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Analysis of Transonic Limit Cycle Oscillations under

Uncertainty

R. Hayes∗ and S. Marques†† and W. Yao†‡

Queen’s University Belfast, Belfast, BT9 5AH, Northern Ireland

For the computation of limit cycle oscillations (LCO) at transonic speeds, CFD is re-
quired to capture the nonlinear flow features present. The Harmonic Balance method pro-
vides an effective means for the computation of LCOs and this paper exploits its efficiency
to investigate the impact of variability (both structural and aerodynamic) on the aeroe-
lastic behaviour of a 2 dof aerofoil. A Harmonic Balance inviscid CFD solver is coupled
with the structural equations and is validated against time marching analyses. Polynomial
chaos expansions are employed for the stochastic investigation as a faster alternative to
Monte Carlo analysis. Adaptive sampling is employed when discontinuities are present.
Uncertainties in aerodynamic parameters are looked at first followed by the inclusion of
structural variability. Results show the nonlinear effect of Mach number and it’s interac-
tion with the structural parameters on supercritical LCOs. The bifurcation boundaries are
well captured by the polynomial chaos.

Nomenclature

Latin symbols

D Harmonic Balance operator
M Mach number
Ln L2 norm of residual
NH number of harmonics in Fourier expansion
R CFD flux residual
t time
U velocity
Vs velocity index
W vector of conserved flow variables
Y pitch/plunge displacements and velocities

Greek Symbols

ρ air density
τ pseudo time
ω fundamental solution frequency

Subscripts and Superscripts

()α in pitch dof

()h in plunge dof

()s state-space matrix
()0 reference value
()∞ free-stream value
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I. Introduction

Flutter testing is a crucial stage in the design of an aircraft; however, flight testing can be both costly and
dangerous. Hence simulation is becoming more influential in the design and certification of modern aircraft.
Due to the range of flow conditions experienced within the flight envelope and the intrinsic variability
associated with the manufacture of an aircraft, the need for stochastic analysis in the computational model
is clear.1

Marques et al demonstrated that structural variability can have a significant impact on the flutter predic-
tions of various transonic wing and aircraft configurations.2, 3 When nonlinearities are present, the amplitude
of oscillations can become limited and limit cycle oscillations (LCO) are observed. This is a problem of con-
siderable practical interest and is well documented for in-service aircraft.4, 5

The presence of nonlinearities, either structural or aerodynamic, poses additional challenges both in
terms of complexity and computational resources, these requirements can be exacerbated by the need for
probabilistic analysis. Hence, to address this issue, a Harmonic Balance (HB) based method is implemented
for the LCO simulation. The HB method can offer over one order of magnitude reduction in computational
effort when compared against time domain methods.5–8 An overview of different variations of the Harmonic
Balance method, such as high-dimensional, incremental, or elliptic HB methods is given by Dimitriadis.9

Here the HB CFD solver is based on the Euler equations and follows the high-dimensional HB formulation
developed by Hall et al .10 The CFD-CSD coupling is performed through the communication of aerodynamic
forces and structural displacements between the CFD solver and structural equations. The probabilistic
analysis is based on non-intrusive polynomial chaos expansions (PCE) which offer an attractive technique
for uncertainty quantification at a reduced cost with respect to Monte Carlo analysis.11 PCE has been
successfully applied to aeroelastic problems including the uncertainty quantification of LCO predictions.12, 13

In this work, a description of the CFD flow solver and aeroelastic equations of motion is presented.
Following this the implementation of the Harmonic Balance method is described. The HB formulation is
applied in conjunction with the PCE to investigate the stochastic response of a 2 dof aerofoil when subject to
uncertainties in aerodynamic and structural parameters. Results consist of:- firstly, aerodynamic parameters
are investigated such as velocity and altitude, secondly, structural variability is included in a variety of forms.

