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Abstract

Collisions are an innate part of the function of many musioatruments. Due to the nonlinear nature of contact
forces, special care has to be taken in the construction wfenigal schemes for simulation and sound synthesis.
Finite difference schemes and other time-stepping algorithms usedusical instrument modelling purposes are
normally arrived at by discretising a Newtonian descriptid the system. However because impact forces are non-
analytic functions of the phase space variables, algorgtahility can rarely be established this way. This paper
presents a systematic approach to deriving energy congesghemes for frictionless impact modelling. The proposed
numerical formulations follow from discretising Hamiltsrequations of motion, generally leading to an implicit
system of nonlinear equations that can be solved with Nes/tmethod. The approach is first outlined for point
mass collisions and then extended to distributed settisgsh as vibrating strings and beams colliding with rigid
obstacles. Stability and other relevant properties of ttop@sed approach are discussed and further demonstrated
with simulation examples. The methodology is exemplifigdtigh a case study on tanpura string vibration, with the
results confirming the main findings of previous studies @rthe of the bridge in sound generation with this type of
string instrument.

Keywords: Energy conservation, finite fliéerences, musical instruments

1. Introduction

When studying the vibrational behaviour of musical instemts or other sounding objects, collisions are often
encountered. These can occur either in a confined space.flh@mmer-string interaction, mallet impacts) or in a
more distributed manner [2], such as the coupling betweesitiares and the membrane of a snare drum. The former
can usually be modelled in lumped form, suppressing the ctatipn of the interaction forces to a single point,
whereas the latter require considering variations alorgiapcoordinates. In both cases, the impactive interactio
represents an important nonlinear element that is closedgd to the characteristics giod the expressive control of
the instrument [3].
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Contact modelling has undergone extensive study, inctpdimious proposed time-stepping methods for the sim-
ulation of vibro-impact phenomena. A fundamental disimttbetween two dierent classes herein stems from
whether or not an interpenetration is allowed between thdambing objects. A perfectly rigid contact involves a
non-penetration condition of the form

Ya—VYb >0, 1)

where a moving body with positiog, collides with another body located below it, wt The use of Lagrange
multipliers is common in conjunction with this approach dinite element simulations [4]. When penetration (which
can be equivalently considered as the compression of thadtimg objects) is allowed, a repelling force can be
defined using a penetration function

P() = h() x (2)

wherey = y, — Ya andh(y) denotes the Heaviside step function. This is referred ta psnalty approach [5], the
validity of which is subject to constraints on impact vetgcind penetration level [6]. Using either of the above
methodologies, existence and uniqueness of solutionsdesgroven only for a small number of special cases [7].

The penalty approach commonly appears in musical acoystitdems in the form of a one-sided power law
[8, 9], where, starting from Hertz's contact law, the impfacte takes the form

fO0) = kelx”] ®3)

where|x*] = h(y) x%, ke is a stiftness cofficient and the power law exponemt> 1 depends on the local shape
of the contact surface. These parameters are often degreimpirically, and good agreement with measurements
has been found for several cases [1, 10-12]. A version of Bawith impact friction is possible in the form of the
Hunt-Crossley model [13-15], which has also found use ifouarother engineering fields (e.g. robotics [16]).

When simulation is required to solve collision problems, plower law needs to be incorporated into a numerical
formulation. Most of the relevant time-stepping methodsi in the musical acoustics and sound computing litera-
ture are based on finiteféérences [8, 10] or closely related methods such as the wafsdzule [14], the Newmark-
beta method [11], or Verlet integration [17, 18]. In distried settings, discretisation is sometimes performed afte
first casting the linear part of the problem in modal form [20]. While many successful simulation results have
been obtained, and stability can even be shown for somefgpeases or under specific assumptions (see e.qg. [21]),
the formulation of a more general class of numerical schdorémpact modelling is still considered as an open and
difficult problem [8, 17]. Sound-related collisions have alserbsimulated with digital waveguides [22—-25], wave
digital filters [26] and hybridisations thereof [27, 28].aBtlity in such wave-variable models is generally analysed
and controlled through passivity of the individual scattgmunits. However, provably stable formulations of thipay
for distributed impact governed by Eq. (3) are yet to appear.

Seeking a more rigorous numerical treatment of vibro-impaablems, the mathematical physics literature sug-
gests that two distinct directions can be taken. One appr@ato design a method such that the total energy is
maintained, leading to energy conserving schemes [29 A@&rnatively, one may choose to preserve another invari-
ant of the physical system, the symplectic structure [3iljstderiving symplectic numerical schemes, some of which
have recently been applied to musical instrument soundhegig [17, 18]. It has been shown that in general only one
of the above properties can be preserved [32]. Although bpfitoaches can establish the stability of a numerical
algorithm, symplectic schemes allow an oscillating enghgy can distort the amplitude of lossless systems. Such
schemes are therefore particularly suited to the studyroflites of trajectories and long-term behaviour of dynarhica
systems, while the use of energy preserving schemes hasrmieated as more suitable for oscillatory problems
[33].

Energy based methods for constructing time-stepping lgos can be generally classified into two categories,
as explained in [34]; those yielding schemes that attempbtserve an energy-like, positive definite quantity and
those that aim to conserve the actual energy of the systeathtiene step. In strict physical terms, only the latter can
be specified asshergy conserving schemes'. For the sake of clarity, the former energy based methotdeireferred
to as energy methods' in the remaining of this manuscript. This distinction is deamore clear in Section 3.2, where
conserved numerical quantities for both types of methogsampared.

