
An optimized stereo vision implementation for embedded
systems: application to RGB and Infra-Red images

Madeo, S., Pelliccia, R., Salvadori, C., Martinez-del-Rincon, J., & Nebel, J-C. (2014). An optimized stereo vision
implementation for embedded systems: application to RGB and Infra-Red images. Journal of Real-Time Image
Processing. DOI: 10.1007/s11554-014-0461-7

Published in:
Journal of Real-Time Image Processing

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
The final publication is available at Springer via http://dx.doi.org/10.1007/s11554-014-0461-7.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/an-optimized-stereo-vision-implementation-for-embedded-systems-application-to-rgb-and-infrared-images(0c3d3e90-9bf3-4e08-ae60-746fe69618cb).html

Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Simone Madeo · Riccardo Pelliccia · Claudio Salvadori ·
Jesus Martinez del Rincon · Jean-Christophe Nebel

An optimized stereo vision implementation for embedded
systems: application to RGB and Infra-Red images

Received: date / Revised: date

Abstract The aim of this paper is to demonstrate the
applicability and the effectiveness of a computationally
demanding stereo matching algorithm in different low-
cost and low-complexity embedded devices, by focus-
ing on the analysis of timing and image quality perfor-
mances. Various optimizations have been implemented
to allow its deployment on specific hardware architec-
tures while decreasing memory and processing time re-
quirements: (1) reduction of color channel information
and resolution for input images, (2) low-level software
optimizations such as parallel computation, replacement
of function calls or loop unrolling, (3) reduction of re-
dundant data structures and internal data representa-
tion. The feasibility of a stereovision system on a low
cost platform is evaluated by using standard datasets
and images taken from Infra-Red (IR) cameras. Analy-
sis of the resulting disparity map accuracy with respect
to a full-size dataset is performed as well as the testing
of sub-optimal solutions.

Keywords Stereo-vision · Embedded optimization ·
Embedded Systems · Smart Camera · Near Infra-Red

Simone Madeo
TeCIP Institute, Scuola Superiore Sant’Anna,
56124 Pisa Italy
Tel.: +39 050 5492037
E-mail: simone.madeo@sssup.it

Riccardo Pelliccia
TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
E-mail: riccardo.pelliccia@sssup.it

Claudio Salvadori
TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
E-mail: claudio.salvadori@sssup.it

Jesus Martinez del Rincon
The Institute of Electronics, Communications and Informa-
tion Technology (ECIT), Queen’s University of Belfast
BT3 9DT, United Kingdom
E-mail: j.martinez-del-rincon@qub.ac.uk

Jean-Christophe Nebel
Digital Imaging Research Centre, Kingston University
KT1 2EE, United Kingdom
E-mail: j.nebel@kingston.ac.uk

1 Introduction

Stereo vision systems deal with the extraction of three-
dimensional information in scenes captured from two
different viewpoints by comparing the relative positions
of objects. Automatic procedures enabling stereoscopic
perception have been used in a wide range of applica-
tions, such as visual robot navigation, cartography, aerial
reconnaissance, video surveillance and close-range pho-
togrammetry. These techniques are also of great interest
in tasks such as image segmentation for object recog-
nition and the construction of multi-dimensional scene
models in image-based rendering [20].

Stereo matching algorithms are widely recognized as
computationally expensive processes [30], since they in-
volve demanding problems such as conjugate pairs detec-
tion in the input images in order to generate the dispar-
ity map. By assuming a system where the two cameras
share the same image planes, the horizontal displacement
is used to obtain the depth of objects in the scene. In re-
cent years several hardware solutions have been explored
by the community, considering the use of dedicated ar-
chitectures that enable parallel operations [1] and [35],
and the exploitment of real-time capabilities for high-
performance embedded systems [31] and [66]. Among the
possible options, microcontrollers and microprocessor-
equipped embedded boards provide some advantages,
such as easiness in designing, simulating and integrating
different peripherals, flexibility in reprogramming using
Flash, EEPROM or EPROM, and affordability for imple-
mentation [58]. Although these benefits allow extraordi-
nary pervasiveness and availability of such devices, these
boards are characterized by severe memory and process-
ing constraints.

In order to address these challenges, compromises
must be taken to embed a stereo matching algorithm
in a specific device. Analysis of how this affects both
performance and applicability of the algorithm is the fo-
cus of the proposed work. Exploiting a stereo match-
ing algorithm [14], able to provide an excellent com-

2

promise between speed and accuracy, various optimiza-
tions have been implemented to allow its deployment on
specific hardware architectures while decreasing memory
and processing time requirements: (1) reduction of color
channel information and resolution for input images, (2)
low-level software optimizations, (3) analysis of the re-
sulting disparity map accuracy with respect to a full-
size RGB dataset and (4) testing suboptimal solutions.
In addition to implementation issues, image analysis of
real scene suffers from variations in terms of brightness
and contrast, in particular in night environments. In this
work, the use of only luminance component of the in-
put images in the stereo matching procedure has been
investigated to measure whether a significant deteriora-
tion in the resulting disparity map accuracy has been
introduced. The correctness of this hypothesis allows to
demonstrate the feasibility of a stereovision system able
to process images even taken from Infra-Red (IR) cam-
eras.

The remainder of the article is organized as follows.
In Section 2, a summary of the state-of-the-art solutions
addressing the stereovision problem, in the presence of
memory and processing power constraints, is introduced.
Section 3 describes the contributions of this paper. In
Section 4 the stereo matching algorithm used in this work
is presented, with a particular focus on its requirements
in terms of memory and computational resources. Pro-
posed software optimizations are discussed in Section 5.
In Section 6 a performance analysis for a range of de-
vices and experimental results is presented using stan-
dard datasets and an application to night vision. Con-
clusions and future works follow in Section 7.

2 State of the art

In order to face the problem of finding correspondences
between pixels belonging to a pair of stereo images, a
wide range of techniques have been proposed, such as
block correlations, dynamic programming, graph cut and
simulated annealing. Comprehensive reviews of the liter-
ature can be found in [44] and [56]. Besides quality per-
formance of such a wide variety of techniques, time and
memory requirements of a stereo matching algorithm are
critical aspects to be evaluated prior to implementation.
There are two main ways to deal with these require-
ments: exploiting software optimizations by using spe-
cific programming methodologies, and hardware capabil-
ities of dedicate units such as FPGAs or GPUs.

Regarding software optimizations, in [61] the authors
propose block-based belief (BP) propagation to reduce
the required memory size by 99% compared to the orig-
inal implementation of the stereo correspondence algo-
rithm. It relies on a graph model that contains nodes rep-
resenting pixels and connected edges representing pipes
in a Markov network. The algorithm is based on a flow
diagram of messages passing along the 4-connected edge

iteratively until a cost function converges. The graph
model is partitioned into B ×B block: this enables par-
allelism, earlier convergence for each block, and lower
memory size requirement. A typical belief propagation
algorithm needs 5 WHL memory units, where W and
H are the dimensions of the image and L the range of
disparity. The block-based version requires only 5B2L,
but leads to a slightly increased error rate by 2% ∼ 3%
compared to a typical belief propagation. The main issue
of this approach is the average number of iteration for
convergence in different block size. For block size 16×16,
the minimal average iteration count is about 30, but this
will suffer large error rate with significant blocky effect.
Bigger block size enables better quality but slower per-
formance.

Markov Random Fields (MRFs) are well known mod-
els used in many low-level Computer Vision applications
dealing with energy minimization in multi-label classi-
fication problems, i.e. given a set of labels Γ , learning
from a set of examples that are associated with a subset
of Γ . An exploitation of the regularity of simple energy
functions is required to avoid exhaustive search of la-
bel space. The LogCut algorithm [37] explores the label
space, represented by disparities, by binary subdivision
applied at successive bit-levels, starting from the most
significant. Time complexity of this method is logarith-
mic in the size of the label set rather than linear. The
selection of the most significant bits requires the reit-
eration of the algorithm by using different hierarchical
partitions of the label space, corresponding to different
bit codings of the labels. These different solutions are
combined in an optimal way via additional graph cut
operations. The K-dimensions label space is partitioned
according to values of binary bits b = 1, . . . , B, with
B = logK, starting with the most significant, and the
labeling of a given pixel can be achieved by executing a
tree of binary classification steps. Respect to linear ap-
proaches as α-expansion [6], a speed-up of orderK/ logK
is obtained. In return for the advantage in computational
efficiency, LogCut requires an additional offline learning
step to compute the values of unary potentials for MRF.
Therefore, main issues are related to provision of suit-
able training data, and practical limitations on working
memory for large training sets and large label spaces.

