
Dataflow toolset for soft-core processors on FPGA
for image processing applications

Burak Bardak, Fahad Manzoor Siddiqui, Colm Kelly, Roger Woods
Institute of Electronics, Communications and Information Technology (ECIT)

Queen’s University Belfast, Belfast, Northern Ireland, UK
{b.bardak, f.siddiqui, r.woods}@qub.ac.uk

Abstract—This paper proposes a design tool chain that uses
the Cal Actor Language (CAL)[2] as a starting point for an
image processing algorithm and targets to custom design soft-
core processors on FPGA. CAL is a high level programming
language that allows the definition of algorithm with data-flows.

The main purpose of the design tool is to exploit the task
and data parallelism in order to achieve the same parallelism
as HDL implementation minus the required design, verification
and debugging steps of HDL design, which increases the time to
market, and design effort.

s

I. INTRODUCTION

The emerging need for processing bigger-data sets such
as high-resolution video footage demands faster, configurable,
high throughput systems with high-energy efficiency. Field-
Programmable Gate Arrays play a big role in this demanding
market, where FPGAs can provide configurability, scalability
and concurrency to match the required throughput. FPGAs can
potentially allow the use of distributed image processing where
processing platform is located as close as possible to the the
image source. The use of distributed processing can reduce the
need for bandwith, and s power in a large scale. This reduces
the communication overhead, the amount of data that needed
to be stored, latency and power requirements. FPGAs works
very well with the applications that requires high concurrency,
bandwitdh and reprogrammability. However FPGA design and
verification is a very delicate and time-consuming process,
where the conventional FPGA design involves hand-written
Hardware Description Languages (HDLs) like VHDL, Ver-
ilog, SystemC and many others. HDL allows defining precise
description of digital circuit with the timing information to
the design tools can synthesise, map, place and route the
HDL design accordingly. However this design process involves
numerous verification and debugging steps, which increases
the time to market from weeks to months, depending on the
complexity of the interested algorithm. In order to reduce the
required design time, and effort new High Level Synthesis
(HLS) tools are being used which allows the one to use high
level languages like C or OpenCL [1], to design algorithms
for FPGA implementation.

Despite the use of HLS tools, still the design route involves
numerous verification and debugging steps, which causes a
gap between efficient FPGA realization and programmability.
In comparison to the conventional FPGA Design which now
includes HLS tools as well, this paper proposes a dataflow
based designed toolset that targets reprogrammable custom

designed soft processors based on current FPGA technology.
The benefits for using an adopted approach which uses be-
spoke designed soft processors, are guaraneted performacne,
and resource usage, easily reprogrammability, even potential
support for runtime reconfigurability.

Proposed tool-chain shown in Figure 1, accepts the algo-
rithms in dataflow language CAL, and compiles them with
exploiting task and data parallelism [2], [3], to be used in
reconfigurable small soft-core RISC architectures on FPGA.
Our approach is to create a reconfigurable high-level medium
that keeps the flexibility of FPGA logic and without affecting
the performance/throughput of the FPGA logic with the use of
hardened DSP logics and block rams within the FPGA.

The paper is organised as follows. Section 2 reviews related
background work in the area of FPGA Design tools concen-
trating on High Level Synthesis (HLS) tools. Section 3 briefly
describes the soft-processor architecture and its capabilities.
Section 4 outlines the toolset, how the programming paradigm
is achieved. Section 5 presents the case studies where the
toolset is used with the designed soft-processor architecture,
and their performance comparisons. Section 6 concludes and
reviews the proposed approach.

II. BACKGROUND

The ”Reprogrammable” design methodology proposed in
this paper aims to remove the requirement of HDL design,
sythnesise, place and route processes by replacing the re-
configurability property of FPGAs with the proposed ”Re-
programmable” model. In order to do this, an intermediate
medium formed by programmable multi-core processors is
proposed. The proposed system consists RISC architectures
that support Single Instruction Multiple Data (SIMD), and
various interprocessor communication methodologies, to pro-
vide the required flexibility and programmability. This Repro-
grammable medium is designed to be as compact as possible,
to increase the efficiency of the use of the available FPGA
logic.