The past decade has seen a substantial uptake of enefgy methods in application to nonlinear problems
encountered in musical acoustics, most notably by BilbhdI[Be merits of this approach—which requires identifying
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a numerical counterpart of the system Hamiltonian—coméedare whenever the studied vibrational behaviour is
intrinsically nonlinear, as is the case for various perimmsmstruments [35, 36]. However, one-sided power laws
such as that in Eqg. (3) are non-analytic functions of the gfsmace variables, making it far from straightforward
to derive schemes for which an invariant, numerical endikggygquantity exists [8]. The present authors propose to
address this by first reformulating the system in its Hamila form [30, 37], and discretise this rather than Newton'’s
equations of motion, in order to construct amérgy conserving scheme’. This approach bears resemblance to that
taken by Greenspan in discretising nonlinear lumped sys{88], and a similar strategy has recently been applied
in extended form by Chabassier et al. to the simulation ofinear string vibrations [39]. Preliminary results of the
application to collision problems have been reported byctiveent authors in [40], focusing on simulation of a point
mass interacting with a barrier. The present study exteridsd distributed interaction by modelling of afBstring
colliding with a (nearly) rigid obstacle, which has dire@pdication to simulation and sound synthesis of various
string instruments.

Since the stability analysis is carried out by virtue of thiegervation of an invariant energy, frictional forces
are initially neglected in the derivation and analysis & titumerical schemes. A way to introduce damping in
compatibility with all presented algorithms is shown todsthe end of this paper, which is organised as follows.
Section 2 outlines the proposed methodology through the @is simple one-mass system involving collisions, with
specific focus on proving convergence and energy conservdtirther supported by numerical examples. A similar
treatment is then adopted in Section 3 for distributed siolfis, which involves discussion of additional aspect&suc
as matrix formulation, dispersion, and boundary condgio8ection 4 presents a case study on the interaction of a
tanpura string with a curved bridge and Section 5 evaluageasiain findings within the context of musical acoustics
and sound synthesis.

2. Lumped contact

An elemental, frictionless model is defined, in which a giggiensitive masm attached to a spring of constadant
is colliding with a rigid barrier positioned gt= y.. Assuming the impact force to be of the form given in the prasi
section (withy = yc — y), the motion of the mass is governed by

2

d
M = kel (Ve = )" ~ ky + Mg (4)

whereq is the gravitational acceleration (taken negative). Gieréing an energetic description, the Lagrangian of
the system governed by Eq. (4), defined as tliedince between kinetic energiyand potential energy, is

: 1 . k
L.9) = 5~ 5y~ 16~ + oy ©)

Defining the conjugate momentum= dL/dy and taking the Legendre transformation of the Lagrangiafdgithe
Hamiltonian of the system

ke
a+1

2
HOLP) = 2o+ 592+ 16— 9) ) gy = T(0) + V(). ©

This equals the total energy of the system and is constattisncase due to the absence of frictional or external
(non-conservative) forces. The corresponding Hamilteqisations of motion are [37]

dy _dH(y.p) _ dT(p)

dt~ " ap  ap (7a)
dp _ OH(y.p) _ 9V(y)

dt ay oy (7b)



2.1. Numerical formulation

Amongst the various possible ways of solving the system migailty, a notable example regularly employed in
musical and speech acoustics is the trapezoidal rule, whéttls an implicit scheme [14]. Another possibility is to
factorise the collision force term in the right-hand sidégf (4) intoke(yc — ) - L(Ye — ¥)*~*] and apply an averaging
operator to the first term of this product, while approximgtihe left-hand side term of Eq. (4) with a centred
difference term. This yields a scheme that allows an expliciatgirm [8]. Both schemes are unconditionally stable
in the absence of the nonlinear collision term. However iithee is the energy of the numerical system preserved
through transitions of acrossy., and for the explicit scheme the stability within compresstate simulation phases
is ensured only for specific integer exponent values [8].

A more general treatment follows from discretising the Hemnian rather than the Newtonian description. If
y" denotes the value of variabjeat timenAt, with At being the sampling interval, employing mid-point derivati
approximations for all terms in Eq. (7) yields

+1 n+1 n
i T(ppmfiln(p ) )
PP VM) - V) (@)
At yn+l _ yn
Settingg" = p"At/(2m) and¢ = At?/(2m) allows writing scheme (8) as
yn+l _ yn — qn+l + qn (961)
= V(V;fi - ;/n(y”). (o)
Solving Eq. (9) is facilitated by defining the auxiliary vaie
S= yn+l Yy = qn+l +q" (10)
which gives
"t =s-q% Yy =y'+s (11)

Substituting into Eq. (9b) gives a nonlinear functiorsin

F(g):é:MS_\/(Vn)Jrs_zqn:o (12)
with
lim F(s) = &V'(y") - 2" (13)
s—0
whereV’ signifies taking the derivative of with respect to displacement, hence there is no singuleri(s). In

comparison, the application of the trapezoidal rule resultan implicit scheme of exactly the same form, but with
the nonlinear equation to be solved defined as

Fu(9 = T HITVOD s oo g (14)

whereas application of the implicit midpoint rule, whicheisymplectic method [31], yields

For(9) =€V’ (MTH) +s-2q"=0. (15)
: . . ) . ov
Note that equations (12), (14) and (15) are equivalent fgipartentialV that defines a linear force= 6_y for exam-

ple whenk, = 0. However for any nonlinear force function, such as thateefifor contact, these expressions—and
therefore the resulting numerical schemes—are distinct.
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2.2. Numerical solution

Solution of the numerical scheme relies on finding a physsicarrect root of Eq. (12), which is subsequently
used to updatg andq at each time step using Eq. (11). For robustness of the sghiemeaiseful to know that the
function (12) has a unique solution, which can be shown dsviisl From the definition of (s) it follows that

dF sV/(y"+ ) = V(" +9) + V(")
s Lté g

(16)

with Ilerg)‘é—'; =1+ §V"(y”). Demonstrating thaﬁ]jfS > 1 proves thakE(s) always has a single root. This is equivalent to
showing that

V" +9) < V") +sV' (Y +9 a7

which holds by definitiot¥ y, € R, since the potentidl is a convex function of. Hence a unique solution of Eq. (12)
can be found using the Newton-Raphson method, which is hjobanvergent for a convex function [41]. This can
be shown to hold foF by writing

o’F Q(S)
where
Q9 = V(Y + 9 - 23V (Y + 9 + 2V(Y" + 9) — 2V(y"). (19)
Since%—g = SV”'(y" + 9) > 0 for any potential with convex first derivative (which hols > 1), Q(s) is a mono-

tonically increasing function going through the origin,iafinfrom Eq. (18) implies thaﬂﬁ > 0. This also holds in

the limit, in that I|m@ érV"'(s) > 0. The number of iterations required for the solution of B@)(can be kept low

(typically below 6) by using the previous value ®&s the initial guess.

