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A huge variety of proteins are able to form fibrillar structures1, especially at high protein 

concentrations. Hence, it is surprising that spider silk proteins can be stored in a soluble form at high 

concentrations and transformed into extremely stable fibres on demand2, 3. Silk proteins are 

reminiscent of amphiphilic block copolymers containing stretches of polyalanine and glycine-rich polar 

elements forming a repetitive core flanked by highly conserved non-repetitive amino-terminal4, 5 and 

carboxy-terminal6 domains. The N-terminal domain comprises a secretion signal, but further functions 

remain unassigned. The C-terminal domain was implicated in the control of solubility and fibre 

formation7 initiated by changes in ionic composition8, 9 and mechanical stimuli known to align the 

repetitive sequence elements and promote β-sheet formation10, 11, 12, 13, 14. However, despite recent 

structural data15, little is known about this remarkable behaviour in molecular detail. Here we present 

the solution structure of the C-terminal domain of a spider dragline silk protein and provide evidence 

that the structural state of this domain is essential for controlled switching between the storage and 

assembly forms of silk proteins. In addition, the C-terminal domain also has a role in the alignment of 

secondary structural features formed by the repetitive elements in the backbone of spider silk 

proteins, which is known to be important for the mechanical properties of the fibre. 

Figure 1  
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Figure 2  

 

 

 

 

 

 

 

 

 



Figure 3  

 

 

 

 

 

 



Figure 4  

 

 

 



 

Silk proteins are amphiphilic (Fig. 1a) and the C-terminal non-repetitive (NR) domain of such proteins 

produced by orb-weaving spiders is one of the most conserved regions (Fig. 1b). To determine the 

structure of the C-terminal NR domain (NR3) of Araneus diadematus fibroin 3 (ADF-3), we used high-

resolution NMR with an optimized protein construct (Fig. 1c and Supplementary Tables 1 and 2). The 

structure is a new protein fold composed of a parallel-oriented dimeric five-helix bundle in which the 

longest helix (helix 4) is the main dimerization site (Fig. 1c, Supplementary Fig. 1). The single cysteine 

residue of each monomer involved in intermolecular disulphide formation is located at the N-terminal 

end of helix 4. The dimerization interface consists predominantly of hydrophobic residues. Packing of 

these residues is facilitated by a slight right-handed twist between helices 4 in both monomers. Helix 

1 of one monomer and helix 5 of the second monomer interact in a clamp-like manner. Two salt 

bridges (R43–D93 and R52–E101) are located within each monomer, which fix helices 1 and 2 at one 

side of helix 4 (Fig. 1c). These salt bridges use the only charged residues of the entire known sequence 

of ADF-3 and are located in the most conserved parts of the NR domain (Fig. 1b). 

Figure 1: Sequence analysis and structure of the non-repetitive (NR) domain of ADF-3.  

 

a, Hydrophobicity index of various silk proteins. b, Sequence alignment of the C-terminal NR domains 

of the major ampullate silk proteins (MaSp) of Araneus diadematus, Nephila clavipes and 

Euprosthenops australis, and minor ampullate silk fibroin 1 (ADF-1) of Araneus diadematus (top to 

bottom). Grey bars indicate the degree of conservation between these sequences. The conserved 
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charged residues are coloured. c, Overlay of the 20 best-energy structures of the C-terminal NR 

domain of ADF-3 having a root mean square deviation (r.m.s.d.) of 0.18 Å. 

Using mutagenesis experiments, our data show that the charged residues are essential for the 

structural integrity of the NR domain, as deletion of the salt bridges results in significantly reduced 

thermal stability of the entire domain (Supplementary Fig. 2). Of particular note is that although the 

NR domain is relatively hydrophobic in comparison to the repetitive backbone of the protein (Fig. 1a), 

in the folded state the hydrophobic residues are buried and the solvent-exposed surface displays 

hydrophilic amino acids such as glutamine and serine, assuring its hydration (Supplementary Fig. 1b). 

