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Abstract 

The research in this thesis is intended to aid caregivers’ supervision of toddlers 

to prevent accidental injuries, especially injuries due to falls in the home 

environment. There have been very few attempts to develop an automatic system 

to tackle young children’s accidents despite the fact that they are particularly 

vulnerable to home accidents and a caregiver cannot give continuous supervision. 

Vision-based analysis methods have been developed to recognise toddlers’ fall 

risk factors related to changes in their behaviour or environment. 

First of all, suggestions to prevent fall events of young children at home were 

collected from well-known organisations for child safety. A large number of fall 

records of toddlers who had sought treatment at a hospital were analysed to 

identify a toddler’s fall risk factors. The factors include clutter being a tripping or 

slipping hazard on the floor and a toddler moving around or climbing furniture or 

room structures. 

The major technical problem in detecting the risk factors is to classify 

foreground objects into human and non-human, and novel approaches have been 

proposed for the classification. Unlike most existing studies, which focus on 

human appearance such as skin colour for human detection, the approaches 

addressed in this thesis use cues related to dynamic motions. The first cue is based 

on the fact that there is relative motion between human body parts while typical 

indoor clutter does not have such parts with diverse motions. In addition, other 

motion cues are employed to differentiate a human from a pet since a pet also 

moves its parts diversely. They are angle changes of ellipse fitted to each object 

and history of its actual heights to capture the various posture changes and 

different body size of pets. The methods work well as long as foreground regions 

are correctly segmented. 
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Chapter 1 

Introduction 

1.1 Unintentional Accidents to Children 

Young children are not able to assess risks for themselves. They also have poor 

coordination and balance and need to touch and explore to learn about the world 

around them. These factors all mean that children are particularly vulnerable to 

accidents [1]. The actual data tell the same story. For example, on average over 

two million children per year in the United Kingdom are taken to hospital after 

having an accident [2], and approximately two hundred children per day are 

hospitalised and one child dies as a result of unintentional injuries in Australia [3]. 

Around half of these accidents happen at home and young children aged under 

five years are most vulnerable to injuries in the home environment where they 

spend most of their time [4]. 

Unintentional or accidental injury means injury occurring as a result of an 

unplanned and unexpected event, which arises at a specific time from an external 

cause [5]. The five major causes of injuries in the home are falls, burns and scalds, 

poisoning, drowning, and animal injuries [3]. Falls account for over 40 per cent of 

all home accidental injuries of children [1].  

1.2 Research Problems 

Physical injury is the main cause of death and a major cause of ill-health and 

disability in childhood [5]. As young children are unable to assess risks, the best 

way to prevent their accidental injuries is continuous supervision and instruction 

by their parents. This, however, is not always practical or possible. An automatic 
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risk detection approach is proposed here to assist parents’ supervision for 

prevention of accidental injuries to young children.  

Young children aged under five are most vulnerable to accidental injuries in the 

home environment, and falls are the main cause of their injuries. Figure 1 shows 

that more than half of fall accidents happen in indoor home areas, mainly in the 

lounge, study, living/dining/play area and inside stairs. Figure 2 shows that 

children at the ages of one and two are particularly exposed to many fall 

accidents. This is because children of this age, who are toddlers, learn to walk, 

climb, and begin to run but are not so good at stopping or swerving to avoid 

people or objects [6]. In the light of these data, this research specifically targets 

detection of a toddler’s fall risks in an indoor home environment in order to help 

parents supervise the toddler when they temporarily withdraw their attention. 

The general activity of a toddler, who spends time awake at home, would be to 

play with a parent or a toy. As the fall risk detection aims to aid the supervision of 

parents, who cannot watch their child all the time, the usual scenario for a toddler 

is to play with toys on the floor of a playroom. In the case of a family with a pet, 

the toddler could play with the pet, or the pet could stay around the toddler. 

Therefore, the main research problems in detecting a toddler’s fall risks are as 

follows: 

 Identification of key risk factors related to a toddler’s fall injury in the 

home environment; 

 Human detection: to separate a toddler from other clutter such as toy or pet 

in order to focus on the toddler; 

 Status recognition: to collect information related to the toddler useful in 

recognising risks of injuries from falling such as position, movement, and 

relative state to other clutter and environments. 
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Figure 1. Falls of Children aged up to Five by Location within Home in 20021 
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Figure 2. Falls at Home by Age in 20021 

                                                      
1 A total of 6353 fall accidents at home of young children treated in a hospital were analysed. The 

details of the accidents were obtained by email from the Royal Society for Prevention of Accidents 

(RoSPA) after a personal request to its information centre. 
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First, specific risk factors need to be identified for automatic detection. In 

finding the identified factors, detection of subject toddlers and recognition of their 

status are major technical challenges. 

1.3 Available Technologies 

In relation to the latter two research problems introduced as technical challenges 

in Section 1.2, existing technical solutions are reviewed in terms of advantages 

and drawbacks to find a suitable method to solve the problems.  

1.3.1 Human Detection 

A. Wearable Device 

The simplest and most reliable way to distinguish a human from other objects 

with similar characteristics would be the use of wearable devices. When a target 

human wears a wireless transmitter, a sensor can be used to detect the 

transmission within the activity area of the human. If multiple people individually 

wear a transmitter emitting a unique signal, different people can be recognised 

separately.  

For example, Active Badge [7] is a small device which is worn on office 

personnel and transmits a unique infra-red signal every ten seconds to locate 

individuals within a building. Each office within the building is equipped with one 

or more networked sensors to detect these transmissions. The small low-cost 

infra-red emitters enable the detection of a large number of personnel. For outdoor 

locating, Global Positioning System (GPS) technology has been widely used 

owing to its precise microwave signals. Smart Sight [8] is an intelligent tourist 

system intended to break the language barrier and provide navigation assistance. 

The assistance is based on the tourist location derived from a GPS receiver and 

speech and gesture input from a microphone and a camera. The major drawback 
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of this wearable technology is that the detection requires the user to wear the 

device all the time. 

B. Vision-Based Analysis 

One of the well-known methods to free a target human from continuously 

wearing a device is to analyse images captured by a camera in consequence of the 

decreasing rate of price to performance of computing for image processing [9]. 

The human detection in images can be based on motion, appearance, or shape 

[10].  

Sidenbladh [11] exploited motion information of walking humans by 

calculating optical flow for image windows and using a support vector machine2 

(SVM) to detect the walking motion in videos. Zhao and Nevatia [13] used a 

colour histogram, which is a kind of appearance model that detects humans by 

measuring the similarity of foreground pixels to the model. As an instance of the 

shape-based human segmentation, Leibe and colleagues [14] stored outlines of 

walking humans as a number of templates and matched them with the foreground 

edges of input image over different scales. 

As in the above methods, diverse characteristics of humans can be applied to 

differentiate humans from other foreground objects in images. The results 

sometimes can have problems by detecting non-human objects looking like a 

human or by some original weakness of image processing such as sensitivity to 

light changes.  

                                                      
2 Support vector machines are learning systems for classification and regression that use a 

hypothesis space of linear functions in a high dimensional feature space, trained with a learning 

algorithm from optimisation theory that implements a learning bias derived from statistical 

learning theory [12]. 
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1.3.2 Status Recognition 

A. Wearable Device 

The kinds of sensors used on a target human depend on the types of human 

status to be recognised. As the work in this thesis relates to fall accidents, this 

section reviews automatic fall detection approaches for the elderly. The 

approaches have been actively proposed because early detection of falls, which 

are a major health hazard for the elderly [15], is an important step in preventing 

serious injuries and deaths and other obstacles to their independent living [16].  

Wearable devices for fall detection generally integrate accelerometers and/or tilt 

sensors and a wireless interface [17]. This is because such devices are inexpensive 

and fairly reliable in fall detection and can easily be embedded into existing 

community alarm and response systems [16]. The algorithm of Hwang and 

colleagues [18] distinguishes between falling and daily life activity based on 

signals from an accelerometer, a tilt sensor, and a gyroscope worn on the chest. 

The small device of Chen and colleagues [19] is worn on the waist and composed 

of two dual-axis accelerometers for detecting a fall and radio signal strength for 

locating the victim.  

Although wearable devices have such advantages, the proper functioning of the 

recognition relies on correct as well as continuous wearing of the device [17]. 

When people wearing the accelerometer-based device sit down quickly or drop 

the device by accident, it will be recognised as a fall. 

B. Sensors in Environment 

Sensors can be embedded in the environment instead of being worn by a target 

human in order to obtain some information about the human. The systems of 

Tamura and colleagues [20] and Harada and colleagues [21] recognise an infant’s 

posture and body movement respectively using 16 temperature sensors and 384 
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pressure sensors distributed in the bed in order to prevent infants’ sudden cot 

death. Alwan and colleagues [22] detected human falls by monitoring the 

vibration patterns from a piezoelectric sensor coupled to the floor surface. 

Apart from image sensors, the information which sensors installed in the 

environment can sense with respect to a human, is considerably limited. This is 

because the information can be collected when the human has a physical effect on 

the environment such as body heat and pressure or speaks out in the case of sound 

sensors. Moreover, a massive number of sensors may need to be distributed to 

cover all the areas necessary to recognise the human’s status. 

C. Vision-Based Analysis 

Vision-based human motion analysis has attracted great interest owing to its 

promising application in many areas such as visual surveillance, perceptual user 

interface, content-based image storage and retrieval, video conferencing, athletic 

performance analysis, virtual reality, and so on [23]. In general, the stage of 

human activity recognition in vision-based human motion analysis focuses 

explicitly on human activities and the interactions between humans by dealing 

with the entire human body for holistic information or body parts for more subtle 

actions [10]. For instance, Sixsmith and Johnson [24] analysed InfraRed thermal 

images of a human body to detect falls of the elderly. For automatic gait 

recognition, Foster and colleagues [25] used a time-varying signal from a 

sequence of silhouettes of a walking subject, and Wang and colleagues [26] used 

joint-angle trajectories of lower limbs. Simple human activities can be recognised 

by observation of the motion of objects without knowledge of their bodies. The 

algorithms of Stauffer and Grimson [27] detect unusual situations based on 

features such as position, speed, direction, and size.  

There are a large number of different approaches based on image analysis, and 

they depend on the goal of the researcher and their applications for human activity 
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recognition [10]. Image analysis technology has considerable potential for 

recognising diverse and complex human activities, but this research area contains 

a number of difficult and often ill-posed problems such as inferring the pose and 

motion of a highly articulated and self-occluding, non-rigid, 3D object from 

images. This complexity makes the research area challenging [10]. 

1.3.3 Summary of Available Technologies 

This section reviewed general solutions to the technical challenges related to 

human detection and status recognition. For human detection, a device emitting a 

signal can be worn by each subject, or images captured by a camera watching the 

subjects can be analysed. The use of a wearable device produces fairly reliable 

results but requires each subject to wear the device all the time. Image analysis 

can free the subjects from this obligation, but its results are relatively error-prone. 

For status recognition, a sensor can be attached to each subject or installed in the 

subject’s environment. Those sensors can provide reliable information, but the 

information is fairly limited. In the meantime, images of subjects can provide 

multiple cues to recognise various situations of the subjects. 

1.4 Research Aims 

Toddlers are most vulnerable to fall injuries in an indoor home environment, but 

there has been no study on automatic detection of children’s fall risks. On the 

other hand, many efforts have been made to tackle the hazard of unintentional 

falls for elderly people by detecting their falls in the computer recognition area 

[16-19, 22, 24, 28-42]. This is because the population is ageing and late detection 

of fall accidents can be fatal to elderly people living independently. Most of the 

existing approaches to elderly fall detection only focus on detecting fall events 

without doing anything about prevention. Although some of them collect the fall 

data to evaluate the subject’s personal fall risks for later prevention, there is no 
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prevention against falls during the data collection and also against irregular falls 

afterwards. Some wearable devices provide prompt protection such as an airbag 

[43] and an overhead tether [44] when sensing a fall, but they require the user to 

wear the protection all the time. 

Thus, the work in this thesis proposes an automatic approach to recognition of 

risk factors of a toddler’s fall injury in the home environment. The methods could 

be used to give a nearby caregiver an alert to eliminate the factors before a fall 

happens. This is different from the studies conducted previously, which focus on 

detecting fall events and are specifically tailored towards elderly people.  

Although vision-based analysis is not as reliable as sensors attached to a human 

body for estimating human status, it is attractive because it does not require a 

subject to wear a device constantly, especially important in the case of young 

children, who would not accept such a continuous restraint. Besides, vision-based 

analysis can cope with various problems in terms of human detection and status 

recognition, which are the technical problems of this research presented in Section 

1.2. Therefore, this research aims to investigate and develop image analysis 

methods to recognise risk factors of a toddler’s fall injuries in an indoor home 

environment in real time. 

The main objectives of this research are: 

 Identification of key factors causing fall injuries; 

 Investigation and development of image analysis methods for 

differentiating a toddler from other foreground objects; 

 Investigation and development of image analysis methods for recognising 

the key risk factors by collecting information on the toddler and the 

environment. 

First of all, fall-prone situations of toddlers are investigated to identify the key 

factors causing fall injuries. As the recognition of fall risk factors is expected to 
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assist caregivers’ supervision to toddlers, this research focuses on the factors 

which need to be continuously watched rather than those which can be simply 

prevented by installation of a safety product. Those risk factors can be generated 

from toddlers’ behaviours such as climbing or from their environment such as 

spills, as illustrated in Figure 3. 

  

(a) (b) 

Figure 3. Fall-Prone Situations by (a) Behaviour [45] and (b) Environment [46] 

For automatic detection of the identified risk factors, existing image analysis 

methods need to be studied, and novel methods are developed and tested with 

respect to separation of a toddler from other foreground objects and collection of 

information on the toddler and the surroundings. This is based on the assumption 

that the target toddler is left alone on the scene but a caregiver stays nearby, e.g. 

next room. As the proposed recognition system is meant to detect risk factors 

from real-time images, the image analysis methods should not require too much 

computation to be processed in real time. 

1.5 Thesis Layout 

Chapter 2 reviews all the literature related to the work for achieving the 

objectives of this research. First, organisational suggestions to prevent young 

children’s falls are scanned to identify risk factors of a toddler’s fall injury. Then 
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previous work based on image analysis is studied regarding detection of the fall 

risk factors such as human detection, handling of regional merges and splits, 

animal classification, and camera calibration.  

Chapter 3 analyses more than two thousand fall records of toddlers at home, 

who were treated in hospital, and identifies the risk factors of a toddler’s fall 

injury in the home environment. The organisational suggestions and the real fall 

stories are filtered to extract fall-injury-prone situations, generated by behavioural 

or environmental changes since this research aims to aid a caregiver’s continuous 

supervision of those changes.  

As the work presented in this thesis proposes novel approaches to separating 

humans from other foreground figures for risk factor detection, Chapter 4 and 

Chapter 5 focus on human detection. Clutter classified as the foreground is dealt 

with and differentiated from humans in Chapter 4 because it can become a 

tripping or slipping hazard. The dynamic movements of human body parts when 

walking are exploited for the classification of a human and clutter, and this is 

different from most previous studies, which use appearance information for 

human detection. The method is, however, not good enough to discriminate 

humans from pets, which also move their body parts diversely, and therefore other 

cues are adopted for this discrimination in Chapter 5. 

The last chapter clarifies this research’s contributions, limitations, and future 

work for improved results. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Published literature is reviewed in this chapter with respect to the research 

objectives identified in Section 1.4. The objectives are identification of key factors 

causing fall injuries, and investigation and development of image analysis 

methods of finding a toddler and collecting information on the toddler or the 

environment to detect the key risk factors.  

For the identification of fall risk factors, suggestions for preventing young 

children’s falls were collected from organisations expert in child safety and these 

are reviewed in Section 2.2. These suggestions are based on knowledge of the 

potential for fall accidents, which is believed to help reduce the risk of serious 

injury [1]. Section 2.3 studies existing image analysis methods for human 

detection, handling of regional merges and splits, animal classification, and 

camera calibration since they are related to the toddler classification and 

information collection in images. 

2.2 Suggestions to Prevent Children’s Falls 

There are several organisations which aim to promote changes in attitudes, 

behaviours, laws, and the environment to prevent accidental injury to children by 

providing information, advice, resources, and training [47]. There are also 

research centres specialised in the study of injury and injury prevention. They 

provide the public with information on how children generally get injured by 

falling in the home environment and what should be done to prevent the fall 

injury. The information about fall injury prevention can be largely divided into 
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two categories: single modification and supervision-based action. Single 

modification is what needs to be done at a single time to reduce children’s fall 

risks such as installation of a safety product or modification of an environment 

according to safety standards. Supervision-based action is what to do when a 

change which may cause a children’s fall is observed such as clearing clutter 

when it is found to have potential for tripping. The suggestions for fall injury 

prevention are detailed by the organisations and the two categories as follows. 

2.2.1 Child Accident Prevention Trust 

The Child Accident Prevention Trust (CAPT) is a UK national charity 

committed to reducing the number of children and young people, who are killed, 

disabled, or seriously injured as a result of accidents. CAPT offers several 

factsheets and sample copies of leaflets on children’s accident risks based on 

expert knowledge of child accident prevention and practical experience of 

supporting parents and practitioners; all are available through its official website 

[48].  

For single modification to prevent fall injuries at home, CAPT suggests fitting 

safety gates to the top and the bottom of stairs and safety catches on upstairs 

windows. CAPT also advises keeping furniture away from windows and checking 

balcony railings to make sure that children cannot climb on them or fall through 

gaps. For supervision-based action, CAPT recommends parents to wipe up spills 

as soon as they happen to avoid slipping and to encourage children to put their 

toys away after use to avoid trips [1, 49, 50]. 

2.2.2 Safe Kids 

Safe Kids Worldwide is a global network of organisations whose mission is to 

prevent accidental childhood injury, a leading killer of children aged fourteen and 

under. More than 450 coalitions in 16 countries bring together health and safety 

experts, educators, corporations, foundations, governments, and volunteers to 



14 

 

 

  14

educate and protect families [51]. This section refers to child injury prevention 

factsheets and recommendations from Australia, New Zealand, and United Arab 

Emirates members.  

Regarding single modification to prevent serious injuries relating to falls, 

Kidsafe, the Australian member of Safe Kids, advises that safety-gates are an 

essential preventative choice in areas such as stairs, hallways, and entrances and 

that the vertical gaps between slats of balustrades should be designed to standard 

recommendations lest children get trapped [52]. Kidsafe also indicates the use of 

nursery furniture which complies with Australian standards, straps on high chairs, 

swings or strollers, a window-guard in front of children’s windows, a soft surface 

where children are learning to walk, and corner bumpers covering sharp corners 

[53, 54]. Safe Kids United Arab Emirates suggests keeping stairs well-lit and 

furniture away from windows for other single modifications. For supervision-

based action, Safe Kids Worldwide suggests getting rid of hazards such as folded 

carpets, electric wires, toys, shoes, and clothing on the floor, and Safekids New 

Zealand advises discouraging children from climbing on furniture such as chairs 

and couches [55, 56]. 

2.2.3 European Child Safety Alliance 

The European Child Safety Alliance (ECSA) as a branch of EuroSafe, the 

European Association for Injury Prevention and Safety Promotion, undertakes 

activities including research studies on child injury issues, publication of reports, 

and recommendations that ultimately could enhance the quality of children’s lives 

in Europe [57].  

The single modification tips from ECSA are to use straps when putting the child 

into a high chair, swing, changing-table, or stroller and shatter-resistant film on 

glass surfaces where children could fall. The tips also include the use of a soft 

carpet beside a child’s cot or bed in case the child falls out and corner covers on 
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furniture with sharp corners. ECSA guides installation of approved stair-gates 

with vertical bars at four-inch intervals at the top and the bottom of stairs and 

child-resistant window-guards throughout the home. ECSA’s supervision-based 

action tip is to remove tripping hazards on the floor and stairs [58]. 

2.2.4 Monash University Accident Research Centre 

Monash University Accident Research Centre (MUARC) is the world’s leading 

injury prevention research centre, which identifies emerging injury problems, 

determines and evaluates safety strategies, and advises on policies to bring about 

reductions in injury-related harm [59]. MUARC runs the Victorian Injury 

Surveillance Unit (VISU), a fundamental resource for injury prevention, and 

analyses data to identify injury issues, monitor trends, and develop potential 

countermeasures to injury. VISU also produces the influential Hazard publication 

to provide up-to-date information on current and emerging injury issues and 

prevention strategies [60]. This section refers to the fall-related editions of 

Hazard. 

The recommendations regarding single modification from MUARC are 

installation of stair-gates and window-guards as well as slip-resistant surfaces and 

impact-absorbing surfaces throughout the home. The recommendations also cover 

improvements in the design and construction of balconies, stairs, and steps in 

terms of geometry and visibility with functional handrails provided [61]. The 

recommendation regarding supervision-based action is to discourage children 

from climbing and playing on furniture as household furniture items are strongly 

represented in falls of children under five [45, 62]. 

2.2.5 Others 

The Centers for Disease Control and Prevention (CDC) promote health and 

quality of life by preventing and controlling disease, injury, and disability [63] in 

the United States of America. CDC presents a document about falls in the home 
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environment in the National Ag Safety Database, which provides information 

about agriculture-related safety.  

The suggestions in the document regarding single modification are to tape the 

edges of rugs down to keep children from skidding and not to stretch electrical 

cords across rooms. CDC also advises keeping stairs and steps well-lit with sturdy 

handrails and arranging furniture so that traffic patterns within rooms are as 

straight and wide as possible. The CDC recommendation particularly for children 

is installation of window-guards and gates at the top and the bottom of stairways. 

The suggestions regarding supervision-based action are to wipe up spills 

immediately, to keep floors clear of clutter, and to teach children to pick up their 

toys after use and never run through the house [64].  

Other organisations suggest keeping furniture away from windows and securing 

children in a restraint system when using a high chair for single modification, and 

they recommend parents to decrease children’s climbing temptation for 

supervision-based action [65, 66]. 

