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Abstract Many graph datasets are labelled with discrete and numeric attributes. Most fre-
quent substructure discovery algorithms ignore numeric attributes; in this paper we show
how they can be used to improve search performance and discrimination. Our thesis is that
the most descriptive substructures are those which are normative both in terms of their struc-
ture and in terms of their numeric values. We explore the relationship between graph struc-
ture and the distribution of attribute values and propose an outlier-detection step, which
is used as a constraint during substructure discovery. By pruning anomalous vertices and
edges, more weight is given to the most descriptive substructures. Our method is appli-
cable to multi-dimensional numeric attributes; we outline how it can be extended for high-
dimensional data. We support our findings with experiments on transaction graphs and single
large graphs from the domains of physical building security and digital forensics, measuring
the effect on runtime, memory requirements and coverage of discovered patterns, relative to
the unconstrained approach.

Keywords graph mining · frequent substructure discovery · constraint-based mining ·
labelled graphs · numeric attributes · outlier detection

1 Introduction

Graph representations are useful in many domains where data has a natural structure which
cannot be easily represented as a set of attributes. Graphs are commonly used to represent
complex structures such as social, communication or computer networks and biological or
ecological processes [32].

A common task in graph mining is to discover frequently-occurring substructures for
concept learning, classification, clustering or anomaly detection. Frequent substructures are
defined as those which pass some minimum support threshold [17, 27, 42] or in information-
theoretic terms, as the patterns which can be used to maximally compress the input graph [8].
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Most substructure discovery approaches assume discrete graph labels. However, many graph
datasets also contain numeric labels or weights, representing counts, frequencies, or at-
tributes such as size, distance or time. In this paper, we restrict our analysis to graphs with
numeric attributes.

To count the support of each pattern, discovery algorithms must compare substructures
for identity, or Graph Isomorphism (GI). GI is computationally complex to decide for the
general case [13], but common special cases can be solved in polynomial time, using tech-
niques such as sorting candidate substructures by their canonical labels [17, 27], organising
discovered substructures into spanning trees [4, 42] or constraining the size of substructures
to be compared [8]. Even so, GI tests remain the most expensive part of substructure dis-
covery. Empirical studies show that most processing time is spent on operations which rely
on GI tests: support computation or calculating embedding lists [41]. Thus it is always de-
sirable to minimise the number of GI tests required. We address this problem with a guided
pruning step prior to substructure discovery. Removing a small number of anomalous edges
or vertices has the effect of significantly reducing the number of GI tests required.

Our work is based on the following observations:

– The number of GI tests performed during substructure discovery is based not only on
the size of the input graph, but is also highly dependent on its structure and attributes,
such as edge density and the number and distribution of label values.

– In real-world graphs, graph structure and label values are highly correlated, allowing us
to exploit label information to determine the “best” substructures.

– We propose that the best substructures are those which are not only frequent, but also
have the most normative numeric attributes.

Therefore, pruning away a few anomalous edges can dramatically reduce the complexity of
the input graph while retaining the most descriptive patterns. Our main contributions are:

– We present our method, which is based on a pre-processing step to remove edges with
anomalous numeric attributes before the substructure discovery step. The patterns which
are discovered are those which have enough instances with normal numeric attributes to
meet minimum support. We propose that these are the most descriptive substructures.

– Our experiments compare the coverage of discovered substructures using our method
against the unconstrained approach. We show that the top substructures from the uncon-
strained approach are retained after the pruning step.

– The experiments show that our approach significantly reduces runtime and memory us-
age for substructure discovery on real-world graphs. By pruning unlikely candidates
early, we focus computational resources on the most descriptive patterns. Thus many
searches which are intractable using the standard algorithms become tractable using our
constraint-based approach.

The paper is organised as follows: Sect. 2 is a brief survey of substructure discovery in
graphs, constraint-based graph mining and numeric outlier detection. In Sect. 3, we discuss
how the distribution of labels and attributes affects the complexity of the input graph and its
effect on substructure discovery. We outline our method in Sect. 4, in which we use numeric
outlier detection to prune the input graph. Sect. 5 describes the E-mail and Access Control
datasets used in the experiments; results and discussion are in Sect. 6. Conclusions are in
Sect. 7.
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2 Related Work

2.1 Frequent Substructure Discovery

Early approaches to frequent substructure discovery were based on applying Apriori-style
itemset mining to graph databases. AGM [17] and FSG [27] generate candidate substruc-
tures by growing them one vertex or one edge at a time, respectively. The support of each
candidate is equal to the number of graph transactions which contain it; frequent substruc-
tures are those which exceed a specified minimum support threshold. Support is an anti-
monotone property: the support of a graph cannot exceed that of its subgraphs. The main
weakness of AGM and FSG is that candidate generation is expensive, as canonical labels
must be calculated for a large number of redundant candidates.

gSpan [42] avoids the problem of generating redundant canonical labels by determining
the minimum representation of vertex orderings as discovered by a DFS, then organising the
canonical labels into a hierarchical spanning tree. Frequent substructures are discovered by
traversing this tree and checking for substructures which exceed minimum support. CloseG-
raph [43] and SPIN [16] are refinements to gSpan which reduce redundancy by mining only
the set of closed or maximal frequent subgraphs, i.e. those which are not part of any larger
frequent subgraph.

GASTON [33] operates on the same principles as gSpan—DFS-based canonical or-
dering and testing for minimum support—but streamlines the search by searching first for
sequences, then trees, then graphs. GASTON has been demonstrated to be more efficient
than gSpan [41] as it avoids generating duplicate subgraphs, speeding up the support com-
putation.

The frequent subgraph mining algorithms above cannot be applied to single large graphs,
because support is calculated from the number of graph transactions which contain the pat-
tern (rather than the number of instances of the pattern).