At low pH (pH 2, where the salt bridges are disrupted) NR3 shows markedly increased hydrophobicity 

and decreased secondary structure content as probed with 8-anilinonaphthalene-1-sulphonic acid 

(ANS) fluorescence, circular dichroism (CD) and NMR spectroscopy (Supplementary Fig. 3a–d). In 

addition, a destabilized NR3 salt bridge mutant (D93A) of an engineered ADF-3 analogue, (AQ)12NR3 

containing 12 repeats of the ‘A’ and ‘Q’ repetitive sequence elements16 (see Methods), also shows 

pronounced ANS binding (Fig. 2b) and molten globule-like thermal unfolding behaviour (a partially 

structured state that shows higher binding affinity to ANS than the native state), which can be 

stabilized by the addition of sodium chloride (Fig. 2c). This emphasizes the role of a correctly folded 

NR domain for silk protein storage and the inhibition of undesired aggregation. 

Figure 2: Assembly and aggregation properties of our spider silk-like proteins.  
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a, Salt-induced protein aggregation. Error bars indicate standard deviation. b, Binding of hydrophobic 

ANS by proteins. a.u., arbitrary units; WT, wild type. c, Thermal transition experiments indicate molten 

globule-like behaviour of the D93A variant (red symbols), whereas the wild-type protein binds to the 

dye only during unfolding (black symbols). A structural transition of the D93A variant can be induced 

by sodium chloride (open symbols: in presence of 300 mM sodium chloride). Without the NR domain, 

no transition can be observed (green symbols). d, The concentration dependence of the LCST of 

(AQ)24NR3. e, The sodium chloride dependence of the LCST of (AQ)24NR3. 

In vivo the transition from soluble protein to solid fibres involves a combination of chemical and 

mechanical stimuli (such as ion exchange, extraction of water, acidification and elongational flow3, 13, 

17). Hence, we were interested in determining the effect of such stimuli on spider silk-like proteins, 

and used dimeric (AQ)12NR3 and monomeric (AQ)24 (an analogue of approximately the same molecular 

mass as the dimer without the NR carboxy-terminal domain). In the absence of shear forces (as silk 

proteins are stored in the lumen in vivo) the extent of protein aggregation in vitro is determined by 

the concentration of salt, and even at extremely high concentrations of sodium chloride (up to 
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500 mM) the level of aggregation is low (less than 15%), whereas in the presence of equivalent 

concentrations of sodium phosphate the level of aggregation is markedly higher (up to 100%) owing 

to the more kosmotropic nature of the phosphate anion (Fig. 2a). Such a finding explains why the 

proteins are stored inside the lumen in the presence of the relatively chaotropic sodium chloride 

(approximately 100–150 mM)9, and emphasizes the requirement for ion exchange within the spinning 

duct. 

Higher supramolecular assemblies are required to achieve efficient protein storage8 and we have 

previously reported our proteins to be thermoresponsive, displaying fully reversible lower critical 

solution temperature (LCST, phase separation on increasing the temperature) behaviour owing to a 

self-assembly process16. This behaviour was displayed only for silk proteins incorporating the NR 

domain. Using differential scanning calorimetry (DSC) we show here that the LCST is decreased in the 

presence of higher concentrations of salt and/or protein (Fig. 2d, e), thereby stabilizing the proteins 

during storage. 

We have also found that the NR domain has an impact on the fibre formation process. On titration of 

chemical denaturants (urea or guanidine hydrochloride) into solutions of 15N-labelled NR3, NMR 

chemical shift changes (indicating structural variations or binding) monitored with 15N HSQC 

(heteronuclear single quantum coherence) experiments could be observed mainly within helix 1 and 

around the salt bridges (Fig. 3a, Supplementary Fig. 4), therefore this region seems to unfold first. 

Titrations with sodium chloride demonstrated chemical shift changes in the same region (where the 

two salt bridges are located, Fig. 3a), which also shows the highest hydrophobicity in the protein as 

monitored with chemical shift changes upon the addition of ANS (Fig. 3a and Supplementary Fig. 4). 