2.3. Conservation of energy

The principal advantage of the presented scheme is thdigrémtly conserves the total energy of the numerical
system, which is readily demonstrated by rewriting Eq. €8) a

—(y”+l Y™ - p") = T(P™H) - T(p") (20a)
E(yn+1 - y)(P™ - p") = V™) + VYY) (20b)
and substituting by parts, which yields

T(P™Y + V™) = T(pM + V") = HY™™. p™?h) = Hy", p". (21)

This states that energy is conserved across each time sépthdt neither the above conservation proof nor the proof
of global convergence to a unique solution relies on anyrapions regarding the range of the parameter values.

2.4. Accuracy

Beyond energy analysis, the immediate next question tmex g how well the scheme approximates the continuous-
time model. While standard finiteftierence procedures [42] may be used to show that the scherhssisamnd order
accuracy, furtherinsight can be obtained by inspectingtaener in which the inherent approximation errors manifest
themselves in the simulation results. For the case of linsatillation k. = 0, k > 0), the system has a natural fre-
guency of oscillationdyg = k/m), which is however not preserved in the numerical models an be established by
substituting a single-frequency test solution of the fgfre: €=, q" = Be>*!, into Eq. (9a). Using that"* = z1y",
wherez = &t it follows that any continuous-domain complex frequesgy= jwa maps to the discrete-domain
complex frequency as:

1-z1
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Figure 1: Inspection of the numerical approximation er¢ay.Mapping between continuous-domain frequengyand discrete-domain frequency
wyq for linear oscillation k. = 0]. (b) Effective repelling force for dierently sized impact momenta, with= 1.

whereB = 2/T. The above relationship is associated with the use of tlieslait transform in digital filter design [43];
indeed, as can be seen from expanding Eq. (12) and (14, fo0 the scheme in Eq. (9) is equivalent to that obtained
with the trapezoidal rule. The associated warping of thgufemcy axis is shown in Fig. 1(a). The resonance shift may
be pre-compensated for by settikgp a higher value such that the numerical model possessesttect resonance
frequency, but such pre-warping has less significance imérrear setting, and in addition does not extend readily to
distributed problems. The approximation error can needetts generally be reduced by decreasing the time/dtep
at the cost of more computationdfart.

The above frequency-domain analysis applies only to thealimlynamics of the system. Hay > 0, the error
committed within the nonlinear part of the system may beadiy®observed through the approximation of the repelling
force. From Eq. (8b), thefkective repelling force at time= (n + %)At is

ke [LOe—Y"— 9" = Llye —y)"* . 23)
a+1l S

Note thats = g™1+q" can be thought of as twice the mid-point vaif¢'/2, thus representing a normalised measure of
impact momentum. Fig. 1(b) shows a zoom-in of the (normd}isfective repelling forcef(/k:) for three diterent
impact momentum values, as directly evaluated from Eq. é@jinst the mid-point compressigfi*/? = y, —
(y™* +y")/2, and comparing to the corresponding theoretical tgg?/?)*]. As can be seen, the schentieetively
smoothes the curve arougd= 0. Fora = 1, this leads to a continuouslyftérentiable force function, whereas the
original force function was not fferentiable af = 0. For arbitraryr > 1, the numerical modelkectively replaces a
force function of clas€** with one ofC®. The discrepancy between th@eztive repelling force and its theoretical
counterpart decreases rapidly with decreasing impact mtumresize (by 1s), and the scheme converges to Eq. (3)
in the limit:

lim f = kelx“ 1. (24)
s—0
Given thats — 0 whenAt — 0, this also demonstrates that the numerical model is demsiwith theory.

2.5. Numerical examples of lumped system simulations
Adopting the expression &f from Eq. (6), the general form &f(s) can be expanded to

Be L(yc—Y"— 9" = L(ye — y")*+]

a+1 S

F(9 = (1+65) s+ 265 - ) - eman (25)

whereB; = £ k.. The code used for generating the results presented herlgisolves this equation.
The most basic model described by Eq. (4) involves a singlésiom of a point mass with a rigid barrier (in
the absence of gravity) and can be formulated by sekirg0 andgy = 0. This example places the focus on the
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Figure 2: Collision of a masa( = 0.1 kg) with a rigid barrier simulated using the presented gneonserving scheme (EC), the partially
stable explicit scheme (PSE), the trapezoidal rule (TR)thednidpoint rule (MR). The sfiness is chosen dg = 5000 N nT! with @ = 1 and
fs = At~ = 44.1 kHz. Top: mass displacement with initial positign= 0.1 m and momentunpg = —0.2 kg m s1. Bottom: the energy erra’.

nonlinear part of (s). Existence and uniqueness of solutions, as well as coatsemof energy are inherited from the
general model for this and any subsequent example. Howdwerto quantisation in finite-precision arithmetic, the
Hamiltonian can, at best, be preserved to machine predisionplementations on digital processors. It is therefore
of interest to observe the resulting energy error, expessterms of the deviation dfi” = H(y", p") from the initial
energyH®, which in normalised form reads
H" — HO

en = T
It is worth noting here that quantisation generally resints a random-like signa" which, if zero mean, will not
cause an energy shift over time.

Fig. 2 compares the proposed energy conserving (EC) scHane the trapezoidal rule (TR), the midpoint rule
(MR) and the partially stable explicit finite fierence scheme (PSE) presented in [8], in terms of the sietulatss
trajectory and the associated energy error size. The loleeirpFig. 2 indicates that the PSE, TR and MR schemes
can introduce energy jumps, which are observed here at tii¢ giodecoupling with the barrier. This artefact is
avoided with the EC scheme, with the energy error barelyediogy machine precision levels.