Subdue [8] represents a different class of substructure discovery algorithm, based on in-
formation theory. Instead of counting support, Subdue looks for the substructures which can
be used to best compress the input graph based on the Minimum Description Length (MDL)
principle. While the frequent subgraph mining approaches exhaustively search all substruc-
tures meeting the minimum support criterion, Subdue employs a greedy beam search strat-
egy (a limited-length queue of the best few patterns found so far). This makes it possible
to search large graphs; however, Description Length (DL) is not an anti-monotone prop-
erty. Once the DL of an expanding substructure begins to increase, further expansion of
the substructure typically does not yield a smaller DL [7], but this is not guaranteed. Thus
MDL-based greedy search can miss some interesting patterns, especially if the beam width
is too narrow.

Frequent subgraph mining and compression-based approaches are compared in [10].
Subdue and GASTON were able to discover the same patterns. For graph databases, GAS-
TON was found to outperform Subdue; but Subdue was able to handle large and complex
graphs which were not possible for GASTON to search.

None of these graph mining approaches make use of numeric attributes or weights,
except in a very limited way (treating numeric values as categorical, or discretization based
on binning or thresholding). In this paper we use numeric attribute values as a constraint on
the search for frequent substructures.
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2.2 Constraint-based Graph Mining

Graph mining approaches use constraints to prune away uninteresting patterns and focus
on the most meaningful subgraphs. The most obvious example of a constraint from the
preceding section is minimum support, but other constraints have been proposed.

[31] defines a “cohesive pattern constraint” on a connected subgraph, where the vertex
attributes are the same within some subspace and some density constraint is met. The cohe-
sive pattern constraint is defined for graphs with discrete attributes; in this paper, we define
a constraint on graphs with numeric attributes.

[11] analyses edge weights in a post-processing step. First, graph transactions are mined
using CloseGraph. Then entropy-based feature selection is applied to the result set, yielding
an ordered list of edges. This approach improves the discriminitiveness of the results, but
does not have any effect on search performance.

In [19], gSpan is extended by including edge weights into the support calculation and
pruning low-weighted substructures from the search. Two of the proposed weighting schemes
preserve the anti-monotone property, by thresholding the weight measure in addition to
thresholding for minimum support. A third weighting scheme uses a heuristic and does not
rely on anti-monotonicity. There are some similarities with our approach, but this method
assumes that higher weights are more significant. This is usually the case where the weight
indicates the count of an edge occurance, but not necessarily when the weight is an arbitrary
continuous value. Our approach is more general, as it can make use of multi-dimensional nu-
meric attributes and pruning is based on the concept of outlierness rather than low weights.

[40] propose a method to integrate constraints into frequent subgraph mining. They use
anti-monotone constraints to prune the search space and monotone constraints to speed up
the evaluation of further constraints. One of the proposed constraints is average weight,
which is used to prune vertices and edges with outlier values from the input database as a
pre-processing step.

Constraints on weighted graphs are considered within a general framework in [12]. The
authors note that while weight-based constraints are not guaranteed to be anti-monotone,
in practice there is frequently a correlation between graph structure and weights. Attribute-
based constraints are used to prune substructures by running a measure function on the edge
(or vertex) weights and comparing the output to a threshold. If the definition of the measure
function is extended to take multi-dimensional numeric attributes as its input, then the outlier
detection step that we propose in Sect. 4 could be considered a measure function within this
theoretical framework.

2.3 Numeric Outlier Detection

One of the most popular definitions of an outlier is “an observation (or subset of observa-
tions) which appears to be inconsistent with the remainder of that set of data.” [3] Common
approaches to outlier detection include statistical, cluster-based, distance-based or density-
based methods [3, 6, 9]. Statistical thresholding or distance-based approaches detect outliers
with respect to the global data distribution. Where data is comprised of multiple clusters of
non-uniform density, it is more meaningful to detect local outliers [5]. An unsupervised lo-
cal outlier approach is appropriate when analysing graph attributes, as each attribute may
follow a different distribution and we do not know these distributions in advance [9].

The most established algorithm for unsupervised outlier detection in data of varying
density is Local Outlier Factors (LOF) [5]. LOF computes the outlierness of each point with
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respect to its local neighbourhood rather than the global data. A number of variants of LOF
have been proposed. LOCI [35] defines separate neighbourhoods for counting and sampling,
though LOF has been shown to outperform LOCI in terms of accuracy and runtime [18].
COF [37] uses a density measure based on “chaining distance” rather than Euclidean dis-
tance. INFLO [21] addresses the case where dense and sparse neighbourhoods are close to
each other, by taking “reverse nearest neighbours” into account. The reverse nearest neigh-
bours of a point p are the points which contain p as one of their k-nearest neighbours.

[36] presents a unified theoretical framework in which to compare density-based outlier
detection methods. By generalising the notion of locality, LOF is compared to a number of
specialised domain-specific algorithms. LOF is shown to be a good general method which
can be applied to many different types of data; in most cases, specialised approaches are
unjustified.

One weakness of LOF is high computational complexity for large datasets. The com-
plexity of the nearest neighbour search in Naı̈ve LOF is O(n2), but this can be reduced to
O(n logn) using indexing [5]. If we are only interested in the top-n outliers, efficiency can
be improved by avoiding the LOF calculation for objects deep within a cluster [20].

A second weakness is a drop in performance on very high dimensional datasets. [44] is
a detailed survey on recent work on outlier detection in high-dimensional space. The “curse
of dimensionality” is broken down into concrete phenomena: the distance concentration ef-
fect (as dimensionality increases, the relative contrast between near and far neighbours tends
to degrade); the presence of irrelevant attributes (subspace approaches tackle this directly;
other approaches do so indirectly or not at all); and efficiency issues. One interesting re-
sult is that it is not the concentration effect per se which impedes outlier detection in high
dimensions: the presence of irrelevant attributes makes the concentration effect a problem.