2.2.6 Summary of Suggestions to Prevent Children’s Fall 

Injury 

A summary of the organisational suggestions to prevent children’s fall in the 

home environment is shown in Table 1. The suggestions categorised into 

supervision-based action are referred to in Chapter 3 for the identification of fall 

risk factors requiring continuous supervision for prevention. 
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Table 1. Summary of Suggestions to Prevent Children’s Falls 

Organisation Single Modification Supervision-based Action 

Child Accident 
Prevention Trust 

- Instal stair-gates 
- Instal window-guards 
- Put furniture away from windows 
- Design safe banister 

- Wipe spills 
- Put toys away after use 

Safe Kids - Instal stair/hallway/entrance gates 
- Design narrow balustrade slat 
- Use standard nursery furniture 
- Use a strap in a high chair 
- Instal window guards 
- Use a soft surface to walk 
- Place corner bumpers 
- Keep stairs well-lit 
- Put furniture away from windows 

- Remove tripping hazards 
- Discourage climbing 
furniture 

European Child 
Safety Alliance 

- Use straps in a high chair 
- Use shatter-resistant film on glass 
- Place a soft carpet beside a bed 
- Cover sharp corners 
- Instal stair-gates 

- Remove tripping hazards 

Monash University 
Accident Research 
Centre 

- Instal slip-resistant surfaces 
- Instal impact-absorbing surfaces 
- Design safe balconies 
- Design safe stairs 
- Instal stair-gates 
- Instal window-guards 

- Discourage climbing 
furniture 
- Discourage playing on 
furniture 

Others - Tape edges of rugs down 
- No electrical cords across rooms 
- Keep stairs well-lit 
- Instal sturdy handrails on stairs 
- Arrange furniture for good 
navigation 
- Instal window-guards 
- Instal stair-gates 
- Put furniture away from windows 

- Wipe spills 
- Clear clutter on the floor 
- Decrease climbing 
temptation 
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2.3 Related Image Analysis Methods 

In order to develop methods for automatic detection of the fall risk factors, 

which are identified in Chapter 3, related image analysis methods are reviewed in 

this section. As the fall risk factors are related to a toddler’s behaviour and 

environment, the automatic detection requires to classify a toddler and other 

foreground objects and collect information related to them in images. First, 

diverse methods of human detection are studied in Section 2.3.1 for the toddler 

classification. Since the detected toddler and foreground objects need to be 

individually tracked to collect useful information, Section 2.3.2 reviews published 

literature related to handling of regional merges and splits, which is a typical 

problem of tracking. Considering pets in the toddler classification, existing 

methods of animal classification are investigated in Section 2.3.3, and camera 

calibration methods are studied in Section 2.3.4 for use of 3D world information. 

2.3.1 Human Detection 

Nearly every vision-based analysis of human motion starts with human 

detection, which aims at segmenting regions corresponding to people from the rest 

of an image. Human detection is significant since the subsequent processes in 

vision-based analysis of human motion such as tracking and action recognition, 

are greatly dependent on it. This process usually involves foreground 

segmentation and object classification [23], but some approaches do not have the 

stage of classifying objects or discarding non-human objects after the 

segmentation. Instead, they go straight to the next process such as tracking with 

the assumption that all the noteworthy segmented foreground regions correspond 

to humans. This section only reviews the studies attempting to classify human and 

non-human objects since the objectives of this research include the detection of 

not only a toddler but also other foreground objects such as toys and pets.  
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The studies should not use any markers on the body of the subjects since one of 

the main reasons why the work in this thesis uses image analysis technology is to 

free the subject toddler from wearing a device continuously. The whole process of 

reviewed human detection methods should be automated, but partial manual work 

is allowable for the initialisation, which is normally required at a single time when 

the camera in use is installed such as camera calibration. 

The reviewed work is limited to that published within the last five years from 

2004 to 2008, as there is a large amount of literature related to human detection. 

The review also excludes approaches to analysing images where a small part of a 

human such as a face or hands is dominant and the detection only targets the part. 

This is because the image to be analysed in this work needs to cover a space 

where the subject toddler spends time for detection of fall-prone situations, and a 

small part of the toddler could not be captured in such a high resolution. 

Hence, the literature to be reviewed with respect to human detection in images 

was selected according to the following principles: 

 Markerless image analysis methods; 

 Fully automated human detection methods; 

 Publications between 2004 and 2008; 

 Studies, which include classification of human and non-human foreground 

objects; 

 Approaches to detecting a human in images where more than half of the 

human body appears. 

The review is categorised by the kinds of cues used for human classification: 

geometric knowledge, skin colour, 3D human model, sample training, motion 

information, and others. 
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A. Geometric Knowledge 

Although the human body size varies accordingly to genes and environmental 

factors, normal and adult people have constantly structured and proportioned body 

parts. The human body structure and proportion are precisely different from any 

other object in the world and can be used to detect humans in images. 

 

Figure 4. Standard Human Skeleton Model [67] 

The method of Fan and Wang [67] starts with detection of differences between 

two successive images for motion segmentation, assuming that the background is 

motionless. Then a dummy skeleton consisting of elongated parts such as an arm 

and a thigh and joints such as a shoulder and a coxa, is extracted from the 

silhouette of each segmented region. The conspicuous joints of the extracted 

skeleton are examined and confirmed on the basis of several rules given by the 

standard human skeleton model shown in Figure 4. The dummy skeleton is 

compared with the standard skeleton to determine the positions of inconspicuous 

joints such as elbow and knee joints. As the pre-defined scales of the lower and 

upper limbs influence locating of the inconspicuous joints, wrong scales in some 

cases cause errors, affecting the accuracy of the result. The skeleton is useful not 

only to detect the human body but also to estimate its pose, but the results are 

error-prone when some joints are hidden or kept out of the image. 
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Figure 5. Human Component Search Margins [68] 

In order to discard any moving object which is not a human being, Schleicher 

and colleagues [68] applied a principal components analysis3 (PCA) algorithm in 

a hierarchical manner after background subtraction. Owing to the many different 

orientations and poses of a human body, it is difficult to apply any kind of pattern 

recognition method directly to the full image. Hence, a PCA method is only 

applied to some specific regions within the region of interest (ROI) of each 

detected object. Those regions are located where the main human components, the 

left and right arms and the head, are supposed to be found, and variable margins 

are defined to look for them, as shown in Figure 5. This is because the 

components can be placed in different positions with respect to the main body and 

can have different sizes. In order to recognise each body component within the 

correct region, PCA is trained with samples of arms and heads in different poses 

and orientations. Sample training is another famous method to detect a human and 

Section D reviews studies which chiefly use a sample training method. Although a 
                                                      
3 Principal component analysis is a statistical technique that linearly transforms an original set of 

variables into a substantially smaller set of uncorrelated variables that represents most of the 

information in the original set of variables [69]. 
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human in frontal views is successfully detected at a very high rate, lower success 

rates are obtained in back views and lateral views, and long-term occlusions cause 

a fairly high rate of failed detections. 

 

Figure 6. Human Body Pictorial Structure [70] 

Ramanan and colleagues [70] present two methods of human detection. One is a 

bottom-up approach that looks for candidate body parts based on edges and 

motion, the candidates being clustered to find assemblies of parts, which might be 

people. Each torso cluster is interpreted as a unique person, and one temporal 

pictorial structure like the one in Figure 6 is instantiated for each cluster to 

confirm limbs. As this method localises the torso first and then finds the 

remaining limbs, it has problems in estimating the limbs when the torso 

localisation is poor. The other method is a top-down approach that looks for an 

entire person in typical poses, assuming that people tend to occupy certain key 

poses. Given an edge image, a tree pictorial structure in a pose, like the one in 

Figure 6, is searched for, using rectangle chamfer template costs to construct limb 

likelihoods. Global constraints are also enforced for human detection such as 

similar appearances of left and right legs. The top-down method works better than 

the bottom-up method, but the subject people need to behave predictably or to be 

observed for a long time owing to the detection of certain key poses in the top-

down method. 
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In order to detect pedestrians near inner-city bus stops, Bird and colleagues [71] 

used very simple geometric knowledge compared with the above studies. First, 

the background is subtracted, and blobs are extracted by identifying regions of 

connected foreground pixels. Then the shape of each blob on the scene is 

examined at every frame to determine if the blob corresponds to a pedestrian, 

using heuristics as follows: 

 The blob’s height is greater than its width; 

 The blob is not within ten pixels of the edge of the image; 

 The blob has not merged within the past five frames; 

 The blob’s real world height is between 60 and 80 inches. 

For the last heuristic check related to the real world height, the camera in use is 

calibrated, with the angular layout of most bus stops and the sidewalks around 

them being used as the required geometric primitives for camera calibration. 

Fihl and colleagues [72] employed simple characteristics of human silhouettes. 

After an image is processed by background subtraction and noise is removed with 

a median filter, split blobs of a single human owing to some error in the 

background subtraction are merged into bounding boxes, each representing one 

human. This merging is done by investigating the size and proximity of the 

bounding box of each blob. Since the silhouette of a person can roughly be 

described by an ellipse, the silhouettes in the merged bounding boxes are 

compared with a simple body model based on an ellipse. This body model defines 

limits for the ratio between the major and minor axes of the ellipse, the slope of 

the major axis, the fidelity between the ellipse and silhouette, and the area of the 

silhouette. 

B. Skin Colour 

Although the colour of a human body in images from a surveillance camera 

cannot be consistent because of clothing, a face or hands are not usually covered 
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by clothing and constantly appear in a skin colour. Given this fact, many 

approaches have tried to search the skin colour to detect humans within an image. 

As it is difficult to distinguish between a face and hands or between different 

people only using the skin colour cue, it is common practice to combine it with 

other human cues such as geometric constraints. 

 

Figure 7. Torso Primitive on Vitruvian Man [73] 

Micilotta [73] proposed two different methods of detecting humans, both 

involving a skin colour and eventually estimating poses in cluttered scenes. The 

first method uses the torso primitive, shown in Figure 7, to detect a human torso 

within background-segmented regions and segments skin colour regions, which 

belong to a face and hands, based on a skin model. The skin model is built with 

the colour information of the facial region estimated from a detected torso. The 

second method searches for four body parts, which are a face, a torso, legs, and 

hands, using sample-trained body parts detectors, and assembles the body parts, 

which have been correctly detected, using coarse heuristics. Skin colour cues are 

exploited here to reduce false detections of the body parts. The skin colour models 

would be naturally susceptible to background clutter like wooden furniture and 
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could be unreliable when the subjects hold their hands behind their backs. The 

entire process of the second method is a little too slow for real-time operation. 

Yang and colleagues [74] fused depth, colour, and motion features for detection 

of multiple people. The depth and motion features are used to segment moving 

foreground objects from the background, despite the changes in illumination or 

camera movement, and also to separate two people appearing close together in a 

projected image but being at different depths in the physical space. The colour 

feature concentrates on human face detection to confirm whether the segmented 

region corresponds to a human. As several body parts like a face, hands, arms, or 

legs generally appear in the skin colour, only skin colour regions with enough lip 

colour pixels at the proper position are kept as face region candidates. The major 

limitation of this system is its low speed owing to the multi-modal fusion. 

 

Figure 8. Face Colour Model [76] 

There are other ways of analysing colour information for face detection. After 

finding skin-coloured blobs, Pszczolkowski and Soto [75] applied three criteria to 

each RGB channel of the blobs to classify face and non-face. The criteria are 

normalised standard deviation, contrast, and uniformity or energy. Choi and 

colleagues [76] exploited a face colour model, produced from four differently 

illuminated scenes of one person, as shown in Figure 8. The red and green colour 

histogram of the face model is normalised, and the quantisation of the spatial 

colour histogram enables identification of different faces as well as differentiation 

of a face from other regions in the skin colour. From the scale of the detected face, 

the rest body area is estimated. 
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Some studies combine skin colour and geometric information in order to 

separate a face from other body parts appearing in a skin colour. Ammouri and 

Bilodeau [77] monitored medication intake by detecting and tracking a face and 

hands in images, where the upper body of a single human is visible. After 

detection of skin-coloured regions, a face region is determined among those 

regions according to two shape-related rules. The first rule is that the ratio 

between the width and the height of the region is smaller than 2.25, and this 

rejects regions that are too wide and narrow, like a forearm. The second one is that 

the ratio between the surface and the square of the perimeter of the region is larger 

than 0.02 so as to measure the circularity and find elliptical shape regions. These 

rules are just good enough to distinguish between a face and arms.  

For gesture recognition, Kang and colleagues [78] detected skin blobs from the 

difference image between successive frames and judged the face and the hands on 

the basis of size, position and distance of each blob. For a high detection rate, an 

additional face detector is used to classify regions into faces and non-faces by 

sample training. Medioni and colleagues [79] applied more complex information 

in addition to skin colour detection for detection of multiple people. Heads are 

first detected using image intensity, skin coloured pixel detection, and elliptical 

edge detection and initialise a 2D articulated upper body model for locating arms 

and estimating body poses. 

C. 3D Human Model 

As a human image is a projection of a human body, which is a 3D figure, into a 

2D space, the human in the image can look very different depending on the 

position or the angle of the camera as well as the human pose. Therefore, 3D 

human information has been adopted in some work to detect a human and further 

track the motion more accurately. 
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Figure 9. Human Geometric Model [80] 

Pham and colleagues [80] proposed a multi-camera system to detect emergency 

situations and analyse long-term activities which enforce medical follow-up. 

Silhouettes are extracted by subtracting the background in all camera views, and 

projections of the 3D human model in Figure 9 are fitted to the detected 

silhouettes. The human geometric model, a planar rectangle oriented in space, is 

represented by a 5D vector (x, y, α, w, h), where the couple (x,y) and α 

respectively indicate the 3D position on the ground and the orientation angle of 

the model in relation to a world reference and w and h stand for the width and the 

height of the rectangle. As their aim is to recognise basic actions such as standing, 

sitting, and lying down, simple rules based on the ratio of the width and the height 

of the 3D rectangle, produce promising results. 

For human posture tracking and classification, Pellegrini and Iocchi [81] 

exploited a stereo vision camera, the 3D data from which are matched with a 3D 

human body model. After background subtraction is performed by consideration 

of intensity and disparity components, small foreground blobs owing to noise are 

removed. Then each pixel belonging to the extracted blobs is projected in the 

plan-view, and the foreground segmentation is refined by detection of connected 

components in the plan-view space. This is possible since the stereo camera in use 

is calibrated when it is installed. The segmented data are matched with a 3D 

model for person posture recognition. Since the posture recognition tries to 



28 

 

 

  28

distinguish between the principal postures such as up, sit, bent, on knee, and lying, 

the 3D model is composed of a head-torso block and a leg block without taking 

into account arms and hands. As shown in Figure 10, the head-torso block is 

formed by a set of 700 3D points that represent a 3D surface, and the legs are 

unified in one articulated body. This model must be adapted to the person being 

analysed and can be built by assuming that the legs are always in contact with the 

floor and the ratio is constant between the dimensions in the model parts and the 

height of the person. 

 

Figure 10. 3D Human Model [81] 

Kehl and Gool [82] applied a more complicated 3D human model, covering all 

the articulated body parts significant in recognition of detailed body poses. Their 

algorithms start with segmenting the foreground by subtracting the background in 

each of five camera views and extracting colour edges from the five foreground 

masks for fast reconstruction of the 3D surface. The extracted data are fitted to the 

body model in Figure 11, built from superellipsoids and driven by a human 

skeleton. The skeleton consists of ten joints with a total of 24 degrees of freedom 

(DOFs), and the superellispoids are a special case of superquadrics, offering a 

better approximation for complex body parts.  
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Figure 11. 3D Articulated Human Model [82] 

D. Sample Training 

A computer can learn human characteristics from a large number of human 

positive and/or negative samples in order to differentiate humans from other 

objects. This learning procedure is called training and is also one of the popular 

vision-based methods for human detection. 

 

Figure 12. Spatial Relations of Body Parts [83] 

For detection and tracking of humans, Wu and Nevatia [83] used three body 

part detectors trained with respective sample images of a head-shoulder, a torso, 

and legs. Besides the part detectors, a full-body detector is also learned, and 

Figure 12 shows the spatial relations of the body parts. The detectors are learned 

from silhouette-oriented features of 1742 frontal/rear views and 1120 side views 

of humans and 7000 negative images. Assuming that at least the head of a human 

in the image is visible, initial human candidates are detected on the basis of the 
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responses of the head-shoulder and full-body detectors. Then each candidate is 

verified by the torso and legs detectors, considering their depth to overcome 

occlusions. The depth order is estimated by their y-coordinate, with the 

assumption that the camera looks down to a ground plane which the humans walk 

on, and the further the human from the camera, the smaller his or her y-

coordinate. 

In order to detect pedestrians in crowded real-world scenes with severe 

overlaps, Leibe and colleagues [14] combined the local information from sampled 

appearance features with global shape cues. The training images include a wide 

range of different clothing and accessories such as backpacks, handbags, or books. 

For the local appearance features, scale-invariant interest points and the patches 

around them are extracted from 105 training images and their mirrored versions 

and used for probabilistic top-down segmentations. For the global shape cues, 

pedestrian silhouettes are extracted from 210 training images, plus the mirrored 

ones, and fitted to the image to refine the segmentations. 

Dalal and Triggs [84] proposed the use of histograms of oriented gradients 

locally normalised with 2478 human positive training examples and patches from 

1218 person-free training photos. This was based on the idea that local object 

appearance and shape can often be characterised rather well by the distribution of 

local intensity gradients or edge directions. For the histograms of oriented 

gradients, the separate gradients of sample images are computed for each colour 

channel with Gaussian smoothing. Gaussian smoothing also calculates weighted 

votes in pixels for an edge orientation histogram channel and accumulates the 

votes into orientation bins over local spatial regions. 

Viola and colleagues [85] integrated motion information and image intensity 

information to detect a walking person. The detector based on the motion 

information is trained with 2250 consecutive frame pairs of video sequences of 

street scenes with all pedestrians marked with a box in each frame and 2250 pairs 
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of pedestrian-free frames. The detector based on the appearance information is 

trained on static patterns of the same video. As a single classifier for humans 

would require too many features to train with, cascade architecture is used here to 

make the detector extremely efficient. In cascade architecture, input images are 

passed to the first classifier for deciding true or false, and a true determination 

passes the input along to the next classifier in the cascade. The input can be 

classified as a true example only when all classifiers vote true, while a false 

determination halts further computation and returns false.  

Sidenbladh [11] only employed motion information to train with sample images 

for human detection in video sequences since the appearance of humans varies 

hugely owing to clothing, identity, weather, and amount and direction of light in 

an uncontrolled outdoor environment. The motion cue for the detection is robustly 

estimated by means of dense optical flow, which consists of the horizontal flow 

and the vertical flow between a pair of consecutive images in a sequence. The 

training set contains 443 human flow patterns manually collected from dense flow 

images of many individuals in different types of environment, and 11688 non-

human patterns automatically collected from similar sequences without humans. 

In order to detect a salient human in robot vision, Kwak and colleagues [86] 

generated three feature maps from colour, luminance, and motion features of input 

images and combined them into a salience map. Moving objects are detected with 

the salience map, and are then classified into human and non-human by a SVM 

classifier trained with 150 human candidates and non-human candidates including 

trees and street lamps. The salience map is used again to determine the most 

salient human among the verified humans. 

Face detection by sample training can help human detection. Schneiderman and 

Kanade [87] used multiple classifiers to detect faces at any size, location, and 

pose. Each classifier is based on the statistics of localised parts, and each part is 

designed to capture various combinations of locality in space, frequency, and 
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orientation. The class-conditional statistics of these part values are collected from 

samples of face and non-face images so as to build each classifier. In detection, 

each classifier computes the part values within the image window to look up their 

associated class-conditional probabilities and then make a decision by comparison 

of partial likelihood ratio with a threshold. For human detection, Ishii and 

colleagues [88] proposed detection of faces and heads together in order to also 

detect people who are not facing a camera. Moving regions are detected by 

differentiation of three consecutive frames, and four directional (vertical, 

horizontal, and both diagonal) edge features are extracted from the regions and 

compared with face, non-face, head, and non-head samples for the face and head 

detection.  

Not only to human detection like the above studies can the sample training 

method be applied but also to further recognition of human motion or poses. Fanti 

and colleagues [89] present a hybrid probabilistic model, which is efficient and 

effective for modelling and recognition of human motion. The probabilistic model 

combines global variables such as translation of the whole body, and local 

quantities such as relative position, velocities, and appearances of the body parts. 

For the recognition of walking motion, the model is trained with 378 frames of a 

single person walking from right to left, parallel to the camera, assuming that the 

height of a person in testing images is similar to the one in the training set. The 

approach of Hochuli and colleagues [90] detects non-conventional human 

movements using conventional and non-conventional motion sample videos. The 

foreground objects are segmented by background subtraction and tracked to 

extract features such as position, speed, changes in direction, and temporal 

consistency of the bounding box dimension. These features make up feature 

vectors, and the vectors are matched against the reference feature vectors obtained 

from sample videos. 
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In order to estimate the body configuration and pose in 3D space, Mori and 

Malik [91] stored exemplar 2D views of the human body in a variety of different 

configurations and perspectives with respect to the camera. On each of these 

views, the locations of the body joints are manually marked and labelled for future 

use. The input image is then matched to each stored view, using the technique of 

shape context matching in conjunction with a kinematic chain-based deformation 

model. The locations of the body joints are transferred from the exemplar view to 

the test shape for determining the 3D body configuration.  

E. Motion Information 

 The cues previously presented for human detection are generally based on 

human appearance such as geometric features of humans and skin colour although 

some of them are integrated or trained with a non-appearance cue, motion 

information. This section reviews studies which mainly use motion information 

for human detection in images. 

The method of Antonini and colleagues [92] targets pedestrians to detect and 

track and uses a behavioural model based on their trajectories. A calibrated 

monocular camera is used to capture images, and background-subtracted 

foreground regions are filtered to be 170 cm in height in the real world, with the 

assumption that the averaged height of human beings equals 170 cm. Then they 

are tracked to obtain their trajectories, and the trajectories are filtered to be the 

most human-like according to the behavioural model. 

Dimitrijevic and colleagues [93] proposed a template-based approach to 

detecting human silhouettes in a specific walking pose. The templates consist of 

short sequences of 2D silhouettes, obtained from motion capture data, and thus the 

motion information helps distinguish actual people moving in a predictable way 

from static objects, whose outlines roughly resemble those of humans. The spatio-

temporal templates contain silhouettes rendered from six different camera views 
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and at seven different scales and are matched against portions of the input 

sequence. 

For surveillance by pan/tilt/zoom cameras, Davis and colleagues [94] used 

motion history images as the temporal signature to separate human activity from 

environmental noise and camera noise. Human activity includes a person walking 

or cycling and moving vehicles, environmental noise covers tree shaking, smoke, 

and reflections, and camera noise comprises brick work, building edges, and lamp 

posts. Hence, human activity is defined as any translating object with a minimum 

spatial size and temporal length.  

In order to prevent pedestrians at crossroads from being hit by vehicles, the 

algorithms of Pai and colleagues [95] detect and track pedestrians by combining 

the use of a pedestrian model and the walking rhythm of pedestrians after 

background subtraction. The pedestrian model is based on a non-rigid body, and 

its main feature is the width-to-height ratio of the human torso, located by 

matching an ellipse. The torso detection helps to locate the feet part, and the 

walking rhythm can be measured. Then pedestrians are separated from vehicles 

through comparison of the non-rigid motion of the lower half of the torso with the 

rigid motion of a vehicle. 