Interestingly, at higher protein concentrations the protein shows a greater tendency to unfold (Fig. 

3b). Additionally, SYPRO Orange (an ANS-like fluorescent dye) binding experiments18 demonstrate that 

the partially folded state of NR3 is more hydrophobic than the natively folded or the unfolded state 

(Fig. 3c). It is also noteworthy that the presence of sodium chloride (present during protein storage) 

stabilizes the NR domain against thermal or chemical denaturation (Fig. 3b, c and Supplementary Fig. 

5a) and can even compensate for the loss in stability during reduction of the inter-molecular 

disulphide bridge (Supplementary Fig. 5b). 

Figure 3: Stability and folding of spider dragline silk constructs.  
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a, NMR chemical shift perturbation experiments with urea, sodium chloride and ANS indicate that the 

structural elements around the salt bridges represent the most labile and hydrophobic region within 

the protein. b, Urea-induced unfolding of NR3 as determined by CD spectroscopy. c, Binding of 

hydrophobic SYPRO orange to NR3 during urea-induced unfolding. d, Shear-induced ANS binding of 

NR3. e, Aggregation of our spider silk-like proteins with and without shear stress. Shear stress leads 

to increased aggregation and is the most likely trigger for the assembly process in nature. Error bars 

represent standard deviation. 

http://www.nature.com/nature/journal/v465/n7295/fig_tab/nature08936_F3.html


Previous rheological studies emphasize the role of the NR domain for shear-induced aggregation of 

ADF-3, where solutions of proteins with the NR domain exhibit significant viscosity changes under 

shear, whereas solutions of proteins without the NR domain exhibit no viscosity changes at various 

shear rates14, 19. ANS binding also increases under shear, indicating that the NR domain partially 

unfolds, thereby exposing hydrophobic surfaces (Fig. 3d and Supplementary Fig. 6), leading to 

oligomerization and ultimately β-sheet-rich fibre formation. In further in vitro protein aggregation 

assays under shear stress, we find that aggregation is vastly increased in comparison to corresponding 

assays in the absence of shear, and that the protein without the NR domain is much more prone to 

unspecific aggregation (Figs 3e and 4). Exposure of solutions of proteins without the NR domain to 

shear stress resulted in the formation of ill-defined β-sheet-rich aggregates, typically with dimensions 

of micro- to millimetre scale (Fig. 4a). By contrast, proteins incorporating the NR domain formed 

relatively well-defined fibrous aggregates, which optical microscopy showed to be composed of 

ordered (aligned) bundles of long fibrillar aggregates, implying that the NR domain has a role in 

stabilizing the protein against undesirable aggregation. Polarized Fourier transform infrared spectra 

of the fibrous aggregates formed from our protein without the NR domain ((AQ)24) show that the β-

sheets are randomly aligned, whereas the β-sheets within fibres formed from our protein with the 

correctly folded NR domain (that is, wild type and not the D93A mutant) were predominantly aligned 

with the long axis of the fibres (in analogy to naturally spun fibres) owing to a controlled assembly 

process (Fig. 4b, c). 

Figure 4: Fibre assembly mechanism of dragline silk proteins.  
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a, A well-defined fibre (dry state) of (AQ)12NR3 and ill-defined fibrous aggregate of (AQ)24 formed 

under shear. b, Infrared absorption spectra of (AQ)12NR3 and (AQ)24 fibres recorded at 0° and 90° 

relative to the long axis of the fibrous aggregates (black vs red line). c, Estimated β-sheet content of 

the aggregates. The values of β-sheet content for the aggregates formed under shear were recorded 

http://www.nature.com/nature/journal/v465/n7295/fig_tab/nature08936_F4.html


at 0°, 45° and 90° relative to the long axis of the fibrous aggregates. d, The silk proteins are stored as 

higher oligomeric assemblies. Exposure of these assemblies to shear and salting out leads to partial 

unfolding of NR3 and controlled fibre assembly. 