Projected Index Nearest Neighbours (PINN) [39] solves the problem of efficiently dis-
covering the k-Nearest Neighbours (k-NN) of each point in high-dimensional space. As data
dimensionality grows, Lp-norm distance measures lose their discriminative ability, so index-
ing is no longer effective. PINN solves this by indexing in a lower-dimensional projected
space, based on the observation that real-world datasets have high representational dimen-
sionality but low intrinsic dimensionality [38]. The Random Projection used by PINN [2]
is based on the Johnson-Lindenstrauss Lemma, which proves that a reduced dimensionality
of k = 2 · logn

e2 will preserve the pairwise Euclidean distances between data points within an
error bound of 1+ e with high probability. A candidate k-NN set is determined in the pro-
jected space, then used as an index into the original space to calculate the LOFs. The PINN
paper proves that LOF scores are preserved within the known error bounds of the Random
Projection.

PINN does not explicitly solve the problem of irrelevant attributes. Irrelevant attributes
can be explicitly handled by subspace feature selection [44]. Subspace Outlier Detection
(SOD) [25] is a subspace LOF method which combines the tasks of finding relevant sub-
spaces and detecting outliers, but the problem of indexing in high-dimensional space is not
addressed. DB-CSC [15] combines graph clustering with subspace feature selection on the
numeric attributes of the graphs, but experimental datasets only have synthetic data up to 20
dimensions, so it is not clear if this approach scales to higher dimensions. Subspace feature
selection in high-dimensional data remains an active area for research.
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Fig. 1: Examples of labelled graphs

3 Graph Attributes and Structure

In its most abstract form, a graph G consists of a set of vertices V and a set of edges E ⊆
V ×V . When a graph represents a real-world network or phenomenon, the vertices or edges
are labelled, as in Fig. 1. In Fig. 1a, the vertices represent people, labelled with their favourite
sport; edges represent friendships. Fig. 1b is a graph of a molecular structure: vertices are
atoms and edges are chemical bonds. Fig. 1c is a planar graph representing a frame in a
video sequence where a red object is moving across a green and blue background; vertices
are superpixels in the video frame and edges represent spatial relationships between adjacent
superpixels.

Previous work on attribute-based constraints has assumed independence between the
structure of a graph and its attributes [12, 19], but this is not the case in most real-world
graphs. Our approach makes the opposite assumption: that the attribute values on each vertex
and edge are dependent on its adjacent vertices, but are conditionally independent (CI) of
the rest of the graph.

The example graphs in Fig. 1 illustrate the dependence of graph structure and attributes.
In social networks (Fig. 1a), there are at least three processes which lead to dependen-
cies [14]: homophily, the tendency to form relationships with people similar to ourselves;
induction, the tendency to influence others in our social group; and confounding, where
connected individuals are exposed to the same external influences (such as an economic
downturn or living in the same neighbourhood). Attributes within social groups are corre-
lated, and tend to become more homogenous over time. The social network in Fig. 1a has
a discrete label indicating the favourite sport of the actors. We could also include numeric
labels to indicate measures of physical activity; physical fitness (Body Mass Index, resting
heart rate); or even emotional states (a “happiness index”) [14].

In molecular structures (Fig. 1b), the vertex label (atom name) is conditionally depen-
dent on its place in the molecular structure: the degree of each vertex is dependent on the
number of free electrons of each atom. The lengths of the edges (atomic bonds) are depen-
dent on the atomic weights of the vertices.

In Fig. 1c, the colour of each superpixel is conditionally dependent on the colour of
adjacent vertices. The velocities of adjacent vertices are also conditionally dependent, as the
superpixels in the object will move together and those of the background will move together.

Recent research on graph generating algorithms assumes that dependencies exist be-
tween graph structure and attributes [23]. It is possible to learn “affinity matrices” from
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real-world graphs [22], which encode the probability of an edge between each pair of ver-
tices based on its attribute values.

Given that dependencies exist between graph labels and structure, what effect does this
have on substructure discovery? To discuss this, we introduce some notation and the concept
of vertex and edge partitions. Labelled graphs can have an arbitrary number of discrete and
numeric labels on their vertices and edges:

Definition 1 A labelled graph G is a tuple 〈V,E,L,LV ,LE〉. V is a set of vertices and E is
a set of edges: E ⊆ {〈v,w〉 : v,w ∈V ×V}. If the tuple 〈v,w〉 is ordered, the edge is directed,
otherwise it is undirected. L is a set of graph labels; LV and LE are label-to-value mapping
functions.

Definition 2 The set of graph labels L is the union of the sets of vertex labels LV and edge
labels LE . L is partitioned into discrete labels LD and numeric labels LN , LD∩LN = /0. Thus
L = LV ∪LE = LD∪LN . Let AD be the set of discrete attribute values and AN ⊂ R be the set
of numeric attribute values.

Definition 3 The label-to-value mapping function for vertices is denoted as:

LV : V × (LV ∩LD)→ AD

V × (LV ∩LN)→ AN

For a vertex-weighted graph, the weight function W (v) is treated as a special case of its
numeric attributes: ∀v∈V : W (v) =LV (v,“weight”). (The label-to-value mapping function
for edges LE can be denoted in a similar manner.)

