
(41a)

yn+1 − yn = qn+1 + qn (41b)

whereβ2 = φ/θ, β4 = ψ/θ andζ = ̟/θ. Now setting

s= yn+1 − yn = qn+1 + qn (42)

yields the nonlinear system of equations

F = (I + D) s+ 2(Dyn − qn) + ζS−1
(
⌊(yc − yn − s)α+1⌋ − ⌊(yc − yn)α+1⌋

)
= 0 (43)

which is the distributed equivalent of Eq. (25) forg0 = 0.

3.2. Conservation of energy

The total energy of the system can be calculated by integrating the energy densities along the length of the string,
i.e.

Hn =

N+1∑

m=0

(
T n

m +V
n
m
)
∆x (44)

whereT n
m = T (pn

m) and

Vn
m =
Vτ(δ−yn

m) +Vτ(δ+yn
m)

2
+Vs(δ∆yn

m) +Vc(yn
m) (45)

represent kinetic and potential energy densities, respectively. This calculation involves so-called ‘ghost nodes’ ly-
ing just outside the spatial domain occupied by the string, which are eliminated by applying appropriate numerical
boundary conditions (see Section 3.6). In matrix form the total energy is

H = b
[
qtq + ytDy + ζ1t⌊(yc − y)α+1⌋

]
(46)

with 1 = (1, . . . , 1)t andb = 2ρA∆x/∆t2. For simply supported ends this can be written in the more intuitive form

Hn = ∆x

[
(pn)tpn

2ρA
+

τ

2∆x2
(D1yn)t (D1yn) +

EI
2∆x4

(D2yn)t (D2yn) +
kc

α + 1
1t⌊(yc − yn)α+1⌋

]
(47)
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where

D1 =



1 0
−1 1

−1 1
. . . . . .

−1 1
0 −1



(48)

is an (N + 1) × N matrix which implements taking the gradient of the string state, withDt
1D1 = −D2. Seeking to

demonstrate the conservation of energy, we multiply the left hand side of Eq. (41a) with (qn+1 + qn)t and the right
hand side with (yn+1 − yn)t, which are equivalent terms by Eq. (41b). This yields

(qn+1 − qn)t(qn+1 + qn) = −(yn+1 − yn)tD(yn+1 + yn) − ζ(yn+1 − yn)tS−1
(
⌊(yc − yn+1)α+1⌋ − ⌊(yc − yn)α+1⌋

)
(49)

which, given thatD is symmetric, can be written as

(qn+1)tqn+1 + (yn+1)tDyn+1 + ζ1t
(
⌊(yc − yn+1)⌋α+1

)
= (qn)tqn + (yn)tDyn + ζ1t

(
⌊(yc − yn)⌋α+1

)
. (50)

Now multiplying byb and using the definition of the numerical energy in Eq. (46), it follows that

Hn+1 = Hn. (51)

As explained in the Introduction, instead of an ‘energy conserving scheme’, different numerical schemes can be
constructed using an ‘energy method’ that conserves an energy-like quantity, as proposed for example in [46]. In that
case the conserved quantity, defined at timet = (n + 1/2)∆t becomes

H̃n+1/2 = (qn+1/2)tqn+1/2 + (yn+1)tDyn + ζ1t

(
⌊(yc − yn+1)⌋α+1 + ⌊(yc − yn)⌋α+1

2

)
(52)

whereas the actual discrete system energy at timet = (n + 1/2)∆t is equal to

Hn+1/2 = (qn+1/2)tqn+1/2 + (yn+1/2)tDyn+1/2 + ζ1t
(
⌊(yc − yn+1/2)⌋α+1

)
(53)

and has a different potential energy term. This results in an oscillatingsystem energyH, whereas an energy-like
quantityH̃ is conserved. Hence while allowing the definition of stable numerical schemes, such ‘energy methods’ do
not intrinsically inherit the energy conservation property of the underlying model equations, neither do they replicate
it; instead a conserved energy-like quantity has to be foundfor each specific case. Also note that, unlikeHn+1/2,
H̃n+1/2 is not bound to be positive. This imposes a stability condition on the associated numerical schemes (see [46]).