To examine the influence of the length of the repetitive backbone on the behaviour of the proteins, 

we performed aggregation assays with (AQ)24NR3, finding that it was significantly more prone to 

aggregation than the equivalent (AQ)12NR3 analogue (Fig. 2a), which leads us to speculate that the α-

helical N-terminal NR domain4 (not included in our recombinant proteins) might also play an important 

function in protein storage and fibre assembly, especially in case of the natural system, where the 

proteins are larger. 

Our data indicate that the C-terminal NR domain has a role in both spider silk protein storage and fibre 

assembly (Fig. 4d). During storage of spider silk proteins, the NR domain stabilizes a solution-

competent state of the silk protein via the formation of higher supramolecular assemblies, and the C-

terminal NR domain also acts as a trigger for the fast, controlled and efficient salting-out of the 

proteins in combination with the correct alignment of the β-sheet forming repetitive sequence 

elements during shear-induced assembly. The hydrophobic surface of the assembly state of the NR 

domain, in addition to the disulphide bridge, provides anchor points for the correct positioning of the 

repetitive sequence elements. This mechanism is reminiscent of other fibrillar proteins20 like 

collagen21, where the highly conserved terminal pro-peptides form intermolecular disulphide bridges22 

and regulate pro-collagen solubility and lateral assembly23. 
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Methods: 

Cloning, protein production and purification 

The initial construct used for NMR resonance assignment (NR3-T7) was produced and purified as 

described previously24. The gene of a shorter construct (NR3Δ19) used for NOESY experiments was 

inserted into a pET28a expression system (Merck Biosciences) encoding an N-terminal His6-tag and 

expressed in E. coli BL21 (DE3) (Agilent Technologies) at 20 °C for 16–20 h. Purification was achieved 

by passage over a Ni-NTA column (GE healthcare) and a Superdex75 column. Between both columns 

the hexahistidine tag was removed by digestion with thrombin. Isotopically (13C, 15N) enriched protein 

samples were produced by growing bacteria in M9 medium supplemented with 1 g l-1 15NH4Cl and 2 g l-

1 13C glucose (Eurisotope). For NMR measurements, the proteins were concentrated up to 1 mM in 

10 mM sodium phosphate pH 6.0. Addition of 1% (v/v) trifluoroethanol-d3 (Eurisotope) was used for 

sample stabilization. The generation of a mixed 13C, 15N–12C, 14N dimeric sample was achieved by 

mixing equal amounts of labelled and unlabelled His6-tagged protein samples and a subsequent 

addition of guanidine hydrochloride to a final concentration of 4 M and 50 mM DTT to achieve 

unfolding and reduction of the inter-molecular disulphide bridge. For refolding, the mixture was 

dialyzed against 50 mM Tris/HCl pH 8.0 resulting in an almost quantitative refolding yield. By this 

procedure, the monomers are allowed to exchange resulting in a 1:2:1 population of the homo-

unlabelled, the hetero-labelled and the homo-13C, 15N-labelled species. Genes encoding proteins 

containing the repetitive elements (AQ)12 and (AQ)24 (A, hydrophobic polyalanine-rich motif: 

GPYGPGASAAAAAAGGYGPGSGQQ; Q, hydrophilic glutamine- and glycine-rich motif: 

GPGQQGPGQQGPGQQGPGQQ) were cloned into a pET29 expression vector (Merck Biosciences) 

encoding an N-terminal T7-tag and were expressed in E. coli strain BLR (DE3) (Agilent Technologies) at 

25 °C for 3 h. Purification was carried out as described previously24. Site-directed mutagenesis 

experiments with the gene of NR3Δ19 were done using the QuikChange mutagenesis kit (Agilent 

Technologies). 

Circular dichroism (CD) spectroscopy 

CD spectra and stability measurements were carried out on a Jasco J-715 spectropolarimeter (Jasco). 