During substructure discovery, one important method of reducing the complexity of the GI
test is vertex partitioning [13, 17, 27, 42]. Vertices can be partitioned into similar disjoint
sets or equivalence classes. We extend this notion to also define edge partitions:

Definition 4 The vertex partition set and edge partition set are defined as:

V =
⋃

i

Vi E =
⋃

i

Ei

where all vertices in the same partition share the same discrete attribute values:

∀v ∈Vi ∀w ∈Vi ∀l ∈ (LV ∩LD) : LV (v, l) = LV (w, l)

Similarly, all edges in the same partition share the same discrete attribute values, with the
additional constraint that their source and target vertices are from the same partitions:

∀〈v,w〉 ∈ Ei ∀〈x,y〉 ∈ Ei : v ∈Vj ∧ x ∈Vj ∧w ∈Vk ∧ y ∈Vk

In the case of an undirected graph, 〈v,w〉 ⇔ 〈w,v〉

There is an important relationship between the number of partitions and the complexity of
GI and substructure discovery. Consider the unlabelled partial clique in Fig. 2a. This graph
contains eight distinct substructures with two or more vertices; 27 instances in all. It will
require 20 GI tests to determine which instances are isomorphic. The graph in Fig. 2b has
the same structure, but each vertex is uniquely labelled. There are 27 distinct substructures
with a single instance of each: each substructure has a distinct vertex and edge partition set.
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Fig. 2: Relationship between vertex partitions and number of substructures

As substructures with different partition sets cannot be isomorphic, we know that there are
27 distinct substructures without needing to do any GI tests.

A more subtle effect of vertex labelling is its effect on the number of possible expansions
of partially-overlapping substructures. Sometimes multiple instances of the same subgraph
overlap within one graph. Consider the example in Fig. 2c, which has only one instance of
vertex A, but contains four instances of the substructure defined by E = {〈A,B〉}. As the
size of the candidate substructures is expanded, the number of instances can go up or down:
there are six instances of {〈A,B〉 ,〈A,B〉} and four instances of {〈A,B〉 ,〈A,B〉 ,〈A,B〉}. In
other words, where instances of the same substructure are allowed to overlap, the count
of instances violates the anti-monotone property. In general, overlapping instances do not
contribute independently to the support of that substructure1, but it is necessary to maintain
a record of each instance for the next phase of expansion, so it has an impact on the runtime
and memory requirements of the search.

In practice, most real-world graphs lie somewhere between the extremes of no labels
and a unique labelling for every vertex. Fig. 3 shows the relationship between the number of
vertex partitions and the complexity of substructure discovery: the number of distinct sub-
structures rises linearly with the number of partitions (Fig. 3a), but the number of instances
of each substructure falls, leading to an exponential reduction in the number of GI tests
required (Fig. 3b).

In the next section, we exploit the dependencies between vertex labels to define a con-
straint based on numeric attribute values. For frequency-based search algorithms, the prop-
erty of anti-monotonicity is preserved.

4 Frequent Substructure Discovery with Numeric Attribute Constraints

Formally, we define a constraint as follows:

Definition 5 A constraint c is a Boolean predicate which any subgraph G0 ⊆ G must fulfil.
c is said to be anti-monotone if it satisfies the downward closure property:

∀G1 ⊂ G0 : c(G0) =⇒ c(G1)

1 Sometimes overlapping substructures can contribute independently: [34] discusses alternative strategies
for handling overlapping substructures in Subdue.
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Fig. 3: Effect of no. of vertex partitions on complexity of substructure discovery2

An example of an anti-monotone constraint is minimum support: the support (frequency
count) of a graph g cannot exceed the support of any of its subgraphs g′.

The anti-monotone condition holds for frequency-based approaches such as gSpan, but
not for the compression-based approach employed by Subdue. Subdue evaluates each dis-
covered substructure by its compression ratio, given as:

DL(G)

DL(S)+DL(G|S)

where DL(G) is the description length of the input graph, DL(S) is the description length
of the substructure and DL(G|S) is the description length of G after compression with S. As
the compression ratio is a function of both the size and frequency of the substructure, it is
possible for a graph g to have a higher compression ratio than its subgraphs g′.

We have argued that the most descriptive substructures are those which are normative
both in terms of their structure and in terms of their numeric attributes. The corollary is that
vertices or edges containing numeric outliers are abnormal and can therefore be pruned early
in the discovery process. We determine whether numeric attributes are normal or anomalous
by means of a numeric outlier detection function:

Definition 6 We define a numeric outlier function O on a dataset D as:

O : D→ R ∀d ∈ D : O(d) =
{

q0 if d is “normal” w.r.t. D
q otherwise

where q0 is some constant value and q 6= q0 is a value measuring the degree of outlierness.

The value of q0 and the range of O depend on the specific choice of outlier detection func-
tion. O must be applicable to any general data set: we cannot assume prior knowledge of
how numeric attribute values are distributed. Each attribute may be generated by a separate
process, more likely multiple processes. We also expect that different generating processes
act on different parts of the graph structure.

2 Fig. 3 shows the results for R-MAT random graphs, with 0,1, . . . ,9 binary labels, i.e. 1–512 vertex
partitions. The label values were assigned independently from a uniform distribution. Our experiments on
real datasets (Sect. 5) verify that the complexity of substructure discovery increases with the homogeneity of
vertices and edges, and that this holds when the independence assumption is removed.
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(a) Empirical data (b) LOFs

Fig. 4: Distribution of data and Local Outlier Factors (LOFs)

Fig. 4 shows an example of one numeric attribute from the Access Control dataset of
Sect. 5.1. The edges of the graph have a Time of Day attribute, which records the time that
an individual moved between a pair of door sensors (vertices). The processes which generate
Time of Day are dependent on the edge partition; Fig. 4a shows the distribution of Time of
Day for four sample partitions. For each partition, the mixture of processes is different: in a
lab, the people who work there tend to come in in the morning and around lunchtime; others
may visit the lab for short periods; security staff show up periodically for short intervals in
the middle of the night. The patterns of behaviours in a laboratory are very different from
those in a lift. Our method requires an unsupervised outlier detection function which can
perform reliably over a wide range of data distributions and mixtures.