As stated the main processing platform is a custom des-
gined reprogrammable multi-core processors and the toolset
that supports this platform uses the CAL Dataflow Language.
Dataflow languages, in general have the ability to express the
parallelism, and they are easy to identify and resolve data
dependencies to exploid concurrency as much as possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/33582531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. CAL Dataflow Language

A dataflow program consists of actors and its fir-
ing rules, where every actor describes the required arith-
metic/mathematical operation to process the input stream be-
fore passing it to the output streams. The representation of
actors in dataflow programming models are done by directed
graphs where the nodes represents computations and the
arcs in general represents the movement of data. The main
principles behind the dataflow design methodology are the
concurrency, scallability, modularity and data-driven approach.
The term data-driven is used to express the execution control
of dataflow with the availablity of the data itself. In this
context an actor is a standalone entity, which defines an
execution procedure. Actors communicate with other actors
by passing data tokens, and the execution is done through the
token passings. Combination of a set of actors with a set of
connections between actors constructs a Network. Within the
defined networks the communication is formed with infinite
size of FIFO components.

B. Dataflow Development Environment - ORCC

ORCC is an open source dataflow development environ-
ment and compiler framework, that allows the trans compi-
lation of actors and generates equalivant codes depending on
the chosen backends. ORCC is developed within the Eclipse-
based Integrated Design Environment(IDE) as a pluging with
graphical interfaces to ease the desing of dataflow applications
[4].

C. Soft-Core processors

In the current state of the art there are number of soft-
core processors for FPGA architecture. These include FlexGrip
[5], IDEA [6], and DSP48 based processor for MIMO [7]. In
detil FlexGrip maps pre-compiled CUDE kernels on soft-core
processors which are programmable, flexible and scallable, can
operate at 100 MHz. IDEA and Chu et.al processor has a
very similar structure with IPPro, all of these processors uses
DSP48 processing unit from Xilin FPGA’s as their Arithmetic
Logic Unit. IDEA processor uses a 8-stage pipeline to achive
407MHz clocking frequency, and Chu et.al supports a very
specific instruction set for Multiple Input Multiple Output
(MIMO) communication systems and able to work clock
frequency at 265MHz.

III. RISC ARCHITECTURE – IPPRO

This section describes the custom designed DSP48 based
Reduced Instruction Set Computing (RISC) architecture, which
supports a wide range of instructions and various memory
accesses. The Image Processing PROcessor (IPPro) is a hand-
coded ISA architecture, which uses Xilinx primitives espe-
cially DSP48 block as an Arithmetic Logic Unit (ALU),
for more efficient and faster processing. IPPro is cabaple of
processing 16 bit operations, and uses distributed memory to
build three different memory hierachy, which can be listed as
Register File, Data Memory, and Kernel Memory. The IPPro
architecture uses a 5 stage balanced pipelined architecture
shown in Figure 1.

IPPro is capable of running at 526 MHz on Xilinx SoC in
particular XC7Z020-3 using one DSP48E, one BRAM and 330

BRANCH
HANDLER

DSP48E1

PC P
I
P
E
L
I
N
E

P
I
P
E
L
I
N
E

DATA
MEMORY

+

INSTRUCTION
MEMORY

INSTRUCTION P
I
P
E
L
I
N
E

SRC1

SRC2

SRC3
DEST

OPCODE
OPCODE

DEST

SRC1

SRC2

SRC3

I
M
M

KERNEL
MEMORY

DEST

REGISTER
FILE

DEST

TYPE

0
0
0
0
0
0

0
0
0

GT
EQ
Z BRANCH

CONTROLLER

GT EQ Z

&&

GTF EQF ZF

A
D
D
R

FETCH DECODE WRITEEXE2EXE1

ADDR

DEST

DEST

Fig. 1: IPPro Architecture

Slice Registers per processor. The main idea of the processor
was to keep it compact, reprogrammable, and scalable as
much as possible to achieve high throughput rates compared
to custom-made HDL designs.

Overall IPPro has 3 addressable memory locations within
the processor core:

• Register File – Register File (R-R)

• Register File – Data Memory (R-D)

• Register File – Kernel Memory (R-K)

• Register File – Immediate (R-I)

Register file is used for regular memory locations, where
seperate data’s can be stored and processed. Data memory
is the main data input and output location for IPPro where
the input, and output streams are stored. Kernel memory is a
specilazed location designed for window and filter operations
for coefiicient storage. Immediate memory is used to reduce
number of the register file ans as well as load and store
operations, for operations which one operand is constant.