For spectra and thermal transitions, a protein concentration of 10 µM was used, and thermal unfolding 

was monitored by the CD signal at 222 nm in a 1 mm path length cuvette using a heating rate of 60 K h-

1 in 10 mM sodium phosphate pH 6.0. For chemical unfolding experiments, samples of 5, 34, 110, 200 

and 230 µM concentration were incubated with increasing amounts of urea overnight at 4 °C, and the 

CD signal at 222 nm was recorded with a path length of 0.1 or 1 cm, respectively, at 20 °C. A bandwidth 

of 5 nm and a response of 2 s were used. Fitting of the thermally and urea-induced unfolding profiles 

was done as reported previously28 assuming a two-state folding mechanism. 

NMR spectroscopy and structure calculation 

Nuclear magnetic resonance (NMR) spectroscopic measurements were conducted at 298 K on Bruker 

DMX600, DMX750 and Avance900 spectrometers (Bruker Biospin). Backbone resonance assignment 

was achieved by a set of standard triple resonance experiments25. Side-chain assignment was carried 

out using a combination of CCH-COSY (correlation spectroscopy via the nuclei C,C,H29) and HCH-TOCSY 
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,(total correlation spectroscopy30) on double-labelled samples. Stereospecific assignment of prochiral 

HCβ methylene and valine methyl groups and the resulting rotamer assignment were made using 3JNHβ 

couplings observed in the HNHB experiment and patterns of NOESY connectivities. Distance data were 

derived from a set of three-dimensional NOESY experiments including 15N-HSQC-NOESY, NNH-NOESY 

on a 15N-labelled sample and 13C-HSQC-NOESY and heteronuclear edited 3D-CCH NOESY and 3D-CNH 

NOESY experiments26. For obtaining inter-subunit NOE distance restraints, we used a 14N,12C-

filtered/13C edited two-dimensional-NOESY experiment on a mixed 13C, 15N–12C, 14N labelled sample. 

NOESY cross-peaks in the three-dimensional spectra were converted into distance ranges after 

rescaling according to the corresponding HSQC intensities. Cross-peaks were divided into the following 

four classes: strong, medium, weak and very weak, which resulted in restraints on upper distance of 

2.7, 3.2, 4.0 and 5.0 Å, respectively. Lower distance restraints were also included for very weak and 

absent sequential HN–HN cross-peaks using a minimum distance of 3.2 Å and for medium intensity or 

weaker sequential and intraresidual HN-Hα cross-peaks using a minimum distance of 2.7 Å. Allowance 

for the use of pseudo atoms (using r-6 averaging) were added for methyl groups (0.8 Å for one methyl 

and 1.5 Å for two methyls) and nonstereospecifically-assigned methylene groups (0.7 Å). Dihedral 

angle restraints were derived for backbone φ and ψ angles based on Cα, Cβ, C′ and Hα chemical shifts 

using the program TALOS31. Restraints were applied for predictions consistent with the input chemical 

shifts, 3JHNHα coupling constants measured from an HNHA experiment and the observed NOE pattern 

within sequential residues. Accepted predictions were applied using the tolerance calculated by the 

program ± 5°. The 3JHNHα couplings were also applied as direct coupling constant restraints on the 

backbone φ angles. Hydrogen bond restraints were applied for 73 residues in secondary structural 

elements with low hydrogen exchange rates, as measured with MEXICO experiments32, 33 and where 

donor and acceptor were consistently identified in preliminary calculations. The restraints were 

applied with the inclusion of pseudo covalent bonds as described previously34. Structures were 

calculated with XPlor-NIH27 using standard protocols. Experimental restraints were applied to only one 

monomer, with non-crystallographic symmetry restraints over the backbone of ordered residues 

(S34–L138) used to assure the symmetry of the dimer. Sets of 50 structures were calculated and a final 

set of 20 structures chosen on the basis of lowest restraints violations. An average structure was 

calculated and regularized to give a structure representative of the ensemble. The quality of the 

regularized average structure was assessed with the program PROCHECK-NMR35. Titration 

experiments were performed with 200–500 µM NR3 in 10 mM sodium phosphate pH 6.0 at 293 K 

using standard 15N-HSQC experiments. Chemical shift deviations were calculated as the mean of 1H 

and 15N chemical shift differences using following equation: . 