Regarding software implementation of stereo match-
ing techniques, those based on dynamic programming
(DP) provide good accuracy and are computationally ef-
ficient [40], since the global minimum for independent
scanlines can be found in polynomial time. This feature
makes them specially attractive when considering their
implementation in resource-constrained devices by us-
ing parallel programming. Sparse disparity maps can be
achieved by using edge information [2] and [47], while
dense maps need correspondences between scanlines by
using pixel color values. Some issues deriving from this
approach include indistinct image features, image noise
and half occlusion. Solutions based on statistical estima-

3

tion, also able to address vertical consistency between
scanlines, are presented in [24] and [60]. Another class
of DP algorithms [12] and [62] explores vertical consis-
tency by using a tree structure, as opposed to the in-
dividual scanlines. Results show an improved accuracy
with only a marginal increase of computational cost. In
the last decade, the main emphasis has been on design-
ing real-time solutions by adapting previous DP algo-
rithms [19], [53] and [64]. Performance achieved by [40]
demonstrates DP-based approaches provide the best com-
promise between accuracy and speed.

The aim of achieving optimal results in terms of speed
and accuracy depends on the nature of the algorithm as
well as the hardware platform. Real-time implementa-
tions characterized by low errors compared to the ground
truth require heavy computational power. As a result,
decent sized set of images cannot be used to achieve the
required disparity precision using standard sequential
processing methods. One promising direction towards
achieving real-time performance in high performance com-
puting applications such as image processing would be
to exploit the parallelism in general purpose GPUs [26]
and [65]. In [8] the stereo vision system is obtained by
integrating Gabor filter based on biologically motivated
algorithms to CUDA (Compute Unified Device Archi-
tecture) using an API by Nvidia which could be used to
directly access the GPU. The Single Instruction Multi-
ple Data (SIMD) architecture allows the same activity
being carried out simultaneously in thousands of threads
over different blocks of data by involving the usage of an
efficient memory hierarchy module. GPU’s pinned mem-
ory cannot be swapped to disk and provides improved
transfer speeds respect to memory allocated using the
malloc function. The transfer is asynchronous meaning
that the host would not wait upon the completion of the
transfer to move forward. The process is optimized by
pre-loading a window of the image to the Shared mem-
ory, and all the stored pixel values are reused by all the
threads in the same block. The process has been sped up
to 77 fps.

FPGA-based stereo vision systems have also been in-
troduced due to the rapid development of programmable
devices [35]. Even though considerable progress has been
made, improvements are still needed in terms of archi-
tecture. These aspects are related to the stereo matching
methods, frame rate requirements, scalability, and one-
chip integration of pre- and post-processing functions.
An example is given by the work in [13] dealing with
the design and the implementation of a general architec-
ture characterized by five main modules: the acquisition
of original left and right images, the rectification, the
mean operator, the Census transformation and the Cen-
sus correlation. Images are not stored completely and
pixels are processed on the fly, with a pixel clock defined
by the cameras. The rectified left and right pixels are
generated with a delay of Nbuf lines with respect to the
acquisition. Two mean operator modules apply a mean

filter independently on the two images, based on a win-
dow centered around every pixel. The Census Transfor-
mation (CT) modules compute for each pixel a bitstring
from comparisons with their neighbors. The correlation
scores are computed and maximum scores are selected by
a Census Correlation module. Given the maximal dispar-
ity in pixel Dmax, the scores computation is parallelized
to match left pixels with right ones by using a SIMD
operation, so that Dmax + 1 identical and synchronous
processes can provide all scores in parallel. When the
left CT pixel (u, v) is available, its corresponding one in
the right image is already computed, while a verification
is made using right-left scores and right-left matching.
The final latency between the original acquisition and
the generation of the disparity for a (u, v) pixel, can be
approximated by Nbuf + k lines, where k is a constant
depending on both the distortion factor of the original
images and the window size used to compute the mean
operator and the Census Transformation. The disparity
map is sent at the same frequency than the original im-
ages and the process has been sped up to 160 fps.

Although both GPUs and FPGAs are able to provide
very high-rate stereo correspondences, the drawbacks are
obviously related to the cost of those boards. For in-
stance, boards used in [21] are Stratix III E260 with
≈100000 logic elements (LEs) and NVIDIA GeForce 295
GTX. Their cost is 2450$ and 370$ respectively. Al-
though much cheaper FPGA development kits (e.g. DE0
nano with 22320 LEs: 79$) can be found on the mar-
ket, graphic processing needs a higher number of LEs
(e.g. ≈70000 LEs in [50]). GPUs are characterized by a
lower cost, but a higher power consumption (275W vs
100W for FPGA [21]) which could not be feasible for
embedded computing. Regarding simple microcontroller
boards, a reference price can be 200$ [57] per unit and
only 14$ [42] for the single microcontroller: as for other
custom electronic boards, a high scalability of the price
in case of large quantities is achieved. A common low-
cost single-board computer development platform costs
202$ [49].

As for what concerns development complexity, FPGA
boards are commonly based on synthesizable VHDL mod-
els. A larger number of concurrent VHDL statements and
small processes connected through signals are used to im-
plement the desired functionality. Reading, understand-
ing (and obviously modifying) dataflow VHDL code is
difficult since the concurrent statements and processes
do not execute in the order they are written, but when
any of their input signals change value [23]. GPUs have
issues related to compatibility and portability, since ven-
dors support different APIs, e.g. CUDA or OpenCL, and
performance improvement could be highly variable de-
pending on the type of graphic card (integrated, propri-
etary). Moreover, not all tasks are suited for running on a
GPU: I/O-bound operations and direct access to system
memory are the main examples.

4

3 Contributions of this paper

The aim of this paper is to demonstrate the applica-
bility of a computationally demanding stereo matching
algorithm in different low-cost and low-complexity em-
bedded devices, by focusing on the analysis of timing
and image quality performances. The feasibility of data
reduction methodologies or programming methodologies
such as parallel processing, memory and computational
optimizations, is the keypoint enabling an efficient im-
plementation of the proposed stereo matching algorithm
even in low-power vision-enabled sensor networks. Dis-
tributed stereo processing and coding [9] for surveillance
are promising fields of study: smart camera motes form-
ing a vision-enabled network can add increasing levels of
intelligence [28]. Moreover, by using precompiler direc-
tives, the source code has been kept as generic as possible
in order to make the porting of the algorithm simpler.

The implementation framework is addressed as fol-
lows. First, reduction of the amount of data to be pro-
cessed in terms of both image resolution and representa-
tion (i.e. the number of channels per pixel) has been in-
vestigated. Second, the code has been optimized in order
to reduce its computational cost by using standard code
optimization techniques (parallel computation, replace-
ment of function calls, loop unrolling), and its memory
footprint by reducing redundant data structures and in-
ternal data representation. Third, stereo matching corre-
spondences have been computed by means of a simplified
procedure which does not involve vertical discontinuities
analysis.

Regarding memory optimizations, by exploiting the
way the internal data structure is used to find correspon-
dences, up to an order of magnitude of memory can be
saved. Regarding data reduction analysis, the resolution
of the input images can be decreased by applying a factor
γw and γh to width and height respectively. For instance,
halving both width and height of the original images,
that is γw = 1/2 and γh = 1/2, results in a new input
images reduced by a factor γ = γw · γh = 1/4. The num-
ber of channels per pixel can also be reduced by passing
from an RGB color mode to a grayscale one. However,
such data reduction has an implicit cost in terms of ac-
curacy that needs to be considered and analyzed.

Moreover, image processing using only the luminance
component, i.e. the Y channel in the YUV color space, al-
lows the use of acquisition systems equipped with Near
Infra-Red (or NIR) sensors and the implementation of
stereo vision systems able to work in a night environ-
ment. Results obtained by NIR images have been evalu-
ated in order to compare with performances achieved in
the RGB domain. The effects of different light condition,
during the day with natural light or during the night
with NIR cameras, have also been analyzed in order to
demonstrate the independence of gray levels distribution
in the grayscale stereoscopic image with respect to the
brightness of input image pairs, and the applicability of

the proposed implementation, even the most constrained
versions, in real environment.

4 The algorithm

The stereo matching algorithm proposed by [14] and
originally derived from [45] is particularly suitable for
the scanline to scanline correspondence problem, which
can be applied to pairs of rectified stereo images. An-
other promising version, even able to face distortions, is
described in [15] while a suitable implementation of the
algorithm on FPGA can be also found in [63].

Following a dynamic programming approach [27], se-
quences of data can be compared to provide an effective
automatic method to produce an exact solution to the
global alignment of character strings according to a scor-
ing function, taking into account possible mutations in
the sequences. Alignments are produced by first filling
in a scoring matrix containing the local alignments, and
then backtracking from the highest score in either the
last column or the last row of the matrix in order to
extract the global alignment.