3.3. Numerical solution

Eq. (43) can be solved fors using the multidimensional Newton method, which requires forming the Jacobian of
F

J = I + D + C (54)

whereC is a diagonal matrix with elements

{ci,i} =
∆t
θ

siV
′
c(y

n
i + si) −Vc(yn

i + si) +Vc(yn
i )

s2
i

(55)

which in accordance with Eq. (17) is positive definite. From the energy expression (46) it follows thatD and therefore
alsoJ are positive definite, which ensures the uniqueness of a rootof Eq. (43) [41]. Singularities in bothF and its
Jacobian can be handled as in the lumped case. The update equation is s = s− J−1F, where instead of forming the
inverse matrix it is possible—and considerably more efficient—to solve a (band) linear system. Global convergence
of the Newton method (for an arbitrary initial guess) is guaranteed for the componentwise convex functionF when
the Jacobian is anM-matrix [47], which holds forβ4 = 0. For non-zero stiffness the method is only locally convergent
and a good initial guess is required, which in practice is always available through the previous value ofs. As such,
convergence is typically achieved in fewer than 20 iteration steps.
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Figure 7: Simulation of an ideal string being free to vibrateor bouncing on a rigid obstacle, for the initial conditiony(x, 0) = 0.002 sin(πx/L). The
linear mass density of the string is set toρA = 0.001 kg m−1 and the tension toτ = 100 N, with∆x = 0.007 m andfs = ∆t−1 = 44.1 kHz. Top:
mid-point string displacement. Bottom: numerical energy error.

3.4. Test simulations

To verify the correct behaviour of the distributed model, reference is made to an analytical result that compares
the frequency of a free, flexible vibrating string with that of an impeded one [48]. This states that if a straight obstacle
is placed halfway across the amplitude of the string vibration, the fundamental frequency of the free vibrating string
will be 1.5 times the frequency of the impeded string [49]. This result is reproduced by a numerical simulation using
scheme (41) for a 0.7 m long string (see Fig. 7), settingkc = 107 in order to simulate a rigid obstacle withα = 1.
For comparison, the simulation was repeated with 20 times oversampling and usingkc = 109, which results in a very
close approximation to the theoretical frequency ratio.

Fig. 8(a) shows the vibration of a stiff string bouncing on a curved surface located at one of its boundaries, setting
EI = 0.012 N m2. The nonlinear behaviour can be observed in the irregular exchange between the kinetic and the po-
tential energy in Fig 8(b). Nonetheless the total energy remains constant, with inter-sample energy steps only occasion-
ally exceeding machine precision levels (see Fig. 8(d)). Fig. 8(c) reveals that the interaction between the string and the
boundary involves multiple impacts during contact periods, which result in the generation of high-frequencyvibrations
that are characteristic of string instruments with flat bridges. For example, the buzzing sound of a sitar is understood
to stem from such multiple impacts [50]. Supplementary animations for both the above simulations, as well as the can-
tilever beam simulation of Section 3.6 are available athttp://www.socasites.qub.ac.uk/mvanwalstijn/jsv14/.

3.5. Numerical dispersion

In the absence of the nonlinear collision term, the scheme inEq. (41) reduces to that obtained by applying the
Crank-Nicolson method [12, 42], which can be considered as the distributed version of the trapezoidal rule. Hence
the frequency-domain approach of Section 2.4 applies againfor kc = 0, meaning that the mode frequencies of the
string are warped according to the mapping in Fig. 1(a). At first sight, this appears to be a significant downside, as
there are other finite difference schemes available that—for the linear case—introduce considerably less numerical
dispersion (see, e.g. [8]). However, the effect is often only just audible at standard audio rates (e.g. 44.1kHz). More
importantly, for the impactive case (kc > 0) the collisions represent strongly nonlinear events driving the generation
of high frequency components, which invariably results in aliasing effects (see also Section 2.6). Hence in practice
the time step already has to be chosen about 2 to 4 times smaller than 1/44.1 ms to avoid detrimental effects on the
simulation results.

The unconditional stability of the scheme represents a beneficial feature, in that the spatial and temporal stepsize
can be chosen independently. Care must be taken however not to stretch the ratio between them too far. That is, the
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Figure 8: (a) Snapshots of a stiff string bouncing on a curved obstacle, (b) the energy components (c) the collision force due to string-obstacle
interaction and (d) the energy erroren.