Fluorescence spectroscopy 

Fluorescence spectra of 10 µM ANS and SYPRO Orange in 10 mM sodium phosphate pH 6.0 were 

recorded with a Fluoromax-4 spectrofluorometer (Horiba Jobin Yvon) using excitation at 350 nm (5 nm 

bandwidth) and by collecting emission spectra from 420 to 600 nm with a bandwidth of 5 nm. With 

SYPRO Orange, excitation was set to 485 nm and emission was recorded from 520 to 700 nm. 

Thermofluor experiments36 were performed with a real-time PCR machine (Agilent Technologies) by 

detection of ANS fluorescence (10 µM ANS was used). Heating rate was 30 K h-1, protein concentration 

was 50 µM and sample volume was 50 µl in a 96-well plate. Five individual measurements were done 

for each protein sample and solvent condition. 

http://www.nature.com/nature/journal/v465/n7295/full/nature08936.html#ref30
http://www.nature.com/nature/journal/v465/n7295/full/nature08936.html#ref26
http://www.nature.com/nature/journal/v465/n7295/full/nature08936.html#ref31
http://www.nature.com/nature/journal/v465/n7295/full/nature08936.html#ref32
http://www.nature.com/nature/journal/v465/n7295/full/nature08936.html#ref33
http://www.nature.com/nature/journal/v465/n7295/full/nature08936.html#ref34
http://www.nature.com/nature/journal/v465/n7295/full/nature08936.html#ref27
http://www.nature.com/nature/journal/v465/n7295/full/nature08936.html#ref35
http://www.nature.com/nature/journal/v465/n7295/full/nature08936.html#ref36


Differential scanning calorimetry (DSC) 

DSC experiments were performed using a VP-DSC Micro-Calorimeter (MicroCal). Standard 

measurements were performed at a protein concentration of 50 µM in 10 mM Tris/HCl, pH 8.0, with 

a heating rate of 20 K h-1. Evaluation of the LCST behaviour was done using the ORIGIN software 

(MicroCal). 

Rotation-induced aggregation 

Before the experiment the proteins were dissolved in guanidine thiocyanate solution (6 M) and then 

dialyzed against 10 mM Tris/HCl, pH 8.0. Then the proteins were diluted into buffer containing 10 mM 

Tris/HCl, pH 8 with 50 mM NaCl. Final protein concentrations were adjusted to 40 µM of NR3, 14 µM 

of AQ12NR3 and 8 µM of AQ24. The samples were incubated for 12 h at 25 °C rotating with 25 r.p.m. 

After rotation, the clearly visible aggregates were transferred onto glass slides for optical microscopy 

(DMI3000B, Leica). The samples were then centrifuged at 125,000g to remove non-visible aggregates, 

and the amount of remaining soluble protein in the supernatant was determined using an ultraviolet 

spectrometer (NanoDrop ND1000, Thermo Fischer). 

Fourier transform infrared (FTIR) spectroscopic studies 

FTIR spectra of fibres were recorded on a liquid-nitrogen-cooled Bruker Tensor 27 FTIR spectrometer, 

fitted with a liquid-nitrogen-cooled Bruker Hyperion microscope with IR polarizers supplied by 

Optometrics Corporation. Spectroscopy was performed on fibres formed during the previously 

described aggregation assay that were washed with water to remove salts, air dried and placed on 

highly polished optical grade calcium fluoride disks (Crystal GmbH). Spectra of all aggregates were 

recorded in absorbance mode at 21 °C, with a 4 cm-1 resolution and 600 scans (corrected for 

background and atmosphere using OPUS software), and polarized FTIR spectra of aggregates of 

micrometre scale (and larger) were recorded at three different orientations (0°, 45° and 90° relative 

to the long axis of the fibrous aggregates) to determine if any of the secondary structural elements 

were aligned with the fibres. 
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