The reduced scheme corresponding to a single mass-wadlionlis described using only two parameters, namely
a andB.. In order to get a more complete view of the energy presemairoperties of the proposed scheme, its
performance is analysed across a range of values for thesmeters, corresponding tafdirent levels of interaction
between the mass and the barrier. To ensure a meaningfulac@op, the calculations are made independent of the
collision duration and the initial energy of the systempgdhe following energy preservation metric:

(26)

17 |Hn+l _ Hnl
P= T;;l (ng -+ 1)H0 (27)

where the collision occurs in the intervak[ n,]. £ can be thought of as the mean energy deviation per samplegduri
the contact period, thus excluding periods during whiclrgyndeviations are expected to be negligible. As depicted
in Fig. 3 the preservedness is only mildly dependent on theéainmarameters, and structurally retains very low values.

Let us now consider a ball falling under gravity and bounanghe floor (aty. = 0). This can be modeled by
settinggo = —9.81 m s2 andk = 0. Fig. 4 (left) shows the results of such a simulationdot 3.5. In accordance
with the conservation of energy in the absence of lossedat&eeps bouncing back to its initial height.
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Figure 4: Left: Simulation of a lossless bouncing ball undagravitational force wittk. = 10! ande = 3.5: (a) Displacement (b) the corre-
sponding energy components and (c) the energy efroRight: Simulation of a lossless oscillating unit massdtéal to a spring of sfness
k = (27440% N m~L. A repelling force becomes active whgr: 0.93 mm, following a quadratic power law wit = 2.5x 101%: (d) Displacement
(e) the corresponding energy components and (f) the energyes.

The system becomes more relevant to musical acoustics vileemaving element can store potential energy,
facilitating oscillatory behaviour. In the lumped modektts efected by setting the $fhessk to a positive value. For
an initial displacement value greater than the barriertfwrsy,, the scheme will now simulate a series of periodic
interactions. Fig.4 (right) shows an example for= 2. As can be seen, the repetitive impacts do not cause an
accumulative energy shift, and the energy is conserved tthima precision. This was observed for a large number
of simulations with diferent parameters and long simulation times.

2.6. Aliasing

Due to the heavy nonlinear character of the contact forcd@sction of displacement, any oscillation of the mass
with barrier contact involves the generation of a series/efmnes, which can potentially lead to significant aligsim
the simulation. To exemplify this, a series of simulatiores@performed, without gravity, for exponentially incrieas
k values. This means that the ‘system resonance’ (i.e. ta@émcy of oscillation of the discrete model in the absence
of collision) and the aforementioned overtones increask aach increase ik. Fig.5(a) shows an example of the
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magnitude spectrum of the resulting momentum signal aseifimof frequency font = 1/44.1ms, plotted against
the system resonance frequency. The aliasing terms carydbesidentified as the mirrored frequency components.
This problem can be addressed by oversampling; Fig. 5(byshioe spectrum for the same set of simulations but
usingAt = 1/1764ms, in which case the amplitudes of the overtones neardtyhaist frequency are small enough
to avoid significant aliasing within the audible frequenagge.
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Figure 5: Magnitude spectrum of the calculated momentumasigs a function of frequency and system resonance withaimpling frequency
set to (a) 44.1 kHz and (b) 176.4 kHz. The used parameterig are2 - 1010, @ = 2.3, m = 0.001 kg,yc = —0.05m. The simulation was run for
k successively equalling 30002.01,: = 1,2...200, and the initial conditioy = 0.1 m, p = —0.1 nmys atn = 0 was applied in each simulation.
Each spectrum is computed by applying an FFT to 1 second efigiion output.

3. Distributed contact

The methodology to derive numerical schemes presenteckatzovalso be applied to distributed systems. Given
the relevance of impactive interaction to string instruiméhrations, a useful representative case is that offa sti
string, the free transverse vibrations of which are goveing[44]

%y  d%y o'y
pAﬁ = Tﬁ - |6—X4 (28)

wherep, 7, andArespectively are the mass density, tension, and crosesalarea, whil€e andl denote the Young'’s
modulus and the moment of inertia. This Euler-Bernoulli mlochn also represent a flexible string or ideal beam,
by nulling El or 7, respectively. Collisions with a distributed barrier canibcluded by adding a force density term
of the form of Eq. (3) to the right hand side of Eq. (28), whgs) now represents the barrier profile. Hamilton’s
equations of motion for this system are then given by

p _ 9 (OH\ &P (oH\ OH
ot " ax( 6u) %2 ( av) dy (292)
oy oH
2 _ 7 2
ot~ ap (29D)
where
_1p2 1 5,1 ke a+ly _
HY. p.u,V) = S— + >7U% + ZEIV? + LYe =1 = T(p) + Ve (u) + Vs(v) + Ve(y) (30)
2pA 2 2 a+1l
with ,
_ 9y _ oy
u= Ix and v= e (31)

A derivation of these equations from a variational prineipan be found in [45], where the simulation of an ideal,
simply supported string is considere#{ is the Hamiltonian density as a function of the local disptaenty and
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Figure 6: The discretised string at timest and @ + 1)At.

momentum densitp = pA dy/ot and the spatial derivativasandv. The total energy of the system with a string of
lengthL is the integral

L
H =f H(y, p, u, v)dx. (32)
x=0

3.1. Numerical formulation

Following the methodology of the previous section, midapa@ierivative approximations are again employed to
derive a numerical scheme, whefenow denotes the value of variahteat positionx = mAx and timet = nAt, Ax
being the spatial sampling interval (see Fig. 6). Rewrititg (29) using the separation of the energies in Eq. (30),
Hamilton’s equations are approximated by

{%}m% _{%}Wr% {6(‘/3}n+:—2l 2{6(Vs}n+% +{6(Vs}n+%
prt-pp LU my LU Jms Loy N o LoV g Ve - Vel

m _ _ m+1 —
At AX AX? yL _yn (333)
+1 _ n+1y _ n
A ‘T(pr?HZ ‘Tn(pm) (33b)
At Pm ™ — Pm

where, for example,

g = (34)
u n+tl _ | n
9 m+3 um+% L’Im+ 1

{6(VT }n+% ~ (V‘r(unmtl%) - (V‘r(unrm%)

approximates the partial derivative @f. with respect tau. It is useful here to introduce the forward and backward
space shift operators, through their actionyfnas