To calculate outliers over a range of unknown data distributions, we use LOF. The LOF
score of a sample p is a measure of its outlierness with respect to its local neighbourhood:

LOFMinPts(p) =
∑o∈NMinPts(p)

lrdMinPts(o)
lrdMinPts(p)

|NMinPts(p)|

where N is the number of samples in the dataset, MinPts is the minimum number of points
to consider as the local neighbourhood and lrd is a function which computes the local reach-
ability density of the neighbourhood (the inverse of the average reachability distance in the
neighbourhood).

Intuitively, the LOF score is based on the distance of a sample from its local neighbour-
hood and the relative density of the neighbourhood. A sample d belonging to a dense cluster
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or deep within a sparse cluster has LOF(d) . 1. Outliers have LOF values several times
larger. Thus LOF satisfies the property given in Def. 6: LOF(d)u 1 for normal values of d
and LOF(d)� 1 for anomalous values.

The distributions of LOF scores for the sample edge partitions are shown in Fig. 4b.
Although the data distributions are very different, the distributions of LOF scores are very
similar, with normal values ≤ 1 and anomalous values stretching out in a long tail to the
right. LOF is therefore well-suited to unsupervised learning, as we can reliably detect out-
liers without making any assumptions about the underlying distribution of the data or the
sizes and densities of clusters.

Definition 7 For each vertex v ∈ Vi, we define dv as a multi-dimensional feature vector
across all the numeric attributes of v: dv = LV (v,LN). The outlier factor O(dv) is calculated
relative to the dataset defined by its vertex partition:

O : Di→ R ∀dv ∈ Di : v ∈Vi

Outlier factors for edges are defined analagously, relative to their edge partition.

Definition 8 A vertex v ∈ Vi is normal if O(LV (v,LN)) ≤ q0, anomalous otherwise. An
edge e ∈ Ei is normal if O(LE(e,LN))≤ q0, anomalous otherwise.

To use O as a constraint on substructure discovery, structural elements are classified as
normal or anomalous by Def. 8. Anomalous vertices and edges are pruned from the graph
during pre-processing, before generating all frequent 1- and 2-vertex subgraphs. After the
pruning step, substructure discovery proceeds as normal. (Details are in the Appendix.)

As we only consider elements with “normal” numeric values to be part of normative
substructures, this constraint dramatically reduces the number of GI tests required, without
significantly affecting which substructures are discovered. We validate this experimentally
in Sect. 6.

4.1 High-dimensional Numeric Attributes

LOF works well for datasets with low to moderate dimensionality. At higher dimensions, we
face additional challenges to handling complexity. The most expensive part of LOF is dis-
covering the k-NN of each point. At low dimensionality, the complexity of the k-NN search
is O(mn logn) (for n data points with dimensionality m, using Indexed LOF). As data dimen-
sionality grows and Lp-norm distance measures lose their discriminative ability, indexing is
no longer effective. The alternative—a sequential search for each point’s neighbourhood—
has complexity O(n2m). We address this problem by using PINN, where the candidate k-NN
set is determined in the projected space, with complexity O(nm logn).

Using RP + PINN + LOF makes LOF tractable for large, high-dimensional data. We
evaluate this scheme for graphs with high-dimensional numeric attributes in Sect. 6.3.

5 Datasets

There are applications of frequent substructure mining in almost every domain: the graphs
in Fig 1 are from social network analysis, predictive toxicology and video scene analysis.
We evaluate our method on datasets from two application areas:
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Physical Building Security. Many secure buildings—such as airports, hospitals and power
stations—are equipped with Access Control Systems (ACS) based on door sensors and elec-
tronic locks. Authorised users gain access by presenting credentials, typically an ID card.
The system authenticates users and records all movements in a database. Frequent substruc-
ture mining can be used to identify “normal” and “suspicious” movement patterns. We apply
our frequent substructure mining approach to the ACS transaction database of a large Uni-
versity campus (Sect. 5.1).

Digital Forensics. During the 2011 News International phone hacking scandal, police in
Scotland Yard obtained evidence for their arrests from a database of 300 million e-mails3.
Mining a “who communicates with whom” e-mail network can focus attention on the most
important or most unusual communications. Ten years previously, e-mail evidence played an
important role in the indictments following the Enron scandal. One of the problems facing
investigators was the deliberate deletion of e-mails [30]. Inference based on frequent patterns
can be used to identify anomalous “holes” in the network where e-mails may have been
deleted. We apply our graph mining approach to the Enron e-mail database organised as a
social network (Sect. 5.2) and as a bipartite network of senders and messages (Sect. 5.3).

5.1 Access Control System

The graph in Fig. 5a is from the building Access Control System (ACS) for a university cam-
pus. Vertices represent door sensors and directed edges represent movements between pairs
of sensors. The density of transactions is higher in areas with greater security requirements,
viz. laboratories for laser, radiation and medical research.

As we are interested in mining the typical paths through the network, we organised
the data as a graph transaction database, where each subgraph represents the movement
of an individual within a 12-hour time period (Fig. 5b). If a user fails to swipe a sensor
(e.g. someone holds open a door for them), there will be a missing vertex in the graph. We
compensated for missing vertices by including forward edges, turning each chain graph into
a directed clique (Fig. 5c). Mining cliques is substantially more complex than mining chain
graphs.

The characteristics of the ACS graph transaction database are given in Table 1. We la-
belled the graph edges with two numeric attributes: Absolute Time, the time of day (seconds
since midnight) when the user presented their ID card to the door sensor at the end of the
path segment; and Elapsed Time, the difference in seconds between the absolute time at the
current sensor and the absolute time at the previous sensor. This dataset is used to evaluate
LOF + gSpan (Sect. 6.1).

5.2 Enron Social Graph

During the investigation following the collapse of Enron [30], the US Federal Energy Reg-
ulatory Commission ordered that the e-mails of over 150 senior employees be made public.
See [24] for an overview of the Enron e-mail corpus. For our experiments, we used all e-mail
messages where the sender and at least one of the recipients was one of the 159 identifiable
individuals in the dataset4.