F. Others 

This section reviews human detection methods based on cues, which are not be 

included in the previous categories. 

Munoz-Salinas and colleagues [96] took advantage of depth information to 

detect and track multiple people, using a stereo camera placed at an under-head 

position. After modelling the background as a geometrical height map of the 

environment, the foreground is extracted from the background and presented on a 

plan view map. The plan view map is called an occupancy map that registers in 

each coordinate the amount of foreground points projected in it. Assuming a 
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person as an object in the occupancy map with sufficient weight, connected 

components with high occupancy level and appropriate dimensions are detected. 

Then a face detector from an open source is applied within the areas to confirm 

the human detection.  

 

Figure 13. Standing Humans Intersecting Horizon Line (Region A) [97] 

The method of Sato and Aggarwal [97] for human extraction is very simple 

because it is only intended to detect standing humans. After background 

subtraction, any noise is removed by keeping relatively large blobs and limiting 

the viewing range within a stripe, covering a small area above and below a 

horizon line, shown as Region A in Figure 13. The horizon line is set manually to 

correspond to the height of the camera lens. 

G. Summary of Studies in Human Detection 

The reviewed studies regarding human detection in images are summarised by 

the cues for human detection, motion segmentation methods, aims, and drawbacks 

in Table 2. The cues for human detection are categorised into geometric 

knowledge, skin colour, 3D human model, sample training, motion information, 

and others, and the method of motion segmentation preceding human detection is 
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checked in each study. As the subsequent processes such as tracking and action 

recognition, are greatly dependent on human detection [84] and the cues for 

human detection should be chosen in the light of all the processes, the aim of each 

work is also studied. Lastly, the general drawbacks of each cue for human 

detection are synthesised. 

For motion segmentation, there are two general kinds of methods. The first one 

is background subtraction methods, which capture background images in advance 

and subtract the background from current images to segment foreground objects. 

The second is successive image differentiation methods, which compare 

successive images and obtain their differences. The background subtraction 

methods are much more popular than successive image differentiation methods. 

The general aim of the reviewed studies is human tracking, by which simple 

activities of people can be recognised such as coming in and out of a specific area 

although the studies adopting sample training methods generally focus on the 

human detection task. Owing to the variable appearances of humans, detecting 

and tracking humans in images is a challenging task [84]. The other studies 

estimate more detailed information on a human body such as gestures or whole 

body poses. In order to acquire such detailed information, a 3D model or a stick 

figure human model, which is fairly complicated, is exploited, or multiple cues are 

applied together. 

As most of the cues used for human detection in images are related to human 

appearance, they have problems when some body parts are occluded and hidden 

from camera view. The use of a constant skin colour model can have other 

problems in that different races have different skin colours and illumination 

changes cause different skin colours. In order to overcome the occlusion 

problems, especially the occlusion by another body part in variable poses, 3D 

human body models attempt to recover 3D human poses and motions, but it is 

fairly hard to compute at least thirty joints and their kinematical constraints. Many 
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studies propose a sample training method, but sample training requires a large 

number of human positive and/or negative images. 

Table 2. Summary of Studies in Human Detection 

Cue for 
Human 
Detection 

First Author 
(Year) of Related 
Studies 

Motion 
Segmentation 
Method 

Aim Drawback 

Fan (2004) Successive Image 
Differentiation 

Human Pose 
Estimation 

Schleicher (2005) Background 
Subtraction 

Indoor Human 
Tracking 

Ramanan (2007) N/A Human 
Articulation 
Tracking 

Bird (2005) Background 
Subtraction 

Pedestrian 
Detection 

Geometric 
Knowledge 

Fihl (2006) Background 
Subtraction 

Human Tracking 

Occlusions can 
cause errors in 
application of 
geometric 
knowledge. 

Micilotta (2005) Background 
Subtraction 

Human Pose 
Estimation 

Yang (2005) Successive Image 
Differentiation 

Human Tracking 

Pszczolkowski 
(2007) 

N/A Human Detection 

Choi (2006) N/A Human Tracking 

Ammouri (2008) N/A Human Activity 
Recognition 

Kang (2007) Successive Image 
Differentiation 

Gesture 
Recognition 

Skin 
Colour 

Medioni (2007) N/A Human Pose 
Estimation 

Skin colours 
can vary 
depending on 
race or 
illumination. 

The face and 
hands should 
not be occluded. 

 

 

 

 



38 

 

 

  38

Table 2. Summary of Studies in Human Detection (Continued) 

Pham (2008) Background 
Subtraction 

Human Activity 
Recognition 

Pellegrini (2008) Background 
Subtraction 

Human Pose 
Estimation 

3D Human 
Model 

Kehl (2006) Background 
Subtraction 

Human Tracking 

A 3D human 
model is 
computationally 
complex and 
expensive.  

Wu (2007) N/A Human Detection 

Leibe (2005) N/A Pedestrian 
Detection 

Dalal (2005) N/A Pedestrian 
Detection 

Viola (2005) N/A Pedestrian 
Detection 

Sidenbladh 
(2004) 

N/A Human Detection 

Kwak (2007) N/A Human Detection 

Schneiderman 
(2004) 

N/A Human Detection 

Ishii (2004) Successive Image 
Differentiation 

Human Detection 

Fanti (2005) N/A Human Motion 
Recognition 

Hochuli (2007) Background 
Subtraction 

Human Motion 
Recognition 

Sample 
Training 

Mori (2006) Background 
Subtraction 

Human Pose 
Estimation 

A large number 
of sample 
images are 
required with 
manual 
classification of 
the samples. 
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Table 2. Summary of Studies in Human Detection (Continued) 

Antonini (2006) Background 
Subtraction 

Pedestrian 
Tracking 

Dimitrijevic 
(2006) 

N/A Human Pose 
Detection 

Davis (2007) N/A Human Activity 
Detection 

Motion 
Information 

Pai (2004) Background 
Subtraction 

Pedestrian 
Tracking 

Several 
successive 
images are 
needed to get 
motion 
information. 

Munoz-Salinas 
(2007) 

Background 
Subtraction 

Human Tracking Others 

Sato (2004) Background 
Subtraction 

Human Tracking 

The use of 
simple cues is 
acceptable in 
limited 
situations. 

 

Although the use of motion information would not be affected by occlusions as 

much as the use of appearance-related cues, multiple consecutive images are 

necessary to obtain the motion information that means it takes time to detect 

humans. The other simple cues such as an occupancy map or intersection with a 

horizon line, are very interesting, but they are applicable in limited situations such 

as humans being with little clutter or standing. 

As reviewed in this section, most of the cues used for human detection are 

related to human appearance, and they generally suffer from occlusions, complex 

computation, or a large number of sample images. Therefore, the work in this 

thesis uses dynamic motion cues for toddler detection, as detailed in Chapter 4 

and Chapter 5. 

2.3.2 Handling of Regional Merges and Splits 

In practice, self-occlusion and occlusions between different moving objects or 

between moving objects and the background are inevitable [98], and multiple 

camera systems offer promising methods to reduce ambiguities owing to 
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occlusion. Multiple cameras have been used to choose the best view considering 

occlusion or to estimate 3D information of each object for coping with occlusion 

[99-103]. The use of multiple cameras, however, requires complex computation to 

match identical objects from different cameras or to calibrate the cameras for 3D 

information. 

There are several studies that propose ways to tackle the occlusion problems 

using a single camera by handling regional merges of multiple objects. They deal 

with another similar problem whereby a single object can split into multiple 

regions which yield separate measurements. The splitting may result from 

crossing occlusions or errors in background subtraction, and it can be generated 

despite the use of good background subtraction techniques [104]. Their methods 

can be largely divided into use and non-use of colour information.  

A. Use of Colour 

The system of Chen and colleagues [105] counts pedestrians, passing through a 

gate or a door, with a zenithal video camera, as shown in Figure 14a. Hue 

saturation intensity (HIS) colour histograms are used to distinguish one pedestrian 

from another in a multi-people heap because the hue component is intimately 

related to the way in which humans perceive colour. As the colour label can 

become ineffective in identification in the case of multiple pedestrians wearing 

same-coloured clothing, the two overlapping boxes in Figure 14b, which bound 

identical colour patterns in adjacent images, are judged as the same person. In 

order to analyse merging or splitting cases within the door area, area changes of 

moving regions are checked, on the basis of the fundamental cases of merging or 

splitting in Figure 14c. This study is not, however, concerned with a single person 

splitting into multiple regions owing to errors in background subtraction. 
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(a) 

 

(b) 

 
(c) 

Figure 14. (a) People Counting System, (b) its Tracking and (b) Basic Cases of 

Merge-Split [105] 

Conversely, the approach of Medioni and colleagues [106] does not cope with 

multiple objects merging into one region, but only with a single object splitting 

into multiple regions. Their work involves detection and tracking of moving 

objects and analysis of their trajectories to recognise the behaviour of the moving 

objects. In order to extract the correct trajectory of each object, aperture problems, 

which can split a single object into multiple regions, are handled by measurement 

of the grey-level similarity between a moving region at one frame and a set of 

regions at the next frame in its neighbourhood. The size of this neighbourhood is 

estimated from the object motion amplitude, and the matches of moving objects 

between consecutive frames are represented by nodes and edges, as illustrated in 

Figure 15. 
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Figure 15. Detected Regions and Associated Graph [106] 

The vehicle tracking system of Song and Nevatia [107] for street surveillance is 

based on an appearance model of a colour histogram to detect both multiple 

objects merging into one region (Figure 16a) and a single object splitting into 

multiple regions (Figure 16b). Apart from the colour histogram, each of the blobs, 

detected as moving vehicles, is modelled as a rectangle to predict its new position 

and check overlaps between predicted rectangles and observed rectangles for blob 

association over successive frames. 

 

(a) (b) 

Figure 16. (a) Merged and (b) Split Blobs [107] 
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(a) (b) 

Figure 17. (a) Partial Occlusion and (b) Crowding [108] 

Guha and colleagues [108] defined six qualitative occlusion primitives, based 

on the well-known cognitive assumption of persistence, under which objects 

continue to exist even when hidden from the view. The primitives are isolated, 

partial occlusion, crowding, disappear, enter, and exit, which respectively 

indicate blobs separated and fully visible, blobs separated but partially invisible 

(Figure 17a), blobs merged into one region (Figure 17b), blobs detected 

previously but no longer visible, new blobs with no relation to previous blobs, and 

blobs disappearing at the scene boundary. In order to recognise these occlusion 

primitives, each agent is characterised by its occupied pixel set, weighted colour 

distribution, and the trajectory of the minimum bounding rectangle of the pixel set. 

The agent is also associated with detected foreground blobs, based on the colour 

distribution and predicted agent position from the trajectory. All the occlusion 

primitive notations on each agent are recorded in the history for further 

recognition. 

The method of McKenna and colleagues [104] tracks people through mutual 

occlusions when they form groups and separate from one another, as presented in 

Figure 18. In order to overcome the problem of a person splitting into multiple 

regions, the conditions of multiple regions to form a single person are defined to 

be in close proximity, to have overlapped projections onto the x-axis, and to have 
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a total area larger than a threshold. In order to track people consistently when they 

enter and leave people groups, a colour model is built and adapted for each person 

being tracked. The tracker based on the colour information can fail in tracking of 

each person, however, when two people clothed in a very similar manner form a 

group and subsequently separate, for example. 

 

Figure 18. People in Groups [104] 

 

Figure 19. Process of Prediction and Matching [109] 

B. Non-Use of Colour 

Kumar and colleagues [109] used Kalman filter-based trackers to maintain the 

identity of multiple targets while tracking them in the presence of regional splits 

and merges. The trackers predict and estimate states of the target objects, and the 

predicted shape and position of the objects give rise to a new synthesised blob 
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when the objects are predicted to merge. The blue ellipse of a broken line in 

Figure 19 is an example of the new synthesised blob. The real segmented blob is 

matched with the objects separately and also the synthesised blob as shown in 

Figure 19 by use of a geometric shape-matching algorithm. These association 

methods work well as long as position and motion of target objects are 

predictable. 

 

Figure 20. Target-Measurement Association [110] 

Joo and Chellappa [110] proposed a multiple-hypothesis approach to tracking 

multiple objects by handling objects which enter or exit the view or regionally 

merge or split, as well as by detecting split fragments of a single object owing to 

limitations in background subtraction. For those kinds of objects, a single target 

(tN) may need to be associated with multiple measurements (mD), and multiple 

targets with a single measurement, as shown in Figure 20. The multiple-

hypothesis tracking considers a set of feasible hypotheses, regarding joint 

associations between targets and their measurements. The centre coordinates, the 

bounding box size, and the velocity of each target are defined as its state at every 

frame, and the position is predicted and compared with the real measurements for 

the best match.  
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C. Summary of Studies in Handling of Regional Merges and Splits 

The reviewed studies regarding handling of regional merges and splits are 

summarised in Table 3 to present the major cues and drawbacks. 

Table 3. Summary of Studies in Handling of Regional Merges and Splits 

Classification First Author (Year) 
of Related Studies 

Cues for Handling of 
Regional Merges and 
Splits 

Drawback 

Chen (2006) HIS Colour Histogram  
+ Box Overlap 

Medioni (2001) Grey-Level Similarity 
+ Neighbourhood Size 

Song (2007) Colour Histogram 
+ Predicted Position 

Guha (2006) Colour Distribution 
+ Predicted Position 

Use of Colour 

McKenna (2000) Colour Model 
+ x-Projection Overlap 
+ Area Size 

The use of colour 
information can cause 
confusion in the case of a 
single object wearing 
multiple colours or 
multiple objects with 
similar colours in a 
group.  

Kumar (2006) Prediction and Match of 
Shape and Position 

Non-Use of 
Colour 

Joo (2007) Prediction and Match of 
Position 

The association of 
prediction and real 
measurements can work 
when position and 
motion of targets are 
predictable. 

 

Colour information is employed in many studies to identify each of the multiple 

objects which appear together in one image region, to detect regional fragments of 

a single object based on proximity, or to consistently track individuals despite 

regional merges and splits. As the sole use of colour information can incur 

confusion owing to different objects in similar colours or a single object in 

different colours, generally the position information of each object is added to 
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limit the range of searching for the identical object in the next frame within the 

area where the object will possibly be.  

The studies, which do not use any colour information, predict the shape or the 

position of each object and detect the closest match with the real measurements. 

The association can work only when the motion of each object is correctly 

estimated and its proper position in the next frame is predictable.  

As the use of colour similarity can confuse tracking of individuals, the work in 

this thesis employs position information commonly used in existing methods of 

handling regional merges and splits, as described in Section 4.3.4A. 

  
(a) (b) (c) 

Figure 21. Pictorial Structures from Videos of (a) Zebra, (b) Tiger, and (c) Giraffe 

[111] 

2.3.3 Classification of Animals 

There are just a few studies on animal detection in images. The automatic 

system of Ramanan and colleagues [111] builds 2D articulated models which are 

pictorial structures as shown in Figure 21, from videos of different animals. The 

pictorial structures are augmented with a discriminative texture model, learned 

from a texture library, and the models are used to identify and track the animals. 

As the pictorial structure models are dependent on the aspect of the videos used 

for the model construction, the animal detection based on the models would not 

work well with videos capturing different aspects of the target animal. For 

example, if a model is learned from a video of a giraffe walking sideways, the 
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system may not be able to find a giraffe walking towards a camera based on the 

model. 

 

Figure 22. Periodic Activity of Frog [112] 

The approach of Polana and Nelson [112] detects any repetitive activity using 

low-level, non-parametric representations in order to recognise locomotion of a 

human or animal. The approach is based on repetitive motion, and a moving actor 

is segmented and normalised spatially and temporally; the actor’s activity can be 

recognised by matching against a spatio-temporal template of motion features. 

The sample images of a frog’s periodic activity in Figure 22 are included in the 

reference database to build the activity template. Since this recognition focuses on 

specific activities of a human or an animal, the method would not be able to 

recognise a human or an animal that moves differently from the motion template. 

Hayfron-Acquah and colleagues [113] focused on the symmetry properties of 

gaits in order to discriminate different animal movements and recognise human 

motion. Individual gait signature for different animals can be derived from image 

sequences of the animal movements by estimation of the symmetry of the 

movements, as presented in Figure 23. The zebra signature in Figure 23d is very 

close to the signature in Figure 23b, despite the appearance of the tail since the tail 

movement does not affect the resulting symmetry. The use of the symmetry 

signatures can separate different animals as well as distinguish the quadruped 

movement of general animals from human motions. Jiang and Daniell [114] also 

attempted to distinguish between two-legged human movements and four-legged 

animal movements by extracting motion features in spatio-time dimensions. 
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Those analyses of leg movements, however, would need side views to capture the 

movement of all the legs and have problems with occlusion on a leg.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 23. Symmetry Signatures for (a) Elephant, (b) Zebra1, (c) Bulldog, and (d) 

Zebra2 [113] 

This review is referred to in developing the novel method of classifying a 

human and a pet illustrated in Chapter 4. 

2.3.4 Camera Calibration 

In order to estimate information about a 3D original space from its projection 

images, the camera in use should be calibrated in advance to learn the relations 

between the original scene and its image. Camera calibration techniques can be 

roughly classified into two categories: object-based calibration and self-

calibration. The object-based calibration is performed by observation of a 

calibration object, whose geometry in the 3D space is known with very good 

precision, and the calibration can be done very efficiently. The self-calibration, 

however, cannot always produce reliable results since a camera is calibrated by 

matching identities in several images, taken by the same camera, and there are 

many parameters to estimate [115].  

Therefore, this section only reviews the studies on object-based calibration 

which have been published since 2000. They are categorised by the kinds of 
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objects with known geometry used for camera calibration: background, planar, 

3D, and moving objects. The background object is a geometric feature, which 

belongs to the background of the image, and the planar object and the 3D object 

are features placed on the scene for the purpose of camera calibration. With the 

moving object, its movement is tracked and used to calibrate a camera. 

 

Figure 24. Lane Boundaries and their Vanishing Point [116] 

A. Background Object 

The algorithms of Schoepflin and Dailey [116] calibrate roadside traffic 

management cameras and track vehicles so as to sense traffic speeds. The camera 

position is estimated relative to the roadway, by use of the motion and edges of 

the vehicles. Given the camera position, the camera is calibrated by estimation of 

the lane boundaries and the vanishing point of the lines along the roadway in 

Figure 24. The scene is modelled as a set of parallel lines, viewed through a 

pinhole camera, which is a camera without a conventional glass lens and the scene 

does not get any effects of a lens.  

The camera calibration algorithm of Yuan and colleagues [117] is for detection 

of video-based traffic information such as vehicle flux, speed, and possession 

ratio. The nine control points, made by the intersection of three horizontal lines 

with three vertical lines in Figure 25, are used for camera calibration, and the 
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calibration model is based on a pinhole model and direct linear transformation4 

(DLT). The model is extended also to resolve nonlinear distortion problems owing 

to the use of a lens, which are the radial distortion, decentring distortion, and thin 

prism distortion. 

 

Figure 25. Control Points on Lanes [117] 

Farin and colleagues [119] proposed a real-time camera calibration algorithm to 

obtain player and ball positions in the real-world coordinates for semantic analysis 

of sport sequences. The marker lines on the field for court sports like tennis are 

used to determine the calibration parameters. The correspondences are determined 

between the detected lines in the sport sequence (Figure 26a) and the lines in the 

court model (Figure 26b) and used to compute the homography between the 

image plane and the real world.  

Although extra figures do not need to be prepared for camera calibration owing 

to making use of background image information, all the above methods are 

applicable to limited areas such as roadways or sport courts.  

                                                      
4 Direct linear transformation is a reconstruction algorithm with a set of linear equations and a set 

of parameters, the most common approach to characterising the calibration, position, and 

orientation of a single camera [118]. 
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(a) (b) 

Figure 26. Court Marker Lines (a) in Projected Image and (b) in Model [119] 

 

Figure 27. Circle and Right Angles [120] 

B. Planar Object 

For the environments without any geometric figure included, some planar 

objects can be placed on the scene and used for camera calibration such as a circle 

and right angles, concentric circles, and squares. Zhong and colleagues [120] used 

a planar pattern, which includes a circle and right angles from the orthogonal lines 

of an arrow head and tail, as shown in Figure 27. A dual conic constraint on the 

vanishing line of a plane can be derived from a right angle and a circle on the 

same plane, and a vanishing line can be uniquely identified from three 

independent right angles. On the basis of the vanishing line, imaged circular 

points are computed and used to calculate the coordinates of the principal point, 

focal lengths, and skew parameter of the pinhole camera model. 
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Figure 28. Concentric Circles [121] 

 

Figure 29. Two Perpendicular Planes with Circular Control Points [122] 

Kim and colleagues [121] exploited a pair of concentric circles without 

knowing their centre and radii, as shown in Figure 28 for camera calibration. The 

centres of projected circles are generally treated as the projected centres of the 

circles, but it is actually improper under general perspective projection. The use of 

a pair of concentric circles instead of a circle can recover the projected centre very 

accurately. Moreover, this method can estimate imaged circular points without 

computation of a vanishing line and its intersection with a projected circle. Liu 

and Su [122] present a camera calibration method using circular control points, 

which just need to be corrected for the distortion, caused by the asymmetric 

perspective projection. The calibration pattern in use is two perpendicular planes, 

each with 24 circular control points, as shown in Figure 29, and the centres of the 

circles in the image plane are iteratively corrected from the distortion. The 

establishment of the relationship between 3D world coordinates and their 
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corresponding 2D image coordinates follows DLT based on the pinhole camera 

model.  

 

Figure 30. Square Pattern [115] 

One of the most popular planar pattern units is a square [115, 123-126]. This 

may be because the four vertices of a square can be easily detected, and a square 

pattern can provide a large number of point features, whose actual positions can 

be easily defined from the square size and the regularity of arrangement. 256 

points, for instance, can be detected from the pattern in Figure 30 and used for 

camera calibration.  

Zhang [115] and Wang and colleagues [123] modelled a camera based on a 

pinhole, using the square pattern in Figure 30, and calculated the radial lens 

distortion, which desktop cameras usually have. The method of Baba and 

colleagues [124] takes into account both the geometric information of the feature 

points and the defocus information of edges of the square pattern in Figure 31. 