Yines ~ Ym Y~ Yma
=T T T (35)
Using the following approximations farandv
u”m+% = 0+Ym u"w% =6y, VL= 6,6_Yn = Sayh (36)

a scheme centred at tinhe= (n + 1/2)At and positiorx = mAx is obtained

PRt = Ph T El 5/ ke L0en =YD = L0¥ew = YR
A §5A(Y?n +Ym) — 75A(ynm +Ym) - ] Y (373)
+1 n+1 n

At PA 2

wherey, denotes the location of the collision boundary at the pamsiti= mAx. In matrix form this can be written
as

™ = p" = gD (Y™ +¥") = yDa (Y™ +¥") - @S (Lye — Y™ - Lye -y ) (38a)
G(yml _ yn) — pn+1 + pn. (38b)

10



whereS = diagy™* - y") is a diagonal matrix,

TAt ElAt kAt 20A
= 5 = — w = S - -
2A%2° 2Ax4° a+1 At

¢ (39)
andy", y." andp" are column vectors holding displacement, barrier profiemomentum values. Under the assump-
tion of simply supported boundary conditions on both end$iefsystem, these vectors hold the valuebl dfiterior
nodes on the string (i.e. from toyy), andD, then is arN x N tridiagonal matrix:

-2 1 0

D, = i . . (40)
o
0 1 -2

which implements the second spatial derivative of the gtsiiate, withD, = D,D,. Analogous to the lumped model
derivations, it is convenient to rewrite the scheme usingadesl momentum variablg" = p"/6. Also substituting
D= (ﬂ4D4 —ﬂng) then gives

g™t - q" = -D(y" +y") = S (Lye - YO - L(ye - y)**) (41a)
yn+l _ yn — qn+l + qn (41b)
whereB, = ¢/0, B4 = w/0 and! = w/0. Now setting
g= yn+l Yy = qn+l +q" (42)
yields the nonlinear system of equations
F=(+D)s+2(Dy"—q") + S (L(e—y" -9 = L(ye —y")*™]) = 0 (43)
which is the distributed equivalent of Eq. (25) fgy = O.

3.2. Conservation of energy

The total energy of the system can be calculated by integy#tie energy densities along the length of the string,
ie.
N+1

HM = )" (T + Vi) AX (44)
m=0

where7} = 7(pp,) and

_ Ve (6-Y) ; Ve (6:Ym) + Vs(6aym) + VelYm) (45)

represent kinetic and potential energy densities, resdget This calculation involves so-called ‘ghost nodes’ |
ing just outside the spatial domain occupied by the stringictvare eliminated by applying appropriate numerical
boundary conditions (see Section 3.6). In matrix form thaltenergy is

Vi

H = bla'q + y'Dy + {1'L(Ye — y)***] (46)
with 1 = (1,...,1) andb = 20AAX/At?. For simply supported ends this can be written in the moustiaé form

El
2Ax4

(IO”)‘|0”+ T
20A | 2AX2

kC t ma+1
a+1”(y°_y) ] (47)

H" = Ax (D1y")' (D1y") + (D2y™)' (D2y") +

11



where

1 0
-1 1
D1 = 11 (48)
-1 1
0 -1

is an (N + 1) x N matrix which implements taking the gradient of the stringtest withD{D; = —D,. Seeking to
demonstrate the conservation of energy, we multiply thiehand side of Eq. (41a) withg(*! + g")! and the right
hand side withy™* — yM*, which are equivalent terms by Eq. (41b). This yields

(qn+l _ qn)t(qn+l + qn) — _(yn+l _ yn)tD(yn+l + yn) _ é«(ynJrl _ yn)tgl (L(Yc _ yn+l)a+lJ _ I_(yc _ yn)Q+lJ) (49)

which, given thaD is symmetric, can be written as

(qn+1)tqn+1 + (yn+1)tDyn+l + {lt (L(YC _ yn+l)Ja+1) — (qn)tqn + (yn)tDyn + §1t (l_(yc _ yn)Ja+l) ) (50)
Now multiplying byb and using the definition of the numerical energy in Eq. (46nliows that
H™ = H". (51)

As explained in the Introduction, instead of an ‘energy emisig scheme’, dierent numerical schemes can be
constructed using an ‘energy method’ that conserves amgitiée quantity, as proposed for example in [46]. In that
case the conserved quantity, defined at tirag(n + 1/2)At becomes

_ yh+1y ja+l _yhyja+l
g2 — (@) g™ Y2 4 (y™yiDy" +§1t(|.(yc y" )] 2+ L(yc— Y™ ) (52)

whereas the actual discrete system energy attiimén + 1/2)At is equal to
Hn+l/2 — (qn+l/2)tqn+1/2 + (yn+l/2)tDyn+l/2 + glt (l_(yc _ yn+1/2)Ja+l) (53)

and has a dierent potential energy term. This results in an oscillasggtem energyd, whereas an energy-like
guantityH is conserved. Hence while allowing the definition of stahlenerical schemes, such ‘energy methods’ do
not intrinsically inherit the energy conservation progartthe underlying model equations, neither do they repica
it; instead a conserved energy-like quantity has to be fdongach specific case. Also note that, unli{é+/2,
H™1/2 is not bound to be positive. This imposes a stability conditin the associated numerical schemes (see [46]).

3.3. Numerical solution
Eq. (43) can be solved farusing the multidimensional Newton method, which requimrsiing the Jacobian of
F
J=1+D+C (54)

whereC is a diagonal matrix with elements

_AtS Vi +5) = Ve +5) + Ve(y)
= =

which in accordance with Eq. (17) is positive definite. Frdwa énergy expression (46) it follows tHatnd therefore
alsoJ are positive definite, which ensures the uniqueness of aafogt]. (43) [41]. Singularities in botk and its
Jacobian can be handled as in the lumped case. The updatéadsa = s - J-'F, where instead of forming the
inverse matrix it is possible—and considerably maffecent—to solve a (band) linear system. Global convergence
of the Newton method (for an arbitrary initial guess) is gureed for the componentwise convex functiowhen

the Jacobian is all-matrix [47], which holds foB, = 0. For non-zero sfiness the method is only locally convergent
and a good initial guess is required, which in practice isagvavailable through the previous valuesofAs such,
convergence is typically achieved in fewer than 20 iteratiteps.