3 http://www.bbc.co.uk/news/uk-15679784
4 Graphs are created from the August 21, 2009 version of the Enron corpus, https://www.cs.cmu.

edu/~enron/. Identification of individuals and job roles are from “Ex-employee Status Report”, http://
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(a) Single large graph. (Colour version available online.)
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Ground
Floor

Lab 1

(c) Clique

Fig. 5: Graph of Access Control Transactions on a University campus

Graph type Graph Transaction Database
No. of graph transactions 70,595
Edge type Directed, with self-cycles

Vertices Edges

Labels
Discrete: Numeric:

Door Sensor ID Absolute Time, Elapsed Time
Total number of elements 554,661 5,952,974
Maximum per transaction 340 57,630
Average per transaction 7.8 84.3
Number of partitions 468 339

Table 1: Characteristics of the Access Control System Graph Database (Fig. 5)

Our first Enron graph is a social graph showing who commnicated with whom (Fig. 6a).
Vertices are people; weighted edges represent the volume of communication. The detailed
characteristics of this graph are given in Table 2. As this is a single large graph, we use it to
evaluate LOF + Subdue (Sect. 6.2).

5.3 Enron Bipartite Graph

Our third graph is a more detailed view of the Enron data, including a vertex for each mes-
sage as well as for senders and recipients. This is more interesting for data mining. We
labelled each message vertex with two numeric attributes: the Size of the message in bytes
and the Time it was sent (seconds since midnight). Fig. 6b shows an excerpt of a few mes-

www.isi.edu/~adibi/Enron/Enron.htm. This spreadsheet contains 161 names, but two of them appear
to be duplicates.
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(a) Social graph of who communicates with whom. (Colour
version available online.)

Kenneth

Lay

Jeffery

Skilling
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Delainey

E-mail

E-mail

E-mail

E-mail

E-mail

E-mail

Time 00:27

Size 154 bytes

Time 22:02

Size 650 bytes

Time 20:34

Size 1148 bytes

Time 07:18

Size 428 bytes

Time 21:37

Size 3809 bytes

Time 06:28

Size 382 bytes

(b) Fragment of bipartite graph of
actors and messages

Fig. 6: Graph representations of Enron e-mail corpus

Graph type Single large graph; weighted egonet
Structure Unipartite
Edge type Directed, with self-cycles

Vertices Edges
Labels Discrete: Employee type Numeric: Weight
Number of elements 159 2767
Number of partitions 9 58

Table 2: Characteristics of the Enron Social Graph (Fig. 6a)

sages and Table 3 gives the characteristics of the graph. This graph is used to evaluate LOF
+ Subdue (Sect. 6.2).

5.4 High-dimensional Numeric Attributes

Common high-dimensional data objects include text or images. To evaluate the performance
of our approach on graphs with very high-dimensional numeric attributes, we used the bi-
partite graph structure from Sect. 5.3, but replaced the low-dimensional numeric attributes
of Table 3 with a high-dimensional numeric representation of the message. Each message
vertex was labelled with a “bag of words”, a feature vector representing the occurances in
the message of the most common 1,000 words in the corpus. The experiments were con-
ducted using RP + PINN + LOF + Subdue, and were repeated for longer feature vectors
with up to 4,000 dimensions. The results are in Sect. 6.3.
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Graph type Single large graph
Structure Bipartite
Edge type Directed

Vertices (Actors) Vertices (Messages) Edges

Labels
Discrete: Numeric: Discrete:

Name Size, Time Sent FROM/
(Bag of Words) TO/CC/BCC

Number of elements 159 31,396 96,286
Number of partitions 159 1 636

Table 3: Characteristics of the Enron Bipartite Graph (Fig. 6b)

6 Experiments and Results

Our experiments evaluate the performance and accuracy of our method using two well-
established graph mining approaches. For graph transaction databases, we evaluate against
gSpan. For single graphs, we evaluate against Subdue. For each dataset, we measure the
coverage of the result set compared to the unconstrained approach; and the the computation
time and memory usage for substructure discovery.

Implementation notes. Our implementation of Subdue was written in C++, using the graph
isomorphism test from the Boost Graph Library (BGL)5. We used the gSpan implementa-
tion from the gboost toolkit6 as it can handle graphs with directed edges and self-cycles.
We implementated LOF in C++, and validated against the “official” implementation in the
ELKI toolkit7. The RP + PINN + LOF implementation was from ELKI. Graphs were stored
in GEXF format8, which allows an arbitrary number of discrete and numeric labels to be
attached to vertices and edges. Our experiments were conducted on an Intel Xeon 2.67 GHz
CPU with 100 Gb of main memory, running 64-bit Debian GNU/Linux 6.0 (“Squeeze”).

6.1 Graph Transaction Database

Fig. 7 shows the runtime and memory performance of substructure discovery for the ACS
graph transaction database with the unconstrained search and constrained search, calculating
LOFs on absolute time, elapsed time and on a two-dimensional feature vector of absolute +
elapsed time.

With unconstrained search, the lowest possible minimum support threshold was 1.3%;
below this, memory was exhausted and the search became intractable. Using constrained
search, it was possible to lower the minimum support to 0.4% within the same time and
memory limits.

At minimum support 1.3%, constrained search with one numeric attribute ran ≈ 100
times faster than unconstrained search. Using two numeric attributes ran 183 times faster.