Zhang and colleagues [125] used a square pattern projected onto a planar surface 

placed on the scene, as illustrated in Figure 32, in order to recalibrate a camera 

based on the pinhole model with pre-defined intrinsic parameters. The calibration 

technique of Xin and Xiao-guang [126] is based on the pinhole camera model 

without considering the skew and uses a single regular quadrilateral, the 

coordinates of whose four points can be easily set up with the side length, as 

shown in Figure 33.  
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Figure 31. Blurred Edges of Squares [124] 

 

Figure 32. Projected Square Pattern [125] 

 

Figure 33. Regular Quadrilateral [126] 
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Figure 34. Self-Identifying Pattern [127] 

The system of Fiala and Shu [127] allows a camera to be calibrated in a matter 

of minutes merely by being passed in front of a planar array of self-identifying 

markers. The marker system is bi-tonal and contains 2002 planar markers, each 

consisting of a square border and an interior region filled with a 6 x 6 grid of 

black or white cells as in Figure 34. The centre or the corners of each marker are 

used as correspondences between the world coordinates and their pinhole camera 

projection. The best calibration results are achieved using the marker centre 

instead of each corner owing to decreased sensitivity to lighting and focus. 

 

(a) (b) 

Figure 35. (a) Sphere Image and (b) Ellipses from 3 Images [128] 

C. 3D Object 

Ying and Zha [128] applied three images of a sphere and their ellipses in Figure 

35 to camera calibration by geometrically interpreting the relation between sphere 

images and the image of the absolute conic (IAC), which plays a central role in 

camera calibration. The geometric interpretations are that each sphere image has 
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double-contact with the IAC, and that the IAC is determined by use of some conic 

fitting method after six double-contact points from three sphere images are found. 

Their calibration method is derived from a pinhole camera model and geometric 

interpretations. 

Avinash and Murali [129] used two vanishing points to estimate the focal length 

and the centre of focus. Vanishing points can easily be found from natural 

rectangular prisms such as cartons, boxes, and buildings owing to the perspective 

distortion of the prism’s edges in an image, acquired on the principle of a pinhole 

camera. In their method, however, the vanishing points are calculated from points 

manually detected on a single image, and the orientation of the rectangular prism 

has to be known. 

 

Figure 36. Line Segments in Vanishing Points [130] 

Grammatikopoulos and colleagues [130] developed a camera calibration 

algorithm from single images, including three vanishing points of orthogonal 

space directions such as the building in Figure 36. Extraction of image line 

segments and their clustering into groups, corresponding to three dominant 

vanishing points, is performed. At the same time, the principal point location as 

well as the coefficients of radial symmetric lens distortion is estimated by a 

unified least-squares adjustment of all image points belonging to the lines, which 

intersect at the three dominant vanishing points of the scene.  
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Figure 37. Vanishing Points from Revolution Surface [131] 

The calibration method of Wong and colleagues [131] is based on the vanishing 

points of the symmetry properties exhibited in the silhouettes of revolution 

surfaces, as illustrated in Figure 37, which are commonly found in daily life such 

as bowls and vases. On the assumption of zero skew and unit aspect ratio in the 

pinhole camera model, the principal point of a camera would coincide with the 

ortho-centre of a triangle with vertices, given at three vanishing points from three 

mutually orthogonal directions. Such properties of vanishing points are used 

together with the symmetry properties associated with the silhouettes of 

revolution surfaces in order to derive a simple technique for camera calibration. 

D. Moving Object 

The algorithm of Zhao and Liu [132] recovers the intrinsic parameters as well 

as the extrinsic parameters of multiple cameras by capturing an 1D object’s 

rotations around a fixed point. The calibration object has three collinear points as 

presented in Figure 38, and a series of its rotations around the point at the end is 

captured by each of the cameras. According to the geometric structure of the 

object, the projective depths are estimated on the basis of the pinhole camera 



59 

 

 

  59

model. For a camera calibration object, Chen and colleagues [133] employed a 

spatial triangle with known size, rotating freely at one of its vertices. Only two 

calibration images at a minimum are required to calculate the intrinsic camera 

parameters, based on the pinhole camera model, by making full use of the 

geometric information of the triangle. 

 

Figure 38. Collinear Points Rotating around Fixed Point [132] 

The method of Lv and colleagues [134] estimates a camera’s intrinsic and 

extrinsic parameters in the pinhole model from vertical line segments of the same 

height. The necessary lines are segmented by detection of the head and feet 

positions of a walking human in his/her leg-crossing phases as in Figure 39a. The 

three vanishing points and the horizon line are computed from vertical poles of the 

same height as presented in Figure 39b and used with the actual length of the 

human to estimate all the camera parameters. 

Lu and colleagues [135] used the cast shadows of two 3D points observed over 

time to recover the camera parameters. Assuming that the camera has a unit aspect 

ratio and zero skew, the horizon line in the image is estimated by use of the 

shadow trajectories of two stationary objects on the ground plane, as illustrated in 

Figure 40b. This is because the line segments defined by corresponding shadow 

points are parallel in the world and therefore intersect on the horizon line in the 

image plane.  
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(a) 

 
(b) 

Figure 39. (a) Walking Human and (b) Derived Vanishing Points [134] 

  

(a) (b) 

Figure 40. (a) Shadow Trajectories and (b) Derived Horizon Line [135] 

E. Summary of Studies in Camera Calibration 

The studies reviewed here with regard to camera calibration are summarised in 

Table 4. They are categorised by the kinds of the object used for camera 

calibration, and the other parts of the table present the basic camera model, on 
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which each study is based, and the drawback to the use of each kind of calibration 

object. 

Most of the studies are based on the pinhole camera model, which specifies 

intrinsic camera parameters and spatial relationship between the world and its 

projected image without considering any effects of a lens on the images. Lens 

effects can be neglected according to the research subjects or purposes, but they 

need to be dealt with for accurate results. The lens effect taken into account the 

most is radial distortion. 

The use of geometric figures, which belong to the background such as 

boundaries of lanes or marker lines of sport courts, requires no additional 

preparation of a calibration object and makes it possible to calibrate a camera at 

any time since the figures always appear on the scene unless occluded. The 

methods can, however, be applied to limited areas, and different models with 

geometric knowledge should be built in advance for different figures. 

Planar figures or their patterns are used in many studies since they can be 

constructed very easily and accurately by printing. Square patterns are especially 

popular, possibly because four vertices of a square can be easily detected and their 

3D coordinates can be simply identified with the length of one side of the square. 

Square patterns can also hardly be seen in the general background and thus are 

unlikely to be confused with other background objects. 
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Table 4. Summary of Studies in Camera Calibration 

Calibration 
Object 

First Author (Year) of 
Related Studies 

Camera Model Basis Drawback 

Schoepflin (2003) Pinhole 

Yuan (2006) Pinhole + Distortion (Radial, 
Decentring, Thin Prism) 

Background 
Object 

Farin (2005) Pinhole 

It is applicable to 
limited areas, 
roadways or sport 
courts. 

Zhong (2006) Pinhole 

Kim (2005) Pinhole 

C
onic 

Liu (2008) Pinhole 

Zhang (2000) Pinhole + Radial Distortion 

Wang (2006) Pinhole + Radial Distortion 

Baba (2006) Pinhole + Defocus 

Zhang (2007) Pinhole 

Xin (2005) Pinhole  

P
lanar O

bject 

S
quare 

Fiala (2008) Pinhole + Distortion (Radial, 
Thin Prism) 

Ying (2006) Pinhole 

Avinash (2008) Pinhole 

Grammatikopoulos 
(2007) 

Pinhole + Radial Distortion 

3D Object 

Wong (2003) Pinhole  

In the use of a single 
figure, a background 
object, with a similar 
appearance to but 
different properties 
from the figure, might 
be recognised and used 
for calibration. 

Zhao (2008) Pinhole 

Chen (2008) Pinhole 

Lv (2006) Pinhole 

Moving 
Object 

Lu (2006) Pinhole  

The data are not very 
accurate. 
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All the studies exploiting 3D objects or moving objects for camera calibration 

try to detect lines which are actually parallel but generate vanishing points in the 

image or are same-sized in world coordinates but not in the image plane. 

Therefore, the 3D objects should be perfectly symmetrical in every aspect in the 

world coordinates, and the moving objects should move in a perfectly constant 

way in order to extract parallel or same-sized lines. Capturing the heights of a 

walking human or the trajectories of shadows generated by the sun in the distance, 

however, would not be able to provide very accurate data for the calibration.  

This review helps to find a common method of camera calibration to be used for 

classification between a human and a pet, as explained in Section 5.3.2. 
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Chapter 3 

Identification of Risk Factors of a 

Toddler’s Fall Injury 

3.1 Introduction 

One of the objectives of this research is to identify key factors leading to a 

toddler’s fall injuries. The factors should be related to a toddler’s behavioural or 

environmental changes, which need to be continuously watched in order to 

prevent fall injuries. In addition to the suggestions for preventing children’s fall 

injuries, reviewed in Section 2.2, more than two thousand records of falls, the 

injuries from which were severe enough to be treated in hospital, are analysed in 

Section 3.2. Based on the suggestions and the records, the risk factors of a 

toddler’s fall injury in the home environment are identified. Finally, the identified 

factors are assessed by experts on children’s home accidents by means of a 

questionnaire in Section 3.3. 

3.2 Analysis of Fall Records 

The Royal Society for the Prevention of Accidents (RoSPA) is a charity 

involved in the promotion of safety and the prevention of accidents in all areas of 

life [136], and provides data about accidents by email on request. The data are 

based on the Home Accident Surveillance System (HASS), which holds details of 

home accidents which caused injury serious enough to warrant a visit to hospital. 

The details of home accidents were gathered by interviewing a patient or a 

caregiver at Accident & Emergency (AE) units in a representative sample of up to 

eighteen hospitals across the United Kingdom from 2000 to 2002 [137]. The 
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details of more than six thousand fall accidents of young children aged up to five 

in the home were obtained from RoSPA, and around two thousand of them are 

analysed in this section. This research focuses on accidents which happened to 

toddlers aged between one and three in lounge, study, living/dining/play area and 

inside stairs, where they generally experienced fall accidents. Two sample 

accident details are as follows: 

 Sample 1: The patient at home, running around the room; tripped and fell, 

banging head on a skirting board and then on the carpeted floor; 

 Sample 2: The patient fell down six or seven carpeted stairs, then hit her 

face on a cold metal radiator, breaking the valve; the accident was 

unwitnessed; the patient was coming down stairs unaided. 

3.2.1 Accident Models 

In order to analyse the massive number of accident details, an accident model is 

necessary for guidance. Harvey [138] reviewed four models for accident 

investigation which are applicable to accidents in general and widely used. The 

models are Heinrich’s domino model, epidemiology, fault tree models, and 

multilinear events sequencing.  

Heinrich proposed three elements that define the basic safety problem. The first 

element is the initial environment which consists of a safe or an unsafe state, and 

the second one is the decision space that involves choice between safe and risky 

acts. This is because the individual is assumed to diagnose the state of the 

environment as safe or unsafe and to choose a safe or a risky act. The third is the 

probabilistic nature of an accident given human error, a failure to detect an unsafe 

state [139]. Heinrich’s domino model depicts an accident as a set of dominos, 

which tumble because of a unique initiating event. In this model, the dominos that 

fall represent the action failures, while the dominos that remain standing by 

default represent the normal events. This type of model is deterministic because 
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the outcome is seen as a necessary consequence of one specific event, but it 

suffers from being oversimplified and easily confuses sequentiality with causality 

[140]. This model serves the legal and prevention purposes quite well, but it is 

potentially biased in the identification of causes and is most inadequate for 

descriptive research purposes [138]. 

The epidemiological type of accident model compares an accident to a 

spreading disease as the outcome of a combination of factors. The factors are 

associated with the host, agent, and environment, and accidents are stated to 

happen when a sufficient number of factors come together in space and time. 

Hence, epidemiological models provide a basis for discussing the complexity of 

accidents [140]. The epidemiological approach can potentially serve the 

description, research, and prevention purposes fairly well with a complete 

database identifying accident causes, but it does not concern itself with any of the 

legal purposes [138]. 

The general fault tree approach to accident investigation advocates a description 

of all the necessary and sufficient conditions for an accident within the work 

system in question [138]. A specific adaptation of the model, the Management 

Oversight and Risk Tree (MORT), investigates incidents, relying on a logic tree 

diagram. The decisive diagram serves to describe connections between an incident 

and individual features of the process safety management system, and it is to be 

applied to key episodes in the incident sequence of events [141]. MORT focuses 

on investigations largely dealing with management oversights and failures to 

attend closely to the accident event itself and therefore it is not adequate for the 

purposes of describing an accident, identifying causes, and conducting research 

[138]. 

Lastly, multi-linear event sequencing devotes close attention to the sequence of 

events leading up to the accident with special status given to the temporal 

relations between events [138]. A chronological array of the events helps to 
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structure the search for the relevant factors and events involved in the accident, 

and it provides a method for testing the relevance of additional events or 

conditions encountered by the investigator [142]. The multi-linear events 

sequencing model can provide quality information for research and prevention 

purposes with an excellent description of the accident process, but it avoids causal 

and legal purposes [138]. 

3.2.2 Epidemiological Analysis 

The research presented in this thesis intends to identify the causal factors of a 

fall accident, and the epidemiological approach has been chosen for the analysis 

of the fall records collected from RoSPA since it provides a complete database for 

identifying accident causes. Harvey also suggests that the epidemiological 

approach potentially can serve description, research, and prevention purposes 

fairly well [138]. As this research focuses on fall incidents which cause an injury 

to be treated in hospital, a conceptual framework for epidemiological analysis, 

developed by William Haddon, the so-called Haddon’s Matrix, was selected to 

understand how injuries occur. Haddon is widely considered as the father of 

modern injury epidemiology [143]. 

In the epidemiology of injury, all the factors which interact with each other to 

account for the presence or absence of disease or injury, are categorised as host, 

agent, vector, and environment. Host is the person injured, the agent is the force 

or energy, vector is the person or thing that applies the force, transfers the energy, 

or prohibits its transfer, and environment is the situation or conditions under 

which the injury happens [144]. A similar model could be used for an act of 

interpersonal violence, in which a man or woman slaps his or her partner. In this 

case, host would be the person slapped, agent would be the mechanical force or 

energy, slapping, vector would be the person who does the slapping, and 
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environment would include the domestic situation and the societal norms or 

values that make such behaviour acceptable [144].  

 

Figure 41. Epidemiological Model of Injury caused by Motorcycle Collision [144] 

Use of a model of this type can help to identify all the factors involved in an 

injury. It also helps people to think about where they might intervene to prevent 

such injuries from happening in the future or to reduce the harm when they 

happen. For instance, in the motorcycle collision model in Figure 41, there may be 

things about the rider, the motorcycle, or the road that contributed to the crash. 

Perhaps there are things about motorcycle riders, motorcycles and/or road 

conditions that could be changed in order to prevent similar incidents in the future 

[144]. 
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Table 5. Haddon’s Matrix [144] 

 
Human 

(or Host) 
Vector 

Physical 
Environment 

Socio-economic 
Environment 

Pre-event Is host pre-
disposed or 
overexposed to 
risk? 

Is vector 
hazardous? 

Is environment 
hazardous? 

Does it have 
hazard-reduction 
features? 

Does environment 
encourage or 
discourage risk-
taking and 
hazard? 

Event Is host able to 
tolerate force or 
energy transfer? 

Does vector 
provide 
protection? 

Does environment 
contribute to 
injury during 
event? 

Does environment 
contribute to 
injury during 
event? 

Post-
event 

How severe is the 
trauma or harm? 

Does vector 
contribute to the 
trauma? 

Does environment 
add to the trauma 
after the event? 

Does environment 
contribute to 
recovery? 

 

Haddon’s matrix has two dimensions, as presented in Table 5. The first is the 

three factors in the epidemiology of injury, introduced above, human, vector, and 

environment. The environment is often subdivided into physical and socio-

cultural. The second dimension of the matrix is based on the fact that all the 

undesirable societal end-results of damaging interactions with environmental 

hazards are preceded by processes that naturally divide into three stages. The three 

stages are labelled as pre-event, event, and post-event [145]. The matrix can 

therefore be used to analyse any type of injury event and to identify interventions 

which might prevent such an event from happening again or which might reduce 

the harm by answering the questions in Table 5. 
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Table 6. Analysis of Motor Vehicle Collision using Haddon’s Matrix [144] 

 
Human 

(or Host) 
Vector 

Physical 
Environment 

Socio-economic 
Environment 

Pre-event Substance 
misuse, poor 
driving habits 

Faulty brakes, 
bald tyres 

Slippery road 
owing to rain 

Social acceptance 
of high levels of 
alcohol use by 
males 

Event Not wearing seat 
belt 

No airbag Tree too close to 
the road 

Ineffective 
enforcement of 
offences of 
driving under the 
influence of 
alcohol 

Post-
event 

Elderly man, pre-
existing medical 
condition 

 Slow emergency 
response, poor 
rehabilitation 
programme 

Little help for 
reintegrating rehab 
patients into 
society 

 

Table 6 illustrates the use of Haddon’s Matrix to analyse a collision which 

happened when a male driver was returning home late one rainy night after 

attending a social event, where he had been drinking heavily. Neglecting to fasten 

his seat belt, he skidded and crashed into a tree at the edge of the road. There he 

remained until the driver of a passing vehicle stopped and took him to the nearest 

hospital. The injuries were made worse by improper handling of the injured man. 

At the time, however, taking him to hospital seemed a better alternative than 

waiting for an ambulance, given that the ambulance service was notoriously slow 

and unreliable [144].  

As the human, vector, and environment factors in the post-event stage are about 

the trauma after an incident, they are excluded in the analysis of the fall records 

for this research about detection of the factors which may cause a toddler’s fall 

injury. The socio-economic environment factor also is excluded owing to its 

irrelevance to the fall risk factors targeted in this research.  
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Table 7. Analysis of Toddler Fall Records in Lounge, Study, Living/Dining/Play 
Area 

 Host Vector Environment 

P
re-event 

- Playing 284 
- Running 209 
- Toddling/Walking 79 
- Holding object 44 
- Pulled self up 19  
- Climbed 19 
- Dancing 15 

- Playing with other 68  

E
vent 

- Lost balance 26 
- Fell onto body part 24 
- Tripped over self 17 
- Bit tongue/lip 12 

- Tripped/Slipped 372 
- Pushed/pulled 9 
- Knocked over 7 

- Banged/Landed on 
     Table/Desk/Chair 244 
     TV/Speaker/Cabinet 80  
     Furniture 60 
     Floor 132 
     Wall/Door/Window/Steps 130 
     Fireplace/Radiator 118 
     Toy 58 
     Ornament/Pot/Jar/Cup/Tray 24 
     Stuff held 17 
     Person 2 

 

Although many of the records of a toddler’s fall in the home do not state every 

factor of Haddon’s matrix, some outstanding information can be found in the 

massive number of stories and so can be identified as fall risk factors. Table 7 and 

Table 8 show the analysed results, numbering fall records with the same factor in 

Haddon’s matrix. As can be seen from Table 7, many toddlers fell in lounge, 

study, living/dining/play area while moving around because they lost balance, 

tripped, or slipped. As a result, they banged on furniture (e.g. a table and a chair) 

or room structures (e.g. wall and fireplace), which may have been the direct cause 

of the severe injury, and then generally landed on the floor. 
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Table 8. Analysis of Toddler Fall Records in Inside Stairs 

 Host Vector Environment 

P
re-event 

- Going up/down 288 
- Playing 75 
- Holding stuff 23 
- Turned around 14 
- Leaning onto gate 3 

- Carried by person 40 
- In baby walker/chair 4
- Person pushed 5 

- Stair-gate not closed properly 41 

E
vent 

- Lost balance 60  
- Bit lip/tongue 5 

- Tripped/Slipped 122 
- Dropped by person 36
- Person falling on 3 

 

- Fell/Rolled/Banged on stairs 966 
- Banged/Landed on 
     Floor 129 
     Wall/Window/Door 42  
     Radiator 33 
     Stair gate 31 
     Banister/balustrade 17 
     Furniture 14 
     Box/vase/jug/clock/toy 9 
     Pram/buggy/bike 7 

 

In inside stairs, many toddlers experienced a fall and got injured while going up 

or down the stairs since they lost balance, tripped, or slipped, as can be seen in the 

large numbers in Table 8. Some of them banged on room structures or furniture 

and landed or were found on the floor. The records also reveal that many parents 

did not witness the accident to their child, and some of them had not noticed the 

accident until they realised the child was not using a body part for days.  

3.2.3 Risk Factor Identification 

Based on the suggestions of child safety organisations to prevent falls, which 

were reviewed in Section 2.2, and the above analysis of fall records in the home 

environment, three fall risk factors are identified below for detection by vision-

based analysis. 

 Tripping or slipping hazards on the floor such as a toy or a spill 

 A toddler, moving close to furniture or room structures 

 A toddler, climbing furniture or stairs 
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Both the suggestions and the fall records point to tripping or slipping hazards as 

one of the main causes of a toddler’s fall injury. Most of the organisations suggest 

removing spills or tripping hazards as shown in Table 1, and many of the falls in 

the records happened after being tripped or slipped as presented in Table 7 and 

Table 8. The fall records also indicate that a strike on a hard surface of furniture or 

room structures as a result of a fall is the main cause of the injury treated in 

hospital. Accordingly, toddlers, who are developing motor skills and can easily 

lose balance and fall down without any exterior influence, should not be near 

furniture or room structures without a caregiver next to them. Climbing is also a 

fall risk factor for toddlers because children can climb once they can crawl [49], 

and a fall from a higher level would cause a bigger impact and a worse injury. The 

child safety organisations advise discouraging climbing as presented in Table 1, 

and according to the records many toddlers fell while going up or down the stairs 

as shown in Table 8. 

3.3 Evaluation of the Fall Risk Factors 

The identified fall risk factors need to be confirmed if they are major factors to 

be continuously watched to prevent a toddler’s fall injuries. Hence, the factors 

were evaluated by experts working in organisations for child safety through a 

questionnaire. Questionnaires are a way of getting information from people at a 

low cost in terms of time and money. They also allow the respondents to complete 

the form when they have time or to think or go and check on something if they 

need to [146].  

3.3.1 Questionnaire 

Questionnaires also have drawbacks. The response rate is typically low unless 

the questionnaire is seen as interesting and worth completing despite the time and 

effort expended to finish and return it. The respondents can also misunderstand 
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the questions and the misunderstandings cannot be corrected [146]. In order to 

overcome those drawbacks, the questionnaire for the factor evaluation starts with 

explanation about the background and aim of this research, as shown in Appendix 

A. Such explanation may attract the attention of the respondents, who are 

specialised in child safety and advise on prevention of children’s accidents, which 

is much related to the aim of this research. The explanation also presents the 

organisations whose resources were referred to for the identification of fall risk 

factors. This is because it was planned to send the questionnaire to employees of 

the organisations and the respondents were expected to be reasonably motivated 

by the questionnaire.  

After the explanation about the research, people are asked to confirm each 

factor’s significance in terms of continuous supervision to prevent a toddler’s fall 

injuries in a home environment where enough safety products have been installed 

to satisfy any safety standards. This assumption about the home environment is to 

exclude any risk factor which can be simply prevented by use of a safety product. 