12
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Figure 7: Simulation of an ideal string being free to vibratdouncing on a rigid obstacle, for the initial conditigfx, 0) = 0.002 singx/L). The
linear mass density of the string is sefid = 0.001 kg nT! and the tension te = 100 N, withAx = 0.007 m andfs = At~ = 441 kHz. Top:
mid-point string displacement. Bottom: numerical energgre

3.4. Test smulations

To verify the correct behaviour of the distributed modeference is made to an analytical result that compares
the frequency of a free, flexible vibrating string with th&to impeded one [48]. This states that if a straight obstacle
is placed halfway across the amplitude of the string vibratthe fundamental frequency of the free vibrating string
will be 1.5 times the frequency of the impeded string [49]isTHesult is reproduced by a numerical simulation using
scheme (41) for a.0 m long string (see Fig. 7), setting = 10" in order to simulate a rigid obstacle with= 1.

For comparison, the simulation was repeated with 20 timessampling and usink:. = 10°, which results in a very
close approximation to the theoretical frequency ratio.

Fig. 8(a) shows the vibration of a fitstring bouncing on a curved surface located at one of its tharies, setting
El = 0.012 N n?. The nonlinear behaviour can be observed in the irregulziaxge between the kinetic and the po-
tential energy in Fig 8(b). Nonetheless the total energyaiasconstant, with inter-sample energy steps only ocnasio
ally exceeding machine precision levels (see Fig. 8(d}. &ic) reveals that the interaction between the string bed t
boundary involves multiple impacts during contact perjodsich result in the generation of high-frequency vibratio
that are characteristic of string instruments with flat besl. For example, the buzzing sound of a sitar is understood
to stem from such multiple impacts [50]. Supplementary atioms for both the above simulations, as well as the can-
tilever beam simulation of Section 3.6 are availabletaip: //www.socasites.qub.ac.uk/mvanwalstijn/jsvi4/.

3.5. Numerical dispersion

In the absence of the nonlinear collision term, the schenigqin(41) reduces to that obtained by applying the
Crank-Nicolson method [12, 42], which can be consideredhadtstributed version of the trapezoidal rule. Hence
the frequency-domain approach of Section 2.4 applies dgaik, = 0, meaning that the mode frequencies of the
string are warped according to the mapping in Fig. 1(a). At 8ight, this appears to be a significant downside, as
there are other finite ffierence schemes available that—for the linear case—inteodansiderably less numerical
dispersion (see, e.g. [8]). However, théeet is often only just audible at standard audio rates (eld.kHz). More
importantly, for the impactive cas& (> 0) the collisions represent strongly nonlinear eventsitgithe generation
of high frequency components, which invariably resultsliasing dfects (see also Section 2.6). Hence in practice
the time step already has to be chosen about 2 to 4 times sriale 1/44.1 ms to avoid detrimentalfiects on the
simulation results.

The unconditional stability of the scheme represents afimaldeature, in that the spatial and temporal stepsize
can be chosen independently. Care must be taken however sietch the ratio between them too far. That is, the
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Figure 8: (a) Snapshots of afbtstring bouncing on a curved obstacle, (b) the energy conmsr(e) the collision force due to string-obstacle
interaction and (d) the energy errr.

Table 1: Numerical boundary conditions.

clamped | simply supported free
left end Yo =0 ¥o=0 yg=0
6_y3=O 6Ay8:0 6_6Ay8:0
right end Vi1 =0 Y1 =0 SaYn.1 =0
(5+le|+1 =0 6AyRI+1 =0 6+6Ayl[1|+1 =0

number of string modes modelled equals the number of stagments, thus increasimgwhile holdingAt constant
amounts to compressing more and more modes into the finitelaion bandwidth according to the mapping in
Fig. 1(a). It make sense therefore to not exceed a certamtmagvoid rendering a string with very densely spaced
modes at the high end of the spectrum. For example, for an stiéag with c = /r/pA it is practical to not let
the value of3; = %(cAt/Ax)z exceed much beyond4, where settingg, = 1/4 corresponds to the numerical model
possessing exactly all the modes with theoretical fregiesrizelow Nyquist frequency.

3.6. Boundary conditions and damping

As seen in Eq. (43) and (46), the system and its numericagjgream be expressed in terms of the spatial matrix
D = B,D, — B4D4, which for simply supported ends is entirely defined throtlghmatrixD, as given by Eq. (40).
Other boundary conditions, such as free or clamped endsecdfected simply by altering of aridr adding elements
to D, andD4 according to numerical versions of the required conditidiste that to ensure that the energy remains
preserved in the scheme, Eq. (50) must hold, hence bgptindD,4 must remain symmetric. Table 1 lists numerical
boundary conditions for clamped, simply supported, and ém®d conditions that satisfy this criterion, making use of
the spatial shift operators defined in Section 3.1.