II. Harmonic Balance CFD Flow Solver

II.A. Flow equations

The flow solver used in this work follows that described by Yao and Marques.14 Consider the semi-discrete
form of the three-dimensional Euler equations:

∂W

∂t
= −R(W) (1)

where R is the residual error of the steady-state solution:

R =
∂F

∂x
+

∂G

∂y
+

∂H

∂z
(2)

W represents the vector of conserved variables and F, G and H are the fluxes in each direction, ie.
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Equation (1) is solved by marching forward in time implicitly by solving the discrete nonlinear set of equa-
tions:

Wn+1 −Wn

∆t
= −R

(

Wn+1
)

(3)

with the residual at the next time step, Rn+1 approximated by linearisation with respect to time, t:

Rn+1 ≈ Rn +
∂R

∂W
∆W (4)
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where ∆W = Wn+1 −Wn. The convective flux terms contained in the residual, R are discretised using a
Roe flux function15 and MUSCL extrapolation16 to achieve 2nd order accuracy with a Van Albada limiter in
place to ensure monotonic solutions around shock waves.17 The solution of eq. (3) is found using a LUSGS

scheme.18

II.B. Harmonic Balance Formulation

The implementation of the HB is described by Woodgate and Badcock19 and is summarised next. Consider
the semi-discrete form of eq. (1) as a system of ordinary differential equations:

I(t) =
dW(t)

dt
+R(t) = 0 (5)

Assuming periodicity, the solution, W and residual, R of eq. (5) can be represented as truncated Fourier
series with NH harmonics and a fundamental frequency ω.

W(t) ≈ Ŵ0 +

NH
∑

n=1

(Ŵ2n−1 cos(nωt) + Ŵ2n sin(nωt)) (6)

R(t) ≈ R̂0 +

NH
∑

n=1

(R̂2n−1 cos(nωt) + R̂2n sin(nωt)) (7)

Likewise, eq. (5) can also be expressed as a Fourier series as:

I(t) ≈ Î0 +

NH
∑

n=1

(Î2n−1 cos(nωt) + Î2n sin(nωt)) (8)

The orthogonality of the Fourier series allows the balancing of individual harmonics leading to:

Î0 = R̂0 = 0 (9)

Î2n−1 = ωnŴ2n + R̂2n−1 = 0 (10)

Î2n = −ωnŴ2n+1 + R̂2n = 0 (11)

This is a system of 2NH + 1 equations and can conveniently be expressed in matrix form:

ωAŴ + R̂ = 0 (12)

where Ŵ and R̂ are the vectors of Fourier coefficients. A can be found in reference.7 To avoid to expressing
the Fourier coefficients in R̂ as functions of Ŵ the system is cast back into the time domain as proposed by
Hall et al .10 The Fourier coefficients are related to time domain solutions using a constant transformation
matrix which yields:

Ŵ = EWhb R̂ = ERhb (13)

where Whb and Rhb represent the flow variable and residual values at 2NH +1 discrete, equally spaced time
intervals over one temporal period. The transformation matrix, E is also found in reference.7 Substituting
the terms in eq. (13) into (12) and pre-multiplying by E−1 yields:

ωDWhb +Rhb = 0 (14)

where D = E−1AE, the elements in D can be defined as:

Di,j =
2

2NH + 1

NH
∑

k=1

[

k sin

(

2πk(j − i)

2NH + 1

)]

(15)

A pseudo time derivative term is added to allow eq. (14) to be pseudo time-marched to convergence:

dWhb

dτ
+ ωDWhb +Rhb = 0 (16)

As mentioned earlier a LUSGS scheme is employed in this work. Note that the Fourier coefficients still can
be obtained by pre-multiplying solution vector by the transformation matrix, E and the flow field at any
discrete time point throughout the oscillation period can be found by reconstructing the Fourier series and
evaluating it for the desired time value.
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III. Aeroelastic Formulation

The equations of motion for a pitch/plunge aerofoil system with no damping as described by Yao and
Marques14 can be expressed as:

Mÿ +
1

V 2
Ky = Ef f (17)

where:

M =

[

1 xα

xα r2α

]

, K =

[

(ωh/ωα)
2

0

0 r2α

]

, Ef =

[

−4/πµ 0

0 8/πµ

]

, f =

{

Cl

Cm

}

, y =

{

h/b

α

}

Equation (17) can be transformed into state-space form:

Ẏ = AsY +BsF (18)

where:

Y =

{

y

ẏ

}

, As =





0 I
−1

V 2
M−1K 0



 , Bs =

[

0 0

0 M−1Ef

]

, F =

{

0

f

}

Applying the Harmonic Balance formulation to Eq. (18) gives:

ωDYhb − (AsYhb +BsF) = 0 (19)

where D is the same HB operator as described before. Again, as in eq. (16) pseudo time marching is used
to solve eq. (19):

dYhb

dτ
+ ωDYhb − (AsYhb +BsF) = 0 (20)

Equation (16) together with eq. (20) represent the nonlinear coupled aeroelastic system. When solving the
aeroelastic system of equations, at each iteration, the generalised aerodynamic forces are computed using eq.
(16), which will feed into eq. (20). The solution from eq. (20) will provide new generalised displacement and
grid velocities to eq. (16). To find the LCO condition, eq. (20) is solved for a given combination of [ω, f ],
then transfer the displacements back to the fluid system. The frequency is updated by minimising the L2
norm of the residual of eq. (20), using the following expression:

∂Ln

∂ω
=

(

ωDYhb −
∂F

∂ω

)T

[ωDYhb − (AsYhb +BsF)] (21)

where ∂Ln/∂ω is the derivative of the L2 norm with respect to the frequency, ω. The frequency is updated
every ni iterations. This reduces the amount of expensive computations of the derivative term, ∂F/∂ω thus
reducing the computational cost.

IV. Results

IV.A. HB Validation

For validation of the HB solver, comparisons were made against the time domain solutions presented by
Yao and Marques.14 Figure 1 shows the performance of the aeroelastic HB solver with different numbers of
harmonics. Three harmonics are needed to accuracy replicate the time domain result, however one harmonic
gives a reasonable approximation of the response and is employed throughout the remainder of this work.
The behaviour in Fig. 1 represents supercritical LCO growth and is observed with increasing Velocity Index

which is given by:

Vs =
U∞

bωα
√
µ

(22)

The definition of the Velocity Index relates both aerodynamic and structural properties of the problem and
the response of the system when changed depends on what components within eq. (22) remain constant. In
this case the supercritical LCO is generated by a change in natural frequency in the pitch dof, ωα. For the
remainder of this work, we consider the highest amplitude point in Fig. 1 as the deterministic case which
uncertainty is imposed ie. ωα remains constant. The input parameters for this deterministic condition are
shown in Table 1.
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Figure 1. Comparison of HB and time marching solutions at Mach no. = 0.8

Table 1. Deterministic parameters

Parameter Value

Static unbalance, xα 0.25

Radius of gyration about elastic axis, rα
2 0.75

Distance from elastic axis to centre chord, ah/b −0.6

Frequency ratio, ωh/ωα 0.5

Mach number, M 0.8

Speed of sound 340.294

Mass ratio, µ 75

Velocity index, Vs 0.8

IV.B. Aerodynamic Variability

Uncertainty in the airflow can have a significant impact on the movement of the aerofoil. Here we consider
two aerodynamic parameters:- the density and the Mach number/velocity. Uniform distributions are applied
to all uncertain parameters and 5th order polynomial chaos expansions using 82 samples are used. Figures
2(a) and 2(b) shows the effects of a ±10% variation in free-stream density and Figs 2(c) and 2(d) show a
±1% variation in Mach number/velocity. Results for plunge are not shown in this work as they follow the
same trends as the results for pitch.