The proposed work can be considered the first stage
for the realization of an extended DP version [41] able to
deal with unrectified and non-linearly distorted images.
By using a larger dimensional space and a 3D scoring
matrix, correspondences between a line and a whole im-
age can be also calculated.

4.1 The scoring matrix

The scoring matrix E is filled in using scoring functions
which quantify the similarity of possible pairings. The
matrix is initialized by setting the value in the top left
cell to zero and the first line and column according to
cumulative gap penalties. Each matrix cell stores the
maximum value which can be achieved by extending the
previous alignment up to that point. This can be done
either by aligning the next pixel of the first sequence
with the next pixel of the second sequence or extending
a sequence by a special value to record a pixel insertion
or deletion. In the case of pixel alignment, i.e. diagonal
motion in the matrix, the score depends on their val-
ues. A reward, match, is allocated if the two pixels are
identical, otherwise a penalty, is applied since this high-
lights a mutation or substitution. The mismatch penalty
of aligning a pair of pixels, where pi and pj are their val-
ues, is expressed by the absolute value of their difference,
so that extending an alignment along the diagonal alters
the global score by the following:

∆diag
i,j = match− |pi − pj |. (1)

When a sequence is extended, i.e. from either north or
west, this is also penalized by gap, since it reveals that
a mutation as insertion or deletion occurred. Due to

5

Scoring
parameters

{gap, egap, match}

left right output

For each element Exy:
- compute n, w, d
- store max score
- store incoming
 direction DxyEMemory allocation

left
input

3w x h

right
input

3w x h

disparity
map
w x h

Input images

Color / space
transformation

(if needed)

Memory
deallocation

scoring
matrix
w x w

Data
initialization

Data pointers
to the new line

Scoring matrix building

Starting point: Eww

While x≠0 and y≠0
- compute |x - y|
- update x and/or y
 according to DxyE

Backtracking

x

y

|x-y|

Stereo result

more
lines

?
NO

YES

Fig. 1: Data-flow model of the algorithm. After memory allocation and data initialization, for each input image pair
of lines scoring matrix building and backtracking modules are applied.

the nature of stereo matching, different camera view-
points create occlusion areas associated with each ob-
ject present in a scene. Assuming that a few occlusions
of several-pixel length would be more frequent than a
large number of 1-pixel occlusions, a lower penalty for ex-
tended gaps, egap, has also been introduced to encourage
gaps to cluster. The whole procedure to fill in the scoring
matrix E is shown in Algorithm 1.

Algorithm 1 Filling of the scoring matrix.

Input: gap, egap and match integer values; l and r two
sequences of characters.
Output: scoring matrix E.

north = 0; west = 0; diagonal = 0;
for each row i in the first sequence do

for each column j in the second sequence do
mismatch = −ABS(l[i] − r[j]);
if E[i− 1, j] is a gap then

north = E[i− 1, j] + egap;
else

north = E[i− 1, j] + gap;
end if
diagonal = E[i− 1, j − 1] +match+mismatch;
if E[i, j − 1] is a gap then

west = E[i, j − 1] + egap;
else

west = E[i, j − 1] + gap;
end if
E[i, j] = max(north, diagonal, west);

end for
end for

4.2 Backtracking

While completing the matrix, in addition to the score of
each cell, the direction from which the score is coming
must be recorded in order to perform the backtracking
process and extract the optimal alignment. This proce-
dure usually produces a set of optimal alignments. Con-
sequently, new information needs to be supplied to allow
selecting a single solution [29], [36] and [46].

-

-

0

5

6

-1

-2

5

-1

7

-2

2

1

1

3

3

4

-3

-4

0

-1

2

1

1

-3

3

-4

0

2

-1

1

5

-5

-2

0

3

2

4

4

3

5
2

3 5

Fig. 2: Completed scoring matrix and optimal path high-
lighted. Candidate direction values are in red.

Several strategies have been offered to deal with this
issue in the context of stereo matching. Many suggest
selecting the ’smoothest’ solution in term of horizontal
and vertical discontinuities along and across scanlines [5]
and [10]. Some are based on high confidence matches,
such as edge intersections, which are identified during a
pre-processing phase. These good matches are exploited
as extra constraints in the choice of a unique solution [5]
and [60]. In [14] the traditional bioinformatics approach
has been followed: each scanline can be seen as a muta-
tion of both the previous and the following lines. There-
fore, alignments involving these lines can be used to se-
lect among several solutions by enforcing some vertical
discontinuities.

The whole process for two sequences 57135 and 5634
is illustrated in Figure 2. The following scoring scheme1

has been used: match = 2, gap = −1 and egap = −1.
To perform the backtrack procedure, the highest score
cell in either the last column or row is identified, in this
case the bottom right corner of the matrix, i.e. e4,5. The
following candidate values can be computed: from north
e3,5 + gap = 2, from west e4,3 + gap = 3 and from north-

west e3,3 + ∆diag
4,5 = 5. The highest value, in this case

from north-west, is stored: e4,5 = 5. Then, using direc-
tion information, a path to the origin of the matrix is
constructed. Finally, this path is converted into the fol-

1 The digits in the sequences can be seen as pixel values of
a given channel in the input image pairs or, more in general,
as elements to align. For the sake of simplicity, by stating
gap = egap, effects of extended gap have not been taken into
account.

6

P1

P2

P3

P4

Ileft

Iright

Istereo

w

h

w

h

h

Stereo matching

computation
Ileft
1

Ileft
2

Ileft
3

Ileft
4

Iright
1

Iright
2

Iright
3

Iright
4

Istereo
1

Istereo
4

Istereo
3

Istereo
2

Fig. 3: A 4-core stereo pipeline for bursts of lines. The input image pairs Ileft and Iright are divided in 4 bursts
of lines, according to the number of cores. Each core Pi processes in parallel their own bursts Iileft and Iiright, and

computes line by line the resulting burst of disparities Iistereo.

lowing resulting alignment:

57135
56-34

In the alignment gaps are represented by ’-’.

5 Implementation

As explained in Section 4, previous algorithm [14] is not
only providing good results in stereo matching, but it
also comprises some ideal properties to be implemented
by parallel computation. By reducing the global align-
ment to scanline alignments, only one line has to be con-
sidered at a given time and both memory requirements
and computational complexity can be reduced by num-
ber of lines.

In order to embed the algorithm in boards with dif-
ferent characteristics, such as maximum CPU clock rate
and available RAM, some coding optimization techniques
have been taken into account. These techniques can be
divided in two categories [48]: processing optimizations
aims to minimize the overall processing time; memory
optimizations aims to reduce the total amount of mem-
ory required to execute the algorithms.

In the remainder of this article the Big O notation
O(·) will be used to represent the complexity of an algo-
rithm as a function describing its efficiency in terms of
the amount of data to process. Both time complexity and
space complexity can be defined to estimate the amount
of time and memory an algorithm takes according to the
input size [38].

5.1 Processing optimizations

Major processing optimization deals with parallel com-
putation, function stack management and loop cycles

simplification [25], as described below. Others involve
reformulating mathematical formulas, such as replacing
multiplications with addition, whenever possible, and priv-
ileging temporary variables usage in order to reduce mem-
ory accesses.

5.1.1 Parallel computation

Since stereo lines are computed independently from each
other, each left and right stereo images of resolution
w × h, where w is the width and h the height in pixel,
can be split in bursts of lines and executed in parallel on
N different processors

{
P1, P2, . . . , PN

}
as shown in Fig-

ure 3. By defining a parameter α = h mod N , the first
α cores process a number of lines equal to Lα, while the
remaining N−α cores process a number of lines equal to
LN−α, e.g. Lα =

⌈
h
N

⌉
and LN−α =

⌊
h
N

⌋
respectively. In

case α 6= 0, the first α processors compute one stereo line
more than the others. This strategy for the allocation of
bursts of lines to the available processors is the simplest
to implement and the fastest to perform. The processing
time to obtain the resulting stereo line for each couple
of input lines may vary, depending on the distribution of
colors in the input images, the building of score matrix
and the subsequent backtracking procedure. A dynamic
allocation module should be able to assign, at the sam-

pling time t, each line llefti (t) and lrighti (t) for 1 ≤ i ≤ h,
to a processor Pj for 1 ≤ j ≤ N , and to keep track of the
CPUs load. Without any a priori knowledge about the
input data, the implementation of a dynamic allocation
is not recommended. A processing overhead is required
to scan the current line pairs, i.e. O(w) time complex-
ity, and perform a heuristic able to estimate the time
required to get the resulting stereo line. Benefits from
parallel programming will be described in Section 6.5,
while the increasing memory demand is explained in Sec-
tion 5.2 and shown in Eq. (6).