Table 1: Numerical boundary conditions.

clamped simply supported free

left end
yn

0 = 0 yn
0 = 0 yn

0 = 0

δ−yn
0 = 0 δ∆yn

0 = 0 δ−δ∆yn
0 = 0

right end
yn

N+1 = 0 yn
N+1 = 0 δ∆yn

N+1 = 0

δ+yn
N+1 = 0 δ∆yn

N+1 = 0 δ+δ∆yn
N+1 = 0

number of string modes modelled equals the number of string segments, thus increasingN while holding∆t constant
amounts to compressing more and more modes into the finite simulation bandwidth according to the mapping in
Fig. 1(a). It make sense therefore to not exceed a certain ratio to avoid rendering a string with very densely spaced
modes at the high end of the spectrum. For example, for an ideal string with c =

√
τ/ρA it is practical to not let

the value ofβ2 =
1
4(c∆t/∆x)2 exceed much beyond 1/4, where settingβ2 = 1/4 corresponds to the numerical model

possessing exactly all the modes with theoretical frequencies below Nyquist frequency.

3.6. Boundary conditions and damping

As seen in Eq. (43) and (46), the system and its numerical energy can be expressed in terms of the spatial matrix
D = β2D2 − β4D4, which for simply supported ends is entirely defined throughthe matrixD2 as given by Eq. (40).
Other boundary conditions, such as free or clamped ends, canbe effected simply by altering of and/or adding elements
to D2 andD4 according to numerical versions of the required conditions. Note that to ensure that the energy remains
preserved in the scheme, Eq. (50) must hold, hence bothD2 andD4 must remain symmetric. Table 1 lists numerical
boundary conditions for clamped, simply supported, and free end conditions that satisfy this criterion, making use of
the spatial shift operators defined in Section 3.1.

Realistic simulations suitable for sound synthesis require the inclusion of damping terms. Here we restrict our-
selves to the losses associated with the vibrating object and its interaction with an external fluid, thus neglecting any
impact friction. Such damping can be included in the Euler-Bernoulli model by introducing resistive and Kelvin-Voigt
terms [51], rewriting the equation of motion as

ρA
∂2y
∂t2
= τ

(
∂2y
∂x2
+ η

∂3y
∂t∂x2

)
− EI

(
∂4y
∂x4
+ η

∂5y
∂t∂x4

)
− ρAγ

∂y
∂t
+ kc⌊(yc − y)α⌋ (56)
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Figure 9: Simulation of a cantilever beam colliding with a flat barrier, for L = 0.2 m, EI = 0.03375 N m2, ρA = 0.03 kg m−1, γ = 10 s−1,
η = 10−6 s, kc = 5 × 106 N m−2, α = 1, ∆x = 1/460 m,∆t = 1/176.4 ms. (a) Beam state at two moments in time. (b) Observed displacement at
two positions along the beam axis. (c) Bending moment (M = −EI∂2y/∂x2) at two moments in time. (d) Evolution of energies.

whereη andγ are damping factors which can be loosely associated with internal friction and fluid damping, respec-
tively [10]. Considering now that Eq. (37a) is a direct approximation of Eq. (29a), which is of the dimension of force
density, the losses can be included in the numerical formulation simply by adding finite difference approximations of
the respective damping terms to Eq. (37a). This procedure leaves the scheme intact except for the nonlinear function,
which now takes the form

F =
[(

1+
γ∆t
2

)
I +

(
1+

2η
∆t

)
D
]
s+ 2(Dyn − qn) + ζS−1

(
⌊(yc − yn − s)α+1⌋ − ⌊(yc − yn)α+1⌋

)
. (57)

To exemplify these extensions, a cantilever beam collidingwith a flat barrier is simulated. The parameters are
chosen as listed in the caption of Fig. 9. In this configuration, the model resembles a plastic ruler beating against a
flat table. Fig. 9(a) shows the initial state of the beam as well as that after 24.02ms, at which point the tip of the beam
reaches its lowest position. Fig. 9(b) demonstrates that the beam is effectively constrained at its halfway point. The
correctness of the implementation of the clamped and free boundary conditions can be verified by inspecting Fig. 9(a)
and 9(c), the latter displaying the bending moment at the corresponding two instances. The knick point att = 24.02ms
indicates the influence of the interaction with the table, which at that moment in time is localised at the table corner
point. Fig. 9(d) shows the evolution of the total and the collision energy, the latter defined asVn

c =
∑

mVc(yn
m)∆x.