An overview of the supported instructions can be seen in
Table I. IPPro instruction set capable of processing basic arith-
metic and logical operations for different addressing modes. In
addition to unary operations IPPro instruction set, also have
support for trinary expressions such as MULADD, MULSUB,
MULADDK, and others shown in Table I. The support for
trinary expressions added to the tool chain in order to benefit
this feature.

TABLE I: Instruction Set

R-R R-K R-I Misc
ADD LOR ADDK LORK ADDI LD
SUB LNOR SUBK LNORK SUBI ST
MUL LNOT MULK LNANDK LANDI BZF

MULADD LNAND MULADDK LANDK LXORI BEQF
MULSUB LAND MULSUBK STK LXNRI BGTF
MULACC LSL MULACCK LSLK LORI BSF

LXOR LSR LXORK LSRK LNORI JMP
LXNR MIN LXNRK MINK LNANDI CMP

MAX MAXK MINI NOP
MAXI

Given the limited instruction support and requirements
from the application domain, the overall system is capable
of adding coprocessor(s) to support more complex processes.
Ongoing research is being done for adding coprocessors like
Division and Square Root.

IV. DATAFLOW TOOLSET

This section describes the toolset that allows to represent
interested image processing algorithms in CAL Dataflow Lan-
gugage [8], and compiling the actors to work with the custom
multi-core architecure.

The overall algorithm design and compilation scheme
involves the following steps:

1) Algrotihm implementation in CAL Dataflow Lan-
guage

2) Profiling the algorithm, and spotting the required
changes within the CAL description of the chosen
algorithm

3) Compiling the algrotihm targeting the IPPro backend.
4) Loading the generated binary file to the development

board through host operating system.

The design approach shown in Figure 2, shows the map-
ping of actors to multi-core processors. During the compiling
process each actor is compiled and mapped to a processing
element and the interconnection between processing elements
are assigned as FIFO channels. Given the architectural lim-
itation, ie lack of stack infastructure, support for functions
calls are limited to the size of the Instruction Register of
the IPPro. As a consequence lexical nested routines are not
implicitly supported, the detailed limitations and assumptions
are explained in the limitations section (B).

Fig. 2: Dataflow Toolset for soft-core processors

A. Compilation Flow

The compilation flow within the ORCC tools is composed
of two distintive steps. The first step of the compilation trans
compiles each actor to its Intermediate Representation (IR).
The IR is used within the compiler to keep the modularity
and be able to target different backends. The latter step of the
trans compilation is the conversion of the IR to IPPro assembly
code. It is notable that required transformation for a specific
backend should be done before the latter trans compilation.

In this concept, revisiting the IR should requires for opti-
mizing the trans compilation for a specific backend. For istance
IPPro is able to process MUL & ADD operation in single clock
cycle and the IR should be revisited to replace consecutively
MUL and ADD operations with a single MULADD operation.

B. Limitations

Given the CAL Language Lexical semantic properties, it
is not possible to fully support the compilation process from
CAL to IPPro. Consequently this imposes some limitation on
the trans compilation process within the toolflow.

Given that, Ax represents the every actor within the net-
work, where 0 < x ≤ N,N ∈ Z. Assuming that every
Ax may contain variable number of actions,acx,y ,due to the
purpose of the interested algorithm, where x is the actor, and
y is the action index. As previously stated, since the stack
infrastructure is not supported the function calls are limited
with the size of the instruction memory(IM) and only possible
access to IM is done by sequentially and in-order. This limited
functionality arises the problem to re-factor and serialize acx,y
to one acx per Ax. At the current state, this re-factoring
is being done by the algorithm designer, where one should
consider the target hardware limitation and re-factor the actor
structure.

C. Profiling

Efficient implementation of interested algorithms on a spe-
cific computing platform requires niche expertise and knowl-
edge. Especially in embedded platforms algorithm designer
should be aware of the capabilities and memory structure in
order to achieve high performance implementations. In order
to realize efficient algorithm implementations, toolset must be
aware of the target embedded platform. In our current case
studies all the algorithms are profiled by hand and optimized
for the targeted platform according to the limitations and
supported instruction set. However Simone et.al [9] proposed
a very beneficial design space framework for profiling and
optimizing algorithms. ♠BB: Should I say in future we will
integrate TURNUS?♠

V. CASE STUDIES

In this section case studies have been used to demonstrate
the applicability of our approach. CAL dataflow language is
used to describe the designs and designs are compiled using
the proposed tool-set.