Realistic simulations suitable for sound synthesis regthie inclusion of damping terms. Here we restrict our-
selves to the losses associated with the vibrating objetitainteraction with an external fluid, thus neglecting any

impact friction. Such damping can be included in the Eulersi®ulli model by introducing resistive and Kelvin-Voigt
terms [51], rewriting the equation of motion as

&y Py B oy oy ay «
AW = T(ﬁ + n6t6x2) —El (ﬁ + natéx“) —pAVE + kel (Ye = ¥)°] (56)
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Figure 9: Simulation of a cantilever beam colliding with a fterrier, forL = 0.2 m, El = 0.03375 N nf, pA = 0.03 kg nT!, y = 10 s'%,
7=100%sk =5x1F Nm2 « =1, Ax = 1/460 m,At = 1/1764 ms. (a) Beam state at two moments in time. (b) Observedatispient at
two positions along the beam axis. (c) Bending mom&ht( —E152y/dx?) at two moments in time. (d) Evolution of energies.

wheren andy are damping factors which can be loosely associated wignnat friction and fluid damping, respec-
tively [10]. Considering now that Eq. (37a) is a direct apginoation of Eq. (29a), which is of the dimension of force
density, the losses can be included in the numerical foroulaimply by adding finite dference approximations of
the respective damping terms to Eq. (37a). This procedaxetethe scheme intact except for the nonlinear function,
which now takes the form

YAt 2n
(1+ > )I +(1+ At)D

To exemplify these extensions, a cantilever beam colliduith a flat barrier is simulated. The parameters are
chosen as listed in the caption of Fig. 9. In this configurgtthe model resembles a plastic ruler beating against a
flat table. Fig. 9(a) shows the initial state of the beam as agethat after 24.02ms, at which point the tip of the beam
reaches its lowest position. Fig. 9(b) demonstrates tleab#am is fectively constrained at its halfway point. The
correctness of the implementation of the clamped and freaed&ry conditions can be verified by inspecting Fig. 9(a)
and 9(c), the latter displaying the bending moment at theesponding two instances. The knick point at24.02ms
indicates the influence of the interaction with the tablejcltat that moment in time is localised at the table corner
point. Fig.9(d) shows the evolution of the total and theisih energy, the latter defined & = X, Vc(Yn)AX.
This plot reveals a complex bouncing pattern with multiplgacts per cycle, similar to Fig. 8(c). Finally, Fig. 9(b)
and 9(d) confirm a damped system behaviour. An energy pragemcheck does not apply now, but stability may
still be observed in thalH/dt < 0 at all times.

F= s+2(Dy"—a" + ¢S (Lye —y" =9 = Liye -y ™). (57)

4. Application to the tanpura

The tanpura is a fretless string instrument providing livebunding drones typical of the musical cultures of
the Indian subcontinent. Like various other Eastern stifistruments, its specific overtone-rich sound results from
the interaction of its strings with a slightly curved briddmit with the additional feature of having a thin thread
placed between the string and the bridge (see Fig. 10(a)dhveffectively creates a ‘two-point bridge’ [52]. Making
the simplification of considering the thread and the bridgénamovable objects, the vibrational behaviour can be
modelled as a string with simply supported ends meetingeecliridge placed at a small distangdrom the thread
(see Fig. 10(b)). A more complex model of the tanpura, indgdmpact damping and taking into account the full
length of the string (up to the tuning bead) is considere®8j.[
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Figure 10: (a) Close-up of a tanpura bridge. (b) Simplifiedlei¢dimensions are not proportional).

4.1. Numerical formulation

Discretisation of the above model largely proceeds as desmliin Section 3, apart from one aspect. That s, in
order to allow specifying a fine spatial detail in the bridgevature without having to increase the spatial resolution
Ax of the discretised string, spatial interpolation is apgpliethe calculation of the contact forces. Setting the gpati
resolution of the bridge profile vectgg to Axy, an interpolating matri¥y, is used to translate the string displacements
from one grid to the other:

yn = Ibyn> (58)

wherey" is a vector holding the interpolated string displacemehies; a third-order Lagrange interpolant [43] is
applied here. The (scaled) contact forces are formulatdtbgioints on the finer scale, indexedibgs

_ =Y - §)2] - P —yM2
i = g L — ¥ = S) ; Li =¥

(59)

where

2
b (60)

The forces can be translated back to the string spatial awates using a corresponding downsampling interpolant:

Bo

fr = 7:f" (61)

where, following [8], the downsampling interpolant is defihas the scaled conjugaf¢ = (Ax,/AX) I}, which
ensures that energy conservation is rftgeted. The numerical formulation remains exactly as befgart from the
non-linear equation to be solved, which now takes the form

1+ 22 {1+ 2D
2 At
where the force termi” is a non-linear function of the ‘step vecta, and where the interpolated version ©fs

computed in the same way as fpri.e. s = Ips. This equation can again be solved using the multi-dimeradio
Newton method, with the Jacobian taking the form

(e 22 2
J_[(1+ 2)|+(1+AI)D

whereG is a diagonal matrix with elementg; i} = 8% /05.

F= s+2([Dy"-q") +f" (62)

+ I{GTy, (63)

4.2. Results

To obtain suitable string parameters, the diametet 0.3 mm) and speaking length (= 628 mm) of the third
string of a small travelling tanpura were measured. Takirig account the fundamental frequency as well as the
mass density and Young’s modulus of steel, the tension afiidests terms were set accordinglyrte- 31.47 N ntt
andEl = 835x 10°° N m?, with pA = 558 x 10* Kg m™%. The damping parameters were setyte= 0.1 s*
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Figure 11: Snapshots of the string motion during the 1stl(&} (b) and 33rd (c) period of oscillation. The arrows inigicate the movement of
the kink, indicative of a Helmholtz-like motion.
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Figure 12: Evolution of the nut force signal. Each plot shavesngle period of oscillation. The initial condition wag asy(x) = 0.002 sinfrx/L).

andn = 5x 1078 s, which results in a frequency-dependent decay pattetrapipmoximately matches that observed
when the tanpura string is left in free vibration (i.e. withhatring-bridge interaction). The bridge contact elafstic
codficient is chosen alg, = 5x 108 N m?, which ensures that thefective compression does not exceed 1% of the
string diameter. The bridge shape is defined as the pargle= —4(x, — X)2, which yields a curvature similar to
that of the tanpura bridge around the poigt= 5 mm where the string meets the bridge when at rest. The ncaheri
parameters are as followAt = 1/1764 ms,Ax = 3.1 mm, andAx, = 0.2 mm.