The factors are rephrased as the actions, suggested to perform for fall injury 

prevention, as presented in Appendix A. For instance, the first factor, tripping or 

slipping hazards on the floor, is changed to keep floors clear of toys and other 

clutter which might trip toddlers when they walk around. This is to avoid 

misunderstandings by the respondents because they would be people working in 

organisations which promote actions to prevent accidents. They are also asked to 

write down other situational or behavioural changes to be continuously watched if 

the identified factors are not thought to be enough.  

The questionnaire was sent off by email to organisations related to child safety 

such as CAPT and RoSPA in the United Kingdom, MUARC of Australia, 

National Safety Council (NSC) of the United States of America, country members 

of Kidsafe, and ECSA of Europe.  
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3.3.2 Questionnaire Result 

Fourteen responses were collected and three of them are displayed in Appendix 

B. The details of the overall results are shown in Table 9. Three respondents did 

not confirm the second fall risk factor, a toddler moving around near furniture or 

room structures. This was because sharp edges were not seen as a sudden change 

to the environment, and one respondent corrected this to ensure that children play 

away from sharp edges or glass panels. Spills were added as one of the other 

factors by the questionnaire respondents since only tripping hazards were 

indicated as the first fall risk factor in the questionnaire. The first factor in this 

thesis, however, also includes slipping hazards, as described in Section 3.2.  

Table 9. Results of Questionnaire to Confirm Fall Risk Factors 

Keep floors clear of toys and other clutter which might trip 
toddlers when they walk around 

14/14 

Ensure there are no sharp or hard edges near them that 
could cause injuries when they fall 

11/14 

Confirmation of 
Three Factors 
(Number of 
Confirmation/  
Total Reponses) 

Discourage children from climbing on furniture 13/14 

Additional 
Factors 

 Ensure spills are mopped up 
 Maintenance of stairs generally, repairing damaged carpets 
 Stairs should always be well-lit 
 Do not leave children sitting on chairs or tables unattended 
 Ensure footwear if worn is appropriate and fitted on the foot 

correctly 
 Avoid allowing toddler to drink whilst walking 

 

Some of the factors added by the respondents are related to a toddler’s 

behavioural or environmental changes, but they are very tardy changes or can be 

prevented by not performing some actions. Hence, they are excluded from this 

research, which intends to detect fall risk factors related to sudden changes of a 

toddler left alone under conditions initially thought to be safe. For instance, stairs 
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and carpets need to be repaired every so often to keep them safe for children. A 

toddler should not be left on chairs or tables unattended, put shoes on correctly, 

and be allowed to drink only in front of the caregiver. 

Therefore, the three identified risk factors of a toddler’s fall injury in the home 

environment were confirmed to be major factors requiring continuous supervision 

for prevention of the fall injuries. 

3.4 Chapter Summary 

In order to achieve the first objective of this research, the identification of key 

risk factors of a toddler’s fall injuries in a home environment, this chapter 

analysed around two thousand fall records. The records are about fall incidents of 

toddlers, aged between one and three, in a home environment, who sought 

treatment at a hospital from 2000 to 2002 in the United Kingdom. An 

epidemiological injury framework, Haddon’s matrix, was used to analyse the 

massive number of records. 

As the research presented in this thesis aims to aid a caregiver’s supervision to 

prevent a toddler’s fall injuries, the risk factors were filtered to be related to 

behavioural or environmental changes which require continuous supervision, by 

excluding the factors preventable by safety products. The final fall risk factors 

were identified in the light of the suggestions and the fall records as follows: 

 Tripping or slipping hazards on the floor such as a toy or a spill; 

 A toddler moving close to furniture or room structures; 

 A toddler climbing furniture or stairs. 

The identified factors were evaluated through a questionnaire from experts in 

children’s home accidents, and it was confirmed that the factors are major fall risk 

factors, preventable by continuous supervision of a caregiver. There are previous 

attempts to identify fall risk factors, but they are generally for elderly people [147-
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153] or patients [154-158]. Studies on young children’s fall risks investigated 

rates of fall injuries by 3-month intervals [159] or the relationship between height 

of fall and long bone fracture [160]. Meanwhile, the fall risk factors identified 

here can be detected and eliminated by supervision and thus are different from 

previously identified factors. 

The following chapters describe vision-based analysis methods, developed to 

recognise the fall risk factors, and to meet the aim of this research, which is to aid 

a caregiver’s supervision of a toddler. 
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Chapter 4 

Classification of Human and Clutter 

4.1 Introduction 

In order to detect the identified fall risk factors based on image analysis, it is 

essential to classify segmented foreground objects into human and non-human. 

This is because the first fall risk factor, a tripping or slipping hazard on the floor, 

is about the existence of clutter on the floor, and the other factors, toddlers moving 

near or climbing furniture, are related to human behaviour when the toddler is the 

only human on the scene.  

Section 4.2 presents the whole flow of the methods developed in this research to 

detect the risk factors, including a novel method for classification of a human and 

clutter. Section 4.3 delineates the details of the whole methods, and Section 4.4 

presents implementation and evaluation of the methods. The first stage of the 

methods involves an easy interface to let the user manually select the floor area 

after installing a single fixed camera so as to focus on the floor area to detect the 

first factor, a tripping or slipping hazard. Second, as the differentiation of human 

and clutter is based upon the irregular motions inside a human region owing to the 

different motions of body parts, the diversity of the internal motion vectors of a 

human contour is calculated and tested to find the threshold to separate human and 

non-human. The rest of the methodology section describes the detection of clutter 

on the floor, which is the first fall risk factor, a tripping or slipping hazard, and a 

tracking method for detecting the other factors, a toddler moving near or climbing 

furniture or stairs. 
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4.2 Method Overview 

This section briefly explains how the vision-based methods work to detect the 

fall risk factors identified in Section 3.2, including the novel method to classify 

foreground objects into a human and clutter using a dynamic motion cue. A brief 

flowchart of the methods is presented in Figure 42. 

 

Figure 42. Method Flowchart for Classification of Human and Clutter 

The major tasks of this vision-based analysis are background subtraction, 

foreground tracking, and foreground classification into a human and clutter, as 

orange-lined in Figure 42. These are for detection of any clutter, which may be a 

tripping or slipping hazard, and obtaining a human’s motion and position 



80 

 

 

  80

information, which can be used to check a toddler moving close to or climbing 

furniture or stairs.  

Before real-time image analysis begins, the floor area is manually selected to 

limit the area for detecting clutter on the floor. The floor area is also used to 

estimate the relative position of a toddler to furniture or stairs, on the assumption 

that non-floor area is filled with furniture and room structures. The foreground 

regions in real-time images are segmented by a simple background subtraction 

method and tracked by connection of the closest region centres between 

consecutive frames. As a single object can correspond to multiple regions and 

multiple objects can correspond to one region owing to occlusions or errors in the 

background subtraction, those regional merges and splits are handled during the 

tracking. Although the main purpose of the foreground tracking is to estimate the 

motion and position of a toddler, the tracking is preceded by the human 

classification owing to the use of a motion-related cue in the classification. In 

Section 4.3 on methodology, the tracking is described after the human 

classification. 

Once all foreground regions are segmented, a toddler needs to be separated 

from clutter, which may be toys that he or she plays with. This classification uses 

different moving characteristics of a human and clutter in an indoor home 

environment. While a toddler has irregular internal motion vectors owing to the 

different motions of body parts when the whole body is mobile, indoor clutter 

may have relatively constant motion vectors. Hence, a toddler is detected by 

calculation of the similarity of the motion vectors in each foreground region. The 

algorithms are detailed in the next section. 

4.3 Methodology 

This section describes the details of the methods developed to detect the fall risk 

factors. As an initial setting, the floor area is manually selected and the method is 
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detailed in Section 4.3.1. During real-time image analysis, the foreground objects 

are segmented and classified into a human (Section 4.3.2) and clutter (Section 

4.3.3), and the human is tracked over time (Section 4.3.4). 

4.3.1 Floor Selection 

In order to limit the detection range of clutter, which may become tripping or 

slipping hazards, to the floor area, the floor should be identified in the captured 

images. As the camera is fixed, the floor area will hardly be changed, and its 

single detection of the floor area will be enough. Therefore, the floor area is to be 

manually selected at a single when the camera is set up. 

After a background image is captured when there is no foreground object in the 

environment, the FloodFill method helps the user select the floor region in the 

image. The FloodFill method fills neighbouring pixels, whose values are close to 

the pixel clicked by the user. The pixels will belong to the repainted domain if 

their value ν meets the following condition:  

 uplw vvv   00 . (1)  

ν0 is the value of one of the pixels in the repainted domain, which begins with 

the selected pixels [161]. δlw, the maximal lower difference, and δup, the maximal 

upper difference between the pixels, can be defined by the user with the sliding 

bar controls in Figure 43a. In this way, the user can select the floor area with 

several clicks. As the selected area gathers lots of tiny chinks, when the user 

submits the floor-selected image, a mask image is returned with filled contours of 

the selected area, as presented in Figure 43b. 



82 

 

 

  82

  

(a) (b) 

Figure 43. Floor Selection 

4.3.2 Human Classification 

A. Background Subtraction 

In order to segment foreground objects before classifying them into a human 

and clutter, a background subtraction method is used. Background subtraction 

basically finds the difference between the current image and the background 

image. As reviewed in Section 2.3.1G, background subtraction is the most 

commonly-used method to segment motion for human detection. In this work, it 

was decided to use a background subtraction method, not only because it is 

popular but also because stationary clutter, a tripping hazard, cannot be found by 

other methods such as successive image differentiation or colour detection owing 

to its stillness or lack of constant colour.  

In the background subtraction method adopted here, a simple background model 

(bgMean(x,y)) is built up when the floor area is clear, by accumulation of several 

frames (N) and calculation of the mean value of each summed pixel (bgSum(x,y)) to 

get their mean brightness. 
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Then the absolute differences (bgDiff(x,y)) between the background model and 

the current image (Cur(x,y)) are then calculated by pixels, as shown in Equation (2). 

In order to eliminate noise in the results of the background subtraction, 

differences smaller than a threshold value are returned to zero, and a binary image 

is created by returning the others to 255, as detailed in Equation (3). 
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 Whenever this binary image becomes null, the background model is updated to 

cope with slight changes of sunlight that are ignored by thresholding. For the 

dramatic lighting changes such as turning on/off a lamp, the background model is 

also updated when the differences are similar all over the image, as shown in 

Figure 44, on the assumption that there is no spot light but a ceiling fixture that 

lights the whole room. 

 

Figure 44. Background Subtraction Flowchart 
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B. Similarity of Motion Vectors 

The studies reviewed in Section 2.3.1 use diverse cues to differentiate between 

a human and a non-human object in the images. Most of the cues, however, are 

related to human appearance such as geometric knowledge, skin colour, and 

silhouette and are therefore not very reliable with respect to occlusions. In this 

work, a dynamic motion cue is used to classify a human body. The cue is based 

upon the irregular motions inside a human region owing to the different motions 

of body parts.  

In order to capture the different internal motions, some features that are good to 

track are detected within each ROI, which is a bounding box of each noticeable 

background-subtracted region. Such features are actually the corner points that 

have relatively big eigenvalues in the pixels and are at a satisfactory distance from 

one another [161]. The detected features are tracked by calculation of the optical 

flow between every two successive frames for each feature, by means of the 

method proposed by Lucas and Kanade [162]. This is because the optical flow 

method is sensitive to small movements even in the case of low contrast owing to 

its simultaneous consideration of spatial and temporal changes [163]. Barron and 

colleagues [164] also found that Lucas and Kanade’s method was the most 

reliable among other optical flow methods. 

 ),,(),,( 222111 tyxItyxI  . (4) 

The method is used to calculate the displacement of a pixel in two consecutive 

frames, assuming that the brightness of the pixel belonging to a moving object 

remains fixed in the consecutive frames. This assumption is mathematically 

translated into Equation (4), when I, xi, yi, and ti for i=1,2, denote brightness, 2D 

spatial coordinates, and time of a pixel in the first and second image frames 

respectively. 
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The relations of x2, y2, and t2 to the correspondent parameters of the previous 

frame are defined in Equation (5), where δx and δy are the spatial differences and 

δt is the time difference between two successive frames.  
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Then I(x2, y2, t2) can be expanded to Equation (6) by a Taylor series, and it 

generates Equation (7) to satisfy Equation (4).  

When u and v are the speeds of the pixel moving in the x and y directions 

respectively, Equation (7) becomes Equation (8), which is called the optical flow 

constraint equation. This is how to track each feature over frames. 
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If any features detected by the optical flow calculation get out of any ROIs 

found on the same frame, the features are discarded to focus on the ROIs. 

Whenever there are fewer than five features left within a ROI, the feature 

detection is executed anew in the ROI to avoid capturing very few motions in one 

region. 
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Figure 45. Internal Motion Vectors 

As a result, the relation between one feature’s coordinates and its new position, 

detected on the next frame, is presented as an arrow, indicating a motion vector, 

and one ROI gets multiple motion vectors, as shown in Figure 45. Therefore, 

using the dot product of any two vectors, 

cos|||||||| babababa yyxx  , the similarity of the motion vectors in 

one ROI is calculated over two adjacent frames.  
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When all the vectors in the cth ROI are defined as n
ccc aaa ,...,, 10 , the average of 

cosθ between the vectors, avg_cosθc, can be calculated with Equation (9). As the 

vectors are same-directional when θ is zero, the closer to one avg_cosθc is, the 

closer the similarity of the vectors is. The threshold value to classify human and 

clutter is defined after tests in Section C. 
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C. Test to Set Threshold 

Several tests have been carried out to detect the threshold value to classify a 

human and clutter with an adult, a ball, and a radio-controlled model car, which 

represent human, rolling, and straight motions respectively. It is advised by 

Hamleys, one of the largest toy shops in the world, that other toys which move 

more dynamically such as dancing robots or realistic animal toys, are for children 

over three years old, who are not toddlers any more [165]; they were not used in 

these tests. 

The averaged value of cosθ between every two vectors within one ROI 

(avg_cosθc) was fairly dynamic over the frames for a walking human (Figure 46a) 

and was constantly close to one for a rolling ball (Figure 47a) and a radio-

controlled model car (Figure 48a).  

 tavgavgavg
ti

i

i
c

t
c /)cos_()cos_(

1





  . (10) 

As sometimes the avg_cosθc value became very close to one for a human 

motion and somewhat lower than one for clutter motion, all the avg_cosθc values 

from the past frames(avg_cosθc
i when i = 1,2,…,t) were also averaged at every 

frame, as given in Equation (10), where t is the current frame number. On the 

basis of several tests, it was found that the avg(avg_cosθc
t) value stays under 0.75 

for a walking human (Figure 46b) and over 0.9 for a rolling ball (Figure 47b) and 

a moving model car (Figure 48b). Hence, the threshold for classifying human and 

non-human was defined as 0.8.  
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(a) 

(b) 

Figure 46. Internal Motion Vectors of Walking Human 

(a) 

(b) 

Figure 47. Internal Motion Vectors of Rolling Ball  
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(a) 

(b) 

Figure 48. Internal Motion Vectors of Radio-Controlled Model Car 

4.3.3 Detection of Clutter on the Floor 

Since clutter could become a tripping or slipping hazard on the floor, anything 

classified as clutter using the method in Section 4.3.2 gets filtered to be at a 

standstill on the floor in order for clutter to be detected.  

 )( 1
),(),(),(

 t
yx

t
yxyx CurCurabscurDiff . (11) 

For this, any noticeable motion is detected at first by comparison of every two 

consecutive images, t
yxCur ),(  and 1

),(
t

yxCur  by pixels, as given in Equation (11) 

where t is the current frame number. Then every ROI, bounding a background-

subtracted region, within the floor area, which is selected with the method 

described in Section 4.3.1, is checked for motion inside. Any ROI without motion 

is considered as still clutter, being a tripping or slipping hazard on the floor. 

Figure 49 shows an instance of differentiating a waving hand and a standstill 

slipper on the floor. While a slipper and a hand both appear on the background-

subtracted image within the floor area (Figure 49c), the difference between 
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successive frames shows only the moving hand (Figure 49d). For cases of clutter 

without tripping or slipping hazards such as toys with which a sitting toddler plays, 

the movement of the subject toddler is checked at the same time.  

(a) (b) 

(c) (d) 

Figure 49. Detection of Clutter on Floor 

4.3.4 Toddler Tracking for Status Recognition 

In order to detect the second fall risk factor, a toddler moving around near 

furniture or room structures and the third one, a toddler climbing furniture or 

stairs, all the foreground objects need to be tracked individually. This is because 

tracking not only provides information about movement but also links identical 

foreground objects over the frames, so that information captured from previous 

frames can be saved for the identical foreground objects. The human classification 
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is based on dynamic motion vectors from past frames, as detailed in Section 

4.3.2C, and the past information should be saved separately for each foreground 

object to classify multiple foreground objects at the same time.  

First, regions which are background-subtracted from each current image are 

focused individually to detect the contour of each foreground region and the 

centre of mass (xc,yc), as given in Equation (12). In it, I(x,y) is the intensity value 

of pixel in the position (x,y) of the image, where each contour is drawn [161], and 

the red dot in Figure 50 is a resulting centre of mass of the human contour.  
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 (12) 

The coordinates of the centre of mass found on each region’s contour from one 

frame are saved in order to be connected to the centre of mass of its corresponding 

region’s contour on the next frame. The distances between a centre of mass from a 

frame and all the centres from the previous frame are calculated, and the centre is 

connected to the closest one from the previous frame. This connection is 

separately conducted on every contour centre detected on each frame. The speed 

and direction of each contour are calculated for motion information, by means of 

the coordinates of two connected centres over two consecutive frames, and the 

green arrow in Figure 50 displays the connection.  
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Figure 50. Tracking of Centre of Mass 

Whereas the centre of mass of a background-subtracted region is used to obtain 

the motion information, the vertically lowest point of a toddler’s region contour 

becomes the focus to check the position of each human. As toddlers barely can 

jump, the vertically lowest point of the contour is considered to be where the 

toddler stands on the floor. As this image analysis needs to check if a toddler 

moves near or climbs furniture, the lowest point is checked for every frame to see 

if it is close to the boundary of the floor area detected when the camera is 

installed, or if it gets out of the floor area. This is based on the consideration that 

the non-floor area is filled with furniture or room structures. In Figure 51, the 

human region is bounded by a red box, which indicates it is classified as human, 

while the ball region is not. The shortest distance of the lowest point of the human 

contour from the blue boundary of the floor area is also calculated and displayed 

in red numbers underneath, as shown in Figure 51. 
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Figure 51. Position Relative to Floor Area 

The motion and position information estimated by the above methods is based 

on the image plane and therefore could be different from the actual information in 

the 3D world space. The motion information of a toddler, however, is simply used 

to exclude a toy with which a sitting toddler plays, when clutter as a tripping or 

slipping hazard is detected, as mentioned in Section 4.3.3. The position 

information is also necessary to be relative to the boundary of the floor area, and 

the normal child’s room, the target environment in this research, would not be big 

enough to have large differences between the image plane and the world space in 

the relative position information. Accordingly, the motion and position 

information obtained from the image plane is used for the recognition of a 

toddler’s status.  
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A. Handling of Merges and Splits 

In the camera view, multiple objects can appear to be one single connected 

component, and a single object can split into multiple regions owing to occlusions 

or errors in background subtraction. These merging or splitting phenomena can 

confuse the tracking of each foreground object, which is to match identical objects 

over consecutive frames. Therefore, regional merges and splits should be 

recognised and managed. According to Section 2.3.2, existing studies generally 

use the colour and position information of each target to handle regional merges 

and splits. The use of colour information, however, would fail to manage merges 

and splits of regions corresponding to a single object in various colours, or 

multiple objects in similar colours since it separates individuals according to the 

colour similarity. The work in this research does not need to identify a toddler and 

each piece of clutter but to distinguish a toddler from clutter in an indoor home 

environment, which is fairly restricted. Therefore, this research seeks a simple 

position-based method to handle visual merges and splits in images. 

 

Figure 52. Contour Indexing 

Initially, every foreground region on each frame is ordered by the smallest x-

coordinate of its contour and numbered by the order. Figure 52 shows an example 

of the numbering. All the information obtained from a region such as the 

coordinates of its centre and bounding box, is also tagged with the region’s 
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number and kept over every two successive frames to be used in connecting 

identical foreground objects over the two frames. As the numbering of foreground 

regions is conducted anew on every frame, an object can get a different number on 

the next frame owing to regional merges and splits as well as simple position 

changes. In order to connect correct regions for an identical object over two 

consecutive frames despite regional merges and splits, the closest centre detection 

is carried out twice, from the previous frame to the current frame and vice versa.  

 
(a) 

 
(b) 

Figure 53. Double Detections of Closest Centres over Two Frames 

For instance, when regions merge, split, and move in and out at the same time, 

as shown in Figure 53, each contour centre on frame t is connected to the closest 

among the contour centres detected on frame t+1 (Figure 53a), and the reverse 

connection from frame t+1 to frame t is conducted (Figure 53b). In order to 

prevent any wrong connection owing to an appearance or a disappearance, which 
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does not have any identical region to be connected on the previous frame or the 

current frame, the distance between the closest centres over two frames is limited 

within the half length of the diagonal line, connecting two opposite points of the 

bounding box of each region. This is because the moving speed of a toddler is 

assumed to be slow enough to catch up within the limitation at the rate of 30 

frames per second. 

These two different connections are compared in order to check where a merge, 

a split, an appearance, a disappearance, or a one-to-one connection happens. The 

one-to-one connection, which means tracking of a region without any merge or 

split, is confirmed when the two connections are both singular. For example, 

when all the regions in frame t are indexed with pC0, pC1, …, pCn and the 

regions in frame t+1 are indexed with cC0, cC1, …, cCn, only pC0 and cC1 have 

single connections in both directions, as shown in Figure 53a and Figure 53b. In 

this case, all the recorded information for one foreground object tagged with zero 

gets indexed with one. The information includes the averaged cosθ value of 

internal motion vectors of a region, described in 4.3.2B, in order to keep and use 

all the past values for human classification. 