This plot reveals a complex bouncing pattern with multiple impacts per cycle, similar to Fig. 8(c). Finally, Fig. 9(b)
and 9(d) confirm a damped system behaviour. An energy preservation check does not apply now, but stability may
still be observed in that∂H/∂t ≤ 0 at all times.

4. Application to the tanpura

The tanpura is a fretless string instrument providing lively sounding drones typical of the musical cultures of
the Indian subcontinent. Like various other Eastern stringinstruments, its specific overtone-rich sound results from
the interaction of its strings with a slightly curved bridge, but with the additional feature of having a thin thread
placed between the string and the bridge (see Fig. 10(a)), which effectively creates a ‘two-point bridge’ [52]. Making
the simplification of considering the thread and the bridge as immovable objects, the vibrational behaviour can be
modelled as a string with simply supported ends meeting a curved bridge placed at a small distancexb from the thread
(see Fig. 10(b)). A more complex model of the tanpura, including impact damping and taking into account the full
length of the string (up to the tuning bead) is considered in [53].
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Figure 10: (a) Close-up of a tanpura bridge. (b) Simplified model (dimensions are not proportional).

4.1. Numerical formulation

Discretisation of the above model largely proceeds as discussed in Section 3, apart from one aspect. That is, in
order to allow specifying a fine spatial detail in the bridge curvature without having to increase the spatial resolution
∆x of the discretised string, spatial interpolation is applied in the calculation of the contact forces. Setting the spatial
resolution of the bridge profile vectoryb to∆xb, an interpolating matrixIb is used to translate the string displacements
from one grid to the other:

ȳn = Ibyn, (58)

whereȳn is a vector holding the interpolated string displacement values; a third-order Lagrange interpolant [43] is
applied here. The (scaled) contact forces are formulated atthe points on the finer scale, indexed byi, as

f̄ n
i = βb

⌊(yb,i − ȳn
i − s̄i)2⌋ − ⌊(yb,i − ȳn

i )2⌋

s̄i
, (59)

where

βb =
kb∆t2

2ρA
, s̄i = ȳn+1

i − ȳn
i (60)

The forces can be translated back to the string spatial coordinates using a corresponding downsampling interpolant:

f n = I∗bf̄ n (61)

where, following [8], the downsampling interpolant is defined as the scaled conjugateI∗b = (∆xb/∆x)It
b, which

ensures that energy conservation is not affected. The numerical formulation remains exactly as before, apart from the
non-linear equation to be solved, which now takes the form

F =
[(

1+
γ∆t
2

)
I +

(
1+

2η
∆t

)
D
]
s+ 2(Dyn − qn) + f n (62)

where the force termf n is a non-linear function of the ‘step vector’s, and where the interpolated version ofs is
computed in the same way as fory, i.e. s̄ = Ibs. This equation can again be solved using the multi-dimensional
Newton method, with the Jacobian taking the form

J =
[(

1+
γ∆t
2

)
I +

(
1+

2η
∆t

)
D
]
+ I∗bGIb, (63)

whereG is a diagonal matrix with elements
{
gi,i

}
= ∂ f̄i/∂s̄i.

4.2. Results

To obtain suitable string parameters, the diameter (d = 0.3 mm) and speaking length (L = 628 mm) of the third
string of a small travelling tanpura were measured. Taking into account the fundamental frequency as well as the
mass density and Young’s modulus of steel, the tension and stiffness terms were set accordingly toτ = 31.47 N m−1

andEI = 8.35× 10−5 N m2, with ρA = 5.58× 10−4 Kg m−1. The damping parameters were set toγ = 0.1 s−1
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Figure 11: Snapshots of the string motion during the 1st (a),17th (b) and 33rd (c) period of oscillation. The arrows in (c)indicate the movement of
the kink, indicative of a Helmholtz-like motion.
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Figure 12: Evolution of the nut force signal. Each plot showsa single period of oscillation. The initial condition was set asy(x) = 0.002 sin(πx/L).

andη = 5× 10−8 s, which results in a frequency-dependent decay pattern that approximately matches that observed
when the tanpura string is left in free vibration (i.e. without string-bridge interaction). The bridge contact elasticity
coefficient is chosen askb = 5× 108 N m2, which ensures that the effective compression does not exceed 1% of the
string diameter. The bridge shape is defined as the paraboleyb(x) = −4(xb − x)2, which yields a curvature similar to
that of the tanpura bridge around the pointxb = 5 mm where the string meets the bridge when at rest. The numerical
parameters are as follows:∆t = 1/176.4 ms,∆x = 3.1 mm, and∆xb = 0.2 mm.