Fig. 11 shows snapshots of the string motion during the I&h &nd 33rd period of oscillation, for an initial
condition that matches the shape of the first mode of thegstfithe more recent states are represented by colour-
intensive curves, while the colour-tone is fading out far grarlier string states. It can be observed that the bridge
interaction forces the string to gradually take on a moentyular shape, indicating the excitation of the other modes
of vibration. As such, a Helmholz-like motion emerges, wiik kink travelling along the string as indicated by the
arrows in Fig.11(c). Such a motion has been suggested bigresirhulations of the tanpura [54] and has been also
encountered in studies of various other string-bridge gonditions without the thread [23, 55].

Instances of the corresponding transversal force sigrtheatut are shown in Fig. 12, which reveals the gradual
development of a precursor in the force waveform. As expgldin [52], the precursor is a packet of high-frequencies
arriving back at the bridge before the lower frequenciestdube string sfiness. In each string cycle, the precursor
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Figure 13: Spectrogram of the nut force signal when pluckiirgsting atx = L/2, for a simulation without bridge interaction (a), and whttidge
interaction (b).

is ‘fed’ with high-frequency components by the nonlineaenaction between the string and bridge.

Fig. 13 shows the spectral evolution of the nut force sigmahimed from the simulation when setting the initial
condition as a triangular shape that mimics plucking thegtt mid-point, with a maximum displacement of 2 mm.
Fig. 13(a) confirms that none of the even-numbered stringavade excited in the absence of bridge interaction, and
the expected frequency-dependent decay is observed. Meitiridge in place (Fig. 13(b)), all modes are excited, and
the precursor can be observed as a formant region with arapeentroid that varies over time. That is, at first the
formant frequency decays, then from around 120 ms to 450 ms it stays approximately constant, followea by
period of slower decay. The appearance of these distinaghesgin the formant frequency decrease pattern are in
accordance with the analysis of experimentally obtaingdarae signals by Valette et al. [52].

5. Conclusion

Numerical schemes for frictionless vibro-impact probleras be derived in stable implicit form by discretising
the Hamiltonian description of the system dynamics. Stgbllows directly from the inherent energy conservation
demonstrated in Sections 2.3 and 3.2. For both lumped amtbdied contact the presented formulation involves
solving, at each time step, a nonlinear equation which isantaed to have a unique solution. The generally excel-
lent convergence conditions for Newton iteration are ulirkesd by the convexity proof for lumped contact given in
Section 2.2.

Because of these properties the proposed methodology casdgeto formulate time-domain models with im-
proved robustness in comparison to methods previoushieappd musical instrument simulation. That is, unlike
schemes derived by discretising a Newtonian descriptiensimulations do not $ier from energy jumps during the
decoupling of the impacting objects. As a result, impleratahs require neither the energy corrections employed in
various other formulations [17, 19] nor the monitoring oéegy flows common to wave digital filter models [26].

The approach is distinct from that taken in [46] in that it islf Hamiltonian, and in the absence of damping
terms the preserved quantity exactly equals the energyeaiiderlying continuous model, which is one known way
to measure the success of a numerical simulation [34]. Etntbre, there are no stability bounds to respect (i.e. the
stability is unconditional). A comparatively positive fage of the approach in [46] is that numerical dispersiontman
controlled better, which is advantageous for cases in walielsing and errors in thdfective repelling force are not
likely to be prevalent; this advantage is less likely to himidmodelling repetitive contact with nearly rigid barser
given that numerical dispersion becomes negligible forstmpling frequencies required to avoid aliasing and the
accumulation of repelling force errors.

As shown in Section 3.6, for distributed contact the boupdanditions can be altered withoufecting energy
conservation, and the resonator can be made dissipatiydyslig adding loss terms. Considering that in Hunt-
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Crossley form, the power law for distributed contact can bigen as

=V +r 22 (64)

f=kel(ye —¥)"] (1 - rc%
the extension to nonlinear impact damping is similarlyigtrtforward.

These results pave the way for improved time-domain madgltif musical instruments for which impactive
interaction represents an essential ingredient of thedspuoduction process, especially if the contact is repetiti
or distributed. An illustrative example has been presehté, simulating the drone sounds emitted by the tanpura.
The generation of high frequency components due to theaatien of the string with a flat, two-point bridge can
be simulated using the proposed approach, avoiding nuatenitefacts that have appeared in previous studies (see
e.g. [54, Fig. 34]). In comparison to the digital waveguidedal used in [23, 24], the proposed approach has the
advantage that the elasticity properties of the contactielwfor some of such instruments are known to play an
important role [52]—can be specified. Other impactive iat¢ions of musical interest that the proposed schemes can
be directly applied to include reed beating in woodwindrmstents [56], string-bridge coupling in pianos [24], and
braypin-string collisions in early harps.

The main limitation of the methodology is that the convergeof the Newton iterations, and therefore the invari-
ance of the numerical energy, is subject to finite-precisigthmetic. Namely a bound exists on the contadirstiss
parametek.; extreme values of it can result in there not beinffisient number precision available in updating the
displacement step such that the resulting energy stei§*! — H" falls within machine precision. For example, at
standard audio rates the simulation of a string interadtiitig a barrier characterised lay= 1 would typically allow
k. to be set up to a value between’ldhd 16 with full Newton convergence. When higher values are negded
smaller time step may have to be used, coming at the cost efcagase in computational complexity. As discussed
in Sections 2.6 and 3.5, some oversampling may be neededgngwound synthesis applications in order to avoid
the generation of perceptually salient aliasing companent

Given that all mechanical systems can be formulated in Ham#n form, the expectation is that the proposed
approach naturally extends to other musical instrumenh@imena, such as hammer-string and mallet-membrane
interaction, as well as to vocal-fold collision in speecl aimging. Further noteworthy directions to explore inédud
an alternative formulation of the distributed object, sasha Timoshenko model [57], which would facilitate the
inclusion of geometric nonlinearities. Such an extensiaa im fact recently been shown to be compatible with
closely related methods for time-domain modelling of vilimg piano strings [39].

As a final point of interest, it is worth mentioning that theconditional stability of the proposed schemes is a
useful property regarding on-line variation of model pagtens, which is desirable from the perspective of studying
and modelling player control.
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