Fig. 8a shows the number of patterns discovered using unconstrained search compared
with the constrained searches. The maximum number of patterns that could be discovered

5 http://www.boost.org/doc/libs/1_53_0/libs/graph/doc/isomorphism.html
6 http://www.nowozin.net/sebastian/gboost/
7 Environment for Developing KDD Applications Supported by Index Structures [1],

http://elki.dbs.ifi.lmu.de/
8 Graph Exchange XML Format, http://gexf.net/format/
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Fig. 7: Performance of constrained and unconstrained substructure discovery in the Access
Control System graph database
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Fig. 8: Analysis of subgraphs returned by constrained and unconstrained substructure
discovery in the Access Control System graph database

using the unconstrained search was 54, at 1.3% minimum support. With the constrained
search, it is possible to find more patterns by lowering the minimum support threshold.

As with all approximation approaches, our method does not return a complete set of
patterns. Fig. 8b shows the coverage of patterns discovered by the 1.3% baseline minimum
support for unconstrained search. At 1.3% minimum support, the elapsed time constraint
returns 20% of the patterns. More patterns can be recovered by reducing the threshold;
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Fig. 9: Performance of substructure discovery in the Enron graphs

at minimum support 1.0% we recover around 45% of the patterns with a small additional
computation and memory cost (around 10%).

Figs. 8c and 8d give some insights into which patterns are retained at minimum support
1.3%. The unconstrained search with minimum support 1.3% (54 patterns; 1,363 secs) is
compared to the constrained search with minimum support 0.7% (50 patterns; 10 secs); we
chose the threshold for constrained search which returns approximately the same number
of patterns as the maximum number for unconstrained search. The top 10 patterns (those
with the highest support) are all retained. The support for each substructure is reduced in
different proportions, depending on the how normal or anomalous the numeric attributes of
each instance are.

These results show a beneficial trade-off between improved performance and reduced
coverage. We have argued that the patterns which are retained are the most descriptive ones,
as they satisfy both minimum support and the normal numeric attribute constraint. This
conclusion could be strengthened by applying our approach to a supervised learning task on
a dataset with ground truth.

6.2 Single Large Graphs

The results for single large graphs (LOF + Subdue) are similar to those for graph transaction
databases. Fig. 9 shows the results on the Enron graphs for a range of Subdue parameter
settings: depth controls how large discovered substructures are allowed to grow before the
search terminates; beam width controls the “greediness” of the search.

The Enron Social graph (Fig. 9a) has a single numeric attribute (edge weight). At depth
4, the constrained search was 142 times faster. Increasing to depth 7, the unconstrained
search was intractable; narrowing the beam width to 10, the constrained search was 155
times faster. At depth 10, the unconstrained search was intractable even at beam 10, but the
constrained search could still complete in reasonable time, even at beam 100.

The Enron Bipartite graph (Fig. 9b) has two numeric attributes: as in Sect. 6.1, calculat-
ing LOFs across the two-dimensional feature vector gives better performance than using ei-
ther attribute in isolation. Memory requirements are similarly reduced (Fig. 9c); using more
numeric attributes makes the search more tractable. These results demonstrate that using our
approach, we can relax the greediness of the Subdue search while keeping processing time
tractable.

As with the transaction graphs, the constrained search returns a very similar set of pat-
terns to the unconstrained search (Fig. 10). As Subdue uses a greedy search heuristic, it
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Fig. 10: Analysis of subgraphs returned by substructure discovery in the Enron graphs

is not meaningful to compare coverage. The relative counts of the top patterns are shown
in Figs. 10a–10b. As Subdue ranks patterns by their compression ratio, the most frequent
patterns are not necessarily ranked highest. While the total number of instances of each pat-
tern have been reduced by the constraint, the relative count of each pattern is approximately
preserved.

The compression ratios of the top patterns are compared in Figs. 10c–10d. The shape
of the curve is approximately preserved for the constrained and unconstrained search. In
Fig. 10c, the gradient of compression ratios is steeper using the constraint. By removing
anomalous edges, we have increased the discrimination between “good” patterns and less
good patterns. In the Bipartite graph (Fig. 10d), there are a smaller number of interesting
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patterns to begin with (patterns with a compression ratio of 1.0 or less are not interesting).
The compression ratios of the interesting patterns are preserved very well.

The ranking of the top 20 substructures discovered by the constrained and unconstrained
searches is shown in Figs. 10e–10f. For both graphs, 17 of the top 20 results are the same,
and the ordering is very similar. Thus our constraint-based approach provides order-of-
magnitude improvements in discovery time with little impact on which substructures are
discovered.

6.3 High-dimensional Numeric Attributes

Our experiments using RP + PINN + LOF to calculate outliers on the Enron bipartite graph
(Fig. 11) are preliminary, but suggest some interesting directions for future research.

Fig. 11a shows the time to compute outliers on the full Enron bipartite graph of 300,000
vertices, each with numeric attributes of 1,000–4,000 dimensions9. This verifies that the
PINN approach is tractable for processing the high-dimensional attributes of large graphs.

Fig. 11b shows the distribution of LOF scores at the lower end of the scale (values
above 6 in the long tail are not shown). Fig.s 11c–11d show the full distribution of LOF
scores for 1,000 and 4,000 dimensions. The shape of the curve in Fig. 11b is somewhat
different to the characteristic shape of LOF for low-dimensional attributes (Fig. 4). At first
glance, the threshold at which a point is an outlier seems to be around≈ 2.5 rather than 1. As
dimensionality increases, the distribution of normal values changes only slightly (Fig. 11b),
but the distribution of outliers becomes spread out over a wider range (Fig.s 11c–11d).

These initial results are encouraging, but further investigation is required. The Lp-norm
distance measures used by LOF are valid on dense feature vectors (as long as each dimen-
sion adds information [44]) but we need to establish that they remain meaningful on sparse
feature vectors such as our bag of words. If the distances are valid, it may be necessary to
rescale the LOF scores, for example using one of the methods presented in [26].

6.4 Comparison with Random Removal

To verify that performance improvements are not simply because the graph is smaller, we
compared our constraint-based approach to random removal of graph edges. For this experi-
ment, we randomly deleted 10–90% of the edges in the ACS graph database before searching
for frequent substructures (Fig. 12). It is necessary to remove almost 50% of the graph in
order to achieve similar performance improvements to our constraint-based approach.