Fig. 11 shows snapshots of the string motion during the 1st, 17th and 33rd period of oscillation, for an initial
condition that matches the shape of the first mode of the string. The more recent states are represented by colour-
intensive curves, while the colour-tone is fading out for the earlier string states. It can be observed that the bridge
interaction forces the string to gradually take on a more triangular shape, indicating the excitation of the other modes
of vibration. As such, a Helmholz-like motion emerges, withthe kink travelling along the string as indicated by the
arrows in Fig. 11(c). Such a motion has been suggested by earlier simulations of the tanpura [54] and has been also
encountered in studies of various other string-bridge configurations without the thread [23, 55].

Instances of the corresponding transversal force signal atthe nut are shown in Fig. 12, which reveals the gradual
development of a precursor in the force waveform. As explained in [52], the precursor is a packet of high-frequencies
arriving back at the bridge before the lower frequencies dueto the string stiffness. In each string cycle, the precursor
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Figure 13: Spectrogram of the nut force signal when pluckingthe sting atx = L/2, for a simulation without bridge interaction (a), and withbridge
interaction (b).

is ‘fed’ with high-frequency components by the nonlinear interaction between the string and bridge.
Fig. 13 shows the spectral evolution of the nut force signal obtained from the simulation when setting the initial

condition as a triangular shape that mimics plucking the string at mid-point, with a maximum displacement of 2 mm.
Fig. 13(a) confirms that none of the even-numbered string modes are excited in the absence of bridge interaction, and
the expected frequency-dependent decay is observed. With the bridge in place (Fig. 13(b)), all modes are excited, and
the precursor can be observed as a formant region with a spectral centroid that varies over time. That is, at first the
formant frequency decays, then from aroundt = 120 ms to 450 ms it stays approximately constant, followed bya
period of slower decay. The appearance of these distinct regimes in the formant frequency decrease pattern are in
accordance with the analysis of experimentally obtained nut force signals by Valette et al. [52].

5. Conclusion

Numerical schemes for frictionless vibro-impact problemscan be derived in stable implicit form by discretising
the Hamiltonian description of the system dynamics. Stability follows directly from the inherent energy conservation
demonstrated in Sections 2.3 and 3.2. For both lumped and distributed contact the presented formulation involves
solving, at each time step, a nonlinear equation which is guaranteed to have a unique solution. The generally excel-
lent convergence conditions for Newton iteration are underlined by the convexity proof for lumped contact given in
Section 2.2.

Because of these properties the proposed methodology can beused to formulate time-domain models with im-
proved robustness in comparison to methods previously applied to musical instrument simulation. That is, unlike
schemes derived by discretising a Newtonian description, the simulations do not suffer from energy jumps during the
decoupling of the impacting objects. As a result, implementations require neither the energy corrections employed in
various other formulations [17, 19] nor the monitoring of energy flows common to wave digital filter models [26].

The approach is distinct from that taken in [46] in that it is fully Hamiltonian, and in the absence of damping
terms the preserved quantity exactly equals the energy of the underlying continuous model, which is one known way
to measure the success of a numerical simulation [34]. Furthermore, there are no stability bounds to respect (i.e. the
stability is unconditional). A comparatively positive feature of the approach in [46] is that numerical dispersion canbe
controlled better, which is advantageous for cases in whichaliasing and errors in the effective repelling force are not
likely to be prevalent; this advantage is less likely to holdfor modelling repetitive contact with nearly rigid barriers,
given that numerical dispersion becomes negligible for thesampling frequencies required to avoid aliasing and the
accumulation of repelling force errors.