A. Finite Impulse Response (FIR) Filter

In this case study basic FIR filter is targeted for proof of
concept. In detail this particular FIR filter is a 3 tap fir filter,
with 8-bit fixed point coefficients and 16-bit datapath. FIR filter
implemented in two cases, one with single core, and latter with
multiple IPPro in streaming mode.

In case 1 shown in 3a, single core IPPro is used for FIR
filter, for this particular case input values are loaded to Register
File and then processed by MUL and ADD instructions. The
need for load and store for every input reduces the througput of
the design, which is 430b/s at 404MHz clocking frequency. In
order to increase the throughput same FIR filter is implemented

in a streaming mode of the IPPro, where Load and Store
instructions are by-passed and FIFO’s are used for processor
communication, shown in 3b).

Input	
 Source
BR

AM
IPPro
|15	

	
 	
 	
 	
 	
 	
 	
 instructions| BR
AM

Output

(a) Single IPPro

IPPro
(ADD)IPPro

(ADD)

BR
A
M

FIFO

IPPro
(MUL)IPPro

(Mul)

x4	
 IPPro

IPPro
(ADD)IPPro

(ADD)

x2	
 IPPro

IPPro
(ADD)

IPProFIFO FIFO

(b) Multiple IPPro

Fig. 3: FIR filter with IPPro.

In the streaming mode 7 IPPros are being used to increase
the throughput of the design, where every IPPro instructions
are transcompiled from one actor, and communication is done
through the FIFOs. In this case it is possible achive a througput
of 6Mb/s with clocking frequency of 404MHz, which is limited
by the Zynq 7020 FPGA.

B. Histogram of Oriented Gradients (HOG) Algorihtm

HOG algorithm is a well known algorithm used for human
detection, used in pedestrian detection using the gradient
orientation [10]. HOG algorithm converts the pixel intensity
information to gradient information, where gradient consist of
magnitude and direction. After this step the vectors are formed
with the extracted information from gradients. At the last stage
of the algorithm Support Vector Machine (SVM) is used to
achieve human detection from extracted vector information.
The overall algorithm’s processing blocks shown in 4a, where
parts that have been chosen for IPPro implementation has been
identified in grey blocks.

Colm et.al [11] implemented HOG algorithm using the
IPPro platform and compared the design with hand-written
design and proved that the HOG algrotithm can be accelerated
up to 3.2 times to give better performance, if 90 cores used
within the system. Colm et.al work demonstrated that our
approach is highly scalable and reduces the design effort and
time.

TABLE II: HOG Algorithm Comparison
IPPro(Single Core) IPPro(16 Core) Hand Coded

Gradient & Magnitude (GM),
Bin. & Cell Hist. (B&CH) GM B&CH GM B&CH GM B&CH

Frequency 404 MHz 404 MHz 404 MHz 404 MHz 288 MHz 164 MHz
Throughput[fps]

(1920 x 1280 image size) 7.4 fps 4.9 fps 118 fps 78 fps 139 fps 79 fps

Colm et.al identified four processing blocks as a candidate
for IPPro implemenation which are Gradient & Magnitude,
and Binning and Cell histogram calculation. The performance
metrics for these blocks with comparison to hand-written HDL

1920x1080x8bit
Source	
 Image

Per-­‐pixel	

angle	
 and	

Magnitude

Cell	

histograms

SVM	
 scoring Result	

grouping Detections

Image	
 scaling

Block	

hiostograms

270x128x8bit	
 segments

8x8x2x16bit
(8x8	
 cell	
 with	

Gradient	
 x&y)

Pixel	

Gradients ???x16bit

fdfd
(8x8	
)

54Kx16bit

16x16bit
fdfd

(16x16	
)

BooleanRating	
 against	

SVM	
 model

Person	
 or	

no	
 person

(a) Single IPPro
IPPro
|Grads|	

&	
 Mag
(9.3ms)

IPPro
|Grads|	

&	
 Mag
(9.3ms)

BR
AM

x8	
 IPPro
IPPro
|Grads|	

&	
 Mag
(9.3ms)