Fig. 12b shows how random removal affects the frequency of the top 10 substructures,
compared to the constraint-based approach. Randomly removing edges increases the en-
tropy of the graph: the shape of the curve becomes flatter as more of the graph is removed.
After 20% edge removal, discrimination between substructures 4–10 has degraded and by
50% edge removal, the order is random. Randomly deleting graph edges does not preserve
information about the “goodness” of discovered substructures.

9 We were unable to calculate RP + PINN + LOF for larger datasets due to memory constraints. The
random projection [2] used by PINN is designed to be “database-friendly”; by changing the indexing method
it would be possible to create a PINN implementation which creates its index on disk in order to process
larger or higher-dimensional datasets.
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Fig. 11: Random Projection (RP) + PINN + LOF on “bag of words” feature vectors on
Enron bipartite graph
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Fig. 12: Effect of randomly removing graph edges on substructure discovery

Our results show that our constraint-based approach can find frequent subgraphs more
efficiently than an unconstrained approach, without having an adverse effect on which sub-
structures are discovered. In many cases where the input graph is intractable with an uncon-
strained approach due to the computational or memory overheads, our approach allows the
graph to be processed.
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7 Conclusions

In this paper we have presented a method of using numeric outliers as a constraint on the
search for frequent substructures in graphs. Our thesis is that the “best” substructures are
those which are not only the most frequent, but which are also normative in terms of their
numeric attributes.

Our method reduces the complexity of substructure discovery at both the instance min-
ing and substructure grouping steps, resulting in order of magnitude improvements in dis-
covery time and memory requirements, without significantly altering which patterns are dis-
covered. In our experiments, we observed performance improvements of a factor of 100–200
compared to unconstrained search. An important consequence is that substructure discovery
remains tractable for larger graphs than is possible with the standard algorithms.

While constraints based on a single numeric attribute provided significant improve-
ments, the best results were observed when using multiple attributes. We also presented
an outline of how our method could be applied to graph objects with very high-dimensional
features (e.g., image or text attributes); this area is the subject of future research.

7.1 Future work

To further improve performance, we propose to develop a fast parallel implementation of
our method.

Our experiments showed that where discovered substructures are of similar frequency,
we are better able to discriminate between them, because we give greater weight to substruc-
tures with normal numeric attributes. With slight modification, our method could be applied
to a supervised learning task on graphs labelled with numeric attributes. By constructing a
one-class classifier, we will be able to objectively measure the prediction accuracy of our
method against the standard algorithms.

Our method has been successfully applied to graphs with a low or moderate number of
numeric attributes. We believe that it will also work for dense high-dimensional numeric
attributes. For graphs with a sparse high-dimensional representation, such as the Enron bag
of words, further investigation is indicated to determine whether Lp-norm distances are still
discriminitive. If Lp-norm distances are not appropriate, further research is required to deter-
mine whether there exists a “database-friendly” random projection for other more suitable
distance measures.

Where there is a high-dimensional representation with many irrelevant attributes, we
could amend our approach to detect numeric anomalies in subspaces rather than in full
space by choosing only locally-relevant attributes on which to calculate the outlier score.
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11. Eichinger F, Böhm K, Huber M (2008) Mining edge-weighted call graphs to lo-
calise software bugs. In: Daelemans W, Goethals B, Morik K (eds) ECML/PKDD (1),
Springer, Lecture Notes in Computer Science, vol 5211, pp 333–348
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Appendix. The substructure discovery algorithms referred to throughout the paper are included here for
convenience. The original references are [42] for gSpan and [8] for Subdue.

A gSpan

To apply our method to gSpan, we calculate numeric anomalies for all vertices and edges by Def. 8 as a
pre-processing step. Then amend step 2 to Remove infrequent and anomalous vertices and edges.

Algorithm 1 GRAPHSET PROJECTION: search for frequent substructures
Require: Graph Transaction Database D, minSup
1: Sort the labels in D by their frequency
2: Remove infrequent vertices and edges
3: Relabel the remaining vertices and edges
4: S1← all frequent 1-edge graphs in D
5: Sort S1 in DFS lexicographic order
6: S← S1

7: for all edge e ∈ S1 do
8: Initialise s with e, set s.D to graphs which contain e
9: Subgraph Mining(D, S, s)

10: D← D− e
11: if |D|< minSup then
12: break
13: return Discovered Subgraphs S

B Subdue

To apply our method to Subdue, calculate numeric anomalies for all vertices and edges by Def. 8 as a pre-
processing step (as above). Prune all anomalous vertices and edges from the graph before step 5.

Algorithm 2 SUBDUE: search for frequent substructures
Require: Graph, BeamWidth, MaxBest, MaxSubSize, Limit
1: let ParentList = {}
2: let ChildList = {}
3: let BestList = {}
4: let ProcessedSubs = 0
5: Create a substructure from each unique vertex label and its single-vertex instances; insert the resulting

substructures in ParentList
6: while ProcessedSubs ≤ Limit and ParentList is not empty do
7: while ParentList is not empty do do
8: let Parent = RemoveHead(ParentList)
9: Extend each instance of Parent in all possible ways

10: Group the extended instances into Child substructures
11: for all Child do
12: if SizeOf(Child) ≤MaxSubSize then
13: Evaluate the Child
14: Insert Child in ChildList in order by value
15: if Length(ChildList) > BeamWidth then
16: Destroy the substructure at the end of ChildList
17: let ProcessedSubs = ProcessedSubs + 1
18: Insert Parent in BestList in order by value
19: if Length(BestList) > MaxBest then
20: Destroy the substructure at the end of BestList
21: Switch ParentList and ChildList
22: return BestList