The changes in density scale the aerodynamic forces acting on the aerofoil but do not affect the flow-
features. As a result, an almost linear relationship between amplitude and density is exhibited, a ±10%
change in density induces a similar change in LCO amplitude, +9.70%

−8.23%
on the deterministic amplitude of

2.427◦. When Mach number is varied, a much greater change in amplitude is observed. A ±1% variation
produces a +35.8%

−61.2%
effect on amplitude emphasising how sensitive the aeroelastic interaction is to Mach

number. The decrease in amplitude caused by an increase in Mach number is counter-intuitive; as the Mach
number increases, the shock wave shifts backwards and changes the position of centre of force with respect
to the elastic axis of the aerofoil, this changes the pitching moment and increases the stability of the aerofoil
in a quadratic manner. The growth and translation of the shock wave is visible in Fig. 3.

As the density does not change the aerodynamic forces in a nonlinear manner only the Mach number will
be considered when the structural variability is introduced.
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Figure 2. Aerofoil behaviour subject to aerodynamic uncertainty. PCE, O = 5, 82 samples

IV.C. Structural Variability

Structural uncertainty is applied to three different parameters in this section:- radius of gyration, rα
2, static

unbalance, xα and frequency ratio, ωh/ωα. All cases include the ±1% variability imposed on Mach no and
the deterministic values are shown in Table 1.

The radius of gyration, rα
2 quantifies distance between the elastic axis and the centre of gravity. Vari-

ability of ±33% was assigned to rα
2 and a supercritical bifurcation is observed as a result. The presence of

the bifurcation point can adversely affect the performance of the PCE so to mitigate this, adaptive sampling
is employed.13 The response surface of the LCO pitch amplitude is shown in Fig. 4 and it is clear the
bifurcation boundary is well defined.

The static unbalance, xα is subject to ±20% uncertainty and also exhibits a supercritical bifurcation
as shown in Fig. 5. The response of the aerofoil resembles that shown in Fig. 4 with a similarly defined
bifurcation boundary which takes a quadratic form. This is caused by the nonlinear effects of the Mach
number variability.

The final structural parameter to be investigated is the frequency ratio, ωh/ωα and is shown in Fig. 6.
Variability of ±20% is imposed. As the natural frequency in pitch is constant, effectively only the frequency
in plunge is changing. The bifurcation boundary line in this case is of a different form than previously shown.
The frequency ratio interacts with the Mach number creating an ’S’ shape boundary line, however the PCE
is still able to produce the well-defined bifurcation. The interaction between these two parameters is not
fully understood and needs further attention.
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(a) Mach no., M = 0.792, pitch, α = 0.65◦ (b) Mach no., M = 0.808, pitch, α = 0.65◦

Figure 3.

Figure 4. Supercritical bifurcation with varying Mach no. and rα
2

V. Conclusions & Outlook

The impact of variability in both structural and aerodynamic parameters on a two degree of freedom
aerofoil is investigated. An Euler-based CFD code is coupled with a linear aeroelastic model and a Harmonic
Balance method is implemented. Polynomial Chaos Expansions are employed for the stochastic analysis
with adaptive sampling utilised in the presence of discontinuities at the bifurcation boundaries. The LCO
amplitude in the pitch degree of freedom is shown when variability is applied to density and Mach number
demonstrating the sensitivity associated with Mach number. The structural variability is then combined
with the uncertainty in Mach number in the form of:- radius of gyration, static unbalance and frequency
ratio. All cases exhibit supercritical bifurcations and show different shapes of bifurcation boundaries. These
cases need looked at in more detail to understand the interactions between the structural and aerodynamic
parameters and how this shapes the bifurcation boundary. Other further work consists of the inclusion of
structural nonlinearities to allow the analysis of subcritical bifurcations.
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Figure 5. Supercritical bifurcation with varying Mach no. and xα
2

Figure 6. Supercritical bifurcation with varying Mach no. and frequency ratio
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