IPPro
|Grads|	

&	
 Mag
(9.3ms)

x24	
 IPPro
IPPro
|Grads|	

&	
 Mag
(9.3ms)

IPPro
|Grads|	

&	
 Mag
(9.3ms)

IPPro
|Grads|	

&	
 Mag
(9.3ms)

IPPro
|Grads|	

&	
 Mag
(9.3ms)

IPPro
|Grads|	

&	
 Mag
(9.3ms)

x8	
 IPPro
IPPro
|Grads|	

&	
 Mag
(9.3ms)

IPPro
|Grads|	

&	
 Mag
(9.3ms)

x8	
 IPPro

184fps	
 (HD) 112fps	
 (HD) 184fps	
 (HD)

(b) Multiple IPPro

Fig. 4: HOG algortihm with IPPro.

code is shown in II. In this particular study interested blocks
are implemented using for 1 core and then desined scaled
up according to the algorithms throughput requirements. This
IPPro implementation is done by hand, and optimizations are
made as a result of algorithm profilings.

VI. CONCLUSION

The work proposed in this paper demonstrates a dataflow
tool-set to control soft-core processors, and its capabilities to
reduce the design time and effort. The overall design tool-
set with limited optimizations and limited memory access is
in a working order, and many optimizations and profiling are
planned to comply the design tool-set in order to match the
same perforamce of any hand-crafted design.

Future Work

Given the target application area, which is distibuted image
pre-processing, one of the main limitations for current version
of the processor is the lack of division and square root
instructions. The support for these instructions is in our agenda
for future work, along with the optimization and profiling
support within the design tool-set.

ACKNOWLEDGEMENT

The work has been funded by the UK Engineer-
ing and Physical Science Research Council’s ICT grant
(EP/K009583/1), a collaborative grant with the University of
Heriot-Watt.

REFERENCES

[1] D. Singh, “Implementing fpga design with the opencl standard,” Altera
whitepaper, 2011.

[2] M. Arslan, J. Janneck, and K. Kuchcinski, “Partitioning and mapping
dynamic dataflow programs,” in 2012 Conference Record of the Forty
Sixth Asilomar Conference on Signals, Systems and Computers (ASILO-
MAR), Nov. 2012, pp. 1452–1456.

[3] S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. Von Platen,
M. Mattavelli, and M. Raulet, “OpenDF: a dataflow toolset for
reconfigurable hardware and multicore systems,” ACM SIGARCH
Computer Architecture News, vol. 36, no. 5, pp. 29–35, 2009. [Online].
Available: http://dl.acm.org/citation.cfm?id=1556449

[4] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and
M. Raulet, “Orcc: Multimedia development made easy,” in Proceedings
of the 21st ACM International Conference on Multimedia, ser. MM
’13. New York, NY, USA: ACM, 2013, pp. 863–866. [Online].
Available: http://doi.acm.org/10.1145/2502081.2502231

[5] K. Andryc, M. Merchant, and R. Tessier, “FlexGrip: A soft GPGPU for
FPGAs,” in Field-Programmable Technology (FPT), 2013 International
Conference on. IEEE, 2013, pp. 230–237.

[6] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell, “iDEA: A DSP block
based FPGA soft processor,” in Field-Programmable Technology (FPT),
2012 International Conference on, 2012, pp. 151–158.

[7] X. Chu and J. McAllister, “FPGA based soft-core SIMD processing: A
MIMO-OFDM fixed-complexity sphere decoder case study,” in Field-
Programmable Technology (FPT), 2010 International Conference on,
2010, pp. 479–484.

[8] J. Eker and J. Janneck, “Cal language report,” University of California
at Berkeley, Tech. Rep. UCB/ERL M, vol. 3, 2003.

[9] S. Brunei, M. Mattavelli, and J. Janneck, “Turnus: A design explo-
ration framework for dataflow system design,” in Circuits and Systems
(ISCAS), 2013 IEEE International Symposium on, May 2013, pp. 654–
654.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2005. CVPR 2005, vol. 1, 2005, pp. 886–893
vol. 1.

[11] C. Kelly, F. M. Siddiqui, B. Bardak, R. Woods, and K. Rafferty,
“Histogram of oriented gradients front end processing: an fpga based
processor approach,” in Signal Processing Systems (SiPS), 2014 IEEE
Workshop on, Oct 2014.