When one region in the current frame has multiple connections in the closest 

centre detection from the previous frame, like cC2 in Figure 53a, it is viewed as a 

merge, and a region in the other way around like pC2 in Figure 53b is viewed as a 

split. These merges and splits need to be further examined to differentiate between 

occlusion of multiple objects and separated blobs of one object. As a split should 

happen before a merge in a single object and a merge should come before a split 

in multiple objects, the differentiation is based upon a history of merges and splits 

for each region. This is based on the assumption that each foreground object 

corresponds to a single region without any merge or split when appearing on the 

scene. 
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When a single object splits into multiple regions, all the split regions inherit the 

past information tagged to the region before the split. When they merge 

afterwards, the information of any region before the merge is transferred to the 

merged region. When multiple objects merge into one connected region, all the 

past information of each region before the merge is saved individually with the 

region’s size, and the merged region starts with null information unless the 

multiple objects include a toddler. If a toddler is included there, the toddler 

region’s information is kept on the merged region because a toddler carrying toys, 

for instance, needs to keep being tracked as a toddler for fall risk detection. Then 

when any of the objects gets separated from the merge, among the pieces of 

information saved before the merge, a correct piece is returned to the split object 

by comparison of its regional size with the saved regional sizes. The comparison 

of region sizes allows a 10 per cent error margin. 

A region with no connection in the closest centre detection from the previous 

frame, like pC5 in Figure 53a, is regarded as an object’s disappearance, and the 

region’s information is removed. A region with no connection in the opposite 

way, like cC0 in Figure 53b, is regarded as an appearance and begins a new data 

collection. 

4.4 Implementation 

For the visual analysis to detect the fall risk factors, a single Logitech Quickcam 

Pro5000 was used to capture real-time images in a fixed position. The image size 

is 640 x 480 pixels, the frame rate is 30 frames per second, and the developed 

prototype software has dialogue-based interfaces to set up and control the system. 

The image analysis methods were programmed in Visual Studio C++.NET using 
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OpenCV5, an open source computer vision library developed by Intel Corporation. 

The whole workflow of the real-time image analysis for the fall risk detection is 

illustrated in Figure 54.  

When there is no foreground object in the environment where a fixed camera is 

installed and a subject toddler will play alone, a background image is captured by 

pressing button Capture Initial Background on the window in Figure 55, before 

selection of the floor area. Then the captured image appears on screen Initial 

Background. 

A window of the background image like the one in Figure 43a pops up when 

button Detect the Floor is pressed, and the window lets the user select the floor 

region in the initial background image, as described in Section 4.3.1. The floor 

selection works well, even when there is more than one separate region 

corresponding to the floor in the background image. This is because the contour of 

each region is detected and filled respectively. As the floor is detected only once 

at the beginning, if any structure in the room moves during the clutter detection, 

the floor mask image should be updated manually, and it can be done with the 

easy interface described in Section 4.3.1. 

When button Build BG Model is pressed, a background model is built to 

perform background subtraction, as described in Section 4.3.2A. Then the whole 

real-time image analysis can begin when button Start Supervision, which converts 

to Stop Supervision while real-time images are being processed and can be 

pressed to finish.  

                                                      
5 The installation files of OpenCV can be downloaded from 

http://sourceforge.net/projects/opencvlibrary [accessed: 30 Jan. 2009].  
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Figure 54. System Workflow for Classification of Human and Clutter 
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Figure 55. Dialogue-Based Window for Image Analysis 

The background subtraction method works adequately with 640 x 480 images 

from the QuickCam Pro 5000. Logitech’s other web cameras of lower or higher 

performance such as the QuickCam Pro 4000 or the Ultra Vision, are more prone 

to noise owing to low resolution or visible compression artefacts. As the 

background subtraction method compares pixel intensity values, if the colour and 

texture of any foreground objects are very similar to those of the background, they 

may not get segmented completely. Therefore it is assumed that there is no 

foreground object with the same colour and texture as the background. Another 

limitation is that the background model can be automatically updated only when 

no foreground object is present on the scene.  

The methods of human classification and handling of regional merges and splits, 

illustrated in Section 4.3.2 and Section 4.3.4, work adequately. Figure 56 and 
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Figure 57 present successful recognition of human classification and regional 

merges and splits. In Figure 56, a walking person is classified as a human by the 

dynamic internal motion vectors and bounded by a red box while the ball is not. 

The person’s region splits (Figure 56b) and the two split regions (one inside the 

other) are both bounded by a red box because the person region’s data are 

inherited. The split regions merge immediately (Figure 56c), and the two green 

arrows heading the merged region’s centre represent the merge. 

(a) (b) (c) 

Figure 56. Split and Merge of Single Object 

In Figure 57, a person is passing by a ball, and their past information is 

separately recorded and displayed in red for the person and in green for the ball in 

the graphs of Figure 57a. The past information is avg_cosθc of Equation (9) and 

the speed, moving distances between frames. When the regions merge, only the 
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person region’s data are kept in the merged region, as shown in Figure 57b, and 

when they split, the ball region’s data are returned to the ball region, as presented 

in the graphs of Figure 57c. 

 

 
(a) (b) (c) 

Figure 57. Merge and Split of Multiple Objects 
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The system occasionally has problems, however, with differentiating merges 

and splits of a single object from the ones of multiple objects based on each 

region’s size and history of merges and splits. A problematic instance is that a 

person’s region splits while the person occludes a ball, and the size of the split 

region from the person is fairly similar to the ball region size. This split region 

would be regarded to correspond to the ball owing to the person’s merge history 

and the similar region size, and the past information of the ball will be transferred 

to the split region. 

4.4.1 Evaluation by Case Studies 

In order to objectively evaluate the performance of the novel methods proposed 

in this thesis for detection of the fall risk factors, a framework has been set up 

based on the following principles: 

 The movements of the subjects in this research are recorded on 640 x 480 

image resolution at 30 frames per second, and several sets of sequences, 

whose foreground objects are adequately segmented by the simple 

background subtraction method used here, are manually selected; 

 A few kinds of toys moving differently are selected and are filmed solely 

or together when they move and then stop for assessing the methods of 

detecting a tripping hazard; 

 A toddler is filmed with his or her toy appearing on the scene for 

evaluation of the human detection method; 

 Each foreground region is labelled at every frame with its contour numbers 

in the previous and current frames for evaluation of the tracking method; 

 Connections of foreground regions between every two frames for tracking 

are labelled with no merge/split, split of a single object, separation of 

multiple objects, reunion of split regions of a single object, or occlusion 

of multiple objects, in order to assess the method for handling regional 



104 

 

 

  104

merges and splits, and the labels are recorded in the group of ‘merge/split’ 

at every frame; 

 Each foreground object is labelled with its classification, a toddler, moving 

clutter, stationary clutter, or noise, and the labels are recorded in the 

group of ‘classification’ at every frame; 

 Every foreground object classified into a toddler is labelled with safe on 

the floor, approaching furniture, or off the floor, depending on its position 

against the floor area, and the labels are recorded in the group of ‘toddler 

status’ at every frame; 

 All the recorded labels are checked with the sequences to judge whether 

they are correct or not within their groups ‘merge/split’, ‘classification’, 

and ‘toddler status’; 

 The number of correct labels is divided by the total number of frames for 

the groups of ‘merge/split’ and ‘classification’, and by the number of 

frames, whose foreground region is classified into a toddler, for the group 

of ‘toddler status’. 

First of all, the sequences to be used for the evaluation were filmed in advance 

and manually filtered for two reasons. One of the reasons is that the background 

subtraction method employed in this research is very simple and its errors directly 

influence the subsequent processes. The other reason is that a toddler feels 

comfortable and safe in his or her own home environment and only a digital 

camera was brought when the environment was visited to lessen the feeling of 

intrusion and reduce time for installation. This was also for the convenience of the 

toddler’s carer, who has to be present at all times during filming, according to the 

ethical approval given to this evaluation (Appendix C). As each frame of the input 

sequences was processed at the same speed of the real-time image capture (30 

frames per second), it can still be said to be a real-time image analysis. 
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(a) (b) 

Figure 58. Evaluation with Individual (a) Ball and (b) Car 

  

(a) (b) 

Figure 59. Evaluation with (a) Ball, Car, (b) Plane, and Dog Toys 

In order to evaluate the clutter detection method, not only rolling or straight-

moving toys but also a simple walking toy dog, safe with a toddler, was employed. 

The toys were filmed solely, together, or with a toddler to assess the methods of 

classifying a human and clutter and handling regional merges and splits while 

tracking. The toys’ footage was recorded when they moved and stopped in order 

to assess the method of differentiating stationary clutter as a tripping or slipping 

hazard from moving clutter. The details of each case study are as follows: 

 Case 1: A ball, bouncing, rolling, and stopping (Figure 58a); 
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 Case 2: A radio-controlled model car, moving straight back and forth and 

stopping (Figure 58b); 

 Case 3: A ball, rolling and stopping and a radio-controlled model car, 

moving straight and stopping (Figure 59a); 

 Case 4: A toy plane, moving forward and a toy dog, walking back and 

forth (Figure 59b); 

 Case 5: A 2-year-old toddler, walking and stopping and a toy dog, walking 

back and forth (Figure 60a); 

 Case 6: A 2-year-old dancing toddler, a straight-moving toy plane, and a 

walking toy dog (Figure 60b) 

  

(a) (b) 

Figure 60. Evaluation with Toddler and Toys 

After a set of sequences was collected and filtered to obtain foreground objects 

adequately segmented according to the above principles, the methods proposed in 

this thesis were applied to process the sequences, and each foreground object in 
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the images was labelled at every frame with what the methods had found. One 

foreground object at one frame obtained labels in five groups: ‘previous contour 

number’, ‘current contour number’, ‘merge/split’, ‘classification’, and ‘toddler 

status’, as presented in Table 10.  

Table 10. Labels on each Foreground Object at every Frame for Evaluation 

Merge/Split Classification Toddler Status 

F
ram

e N
um

ber 

P
revious C

ontour N
um

ber 

C
urrent C

ontour N
um

ber 

- No Merge/Split 
- Split of a Single 
Object 
- Separation of 
Multiple Objects 
- Reunion of Split 
Regions of a Single 
Object 
- Occlusion of 
Multiple Objects 

C
orrect? (Y

es/N
o) 

- Toddler 
- Moving Clutter 
- Stationary Clutter
- Noise 

C
orrect? (Y

es/N
o) 

- Safe on the Floor
- Approaching 
Furniture 
- Off the Floor 

C
orrect? (Y

es/N
o) 

   

 

As described in Section 4.3.4A and illustrated in Figure 52, every foreground 

region is ordered by the smallest x-coordinate of its contour and numbered from 

zero. The number is named ‘contour number’ here, and the contour numbers of 

each foreground object at the previous and current frames were recorded at every 

frame to check if identical objects were matched over the frames. As the tracking 

method also deals with regional merges and splits, the state of each foreground 

region recognised with respect to merges and splits was recorded. The resulting 

classification of each foreground region was also recorded, and only for the 

regions classified as a toddler, ‘toddler status’ is detected and added to the labels.  

After processing all the sequences, the labels recorded for each foreground 

region at every frame were manually checked to see whether they were correctly 

recognised or not within the label groups. As groups ‘previous contour number’, 

‘current contour number’, and ‘merge/split’ are all related to the tracking method, 



108 

 

 

  108

the checking was executed at once together for the labels in those groups, as 

shown in Table 10. For instance, the evaluation results with the sequence where a 

ball rolled and then stopped are presented in Table 11. 

Table 11. Labels on Ball for Method Evaluation 

F
ram

e N
o. 

P
revious 

C
ontour N

o. 

C
urrent 

C
ontour N

o. 

Merge 
/Split 

C
orrect? 

Classification 

C
orrect? 

Toddler Status 

C
orrect? 

1~ 
49 

0 0 “No Merge/Split” Y "Moving Clutter" Y   

50 0 0 “No Merge/Split” Y “Stationary Clutter” N   

51~
52 

0 0 “No Merge/Split” Y "Moving Clutter" Y   

53 0 0 “No Merge/Split” Y “Stationary Clutter” Y   

54~
103 

0 0 “No Merge/Split” Y “Stationary Clutter” Y   

 

The number of the labels judged to be correct was divided by the number of the 

total frames where the foreground object was present, for the labels in groups 

‘merge/split’ and ‘classification’. For the labels in ‘toddler status’, the number of 

correct labels was divided by the number of the frames which included a 

foreground object classified as a toddler. The results are displayed in Table 12 as 

the success rates of the methods proposed in this research. 

The method of handling regional merges and splits performed fairly well in 

both sets of the sequences of clutter and a toddler with clutter. This is because the 

better the foreground objects are segmented, the fewer problems occur in regional 

merges and splits, and the sequences for this evaluation have been filtered so that 

they have moderately segmented foreground regions. Clutter was classified 

correctly at high rates into moving and stationary clutter, and a toddler appearing 

with clutter was also favourably detected. Since the ’toddler status’ was simply 
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based on the distance from the floor boundary, it performed well as long as 

toddlers were correctly detected. 

Table 12. Results of Method Evaluation 

Number (Percentage) of Frames Correctly Recognised Foreground Object Total Frame 
No. 

Merges & Splits Classification Toddler Status 

Case 
Group 

Each Case Each Group Each Group Each Group Each Group

Ball 
103 

103 
(100%) 

102 
(99.02%) 

Toy Car 
51 

51 
(100%) 

50 
(98.04%) 

Ball +  
Toy Car 

135 
133 

(98.52%)
132 

(97.78%) 

M
oving/ S

tatic C
lutter Toy Dog + 

Plane 
399 

687 

397 
(99.50%)

99.42%

392 
(98.25%) 

98.40%   

Clutter Toddler Clutter Toddler + 
Toy Dog 226 

226 
(100%) 226 

(100%) 
148 

(65.49%)
99.28% 

145 
(97.97%)

Clutter Toddler Toddler 

T
oddler +

 
M

oving/ S
tatic 

C
lutte r

Toddler + 
Toy Dog + 
Plane 

330 

556 

330 
(100%) 

100%

326 
(98.79%)

273 
(82.73%)

75.72% 

270 
(98.9%) 

98.57%

 

As there is no existing study on classification of a human and indoor clutter, it 

is difficult to compare the performance of the methods proposed in this thesis with 

the one of different methods. 

4.5 Chapter Summary 

This chapter delineated the details of the image analysis methods for detection 

of clutter on the floor as a tripping or slipping hazard, and a toddler moving 

around or climbing furniture or stairs. The major tasks of this image analysis are 

background subtraction, foreground tracking, and foreground classification into a 



110 

 

 

  110

human and clutter. A novel method using dynamic motion cues has been 

developed and tested for the classification of a human and clutter.  

Real-time images are captured by a fixed webcam, and foreground objects are 

segmented by comparing the images with a simple background model. The 

differences are thresholded to get rid of noise and neglect slight changes of the 

sunlight. Each of the foreground objects is tracked over time by connecting it with 

the one at the nearest distance in the next frame. For this purpose, the centre of 

mass of each region is detected at every frame, and the distances between each 

centre in one frame and all the centres detected in the next frame are calculated. 

The motion information (speed and direction) of each object can be obtained from 

the relation of the connected centres.  

Meanwhile, multiple objects can appear to be a connected component, and a 

single object can split into multiple regions owing to occlusions or errors in 

background subtraction that will confuse the tracking of each foreground object. 

In order to connect identical objects between consecutive frames, despite the 

regional merges and splits, the closest region centres between two successive 

frames are detected twice from the previous to the next frames and vice versa. In 

addition, each region’s size and its history of merges and splits are used to 

distinguish between multiple objects and a single object in merges and splits.  

On the other hand, all the foreground objects are classified into a human and 

clutter since the necessary information from a toddler is different from that from 

clutter in detecting the fall risk factors. The classification is based on dynamic 

human motion owing to the different body part motions when the whole body is 

mobile. Conversely, typical clutter in an indoor home environment may have 

relatively constant motion vectors. Therefore, the internal motion vectors are 

captured in each foreground region, and their similarity is calculated.  
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The fall risk factors related to a toddler’s behaviour are activated if he or she is 

moving close to or climbing furniture or room structures. Hence, the floor region 

is manually selected once when the camera is installed and used to determine if 

any toddler region approaches the boundary of the floor area or off the area, with 

the assumption that the non-floor area is filled with furniture and room structures. 

All the methods introduced in this chapter were objectively evaluated by case 

studies of toys solely, together, or with a toddler. The evaluation shows that 

stationary clutter being a tripping or slipping hazard was detected at high rates and 

a toddler was also moderately classified. The recognition of toddler status 

regarding the fall risk factors also performed well as long as toddlers are correctly 

detected. The use of dynamic internal motions, however, would not good enough 

for human classification when a pet appears with a toddler on the scene. This is 

because a pet moves its body parts diversely like a human. Therefore, the next 

chapter introduces additional motion cues considering pets so as to strengthen the 

human classification. 
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Chapter 5 

Classification of Human and Pet 

5.1 Introduction 

Many families with young children may also have a dog or a cat. In case both a 

toddler and a pet are seen in images, the human classification using the different 

internal motions described in Section 4.3.2 would not work well since a pet also 

moves its body parts differently. Thus, other dynamic cues regarding pets have 

been added to reinforce the human classification.  

The existing studies on animal detection reviewed in Section 2.3.3 use 

articulated models or motion templates focusing on leg movement to discriminate 

different animals, distinguish between animals and humans, or further recognise 

specific activities of animals. The work in this thesis does not need to identify 

different animals or recognise their activities but needs to differentiate a human 

from pets to detect a toddler’s fall risk factors. Thus, it would be excessive to 

build and apply motion templates for different animals as the existing studies do. 

The use of cues related to gaits may also cause problems when the legs are 

occluded or out of the camera view. Therefore, the cues used in this research have 

been discovered from observation of pets’ movement and are deemed to be 

adequate for the human classification in indoor home environments.  

The first cue is dynamic posture changes of pets, especially within a limited 

space like an indoor home environment, compared with a toddler generally being 

upright while walking. This is detailed in Section 5.3.1, following the method 

overview in Section 5.2. The other cue is the actual height information illustrated 

in Section 5.3.2 since the size of a toddler is usually different from that of a pet. 

These two cues are applied together to the human classification in Section 5.3.3. 
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Lastly, Section 5.4 presents the implementation and the evaluation by case studies 

of the methods. 

5.2 Method Overview 

One of the cues for classification between a toddler and pets is the diversity in 

the posture changes of a dog or a cat within a limited space such as an indoor 

home environment, and the other is actual height information in 3D world 

coordinates. The method flowchart for collecting those two pieces of information 

and using them to classify a toddler and a pet is shown in Figure 61. The grey-

labelled elements of the flowchart were already introduced in Section 4.2, which 

gave an overview of the methods of classifying a toddler and clutter. As many of 

the elements are also involved in the method of classifying a toddler and a pet, 

they are presented in the flowchart here to show the relations but are not explained 

in this section. 

In order to obtain the actual height information of each foreground object, the 

camera should be calibrated first to learn the relations between the projected 

image plane and the real-world space. Individual reference datasets for a toddler 

and a pet are then built in terms of their actual heights and dynamic posture 

changes by analysis of separate sample videos of their movements. These datasets 

are referred to later for estimating the possibilities of each foreground object to be 

a toddler and a pet respectively. The camera calibration and the dataset 

construction need to be done before analysis of real-time images. 
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Figure 61. Method Flowchart for Classification of Human and Pet 

During the analysis of real-time images, the foreground objects with dynamic 

internal motion vectors are focused on for the classification of a toddler and a pet. 

Their actual heights and fitting ellipse angles are calculated and saved in each 

frame, and the data from all the past frames are used to calculate the certainty of 

each foreground object to be a toddler or a pet. Then the foreground objects are 

classified in terms of the certainty. 
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5.3 Methodology 

This section only illustrates the additional methods of human classification 

considering pets. The use of two dynamic motion cues regarding pets is 

individually delineated, and the details of their combination follow. 

5.3.1 Angle Changes of Fitted Ellipse 

It was observed that a dog or a cat changes its posture very dynamically when it 

moves around because they tend to turn around frequently in a limited space like 

the indoor home environment. A cat especially stretches the body or the tail 

widely when moving. On the other hand, the pose of toddlers does not change as 

much since they generally move the limbs and keep the trunk almost 

perpendicular to the ground when they toddle around. Therefore, it has been 

decided to use the diversity of a pet’s posture changes to classify a toddler and a 

pet. As the difference we need to capture between a toddler and a pet in terms of 

posture changes is  dependent on keeping upright or not, it was decided to analyse 

the angle changes of the ellipse fitted to a foreground region rather than its 

contour changes. This is also because the contour analysis may cause another 

problem because of uncertain segmentation from some errors in background 

subtraction.  

In order to obtain an ellipse fitted to the contour of a foreground object, the 

method of Fitzgibbon and colleagues [166], which is robust to noise and an 

excellent trade-off between speed and accuracy for ellipse fitting, was applied. A 

general conic is presented by the implicit second order polynomial, as follows: 

 0)(  feydxcybxyaxyx,F 22 . (13) 

),( vuF is called the algebraic distance of a point ),( vu  to the conic 0),( yxF . 

The fitting of a general conic is approached by minimising the sum of squared 
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algebraic distances of the curve to the N data points ),( ii yx  as given with 

Equation (14).  

 
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Furthermore, Fitzgibbon and colleagues constrain the parameters of Equation 

(13) to satisfy Equation (15) in order to achieve ellipse-specific fitting. The 

rotation angle (ang) of the resulting ellipse can be derived with Equation (16) 

[167]. 

  

Figure 62. Ellipses Fitted to Toddler and Dog 

The results of the ellipse fitting method are the blue ellipses in Figure 62. The 

angle of the resulting ellipse is returned to be the one between horizontal axis of 

the image and the ellipse axis with the shorter length as illustrated in Figure 63. 

Owing to the symmetry of ellipses, the range of ellipse angles is from 0 to 180 

degree, and the angle of almost upright ellipses becomes 0, slightly less than 180, 

or slightly more than 0 degree. Hence, the ellipse angles are subtracted 90 and 

turned to be positive as given with Equation (17) so as to make the angles of 
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almost upright ellipses have similar degrees and derive relative consistency of 

toddlers’ upright postures. 

 

Figure 63. Ellipse Angle 

 )90(  angabsang . (17) 

In order to capture the diversity, all the angle changes of the ellipse fitted to 

each contour are recorded over time only when the whole body is mobile. The 

mean average (angMeanc
t) and the standard deviation (angSDc

t) of the angle 

history (angc
i) for a foreground object (cth ROI) at frame t, are calculated with 

Equation (18).  
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5.3.2 Actual Height 

The body size of a toddler or a pet is meant to be various depending on their 

growth level or race/species and would be an obvious feature for differentiating 

between them. Hence, a body size factor, height, has been chosen as a cue for 

differentiating a toddler, whose primary growth direction is vertical, from a pet, 
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whose direction is horizontal. Camera calibration is required to obtain the actual 

height information of each foreground object, and a single initial calibration is 

enough as the camera is fixed. This section delineates the details of the camera 

calibration method applied in this research, and the calculation of each object’s 

actual height at every frame, based on the calibration parameters. 