7

5.1.2 Replacement of function calls

A call stack is mainly used to keep track of the point at
which an active subroutine should return control at the
end of its execution. Function calls cause a significant
overhead in the case of intensive computation tasks [59],
since the call stack is in charge of managing the local
variables for the invoked subroutine, the return address
and all the parameters required by the function. Two im-
portant subroutine executions in the proposed algorithm
are the call of 1) the mismatch value computing method
and 2) the backtrack module. The first function occurs
w2 times for each scanned line, since the mismatch value
is computed for each element of the score matrix, the sec-
ond one occurs at least w times and not more than 2w
times, depending on the backtracking direction priority,
as explained in Section 5.2.5.

To prevent this large amount of subroutine calls, those
routines were implemented within the body of #define
C preprocessor instructions rather than as functions. The
instructions avoid the use of the stack by copying rou-
tine codes where needed. Code duplication in the text
segment of the memory is not an issue since the body of
the routine is small: GNU GCC compiler [32] produces
25 assembler instructions for the mismatch value func-
tion and 45 for the backtracking procedure. By enabling
#define instruction the code size increases by 25.4%.

It is recalled that preprocessor macros are preferable
to inline functions: depending on the specific configura-
tions for the used compiler and the release builds, these
functions are not always guaranteed to be inlined. For
instance, MPLAB R© XC compilers for PIC32 offer dif-
ferent level of optimization depending on the Edition
Types [43].

5.1.3 Loop unrolling

Loop unrolling is a well-known program transformation
able to reduce the increment-and-test overhead for loop
iterations [55]. The program speed can be increased by
reducing the number of instructions that control the loop,
reducing branch penalties and the memory reading de-
lay. To eliminate this overhead, loops can be re-written as
a repeated sequence of similar independent statements.
For modern processors, the primary benefits of loop un-
rolling include increased instruction-level parallelism, im-
proved register locality and memory hierarchy locality.
This technique also allows amortizing the overhead of a
single prefetch instruction across multiple load or store
instructions. In the code below a simple 8-instruction
for loop unrolling in C language is shown.

#define UNROLL 8(expr)
expr ; expr ; expr ; expr ;
expr ; expr ; expr ; expr ;

The body of the loop, expr, is repeated 8 times and con-

tains all the instructions to reiterate. The code above is
the first step to build more generic routines, such as a
K-instruction for loop. For example, if K = 34, then
a UNROLL 8() routine can be executed four times, plus
two residual cycles. The declaration of a generic unrolled
loop is the following:

#define UNROLL 8 GENERIC(cond , r , expr)

In this case the routine expr also contain the code able
to change the exit condition, i.e. cond. If K = 34, then a
program starting with a loop counter i = 0 will have an
instruction i++ in the body of the loop and the statement
i < 32 as exit condition. The residual amount r in a
UNROLL 8() loop cycle is computed by the programmer:

r = K −
(

8 ·
⌊
K

8

⌋)
. (2)

The proposed UNROLL 32() loop unrolling routine has
been compared with standard GCC loop optimization.
Experiments show almost identical timing results at 10
ns precision for both techniques by using the dataset
cited in Section 6.3 as input. Compared to the use of
normal loops, the time saved is 4%. Since GCC compiler
is not available for all the boards tested in this work,
as explained in Section 6.2, the proposed loop unrolling
technique has been used as generic code feature for fur-
ther experiments.

In case of longer for loop cycles, other routines such
as UNROLL 32() or UNROLL 64() can be implemented.
Given ncall the number of times a K-instruction loop
is present in the source code, by using loop unrolling
the body of the loop in the code segment memory will
increase by a factor ncall ·K. In the proposed implemen-
tation, the use of UNROLL 32() routine causes an increase
in code size by 400%.

5.2 Memory optimizations

In order to evaluate the amount of required memory, let
assume the followings: the parameter c is the number
of input image channels (3 for RGB images, 1 for 8-
bits grayscale images2), while ε is the size in bytes of a
single score matrix element ei,j , for each i, j ∈

[
1 . . . w

]
.

Without considering the negligible size of a few local
variables, the memory in bytes used during the execution
of the proposed algorithm is composed by the followings:

– left input image (w × h× c);
– right input image (w × h× c);
– stereo output image (w × h);
– score matrix (N × w × w × ε).

2 For Near-Infrared images a grayscale color encoding is
assumed.

8

w

w

+ gap

+

g
a
p

+ diag

eij

Fig. 4: Score matrix building.

At the first stage of memory optimization, the score ma-
trix E is a reusable memory area managed by a single
processor, that sequentially computes new score values
for each pair of input lines and overwrites the old ones
when no longer needed. When using N processors, a ded-
icated memory area for each core is required.

5.2.1 Score value dimensioning

According to the default values in the previous work [14],
without any a priori knowledge about the analyzed im-
ages, let assume for gap and extended gap parameter the
following values:

gap ≤ egap , ∆gap ≤ 255. (3)

The dimensioning procedure for these parameters is an
important step to correctly size the required memory for
the implementation of the proposed algorithm. Without
loss of generality gap and egap values can be considered
as natural numbers coded in log2(255+1) = 8 bits. Dur-
ing the score matrix building procedure, ei,j increases in
both x and y directions by either gap or egap and in
diagonal direction by the following maximum value:

∆diag = max
i,j

(
∆diag
ij

)
≤ 255. (4)

If ∆gap < ∆diag, in case of perfect matching in the input
images, the chosen score value is always in diagonal di-
rection, as shown in Figure 4. Starting from the top-left
corner, the path will end in the bottom-right corner, fol-
lowing the diagonal of the matrix, by adding ∆diag for
each line. The maximum score value can fit in nmax bits:

nmax = log2

(
w ·∆diag

)
= log2

(
w · 255

)
. (5)

Using Equation (5), if w = 450 then nmax ≈ 17 bits;
for images with bigger resolution, as w ≈ 1000, nmax is
always fewer than 21 bits.

31

e11 e12

e13e12

e13

0x00

0x20

0x40

0x60

0x80

S S

S

S

S

0 168 gNgWgD

Score value Direction

eij
S Geij

Fig. 5: A 24-bits score matrix element ei,j and a 32-bit
memory alignment.

5.2.2 Score matrix reduction

In order to optimize the required memory further, bit-
wise operations have been adopted for low-memory sys-
tems. Three bits, gn, gw and gd, are used to represent
the gap direction used for the backtracking procedure: if
gn = 1 there is a gap in the north direction, if gw = 1
there is a gap in the west direction and if gd = 1 there
is a gap in the diag direction. If the size of ei,j is 24
bits, the three parameters gn, gw and gd can be eas-
ily stored in the last three bits of each ei,j element, by
using the bit-shift operators, as ’<<’ and ’>>’, and by ap-
plying the appropriate bit masks. Consequently, in the
proposed implementation the size of ei,j is 24 bits, i.e.
ε = 3, containing both information about mismatch val-
ues and gap directions, as shown in Figure 5. Every ei,j
element is divided in a score value part eSi,j and in a di-

rection part eGi,j . Considering a 32-bit architecture, the
memory alignment depicted in Figure 5 should be used:
each ei,j element is located in a contiguous area of the
memory reserved for the E matrix. In this way not even
a single bit will be wasted. Since ei,j memory area can
be in between two 32-bit memory lines, this operation
has an impact on the number of memory accesses in or-
der to get or set a score value. Experiments show that
get() and set() operation time has increased by 75%
and 25% respectively.

5.2.3 Resolution reduction

The total amount M of memory in bytes3 required by
the program is:

M = w ·
(

2h · c+ h+N · w · ε
)
. (6)

For example, since the Cones pair of color images from
Middlebury dataset [56] has a 450 × 375 resolution, the

3 The total amount M has not been rounded to the upper
multiple of 32 since other small data structures not considered
in Equation (6) can be used to keep the alignment and save
memory. Moreover, the unrounded versionM is useful to have
a more accurate comparison of memory requirements in case
of use of different datasets.

9

size of the uncompressed RGB image is 506250 bytes. In
case of a single-core evaluation, M = 1788750 bytes.
By considering the same images with Quarter-QVGA
(QQVGA) 160× 120 resolution, usually used in displays
of handheld devices, the algorithm requires M ′ = 134400
bytes in case of single channel. Assuming a w′ × h′ no-
tation for low resolution images, the compression factor
η for the required memory is the following:

η =
M

M ′
=
w ·
(

2h · c+ h+N · w · ε
)

w′ ·
(

3h′ +N · w′ · ε
) . (7)

According to Equation (7), for the previous case η = 13.
The resolution reduction will obviously affect the accu-
racy of the depth map, as analyzed in Section 6.4.