As shown in Section 3.6, for distributed contact the boundary conditions can be altered without affecting energy
conservation, and the resonator can be made dissipative simply by adding loss terms. Considering that in Hunt-
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Crossley form, the power law for distributed contact can be written as

f = kc⌊(yc − y)α⌋

(
1− rc

∂y
∂t

)
= −V′c(y) + rc

∂Vc(y)
∂t

(64)

the extension to nonlinear impact damping is similarly straightforward.
These results pave the way for improved time-domain modelling of musical instruments for which impactive

interaction represents an essential ingredient of the sound production process, especially if the contact is repetitive
or distributed. An illustrative example has been presentedhere, simulating the drone sounds emitted by the tanpura.
The generation of high frequency components due to the interaction of the string with a flat, two-point bridge can
be simulated using the proposed approach, avoiding numerical artefacts that have appeared in previous studies (see
e.g. [54, Fig. 34]). In comparison to the digital waveguide model used in [23, 24], the proposed approach has the
advantage that the elasticity properties of the contact—which for some of such instruments are known to play an
important role [52]—can be specified. Other impactive interactions of musical interest that the proposed schemes can
be directly applied to include reed beating in woodwind instruments [56], string-bridge coupling in pianos [24], and
braypin-string collisions in early harps.

The main limitation of the methodology is that the convergence of the Newton iterations, and therefore the invari-
ance of the numerical energy, is subject to finite-precisionarithmetic. Namely a bound exists on the contact stiffness
parameterkc; extreme values of it can result in there not being sufficient number precision available in updating the
displacement steps such that the resulting energy stepHn+1 − Hn falls within machine precision. For example, at
standard audio rates the simulation of a string interactingwith a barrier characterised byα = 1 would typically allow
kc to be set up to a value between 107 and 108 with full Newton convergence. When higher values are needed, a
smaller time step may have to be used, coming at the cost of an increase in computational complexity. As discussed
in Sections 2.6 and 3.5, some oversampling may be needed anyway in sound synthesis applications in order to avoid
the generation of perceptually salient aliasing components.

Given that all mechanical systems can be formulated in Hamiltonian form, the expectation is that the proposed
approach naturally extends to other musical instrument phenomena, such as hammer-string and mallet-membrane
interaction, as well as to vocal-fold collision in speech and singing. Further noteworthy directions to explore include
an alternative formulation of the distributed object, suchas a Timoshenko model [57], which would facilitate the
inclusion of geometric nonlinearities. Such an extension has in fact recently been shown to be compatible with
closely related methods for time-domain modelling of vibrating piano strings [39].

As a final point of interest, it is worth mentioning that the unconditional stability of the proposed schemes is a
useful property regarding on-line variation of model parameters, which is desirable from the perspective of studying
and modelling player control.
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[51] R. Lewandowski, B. Chorażyczewski, Identification ofthe parameters of the Kelvin-Voigt and the Maxwell fractional models, used to

modeling of viscoelastic dampers, Computers & structures 88 (1) (2010) 1–17.

20



[52] C. Valette, C. Cuesta, M. Castellengo, C. Besnainou, The tampura bridge as a precursive wave generator, Acta Acustica united with Acustica
74 (3) (1991) 201–208.

[53] M. van Walstijn, V. Chatziioannou, Numerical simulation of tanpura string vibrations, in: Proc. International Symposium on Musical Acous-
tics, Le Mans, 2014, pp. 609–614.

[54] C. Valette, The mechanics of vibrating strings, in: A. Hirschberg, J. Kergomard, G. Weinreich (Eds.), Mechanics ofMusical Instruments,
Vol. 335 of CISM, Springer-Verlag, New York, 1995, Ch. 4, pp.115–183.

[55] R. Burridge, J. Kappraff, C. Morshedi, The sitar string, a vibrating string with a one-sided inelastic constraint, SIAM Journal on Applied
Mathematics 42 (6) (1982) 1231–1251.

[56] V. Chatziioannou, M. van Walstijn, A Hamiltonian approach to simulation of acoustic systems involving nonlinear interactions, Journal of
the Acoustical Society of America 134 (5) (2013) 4219.

[57] S. Chin, C. Steele, Timoshenko modeling of the pipa string, Acta Acustica united with Acustica 97 (2) (2011) 315–324.

21