A. Camera Calibration 

According to Section 2.3.4, which analysed existing studies related to camera 

calibration, a pinhole camera model is commonly used to calibrate a camera, and 

radial distortion is the popular lens effect to be handled. Therefore, a basic pinhole 

camera model is applied here to calibrate the camera used in this research, and the 

radial distortion problem is also handled. 

 

Figure 64. Relationship of Image Plane and World Space 

The pinhole camera model describes the mathematical relationship between the 

coordinates of a 3D point and its projection onto the image plane of an ideal 

pinhole camera which has no lens but a pinhole to let very little light through 
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[168]. Figure 64 shows the relationship between a point, M, in the 3D world space 

and its projection, m, onto the image plane. The details of the mathematical 

relationship follow: 
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First of all, the camera coordinates of the point M are calculated as (x, y, z) in 

Equation (19), using the rotation matrix, R and the translation vector, t, both of 

which relate the world coordinate system to the camera coordinate system. The x- 

and y-coordinates of (x, y, z) are normalised as (x’, y’) in Equation (20) by the z-

coordinate, which is the principal axis of the camera coordinates and then are 

distorted as (x", y") in Equation (21), where k1 and k2 are the two radial distortion 

coefficients, considering only the first two terms of radial distortion [115].  

 ., yyxx cy"fvcx"fu   (22) 

Finally, the distorted coordinates (x", y") are transformed into (u, v), the image 

plane coordinates of the point m, as given in Equation (22), where fx and fy are 

focal lengths and cx and cy are the coordinates of a principal point, all of which are 

expressed in pixel-related units. Although some studies reviewed in Section 2.3.4 

include a skew parameter in camera calibration, it is not considered here since the 

skew parameter is zero for most normal cameras [169]. 

Camera calibration is the process of obtaining all those parameters and 

coefficients which can define the relationship between a point in the world space 

and its projection, using some features of an image whose world coordinates are 
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known. The chessboard in Figure 65 is used in this work since a square pattern is 

popular in camera calibration owing to the easy detection of the point features, as 

shown in Section 2.3.4E. Moreover, a planar pattern laid on the floor is good 

enough to discover the planar world coordinates of the floor and the real position 

of each foreground object on the floor. As a toddler can hardly jump and a pet 

usually walks around in the indoor home environment, it is assumed that they 

always walk when their whole body is mobile. Therefore, each object’s actual 

height can be calculated from the position on the floor, assuming every 

foreground object is always perpendicular to the ground when walking around.  

 

Figure 65. Part of Chessboard 

The chessboard from Figure 65 contains four-by-four squares, each of which 

measures 20 cm x 20 cm. The chessboard is spread on the floor while capturing 

images for the camera calibration, and the z-coordinates of the nine points 

detected on the chessboard are all fixed as zero. The x- and y-coordinates can be 

defined by the square size and are used to calculate the parameters and the 

coefficients. After all the parameters and the coefficients have been obtained, the 

image plane coordinates of the chessboard points are calculated from their world 

coordinates, the parameters, and the coefficients by following Equations (19), 

(20), (21), and (22). This is for checking whether the camera has been correctly 

calibrated, and the calculated coordinates are compared with the real image plane 

coordinates. When the average of the differences is below one, the parameters and 
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the coefficients are confirmed to be correct and applied to calculate the actual 

height of each foreground object. 

B. Calculation of Actual Height 

First, the lowest point of the contour of each foreground object is defined as 

where the object stands on the floor. The world coordinates of the point are 

calculated by fixing the z-coordinates to be zero and reversing Equations (19), 

(20), (21), and (22) with the camera parameters and the distortion coefficients 

obtained during the camera calibration.  

Then the world z-coordinate of the highest point of the object contour is 

calculated to have the same x- and y-coordinates as the ones of the lowest point 

and saved as the object’s actual height. As the calculated heights may be wrong 

when toddlers stay seated, the heights are calculated when the whole body moves 

in order to capture the heights when they walk. All the heights of each object 

calculated over the time are also recorded and used because toddlers can look 

shorter when they bend the body or dogs can appear taller owing to their posture 

or errors in foreground segmentation. 

5.3.3 Information Fusion of Multiple Cues 

The three kinds of data, the mean average and the standard deviation of the 

angle changes of contour-fitting ellipse and the history of actual heights, need to 

be simultaneously applied to classify each foreground region into a toddler or a 

pet. A toddler and pet show fairly different aspects from each other in terms of the 

three kinds of data, and each foreground object can be classified by finding which 

aspect the object’s data are close to. Hence, a theory is necessary here to quantify 

how close to each aspect the data of a foreground object are, and entropy is 

employed.  Entropy is generally known as the degree to which a given quantity of 

thermal energy is available for doing useful work [170], but Claude Shannon 

redefined it as uncertainty of a system, represented by the logarithm of possible 
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combinations of states in that system [171]. As Shannon’s entropy measures 

uncertainty of a system based on a set of probabilities [172], the classification 

could be customised to a specific toddler and pet when a short footage of the 

toddler and the pet is used to identify the probabilities.  

There has been some work on fusion of multiple sorts of data or information 

based on entropy. Zhou and Leung [173] fused multi-sensor data using entropy in 

order to find the optimum weights that minimise the uncertainty of the fused 

information, based on the empirical distribution of the sensor data. Kern-Isberner 

and Rödder [174] combined pieces of probabilistic information stemming from 

different sources using the principle of maximum entropy, which processes 

information most faithfully. Hsu and Chang [175] applied maximum entropy to 

fuse diverse features from multiple levels and modalities effectively, including 

visual, audio, and text so as to segment and classify news video stories. 

 i

n

i
i ppH log

1



 . (23) 

 









 


n

i
ipH

1

log
1

1 
 

. (24) 

 



n

i
ipH

1

2
2 log . (25) 

Shannon’s entropy (H) is estimated with Equation (23), when n21 p,...,p,p  are 

given as a set of probabilities. It cannot, however, be calculated when any of the 

probabilities is zero because log0 does not exist. Alfred Rényi [176] generalised 

Shannon’s entropy as presented in Equation (24), where order α is no less than 

zero and pi are a set of input probabilities. In the situation where α approaches 

one, Hα converges to Equation (23), Shannon’s entropy. When α = 2, Rényi’s 

entropy becomes Equation (25), which can also be calculated when any of the 

probabilities is zero and thus is adopted for the data fusion in this research.  
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Equation (26), where –log is omitted from Equation (25) and h
ip  and p

ip  are 

probabilities of a toddler and a pet respectively, is used to classify each 

foreground object into a toddler and a pet in this research. Basically log x is 

proportional to x, and in this work the entropies will be measured for a toddler and 

a pet separately and compared with each other, which means this research only 

concerns the relative values of the entropies. Therefore, –log can be omitted from 

Rényi’s entropy and the omission of minus(-) changes the entropy (uncertainty) to 

certainty. Therefore, Ch and Cp of Equation (26) become the certainties of being a 

toddler and a pet respectively, and the bigger value decides the classification. 

In order to determine the probabilities pi for the certainty calculation, one brief 

video of a subject toddler and one of a subject pet are applied to set up reference 

probabilities by range for the history of actual heights and the mean average and 

standard deviation of the angle changes of fitted ellipse. The ranges are from zero 

to 100 at ten intervals for the actual heights and from zero to 90 for the data 

related to the ellipse angle changes, as shaded with grey in Table 13 and Table 14. 

This is because neither a toddler nor a pet would look taller than 100 centimetres 

and ellipse angles are always between zero and 90 degrees, as explained in 

Section 5.3.1.  

The videos used to make the reference probabilities are subject to containing the 

whole body movement of a toddler and a pet for more than ten seconds at the rate 

of 30 frames per second. In other words, the three kinds of data are acquired from 

at least 300 frames and arranged by the range, and the number of the frames 

belonging to each range is counted and divided by the total frame number. Then 

the results are multiplied by 100 to define in percentage terms the possibilities of 

having the toddler and the probabilities of having the pet on the image, as 

presented in Table 13 and Table 14.  
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Table 13. Sample Probabilities of Toddler 

Probabilities Range of 
Height(cm)/ 

Angle(degree) 
History of Actual 

Height 
Mean of Ellipse Angle 

Changes 
Standard Deviation of 
Ellipse Angle Changes 

0 ~ 10 0 0 41.9354838709677440 

10 ~ 20 0 0 58.0645161290322560 

20 ~ 30 0 0 0 

30 ~ 40 0 0 0 

40 ~ 50 0 0 0 

50 ~ 60 75 0 0 

60 ~ 70 25 0 0 

70 ~ 80 0 85.4838709677419360 0 

80 ~ 90 0 14.5161290322580640 0 

90 ~ 100 0   

Table 14. Sample Probabilities of Dog 

Probabilities Range of 
Height(cm)/ 

Angle(degree) 
History of Actual 

Heights 
Mean of Ellipse Angle 

Changes 
Standard Deviation of 
Ellipse Angle Changes 

0 ~ 10 0 25.3968253968253950 25.3968253968253950 

10 ~ 20 45.4545454545454530 5.2910052910052912 1.5873015873015872 

20 ~ 30 54.5454545454545470 54.4973544973545000 44.9735449735449750 

30 ~ 40 0 14.8148148148148150 28.0423280423280410 

40 ~ 50 0 0 0 

50 ~ 60 0 0 0 

60 ~ 70 0 0 0 

70 ~ 80 0 0 0 

80 ~ 90 0 0 0 

90 ~ 100 0   
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During the real-time image analysis, the actual heights and the fitted ellipse 

angles are collected from all the past frames as well as the current frame, each 

piece of data obtains its own possibility, referring to the reference probabilities. 

The possibilities are detected separately for a toddler and a pet and used to 

calculate Ch and Cp of Equation (26), and the bigger value decides the category of 

the foreground region. 

5.4 Implementation 

A single Logitech Quickcam Pro5000 was used in a fixed position to capture 

real-time images of 640 x 480 pixels at 30 frames per second, and the algorithms 

were written in C++ using OpenCV for method implementation. First, the posture 

changes of a toddler, a dog, and a cat were separately estimated by calculating 

angles of the ellipse fitted to their contour over time. Their actual heights were 

also obtained after camera calibration, and then the combination of those two 

kinds of information were implemented. Figure 66 presents the whole workflow 

of the human detection. 
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Figure 66. System Workflow for Classification of Human and Pet 

The ellipse fitted to a foreground contour appeared fairly differently over time 

between a toddler and pets. Figure 67a, Figure 68a, and Figure 69a show the 
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ellipse angles over time of a toddler, a dog, and a cat respectively, and the angles 

are somewhat constant for the toddler and relatively dynamic for the pets. 

Whereas the mean average of ellipse angles for the walking toddler in Figure 67 

stays near 90 degrees (Figure 67b), the mean averages of ellipse angles for the 

wandering dog in Figure 68 and the moving cat in Figure 69 are relatively 

dynamic (Figure 68b and Figure 69b). Moreover, the standard deviations of 

ellipse angles for the dog and the cat (Figure 68c and Figure 69c) are noticeably 

larger than the one for the toddler (Figure 67c). 

 

 
(a) (b) (c) 

Figure 67. Angle Changes of Ellipse Fitted to Toddler 

 
(a) (b) (c) 

Figure 68. Angle Changes of Ellipse Fitted to Dog 
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(a) (b) (c) 

Figure 69. Angle Changes of Ellipse Fitted to Cat 

The actual heights were estimated over time for a walking toddler and a 

wandering dog, and Figure 70 presents the graphs of heights. While the toddler’s 

heights constantly appear to be around 70 centimetres, the dog’s heights vary over 

time. This is because in images a pet frequently look taller or shorter than its real 

height owing to the dynamic postures, and thus the history of actual heights is also 

useful information for classification between a human and a pet. 

(a) (b) 

Figure 70. Height Records of (a) Walking Toddler and (b) Dog 
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(a) 

 
(b) 

Figure 71. Classification of (a) Toddler and (b) Dog 
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The fitted ellipse angle changes and the actual height history were fused for 

human classification, and some results can be seen in Figure 71. The numbers on 

the bottom of the bounding boxes are the calculated Ch and Cp of Equation (26), 

which are 514930.555556 and 45.963804 for the toddler in Figure 71a and 

0.000000 and 85192.459830 for the dog in Figure 71b. Ch is bigger than Cp for the 

toddler, and it is the other way around for the dog. Therefore, they were correctly 

classified by the fusing of their ellipse angle changes and actual heights after 

clutter was discarded according to the dynamic internal motion vectors. 

5.4.1 Evaluation by Case Studies 

The principles for evaluation of the methods delineated in this chapter are 

almost the same as the principles set up in Section 4.4.1 and are as follows: 

 The movements of the subjects in this research are recorded on 640 x 480 

image resolution at 30 frames per second, and several sets of sequences, 

whose foreground objects are adequately segmented by the simple 

background subtraction method used here, are manually selected; 

 Whenever the camera is installed, a chessboard pattern is laid on the floor 

appearing on the camera scene and filmed for five seconds. Then the 

pattern is removed, and a toddler and a pet are filmed separately or 

together; 

 Each foreground region is labelled at every frame with its contour numbers 

of the previous and current frames for evaluation of the tracking method; 

 Connections of foreground regions between every two frames for tracking 

are labelled with no merge/split, split of a single object, separation of 

multiple objects, reunion of split regions of a single object, or occlusion 

of multiple objects, in order to assess the method for handling regional 

merges and splits, and the labels are recorded in the group of ‘merge/split’ 

at every frame; 
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 Each foreground object is labelled with its classification, a toddler, a pet, 

moving clutter, stationary clutter, or noise, and the labels are recorded in 

the group of ‘classification’ at every frame; 

 Every foreground object classified as a toddler is labelled with safe on the 

floor, approaching furniture, or off the floor, depending on its position 

against the floor area, and the labels are recorded in the group ‘toddler 

status’ at every frame; 

 All the recorded labels are checked with the sequences to judge whether 

they are correct or not within their groups ‘merge/split’, ‘classification’, 

and ‘toddler status’; 

 The number of correct labels is divided by the total number of frames for 

the groups of ‘merge/split’ and ‘classification’, and by the number of 

frames whose foreground region is classified as a toddler for the group 

‘toddler status’. 

As most of the above principles are the same as the principles in Section 4.4.1, 

only the differences are described here. The first, small, part of the sequences for 

this evaluation included the chessboard pattern in Figure 65 laid on the floor for 

camera calibration. Then footages of a toddler and a pet were recorded 

individually or together, and used to assess the methods related to classification of 

a toddler and a pet. The individual footages were also used to set up the reference 

probabilities for the entropy-based calculations described in Section 5.3.3. The 

details of each case study are as follows: 

 Case 1: A dog, walking or running and stopping for food (Figure 72a); 

 Case 2: An 1-year-old toddler, dancing in front of a CD player (Figure 

72b); 

 Case 3: An 1-year-old toddler, running around his room (Figure 72c); 

 Case 4: An 1-year-old toddler, walking around and a cat, sneaking and 

stopping (Figure 73). 
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(a) (b) (c) 

Figure 72. Evaluation with (a) Dog and (b)(c)Toddlers 

 

Figure 73. Evaluation with Toddler and Cat 

Each foreground region was labelled with what the methods had found out 

about the region, like the evaluation explained in Section 4.4.1, and a pet was 

added to the group ‘classification’ since pets were taken into account in the human 
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detection method in this chapter. One instance of the labels can be seen in Table 

15, which is the result of the sequence where a toddler and a cat appeared together 

on the scene. 

Table 15. Labels on Toddler and Pet for Method Evaluation 

F
ram

e N
o. 

P
revious 

C
ontour N

o. 

C
urrent 

C
ontour N

o. 

Merge 
/Split 

C
orrect? 

Classification 

C
orrect? 

Toddler Status 

C
orrect? 

1 0 0 "No Merge/Split" Y "Moving Clutter" N   

2 0 1 "No Merge/Split" Y "Moving Clutter" N   

1 1 
"Split of a single 

Object" 
"Moving Clutter" N   

1 2 
"Split of a single 

Object" 
"Moving Clutter"    

1 3 
"Split of a single 

Object" 
"Moving Clutter"    

3 

1 4 
"Split of a single 

Object" 

Y 

"Stationary Clutter"    

4 1 
"Reunion of Splits 
of a single Object" 

"Moving Clutter" N   
4 

3 3 "No Merge/Split" 

Y 

"Moving Clutter"    

5 1 1 "No Merge/Split" Y “Toddler” Y "Safe on the Floor" Y 

6 2 0 
"Reunion of Splits 
of a single Object" 

Y “Toddler” Y "Safe on the Floor" Y 

7 0 0 "No Merge/Split" Y “Toddler” Y "Safe on the Floor" Y 

0 0 "No Merge/Split" “Toddler” Y "Safe on the Floor" Y 
8 

1 1 "No Merge/Split" 
Y 

"Moving Clutter" Y   

0 0 
"Split of a single 

Object" 
“Toddler” Y "Safe on the Floor"  

0 1 
"Split of a single 

Object" 
“Toddler”  "Off the Floor" N 

9 

1 2 "No Merge/Split" 

Y 

"Moving Clutter" Y   

0 1 
"Reunion of Splits 
of a single Object" 

“Toddler” Y "Safe on the Floor" Y 
10 

2 2 "No Merge/Split" 

Y 

"Moving Clutter" Y   

11 2 2 "No Merge/Split" Y "Moving Clutter"    
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Table 15. Labels on Toddler and Pet for Method Evaluation (Continued) 

1 1 "No Merge/Split" “Toddler” Y "Safe on the Floor" Y 
12 

2 2 "No Merge/Split" 
Y 

"Moving Clutter" Y   

1 0 "No Merge/Split" "Moving Clutter" N   
13 

2 1 "No Merge/Split" 
Y 

"Moving Clutter" Y   

0 0 "No Merge/Split" "Moving Clutter" N   14~
15 1 1 "No Merge/Split" 

Y 
"Moving Clutter" Y   

0 0 "No Merge/Split" “Toddler” Y "Safe on the Floor" Y 
16 

1 1 "No Merge/Split" 
Y 

"Stationary Clutter" Y   

0 0 "No Merge/Split" “Toddler” Y "Safe on the Floor" Y 
17 

1 1 "No Merge/Split" 
Y 

"Moving Clutter" Y   

0 0 "No Merge/Split" “Toddler” Y "Safe on the Floor" Y 
18 

1 1 "No Merge/Split" 
Y 

"Moving Clutter" Y   

0 0 "No Merge/Split" "Moving Clutter" N   
19 

1 1 "No Merge/Split" 
Y 

"Moving Clutter" Y   

0 0 
"Split of a single 

Object" 
"Moving Clutter" N   

0 1 
"Split of a single 

Object" 
Clutter    

20 

1 2 "No Merge/Split" 

Y 

"Moving Clutter" Y   

0 0 "No Merge/Split" "Moving Clutter" N   

1 1 "No Merge/Split" Clutter    21 

2 2 "No Merge/Split" 

Y 

"Moving Clutter" Y   

1 0 
"Reunion of Splits 
of a single Object" 

"Moving Clutter" N   
22 

2 1 "No Merge/Split" 

Y 

"Moving Clutter" Y   

0 0 "No Merge/Split" "Moving Clutter" N   23~
27 1 1 "No Merge/Split" 

Y 
"Moving Clutter" Y   

0 0 
"Split of a single 

Object" 
“Toddler” Y "Safe on the Floor" Y 

0 1 
"Split of a single 

Object" 
"Moving Clutter" Y   

28 

1 2 "No Merge/Split" 

Y 

"Moving Clutter"    

0 0 "No Merge/Split" “Toddler” Y "Safe on the Floor" Y 

1 1 "No Merge/Split" "Moving Clutter" Y   29 

2 2 "No Merge/Split" 

Y 

"Moving Clutter"    



135 

 

 

  135

Table 15. Labels on Toddler and Pet for Method Evaluation (Continued) 

1 0 
"Reunion of Splits 
of a single Object" 

“Toddler” Y "Safe on the Floor" Y 30~
39 

2 1 "No Merge/Split" 

Y 

"Moving Clutter" Y   

40 1 0 
"Reunion of Splits 
of a single Object" 

N “Toddler” Y "Safe on the Floor" Y 

41~
44 

0 0 "No Merge/Split" Y “Toddler” Y "Safe on the Floor" Y 

45 0 0 "No Merge/Split" Y "Moving Clutter" N   

46~
47 

0 0 "No Merge/Split" Y “Toddler” Y "Safe on the Floor" Y 

48~
54 

0 0 "No Merge/Split" Y "Moving Clutter" N   

55~
58 

0 0 "No Merge/Split" Y “Toddler” Y "Safe on the Floor" Y 

0 0 
"Split of a single 

Object" 
Y “Toddler” Y "Safe on the Floor"  

59 

0 1 
"Split of a single 

Object" 
Y “Toddler” Y "Off the Floor" N 

0 0 "No Merge/Split" “Toddler” Y "Safe on the Floor"  
60 

1 1 "No Merge/Split" 
Y 

“Toddler”  "Off the Floor" N 

61 1 0 
"Reunion of Splits 
of a single Object" 

Y “Toddler” Y "Safe on the Floor" Y 

62~
64 

0 0 "No Merge/Split" Y “Toddler” Y "Safe on the Floor" Y 

0 0 
"Split of a single 

Object" 
“Toddler” Y "Safe on the Floor" Y 

65 

0 1 
"Split of a single 

Object" 

Y 

“Toddler”  "Safe on the Floor"  

0 0 "No Merge/Split" “Toddler” Y "Safe on the Floor" Y 66~
67 1 1 "No Merge/Split" 

Y 
“Toddler”  "Safe on the Floor"  

68~
70 

0 0 "No Merge/Split" Y “Toddler” Y "Safe on the Floor" Y 

0 0 
"Split of a single 

Object" 
“Toddler” Y "Safe on the Floor" Y 

71 

0 1 
"Split of a single 

Object" 

Y 

“Toddler”  "Safe on the Floor"  

0 0 "No Merge/Split" “Toddler” Y "Safe on the Floor" Y 
72 

1 1 "No Merge/Split" 
Y 

“Toddler”  "Safe on the Floor"  
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Table 15. Labels on Toddler and Pet for Method Evaluation (Continued) 

0 0 "No Merge/Split" “Toddler” Y 
"Approaching the 

Furniture" 
N 

73 

1 1 "No Merge/Split" 

Y 

“Toddler”  "Safe on the Floor"  

 

The labels were checked to see if they were correct, and the success rates were 

calculated and displayed in Table 16. The method for handling regional merges 

and splits worked well, as it did during the previous evaluation in Section 4.4.1. 