5.2.4 Enhanced memory optimizations

A different way to save memory in systems characterized
by very low capabilities consists in the exploitation of a
particular property of the score matrix: the score value
calculation for the element located in ei,j needs informa-
tion about the score elements located in the following
three positions: (i − 1, j), (i − 1, j − 1) and (i, j − 1).
Since the score matrix building occurs by rows, for each
processed row i is possible to keep in memory just infor-
mation about i and i−1 rows: considering only the score
matrix, rather than a memory occupancy of w2 · ε bytes,
it will require 2w · ε bytes. The gap directions for the
backtracking procedure are stored in a rewritable w×w
matrix; for alignment purposes this memory unit need
four bits instead of three, hence the required memory is
w2/2 bytes. Considering also input (2w ·h ·c) and output
(w · h) data, the required memory will be:

M
′′

= w ·
(

2h · c+ h+ 2ε+
w

2

)
. (8)

Through an enhanced memory optimization, called line
version, the system does not store neither the whole in-
put image pairs nor the processed disparity map, but
just acquires one by one a pair of lines and returns the
correspondent stereo line, independently of each other.
In this case the memory requirement is:

M
′′′

= w ·
(

2c+ 1 + 2ε+
w

2

)
. (9)

Benefits from these memory optimizations will be shown
in Section 6.5.

5.2.5 Backtracking

In comparison with the original score matrix building
algorithm, the maximum value searching procedure has
been removed, since the highest value is always in the
right-bottom corner of the score matrix, that is ew,w.

a b c d e f g

h

i

j

k

l

m

n

|a-h|

|a-i|

|b-j|

|c-k|

|c-l|

|e-m|

|e-n|

Stereo value

correspondence

Fig. 6: Backtracking with w = 7 and west - diag - north
as direction priority.

Therefore, the time and space complexity is reduced by
O(w). In addition, the backtrack routine has been re-
designed in order to reduce processing cost and avoid
recursive function calls to prevent new memory alloca-
tion and call stack management [3]. In the original algo-
rithm, the resulting global alignment was compared with
the alignments of the previous and the following line and
was used to select the best of several solutions regarding
the global alignment, hence reducing vertical discontinu-
ities. In the proposed implementation the algorithm al-
ways gives priority to one direction between north, west
or diag, depending on a manual configuration. As shown
in Section 6, the results in terms of accuracy obtained
by giving priority to a single direction are similar. There-
fore, further processing in order to build a complete path,
from the maximum score value ew,w to the origin score
value e1,1, has not been taken into account. In general,
this simplification implies that only one possible solu-
tion is analyzed, and although the algorithm is not able
to know if the best one has been selected, this has a
minimum effect in the algorithm performance.

The resulting stereo value eSi,j for each element of
the current line i is only stored when the tracking moves
towards north or diag, as shown in Figure 6. The number
of steps required to reach the origin e1,1 may vary: in case
the path taken corresponds to the diagonal of the matrix,
i.e. only the diag direction is chosen, only w steps are
required. In the worst case the backtracking procedure
needs 2w−1 steps, e.g. w steps in the west direction and
w − 1 steps in the north direction.

6 Experimental results

In this section, first hardware and software setups are
presented. Then, performances are evaluated in terms of
quality, memory and timing by using standard images
and NIR images in a night environment.

10

Table 1: Hardware platforms with list of features.

Seed-Eye Raspberry Pi PandaBoard

Clock 80 MHz 700 MHz 1000 MHz
Memory 128 KB 512 MB 1024 MB
Cache - 128 KB (L2) 1024 KB (L2)
Instr. set PICmicro ARMv6 ARMv7
Storage internal 512 KB ext. by SD-MMC ext. by SD-MMC
Power cons. 150mA @ 5V 700mA @ 5V n.a.
Transceiver 802.15.4 Avb by ext HW 802.11 b/g/n
Size 92.0 x 81.0 mm 85.0 x 56.0 mm 114.3 x 101.6 mm

6.1 Hardware

The boards used in this work are shown in Table 1.
Details about each board are listed below. In order to
acquire images from real world, the D-Link DCS-942L
camera [11] has been adopted. This pocket camera, de-
signed for video-surveillance and security solutions, can
be connected via IEEE802.11n wireless protocol or Eth-
ernet cable, and is equipped with PIR sensors for motion
detection and 4 near-infrared leds for night vision. The
maximum achievable resolution is 640x480 (VGA).

Seed-Eye board [57] has been developed by Scuola
Superiore Sant’Anna and Evidence s.r.l. for the Ipermob
project [34] which aimed at the deployment of integrated
systems based on the optimization and interoperability
of the chain formed by data collection systems, both
road-side and vehicular based, in a urban environment.
The board is based on a PIC32MX795F512L microcon-
troller, capable of acting as a high power wireless sensors
node. It is based on a classic 5-stage instruction pipeline
(Instruction Fetch, Execution, Memory Fetch, Memory
Align and Memory Writeback), and it is equipped with
CMOS camera and GPIO which can connect many types
of digital and analog sensors (e.g. light sensor, photo-
resistor). The power supply system has been made with
an integrated DC/DC converter, which can supply the
board from 5V to 38V, via battery or directly with a
micro-USB plug.

Raspberry Pi [51] is a single board computer, devel-
oped by Raspberry Pi Foundation. The goal was to make
a cheaper board as small as a credit card, to promote the
teaching of computer science in schools. The Raspberry
Pi’s SoC (System on Chip) is a Broadcomm 2538 in-
cluding an ARM1176JZF-S and a powerful GPU. This
architecture is based on a 8-stage instruction pipeline: 1st
Fetch Stage, 2nd Fetch Stage, Instruction Decode, Reg-
ister Read and Issue, Shifter Operation, ALU operation,
Saturation and Memory Writeback. Booting and storage
are available on a SD-Card. In a short time Raspberry Pi

has become a developed board for many fields (e.g. quad-
copter controller, access point, rack computing) and sev-
eral types of operating systems have been ported (e.g.
RaspDebian, Arch Linux ARM, RISC OS).

The PandaBoard [49] is a cheap single board com-
puter, based on the Texas Instruments SoC. This board,
available since October 2010, has been developed for gen-
eral purpose applications. The CPU is an OMAP4430
with 1 GHz ARM Cortex-A9 dual-core and 8-stage in-
struction pipeline, 304 MHz PowerVR SGX540 GPU,
IVA3 multimedia hardware accelerator, a programmable
DSP and 1 GB of DDR2 SDRAM. The operating system
is stored in an SD card slot up to 32 GB.

6.2 Software

In this paper both PandaBoard and Raspberry Pi use
Debian-based operating systems: Ubuntu 12.04 cross com-
piled for ARM OMAP and Raspbian [52] respectively.
GCC compiler version is 4.6.3 and build-essentials De-
bian package is required for compilation. PIC32 compiler
is based on Microchip MPLAB R© X IDE [43]. While
Raspberry Pi and PandaBoard can be used with any
Linux OS distribution, Seed-Eye runs Erika [22], a real-
time multi-tasking operating system especially designed
for time-constrained embedded applications and based
on a set of APIs similar to those proposed by the OS-
EK/VDX Consortium. Erika’s priority-based scheduler
allows the execution of computationally intensive pro-
cesses by implementing several scheduling algorithms,
e.g. Fixed Priority with preemption thresholds, Stack
Resource Policy, Earliest Deadline First and Resource
Reservations, which can be used to schedule tasks with
real-time requirements [7].

POSIX threads library [39] for Unix has been used
to manage parallel computation on Raspberry Pi and
PandaBoard. Thread scheduling can be controlled by
pthread setAffinity np() function, in order to allo-
cate the tasks to each core. Since the main thread does

11

not need to perform further operations after burst of
lines allocation (see Section 5.1.1), a FIFO (First In First
Out) policy set by pthread setschedparam() function
has been adopted. Each of the N threads computes dis-
parity map for the allocated burst of lines independently
and synchronization occurs via pthread join() func-
tion, in order to guarantee the correct termination of all
the threads. By using pointer arithmetic programming
technique, each thread is allowed to read/modify only
the portion of memory assigned to the corresponding
burst of lines (for both input and output buffer in Fig-
ure 3), therefore shared memory is not subject to incon-
sistency. Nevertheless, in more complicated systems, e.g.
distributed applications that also need to schedule net-
work transmissions, real-time support can be provided
by SCHED DEADLINE scheduler [17], currently avail-
able in Linux kernel v3.14.4.

Regarding time measurement, in Erika OS the prim-
itive GetElapsedValue() has been used to get the num-
ber of clock ticks n between the current tick value and
a previously read one. Linux OS provides the function
clock gettime() with nanosecond precision. Given a
starting time t1 and an ending time t2 for a monitored se-
quence of instructions, elapsed time is simply computed
as ∆t = t2 − t1, or ∆t = n

f for Erika OS with clock

rate f . In case of multi-core processing, time for thread
allocation has also been taken into account.

6.3 Evaluation setup

The validation of this version of the algorithm proposed
by [14] is performed by using the benchmarking frame-
work from Middlebury [56], which has been largely ac-
cepted by the computer vision community for objective
comparison of stereo matching algorithms. A way to es-
timate the quality of the computed correspondences is
to evaluate error statistics with respect to ground truth
data provided by the framework.

Regarding the evaluation of NIR images, a dataset
has been acquired as explained in 6.3.3. Images from in-
frared cameras tend to have a single color channel, since
the sensor generally does not distinguish different wave-
lengths of infrared radiation [18]. Wavelengths outside of
the visible spectrum do not map uniformly into the sys-
tem of color vision used by humans. Changes in the signal
can be displayed from monochromatic or pseudo-colors
images using changes in color rather than in intensity,
by analyzing lighter color regions4 in the disparity map
and dissociating them from the background, depending
on cameras height, cameras field of view, lenses distance,
and object distance [16] and [4].

4 According to the grayscale-space representation, let as-
sume that value 0 is black and the maximum value, i.e. 255
at 8 bits per pixel, is white. Therefore, higher values in the
disparity map correspond to lighter areas in the image, i.e.
objects closer to cameras.

6.3.1 Quality measures

Considering the computed disparity map dC(x, y) and
a ground truth map dT (x, y) characterized by a total
number of pixels Np, the percentage of bad matching
pixels B is shown in Equation (10):

B =
1

Np

∑
(x,y)

(
|dC(x, y)− dT (x, y)| > δd

)
. (10)

In the previous equation δd is a disparity error tolerance
defined by the Middlebury’s framework and set to default
value δd = 1.0.

In addition to this overall metric, statistics related
to specific regions of the disparity maps were also con-
sidered in order to support the analysis of matching re-
sults in typical problem areas. In particular, occluded re-
gions O represent occluded areas in the matching im-
age, i.e., where the forward-mapped disparity lands at
a location with a larger or nearer disparity. These re-
gions are computed by pre-processing both reference im-
age and ground truth disparity map; the resulting metric
BO represents the percentage of bad matching pixels in
non occluded areas.

6.3.2 Parameter configuration

In [14] score parameters, as match, gap and extended gap,
could be dynamically configured by generating a pseudo
ground truth disparity map and establishing sparse pixel
correspondences using the SIFT (Scale-Invariant Feature
Transform) algorithm. Since these parameters are sensi-
tive to image characteristics, they need to be customized
for each stereo pair. If the actual disparity map is known,
an optimization function can be applied to maximize
matching accuracy. Although such process allows eval-
uating the best possible performance of an algorithm, it
does not have practical applications.

In order to make the processing as fast as possible
and to compare in a fair way all the image pairs, the
same set of parameters, according to the default values
in the previous work [14], are used. Without any a priori
knowledge about the analyzed images and no automatic
parameter configuration enabled, let assume for gap and
extended gap parameters the following values: gap = 69
and egap = 98.

6.3.3 NIR dataset

In order to demonstrate the effectiveness of the pro-
posed work, even in case of an input data stream, a
scenario aiming at detecting objects or pedestrians pass-
ing through a gateway is proposed. Two cameras are
installed on top of a gateway (indoor setting), facing the
ground, counting the number of entities and estimating
their height. The camera pair is at a short distance from

12

(a) Tsukuba disparity map (b) Tsukuba ground truth (c) Tsukuba gap areas

(d) Venus disparity map (e) Venus ground truth (f) Venus gap areas

(g) Teddy disparity map (h) Teddy ground truth (i) Teddy gap areas

(j) Cones disparity map (k) Cones ground truth (l) Cones gap areas

Fig. 7: Computed disparity maps, ground truth and gap areas insertion comparison.

each other and use the same base line. Under these as-
sumptions rectification constraints can be relaxed. The
resulting disparity map has been analyzed by varying
brightness conditions, the input image pairs colormap
(RGB, grayscale, NIR) and also the target distance, by
changing its position from standing to kneeling. The NIR
images have been taken under conditions of complete
darkness.

6.4 Stereo quality performances

In the following stereo quality performances for Middle-
bury’s dataset and proposed NIR dataset are presented.

6.4.1 Middlebury’s disparity map analysis

Figure 7 shows a comparison between computed dispar-
ity maps and ground truth disparity maps obtained for
the images used in the Middlebury framework. As men-
tioned in [56], the use of the same set of parameters for

13

Table 2: Stereo algorithm results, where BO is the percentage of bad matching pixels in non occluded areas, B is
the percentage of bad matching pixels in the whole computed disparity map.

Algorithm

Tsukuba Venus Teddy Cones Average
384 × 288 434 × 383 450 × 375 450 × 375 bad pixels

BO B BO B BO B BO B %

Dynamic Programming
4.12 5.04 10.1 11.0 14.0 21.6 10.5 19.1 14.2

[5]
Previous work

6.74 8.91 10.7 12.2 14.1 23.0 11.0 21.2 16.7
[14]

Our approach
5.80 7.87 9.76 10.9 13.9 20.9 9.60 16.7 15.3

(RGB, west priority)
Our approach

5.79 7.82 9.81 10.9 13.9 20.9 9.68 16.8 15.3
(RGB, north priority)

Our approach
5.77 7.83 9.84 11.0 14.0 21.0 9.73 16.8 15.4

(RGB, diag priority)

Our approach
6.72 8.80 7.04 8.14 11.25 16.29 8.40 15.56 15.3

(RGB, half res, diag priority)
Our approach

10.27 12.24 13.74 14.82 24.41 30.96 19.04 25.43 23.5
(Gray, diag priority)

Our approach
10.31 12.26 11.60 12.72 19.64 25.65 25.79 19.20 22.9

(Gray, half res, diag priority)

all four datasets is required. Some image pairs are noisier
than the others, which works against algorithms that are
sensitive to internal parameter settings.

The proposed line-by-line approach is particularly ev-
ident in Venus image pair, due to the presence of ob-
jects with well-defined edges. The disparity maps cre-
ated by scanline based algorithms are fairly detailed, but
the larger qualitative errors are clearly a result of the
artifacts due to the lack of inter-scanline consistency,
specially near discontinuities. Given two lines lh∗ and
rh∗ located at height h∗ of the input image pairs Ileft
and Iright with resolution w × h, the original algorithm
did not compute disparity estimates in low confidence
regions. Those unmatched areas explicitly model occlu-
sions, and were filled with black color [14]. As explained
in Section 5.2.5, in the proposed work the unmatched
areas have been filled according to the following score
direction policy: given a stereo output line sh∗ , the value
of the j-th element sh∗ [j] is actually stored only if the
next processed element in the score matrix E will be at
row j − 1, i.e. border of the unmatched area is reached.
The qualitative differences between these two techniques
can be noticed by comparing the first and third column in
Figure 7. Since the average bad pixels results obtained by
the evaluation framework for the new stereo line building
policy were between 1% and 2% better, the new strategy
was adopted. Moreover, in the case of an application for
object detection, gap areas could cause several issues on
the histograms analysis in the disparity maps based on
color intensity, as explained in Section 6.3.

In Table 2, quantitative results are provided to vali-
date the proposed algorithm. The resolution for Tsukuba,
Venus, Teddy and Cones image pair is respectively 384×
288, 434 × 383, 450 × 375 and 450 × 375. In order to
compare in a fair way the results of the previous work

[14], the extended gap (EG) capability has been taken
into account, without considering median filter (MF) and
automatic parameter selection (AP) procedures. The ap-
plication of a median filter on disparity maps introduces
some inter-scanline coherence, increasing also accuracy,
but this operation involves scanning of pixels in each
row and in each column, with an additional time com-
plexity O(w · h). Performances for a standard method
are also provided: the reference for scanline-based Dy-
namic Programming (DP) [5] optimizes parameters by
using a particular data structure called disparity-space
image, i.e. an explicit spatial representation of matching
points for each line l and r of the input image pair.

Obviously, in terms of accuracy, the proposed ap-
proach cannot compete with more computationally ex-
pensive approaches, but the results are satisfactory. With
respect to the previous work, this approach shows fewer
bad matching pixel for all the image pairs and for all
the proposed prioritized backtracking directions: at least
−0.9% bad pixels for Tsukuba, −1.2% for Venus, −2.0%
for Teddy, −4.4% for Cones image pair. The average bad
pixel error is 1.4% better than in the previous work.
The difference between the direction priorities is negligi-
ble (for the previous image pairs is ±0.05%, ±0.01%,
±0.01%, ±0.01% respectively), since the average bad
pixel metric does not show any significant difference.