The toddler detection method performed adequately here as well, but the pets 

were classified as clutter in more than half of the total frames. This is acceptable, 

however, because a pet can become a tripping hazard like clutter and this research 

generally focuses on a toddler. The ‘toddler status’ was less correctly recognised 

than in the previous evaluation. This is because the toddler region sometimes split 

and the ‘toddler status’ became approaching furniture or off the floor, indicating 

fall-related risk status, when the vertically lowest point of any of the split regions 

was found close to or off the floor boundary. 

Table 16. Results of Method Evaluation  

Number (Percentage) of Frames Correctly Recognised 
Foreground Object 

on the Scene 
Total 

Frame No. 
Merges/Splits Classification Toddler Status

Dog 836 
828 

(99.04%) 

370(as Pet) + 
455(as Clutter) 

(98.68%) 
 

Toddler 376 
364 

(96.81%) 
343 

(91.22%) 
284 

(82.8%) 

Pet Toddler 

Cat + Toddler 570 
560 

(98.25%) 31(as Pet) + 
505(as Clutter)

(94.04%) 

437 
(76.67%) 

393 
(89.93%) 
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5.5 Chapter Summary 

This chapter illustrated a novel approach to reinforcing the method of detecting 

humans using the dynamic internal motion vectors introduced in Chapter 4 by 

considering pets, whose body parts also move diversely. The method considering 

pets in classification is applied, after filtering of clutter based on diverse internal 

motion vectors, and also uses dynamic cues, which are the history of actual 

heights and angle changes of the ellipse fitted to a foreground region.  

The approach starts with analysing a toddler sample video to set up the 

reference probabilities of being the toddler. After the camera is calibrated with a 

chessboard pattern placed on the scene of the video, the foreground regions are 

segmented by background subtraction, and clutter regions are discarded by 

thresholding in internal motion vectors at each frame of the video. Then the actual 

height and the angle of ellipse fitted to each foreground contour are estimated, and 

the actual height is saved with the mean average and the standard deviation of all 

the past ellipse angles. This whole process except the camera calibration is 

repeated at every frame of the video, and then all the saved data are averaged by 

range for construction of the reference possibilities for the toddler. A pet sample 

video is put through the same process to build the reference probabilities of being 

the pet. 

After construction of a toddler set and a pet set of reference probabilities, the 

system begins to analyse the real-time images captured by a webcam. Each real-

time image also goes through the same process to discard clutter and collect data 

regarding the actual height and the ellipse angle of every foreground object. In the 

case of the ellipse angle, the mean average and the standard deviation of the data 

from all the past frames are calculated. Each piece of data is linked to a quantified 

possibility of being a toddler and a possibility of being a pet from the reference 

probabilities. Those two possibilities are individually applied to calculate 
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certainties of being a toddler and a pet (Ch and Cp of Equation (26)) based on 

Rényi’s entropy, and the two values are compared with each other to classify the 

region into the category with the bigger value. This classification works well even 

when a toddler occasionally looks small like a pet owing to his or her bent body 

because the entire data from the current and past frames are employed in the 

certainty calculations. 

The methods in this chapter were evaluated by case studies of a toddler and a 

pet solely or together. The toddler was adequately detected, but the pet was 

classified as clutter in many frames. This, however, can be allowed since a pet can 

become a tripping hazard like clutter. Hence, the methods introduced in this 

chapter are satisfactory to enhance the human classification part of the methods 

for detection of fall risk factors delineated in Chapter 4. The evaluation, however, 

shows that errors in background subtraction affect the highest level of image 

analysis in this work, recognition of the toddler status regarding fall risks and thus 

are a major issue.  
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Chapter 6 

Conclusions 

6.1 Introduction 

The work presented in this thesis aims to investigate and develop image 

analysis methods to recognise risk factors of a toddler’s fall injuries in an indoor 

home environment in real time. The research objectives are identification of key 

factors that cause a toddler’s fall injuries and investigation and development of 

vision-based analysis methods to separate a toddler from other foreground objects 

and to collect information related to them for recognising the factors. This 

research has developed and tested two novel approaches to detecting humans in 

images using dynamic motion cues. 

The research’s contributions to knowledge are listed in Section 6.2 and its 

limitations in Section 6.3. Future research to overcome the limitations and other 

issues is introduced in Section 6.4. 

6.2 Contributions to Knowledge 

First of all, three risk factors of a toddler’s fall injury have been identified for 

continuous observation in injury prevention. This identification was based on both 

analyses of official suggestions from organisations for child safety and a large 

number of toddler fall records collected from hospitals. An injury epidemiological 

framework was used to analyse the fall records. 

The major contribution of this research is novel computational methods of 

detecting a human in images. As shown in Section 2.3.1G, most of the previous 

vision-based studies for human detection use cues related to human appearance 
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such as skin colour or body geometry. The use of those cues, however, would 

have problems matching the cues with a human body under partial occlusion. 

Although a complex human model can be used to overcome the occlusion 

problems, it is generally expensive in computation terms. Therefore, this research 

employed dynamic motion cues to differentiate a human from indoor clutter and a 

pet. The cues are also different from the motion cues already used in some 

existing studies on human detection, and the method turned out to be effective as 

long as every foreground object was correctly segmented. 

One of the typical problems of tracking is regional merge and split owing to 

occlusions or errors in foreground segmentation. This research proposed  a novel 

approach to detecting the merging or splitting regions by finding the nearest 

regions between two successive frames twice, from the first frame to the second 

frame and vice versa. This simple method worked well for detecting regional 

merges and splits. 

6.3 Limitations of Research 

As can be seen in Section 4.4.1 and Section 5.4.1, the toddler videos used for 

method evaluation by case studies only contain a toddler playing safely within the 

floor area. This is because it is not acceptable to put or leave the toddler in danger 

to assess performance of the methods for fall risk detection. 

Most of the technical limitations of the methods in this research are related to 

foreground segmentation in images. Since standstill clutter on the floor as well as 

a toddler has to be detected to recognise a tripping or slipping hazard and a 

toddler’s potential behaviours for fall injuries, this research could not apply any 

segmentation methods based on motion or skin colour but applied background 

subtraction methods. As methods of comparing current images with a background 

model, background subtraction methods should update the model whenever any 

change occurs in the background owing to illumination variance, for instance. The 
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current method in this research, however, can automatically update the 

background model only when the scene is clear of foreground objects, and this 

may become a general problem when the system is run for a long time. 

The background subtraction method employed in this research relies on 

intensity difference that causes problems such as inability to distinguish between 

objects and backgrounds with similar intensities. A single object whose intensities 

are partially similar to its background can correspond to multiple regions 

segmented by the background subtraction method. Multiple objects also can 

appear to be a connected component by occlusion. Such regional merges and 

splits were handled well by the novel method in this thesis but sometimes it failed 

to recognise whether those regions correspond to a single object or multiple 

objects. 

An application-type limitation is that this research never attempted to 

distinguish between a toddler and an adult caregiver in images on the assumption 

that a toddler is left alone on the scene when the system runs. It aims, however, to 

aid the supervision of a caregiver who stays in the same house but cannot always 

watch a toddler carefully enough to prevent fall injuries. Hence, it would be better 

if the system developed in this research can differentiate a toddler from a 

caregiver, in case the caregiver appears on the scene but does not give full 

attention to the toddler.  

6.4 Future Research 

With respect to the first limitation of this research described in the previous 

section, update of a background model, most of the existing studies [177-184] try 

automatically to update a model of dynamic background, with focus on periodic 

motions such as swaying trees, which may be confused with moving foreground 

objects. This research, however, also needs to detect static clutter, which would 

become part of the background using those methods for background update. For 
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the particular system proposed in this research, another background update 

method needs to be developed to cope with static foreground objects. 

For better results, the work in this thesis needs to employ a robust background 

subtraction method to segment almost perfectly foreground objects in images so 

as not to incur further problems such as a single object corresponding to multiple 

regions. A single object can still, however, split into multiple regions by being 

occluded by a thin background object. Thus, the handling of the regional merges 

and splits may need to be able to distinguish between a single object and multiple 

objects. 

In order to be effectively used for a long time, the system proposed in this 

research needs to be able to classify human regions into a toddler and a caregiver 

to cover the case where a caregiver appears with a toddler on the scene but does 

not give full attention to the toddler. It would, furthermore, be advantageous if the 

system could automatically turn off when the caregiver allows the toddler’s 

behaviours which might cause fall injuries, for advancement of motor skills under 

thorough supervision. 

The research presented in this thesis deals only with fall injuries since falls 

account for almost half of accidental injuries to children in the home [1]. There 

are, however, other causes of home injuries such as burns and scalds, poisoning, 

drowning, and animal bites [3], whose risk factors could be recognised by vision-

based analysis. Multiple cameras could also be used to cover all the house areas 

where a toddler generally moves around. 
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Appendix A 

Questionnaire for Evaluation of Fall Risk 

Factors 

According to the UK Child Accident Prevention Trust, in the UK over two million 

children every year are taken to hospital due to accidental injuries, and around half of 

these accidents are domestic.  Falls account for over 40% of all home accidental injuries 

of children, and young children aged under five are most vulnerable to injuries in the 

home environment, where they spend most of their time.  

As young children are not able to assess risks for themselves, the best way to prevent 

their fall injuries would be continuous supervision and instruction from their parents. 

However, this is not always practical. A smart vision system is proposed in my research 

to assist the parents’ supervision by detecting risk factors of a toddler’s falls from 

environmental or behavioural changes within an indoor home environment so that a 

caregiver can be alerted to eliminate the factors for preventing fall injuries. 

The identification of the fall risk factors was based on 4377 fall stories of toddlers at 

home, collected by the Royal Society for the Prevention of Accidents (RoSPA), and the 

suggestions of several related organisations6 to prevent the falls of toddlers in the home 

environment. The suggestions requesting environmental modification such as installation 

of safety gates, window locks or non-skid rugs, were excluded because the goal of this 

vision system is occasional substitution of parents’ supervision on situational or 

behavioural changes which may cause a toddler’s falls. The stories from RoSPA revealed 

that many toddlers fell down just whilst going up or down stairs alone and could easily 

trip while moving around. Also their resulting impact with furniture or the edges of a 

room may have caused severe injuries. The suggestions of related organisations indicate 

similar points: 

                                                      
6 UK Child Accident Prevention Trust, Safekids Worldwide, USA Home Safety Council, USA national 

Safety Council, European Child Safety Alliance 
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□ Keep floors clear of toys and other clutter which might trip toddlers when they walk 

around. 

□ Ensure there are no sharp or hard edges near them that could cause injuries when they 

fall. 

□ Discourage children from climbing on furniture. 

Please imagine that we are looking at a home environment which has been modified (e.g. 

small gaps between vertical railings of banisters or balconies) and installed safety 

products (e.g. safety gates, window locks and non-skid rugs) enough to satisfy specialists 

in home safety for toddlers. In this environment a toddler is playing with toys on the floor 

and a parent is looking after him or her with doing housework.  

Do you think the above three factors are major to be continuously supervised by the 

parent? Please write ‘v’ in front of each factor if you think it is major to be supervised in 

order to prevent the toddler’s fall injuries.  

Do you think the above three factors are enough? If not, please fill the below space with 

another situational or behavioural changes to be constantly watched in order to prevent 

the toddler’s fall injuries. 
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Appendix B 

Questionnaire Responses   

<Response 1> 

According to the UK Child Accident Prevention Trust, in the UK over two million 

children every year are taken to hospital due to accidental injuries, and around half of 

these accidents are domestic.  Falls account for over 40% of all home accidental injuries 

of children, and young children aged under five are most vulnerable to injuries in the 

home environment, where they spend most of their time.  

As young children are not able to assess risks for themselves, the best way to prevent 

their fall injuries would be continuous supervision and instruction from their parents. 

However, this is not always practical. A smart vision system is proposed in my research 

to assist the parents’ supervision by detecting risk factors of a toddler’s falls from 

environmental or behavioural changes within an indoor home environment so that a 

caregiver can be alerted to eliminate the factors for preventing fall injuries. 

The identification of the fall risk factors was based on 4377 fall stories of toddlers at 

home, collected by the Royal Society for the Prevention of Accidents (RoSPA), and the 

suggestions of several related organisations7 to prevent the falls of toddlers in the home 

environment. The suggestions requesting environmental modification such as installation 

of safety gates, window locks or non-skid rugs, were excluded because the goal of this 

vision system is occasional substitution of parents’ supervision on situational or 

behavioural changes which may cause a toddler’s falls. The stories from RoSPA revealed 

that many toddlers fell down just whilst going up or down stairs alone and could easily 

trip while moving around. Also their resulting impact with furniture or the edges of a 

room may have caused severe injuries. The suggestions of related organisations indicate 

similar points: 

                                                      
7 UK Child Accident Prevention Trust, Safekids Worldwide, USA Home Safety Council, USA national 

Safety Council, European Child Safety Alliance 
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  Keep floors clear of toys and other clutter which might trip toddlers when they walk 

around. 

  Ensure there are no sharp or hard edges near them that could cause injuries when they 

fall. 

  Discourage children from climbing on furniture. 

Please imagine that we are looking at a home environment which has been modified (e.g. 

small gaps between vertical railings of banisters or balconies) and installed safety 

products (e.g. safety gates, window locks and non-skid rugs) enough to satisfy specialists 

in home safety for toddlers. In this environment a toddler is playing with toys on the floor 

and a parent is looking after him or her with doing housework.  

Do you think the above three factors are major to be continuously supervised by the 

parent? Please write ‘v’ in front of each factor if you think it is major to be supervised in 

order to prevent the toddler’s fall injuries.  

Do you think the above three factors are enough? If not, please fill the below space with 

another situational or behavioural changes to be constantly watched in order to prevent 

the toddler’s fall injuries.  

 

I am pleased that you are focusing of falls prevention among children.  I would like to 

recommend one other factor for your consideration: 

 

Ensure that the floor is not slippery due to the materials used for its construction (e.g., 

marble), cleaning product residue (e.g., oil) or liquid on the floor. 
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<Response 2> 

According to the UK Child Accident Prevention Trust, in the UK over two million 

children every year are taken to hospital due to accidental injuries, and around half of 

these accidents are domestic.  Falls account for over 40% of all home accidental injuries 

of children, and young children aged under five are most vulnerable to injuries in the 

home environment, where they spend most of their time.  

As young children are not able to assess risks for themselves, the best way to prevent 

their fall injuries would be continuous supervision and instruction from their parents. 

However, this is not always practical. A smart vision system is proposed in my research 

to assist the parents’ supervision by detecting risk factors of a toddler’s falls from 

environmental or behavioural changes within an indoor home environment so that a 

caregiver can be alerted to eliminate the factors for preventing fall injuries. 

The identification of the fall risk factors was based on 4377 fall stories of toddlers at 

home, collected by the Royal Society for the Prevention of Accidents (RoSPA), and the 

suggestions of several related organisations8 to prevent the falls of toddlers in the home 

environment. The suggestions requesting environmental modification such as installation 

of safety gates, window locks or non-skid rugs, were excluded because the goal of this 

vision system is occasional substitution of parents’ supervision on situational or 

behavioural changes which may cause a toddler’s falls. The stories from RoSPA revealed 

that many toddlers fell down just whilst going up or down stairs alone and could easily 

trip while moving around. Also their resulting impact with furniture or the edges of a 

room may have caused severe injuries. The suggestions of related organisations indicate 

similar points: 

 

                                                      
8 UK Child Accident Prevention Trust, Safekids Worldwide, USA Home Safety Council, USA national 

Safety Council, European Child Safety Alliance 
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  Keep floors clear of toys and other clutter which might trip toddlers when they walk 

around. 

  Ensure there are no sharp or hard edges near them that could cause injuries when they 

fall. 

  Discourage children from climbing on furniture. 

Please imagine that we are looking at a home environment which has been modified (e.g. 

small gaps between vertical railings of banisters or balconies) and installed safety 

products (e.g. safety gates, window locks and non-skid rugs) enough to satisfy specialists 

in home safety for toddlers. In this environment a toddler is playing with toys on the floor 

and a parent is looking after him or her with doing housework.  

Do you think the above three factors are major to be continuously supervised by the 

parent? Please write ‘v’ in front of each factor if you think it is major to be supervised in 

order to prevent the toddler’s fall injuries.  

Do you think the above three factors are enough? If not, please fill the below space with 

another situational or behavioural changes to be constantly watched in order to prevent 

the toddler’s fall injuries.  

 
 

 Maintenance of stairs generally, repairing damaged carpets 
 Stairs should always be well lit. 
 Fixing tall or heavy furniture securely to the wall;  there have been instances of 

children being crushed through pulling items down on top of themselves. 
 Babies in high chairs and prams need to be strapped in with at least a three-point 

harness, five-point is even better. 
 Top level on bunk beds are for 6 years old and older 
 Safety training can start as young as 3 years old when toddlers are open to simple 

rules;this training is continuous and incremental as children develop; this is one of 
the hardest tasks for any parent 
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<Response 3> 

According to the UK Child Accident Prevention Trust, in the UK over two million 

children every year are taken to hospital due to accidental injuries, and around half of 

these accidents are domestic.  Falls account for over 40% of all home accidental injuries 

of children, and young children aged under five are most vulnerable to injuries in the 

home environment, where they spend most of their time.  

As young children are not able to assess risks for themselves, the best way to prevent 

their fall injuries would be continuous supervision and instruction from their parents. 

However, this is not always practical. A smart vision system is proposed in my research 

to assist the parents’ supervision by detecting risk factors of a toddler’s falls from 

environmental or behavioural changes within an indoor home environment so that a 

caregiver can be alerted to eliminate the factors for preventing fall injuries. 

The identification of the fall risk factors was based on 4377 fall stories of toddlers at 

home, collected by the Royal Society for the Prevention of Accidents (RoSPA), and the 

suggestions of several related organisations9 to prevent the falls of toddlers in the home 

environment. The suggestions requesting environmental modification such as installation 

of safety gates, window locks or non-skid rugs, were excluded because the goal of this 

vision system is occasional substitution of parents’ supervision on situational or 

behavioural changes which may cause a toddler’s falls. The stories from RoSPA revealed 

that many toddlers fell down just whilst going up or down stairs alone and could easily 

trip while moving around. Also their resulting impact with furniture or the edges of a 

room may have caused severe injuries. The suggestions of related organisations indicate 

similar points: 

 

                                                      
9 UK Child Accident Prevention Trust, Safekids Worldwide, USA Home Safety Council, USA national 

Safety Council, European Child Safety Alliance 
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  Keep floors clear of toys and other clutter which might trip toddlers when they walk 

around. 

  Have toys in a low traffic area. (This reduces the need for as much supervision) 

  Ensure there are no sharp or hard edges near them that could cause injuries when they 

fall. 

  Discourage children from climbing on furniture. 

Please imagine that we are looking at a home environment which has been modified (e.g. 

small gaps between vertical railings of banisters or balconies) and installed safety 

products (e.g. safety gates, window locks and non-skid rugs) enough to satisfy specialists 

in home safety for toddlers. In this environment a toddler is playing with toys on the floor 

and a parent is looking after him or her with doing housework.  

Do you think the above three factors are major to be continuously supervised by the 

parent? Please write ‘v’ in front of each factor if you think it is major to be supervised in 

order to prevent the toddler’s fall injuries.  

Do you think the above three factors are enough? If not, please fill the below space with 

another situational or behavioural changes to be constantly watched in order to prevent 

the toddler’s fall injuries.  

 
 

 Ensure children are not left unattended on high surfaces such as change tables & 
kitchen benches.  (parents often pop demanding children onto the kitchen bench 
while they are cooking or preparing meals and falls are a common result of this 
practice) 

 Always use 5 point harness in high chairs and strollers. 
 There has been an increase in the number of childhood injuries in Australia because 

of falls from Windows.  Preventative measures are to place furniture away from 
windows and consider having window openings limited to 100mm to reduce the 
risk. 
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Appendix C 

Ethical Approval 

 

 

 

          

19 December 2007 

 

Dear Hana Na 

 

Thank you for your responses to the questions concerning your request for ethical 

approval of your project “A smart vision sensor for detecting risk factors of a toddler’s 

fall in a home environment” 

I accept that under the circumstances it does not seem to be possible to use home-video 

recordings that already exist and thus your request should in principle be approved. I have 

two further requirements: 

1. I assume that at all times one or more of the parents/guardians/adult carers of the 

child in question will be present during filming and that at no time will you be in 

sole charge of the child. If this is not true, then you will have to agree to a 

Criminal Records Bureau check in advance of any work undertaken. I strongly 

recommend that you adopt the former approach. 

2. It is vitally important that to take all proper precautions to preserve the anonymity 

of the subject(s) that you are recording, this includes any material that you might 

wish to include in a PhD thesis or publication. In particular I suggest that you use 

pixelation or blurring of all facial features. If this is not possible then I must ask 

you to justify why it cannot be done. You must of course also comply with the 
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requirements of the Data Protection Act at all times, and all of your primary 

material must be kept secure (ideally encrypted and physically secure) and then 

destroyed as soon as is practical after the end of your research. 

 

Yours sincerely 

 

Professor Peter R Hobson 

Chair, SED Research Ethics Committee 

 

School of Engineering & Design 

Tower D 

Brunel University, Uxbridge UB8 3PH 

Tel: +44(0)1895 266799 

Peter.Hobson@brunel.ac.uk 

 



169 

 

 

  169

Appendix D 

List of Publications 

Conference Publications 

A number of conference publications have been written describing results 

obtained and are listed below: 

 “Young Children’s Fall Prevention based on Computer Vision 

Recognition”, Proceedings of the 6th WSEAS International Conference 

on Robotics, Control and Manufacturing Technology (ROCOM ’06), 

Hangzhou, China, April 16-18 2006, pp. 193-198. This paper is attached 

in Appendix E. 

 “A Smart Vision Sensor for Detecting Risk Factors of a Toddler’s Fall in a 

Home Environment”, Proceedings of the 2007 IEEE International 

Conference on Networking, Sensing and Control (ICNSC ’07), London, 

UK, 15-17 April 2007, pp. 656-661. This paper is attached in Appendix F. 

 “Vision-Based Tracking a Toddler at Home”, Proceedings of IEEE 

EUROCON 2007 the International Conference on Computer as a Tool, 

Warsaw, Poland, 9-12 September 2007, pp. 375-382. This paper is 

attached in Appendix G. 

Journal Publications 

A journal paper was submitted to IEEE Pervasive Computing and is awaiting 

review at present. This paper is attached in Appendix H. 
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Appendix E 

WSEAS ROCOM ’06 
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Appendix F 

IEEE ICNSC ’07 
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Appendix G 

IEEE EUROCON ’07 

 



184 

 

 

  184

 



185 

 

 

  185

 



186 

 

 

  186

 



187 

 

 

  187

 



188 

 

 

  188

 



189 

 

 

  189

 



190 

 

 

  190

 



191 

 

 

  191

Appendix H 

IEEE Pervasive Computing 
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