In the lower part of the table quality results about
color channel and image resolution reduction are shown.
For the sake of simplicity, only results regarding diag
direction priority have been reported. The length and
width halving in input image pairs does not affect match-
ing quality. Small variations in overall bad matching pixel
for Middlebury’s dataset can be explained by considering
that both ground truth and computed disparity map had
to be shrunken, hence some bad pixel at previous resolu-

14

(a) RGB left (b) RGB right (c) Gray left (d) Gray right (e) NIR left (f) NIR right

(g) Kneeling RGB disp. map (h) Kneeling gray disp. map (i) Kneeling NIR disp. map

(j) Kneeling RGB histogram (k) Kneeling gray histogram (l) Kneeling NIR histogram

(m) RGB left (n) RGB right (o) Gray left (p) Gray right (q) NIR left (r) NIR right

(s) Standing RGB disp. map (t) Standing gray disp. map (u) Standing NIR disp. map

(v) Standing RGB histogram (w) Standing gray histogram (x) Standing NIR histogram

Fig. 8: Input image pairs, disparity maps and histograms for different positions.

15

Table 3: Components for the Gaussian Mixture Model.

Kneeling position Standing position
Component RGB Gray NIR RGB Gray NIR

µ σ2 µ σ2 µ σ2 µ σ2 µ σ2 µ σ2

g1 25 18 25 18 24 17 26 27 27 19 26 18
g2 62 17 63 11 76 52 100 81 100 85 104 20
g3 92 8 92 11 - - 173 51 171 34 188 37

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

P
ix

e
l
in

te
n

s
it
y

Pixel index

NIR dataset

RGB dataset

Gray dataset

Reference

(a) Kneeling position

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

P
ix

e
l
in

te
n

s
it
y

Pixel index

NIR dataset

RGB dataset

Gray dataset

Reference

(b) Standing position

Fig. 9: Spatial distribution for a single disparity map line h = h/2.

tion, especially close to discontinuities, simply could dis-
appear at new resolution. Color channel transformation
from RGB to grayscale at full resolution shows signifi-
cant worsening in the stereo quality: +4.41%, +3.82%,
+9.96% and +8.63% respectively. The larger number of
bad pixels for Teddy and Cones image pairs can be ex-
plained by the higher range of disparity values, i.e. 60,
compared to Tsukuba and Venus, i.e. 16 and 20 respec-
tively [56].

However, the reduction in the number of channels
causes a degradation in the quality of the resulting dis-
parity map around 7-8%. Considering both the effects of
resolution and channel reduction, respect to the full size
RGB case, bad matching pixels in the whole disparity
map for Middlebury’s dataset increases by the following
∆B values: ∆Btsukuba = +4.43%, ∆Bvenus = +1.72%,
∆Bteddy = +4.65%, ∆Bcones = +2.40%. Therefore, the
resulting data reduction causes a degradation in the qual-
ity of the stereo results lower than 5%. The average value
µ∆B for the previous bad matching pixel percentages is:

µ∆B = +3.3%. (11)

Such a small value for the average bad matching pixel
percentage allows the use of the only luminance channel
in the input image pairs at half resolution in order to
build the disparity map. This results in a timing perfor-
mance improvement and a decrease of required memory,
as explained in the next section.

6.4.2 NIR disparity map analysis

In Figure 8 results assessing the applicability of the pro-
posed embedded version, in both day and night envi-
ronments, are shown. The NIR disparity map is robust
to illumination changes and requires lower memory and
timing resources compared to the RGB one.

The resulting disparity maps by changing input im-
age pairs conditions (Figure 8g, 8h and 8i for kneeling
position, Figure 8s, 8t and 8u for standing position) show
a similar qualitative behavior for a given position, while
corresponding histograms (Figure 8j-8x) show different
pixel intensity distributions depending on the position.
Even in the near-infrared, disparity map for the stand-
ing position highlights distinct pixel intensity areas cor-
responding to background, shoulders and head. Approxi-
mation due to the color-space conversion in the input im-
age pairs could cause the occurrence of some artifacts, as
shown in Figure 8t. In this case, for some lines in the orig-
inal input image, two different colors have been mapped
in the same gray level, jeopardizing the recognition of
areas at different distances from the camera.

By analyzing the resulting histograms, the system is
able to detect, even in different color spaces, if the human
target is in a kneeling or standing position. The two po-
sitions are characterized by different mixtures of Gaus-
sians. Table 3 reports the Gaussian parameters (µ, σ2)
for three components g1, g2, g3 of the mixture. The first
component g1 represents the background. In case of both

16

Fig. 10: ROC curves for the proposed application.

kneeling and standing position the mean value is always
in the range [25, 27], despite the different color space.
The second component g2 represents the target’s shoul-
ders. In case of kneeling position, the mean value is in
the range [62, 63] for RGB and grayscale color space,
while for NIR color space g2 and g3 are not separable, as
shown in Figure 8i, since colors appear quite mixed. For
the standing position, µg2 is in the range [100, 104]. The
third component g3 represents the target’s head and the
mean value is equal to 92 for both RGB and grayscale
images in the kneeling position. For the standing posi-
tion, mean values are 173, 171 and 188 respectively. The
NIR component comes out slightly shifted, but the value
is still comparable to the previous ones.

The spatial distribution of the gray-levels intensity
for a single horizontal line located at h = h/2 in the dis-
parity map is depicted in Figure 9. This line should be
able to detect all the objects passing through the gate-
way. The graphs compare the resulting line respect to
RGB, grayscale and NIR input image pairs and a refer-
ence case without any object in the scene. According to
the different color spaces, the line representing a kneeling
position produces pixel intensity values for the head area
in the range [25, 80], while line representing a standing
position produces values in the range [120, 200]. It should
be noted that the line trend in NIR case does not look as
linear as the other cases, due to the infrared illuminator
that could introduce some light reflections depending on
the type of surface.

Given the histogram results in Figure 8, a color trans-
formation can be applied to the disparity maps in or-
der to obtain uniform areas for objects approximately at
the same distance from the stereo system. 1000 frames
per color space have been used to set the best thresh-
olds to separate the components g1, g2 and g3 in case of
kneeling (thK12 and thK23) or standing position (thS12 and
thS23). After color transformation, difference between the

size of uniform areas is used as threshold to recognize
the position. The Figure above shows the Receiver Op-
erating Characteristic curves for the proposed applica-
tion by varying

(
thK12, thK23, thS12, thS23

)
. For each frame,

ground truth has been manually annotated and con-
sists of one of these states: a) no target, b) target in
a kneeling position and c) target in a standing position.
Considering false positive rate (FPR) values in the in-
terval [10−6, 1] and true positive rate values for RGB
dataset

(
TPRRGB

)
, grayscale dataset

(
TPRGray

)
and

NIR dataset
(
TPRNIR

)
, resulting curves are very simi-

lar, e.g. TPRRGB−TPRNIR < 0.1 at FPR = 10−4 and
TPRRGB − TPRNIR ≈ 0.05 at FPR = 10−3. Conse-
quently, color space reduction even in case of NIR input
images does not affect the suitability of the application.

6.5 Timing performances

Table 4 lists a summary of all the processing time mea-
surements taken on the available boards. Optimizations
explained in Section 5.2.2 have been taken into account
only for PIC32 board. Every image pair with w×h reso-
lution has been processed both in a full-size and half-size
mode according to the memory requirements explained
in Section 5.2.3. The overall processing time to get a
stereo image (h lines) is proportional to the single-line
score matrix building procedure (w ·w elements). In case
of full-size images the expected overall processing time
tfull can be represented by the following:

tfull ≈ h · w2. (12)

In case of half-size images, the processing time thalf can
be introduced:

thalf ≈
h

2
· w

2
· w

2
=

1

8
h · w2. (13)

Results listed on the table confirms the validity of the
factor τres = tfull/thalf = 8 in the execution time of
the algorithm between images at different resolutions:
e.g. τres = 7.92 for Cones dataset with 3 channels on
Raspberry board, τres = 7.63 for Tsukuba dataset with
1 channel on dual-core PandaBoard, and τres = 7.94 for
Venus dataset with 3 channels on PIC32 board.

The factor τch represents the ratio between the pro-
cessing time for images with 3 color channels and the pro-
cessing time for images with a single color channel. Dif-
ferent boards are characterized by different values of this
metric: τch ≈ 1.5 for dual-core PandaBoard, τch ≈ 2.8
for Raspberry board, τch ≈ 1.3 for PIC32 board. Time
saved deals with the procedure to compute the mismatch

value ∆diag
ij for each cell in the score matrix, according

to Eq. (1). Images with 3 channels need the sum of three
absolute differences of pixel values, while in case of single
channel only one absolute difference is required.

17

Table 4: Timing results.

Input
Intel Quad-Core PandaBoard Rasp. Pi Microchip PIC32

2.66 GHz 1.0 GHz 0.7 GHz 80 MHz

Dataset Resolution
4 cores 2 cores 1 core 2 cores 1 core 1 core v. full1 v. line2

(s) (s) (s) (s) (s) (s) (s) (s)

Tsukuba

full, 3 ch. 0.411 0.707 1.401 4.498 8.917 37.469 - 65.266
full, 1 ch. 0.188 0.371 0.736 2.982 5.849 18.563 - 49.585
half, 3 ch. 0.079 0.103 0.205 0.573 1.139 5.481 - 8.293
half, 1 ch. 0.024 0.047 0.093 0.391 0.770 3.184 6.230 6.320

Venus

full, 3 ch. 0.750 1.004 1.969 7.515 14.709 59.611 - 112.661
full, 1 ch. 0.324 0.625 1.236 4.813 9.357 22.785 - 86.088
half, 3 ch. 0.106 0.135 0.265 0.955 1.884 8.669 - 14.192
half, 1 ch. 0.042 0.078 0.155 0.623 1.232 4.101 - 10.858

Teddy

full, 3 ch. 0.729 1.052 2.093 7.664 15.099 56.839 - 118.434
full, 1 ch. 0.339 0.657 1.302 4.962 9.637 20.209 - 90.521
half, 3 ch. 0.102 0.133 0.261 0.948 1.884 7.172 - 14.861
half, 1 ch. 0.043 0.084 0.164 0.624 1.224 2.549 - 11.395

Cones

full, 3 ch. 0.812 1.084 2.130 7.716 15.201 56.815 - 118.434
full, 1 ch. 0.348 0.672 1.328 5.067 9.848 20.279 - 90.521
half, 3 ch. 0.106 0.135 0.268 0.955 1.901 7.173 - 14.860
half, 1 ch. 0.043 0.084 0.168 0.627 1.249 2.553 - 11.395

1 Full version: both input and output images stored in the memory of the board.
2 Line version: the board receives input lines and returns the stereo line.

An Intel R© CoreTM 2 Quad Processors [33] has been
taken as a reference system to compare all the process-
ing time results. The table shows results by taking into
account one, two and all four cores. The single core Rasp-
berry Pi board takes almost one minute for full-size Cones,
Venus and Teddy datasets, and 37 s for Tsukuba. In case
of half-size resolution and 1 channel, results are between
2.5 s and 4.1 s. Obviously this board could be used only
in very low-rate applications with static objects, such as
parking monitoring.

The Seed-Eye board needs the special memory mod-
ification explained in Section 5.2.4 in order to make the
implementation feasible. As depicted in Table 5, in case
of QQVGA input images with 1 or 3 channels, the execu-
tion of the optimized version of the proposed algorithm
does require more than 128 KB of memory. Furthermore,
in order to develop a meaningful application onboard
and execute some kind of processing, i.e. detection or
classification algorithms, more memory is required. The
processing time required by the memory optimization
method shown in Eq. (8) is between 0.8% and 1.4% more
than the previous approach, but in case of QQVGA reso-
lution images, the required memory decreases by 46.9%.
As shown in Table 4, the PIC32 board is able to execute
the stereo algorithm only for Tsukuba half-size images,
with a single channel, in 6.230 s.

Last memory optimization shown in Table 5 has been
taken into account to make an overall comparison be-
tween the Middlebury’s image pairs for timing require-
ments also on the PIC32 board. By using the line ver-
sion of memory optimization presented in Eq. (9), the
required memory is very low: 209 KB for 3-channels VGA
images, and only 14 KB for 1-channel QQVGA images.
By focusing just on half resolution 1-channel images, tim-

Table 5: Memory requirements.

No opt. Opt. Full Line
Resolution Ch. version1 version2 version3 version4

(KB) (KB) (KB) (KB)

VGA 3 4900 3300 2304 209
640 × 480 1 3700 2100 1104 206

QVGA 3 1125 825 577 55
320 × 240 1 925 525 277 53
QQVGA 3 307 207 145 15
160 × 120 1 232 132 70 14
1 No opt. version: no memory optimizations.
2 Opt. version: memory optimizations according to Eq. (6).
3 Full version: memory optimizations according to Eq. (8).
4 Line version: memory optimizations according to Eq. (9).

ing results for Tsukuba, Venus, Teddy and Cones are
6.320 s, 10.858 s, 11.395 s and 11.395 s respectively.

The impact of serial transmission on overall timing
performance is relevant. For instance, input image pair
transmission and disparity map reception for Tsukuba
dataset takes 53.76 s in case of 3-channels full resolution,
and 5.76 s in case of 1-channel half resolution. For Cones
dataset, the same experiment results in 82.03 s and 8.79 s
respectively. PIC32 microcontroller cannot obviously be
used as coprocessor, since serial communication is a sig-
nificant bottleneck, but it is a useful support in systems
such as low-cost vehicle counter [54].

In case of half-size images, the dual-core PandaBoard
always evaluates stereo image pairs in less than 1 second.
Figure 11 summarizes the distribution of bad matching
pixels with respect to computing time in PandaBoard
with multi-core processing enabled. Similar graphs can
be obtained with different boards. Quality results for
low resolution dataset images are fairly similar to the

18

Table 6: Timing performance comparison between different algorithm. Saved time in parentheses.

Dataset Res.
Proposed [14] [5]

cores implementation implementation implementation

Tsukuba full 1 1.401 1.989 (-42%) 1.694 (-21%)
Tsukuba half 1 0.205 0.328 (-60%) 0.245 (-20%)
Tsukuba full 2 0.707 1.001 (-42%) 0.862 (-22%)
Tsukuba half 2 0.103 0.141 (-37%) 0.113 (-10%)
Venus full 1 1.969 2.813 (-43%) 2.772 (-41%)
Venus half 1 0.265 0.466 (-76%) 0.358 (-35%)
Venus full 2 1.004 1.426 (-42%) 1.376 (-37%)
Venus half 2 0.135 0.258 (-91%) 0.176 (-30%)
Teddy full 1 2.093 2.976 (-42%) 2.664 (-27%)
Teddy half 1 0.261 0.473 (-81%) 0.333 (-27%)
Teddy full 2 1.052 1.511 (-44%) 1.387 (-32%)
Teddy half 2 0.133 0.169 (-27%) 0.164 (-23%)
Cones full 1 2.130 3.140 (-47%) 2.713 (-27%)
Cones half 1 0.268 0.392 (-46%) 0.323 (-21%)
Cones full 2 1.084 1.508 (-39%) 1.355 (-25%)
Cones half 2 0.135 0.208 (-54%) 0.171 (-26%)

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8

%
 B

a
d

 p
ix

e
ls

Processing time (s)

Full res, 3 ch
Full res, 1 ch
Half res, 3 ch
Half res, 1 ch

Fig. 11: Processing time w.r.t. bad matching pixels dis-
tribution run on multi-core PandaBoard. A group of 4
similar points represents the group of 4 image pairs from
Middlebury’s dataset at a given resolution.

ones at higher resolution, but the benefits are related
to the faster way to obtain the disparity map. In the
graph the process for Tsukuba grayscale image pairs at
half resolution 192×144 takes 0.391 s. This resolution is
fairly close to QQVGA (160 × 120). Therefore, by scal-
ing the dataset to QQVGA resolution, the process can be
completed even faster: Tsukuba 0.229 s, Venus 0.219 s,
Teddy 0.229 s and Cones 0.231 s. These results allow
the processing of stereo images, with the low-cost board
above mentioned and the proposed algorithm, at a rate
of 4 frames per second.

In order to assess the timing performance improve-
ment respect to previous works, Table 6 shows timing
results for the Intel platform by implementing the algo-
rithms described in [14] and [5] with parallel computa-
tion enabled. For the sake of simplicity only 3-channels

images have been considered. The excellent results ob-
tained with respect to [14] are mainly due to the simpli-
fied backtracking procedure which avoids recursive func-
tions for multiple paths analysis involving neighboring
stereo lines. Regarding the Dynamic Programming tech-
nique in [5], only occlusion and ordering constraints have
been evaluated. By means of the proposed implementa-
tion, average time saved is greater than 50% for [14] and
greater than 25% for [5].

7 Conclusions

In this paper, the applicability of a computationally de-
manding stereo matching algorithm in different low-cost
and low-complexity embedded devices has been explored,
by focusing on the analysis of timing and image qual-
ity performances. Reduction of color channel informa-
tion and resolution for input images can decrease the
amount of required memory up to a factor of 25, while
low-level software optimizations and analysis of redun-
dant data structures and internal data representation do
not affect the effectiveness of the stereovision system.
The proposed implementation performs well in spite of
the optimizations even in a night environment by means
of infrared sensors. Hence, regardless of lighting condi-
tions, objects placed at different distances can be easily
detected.

Low cost boards Raspberry and PIC32 can be used
in applications which do not need service rate higher
than few disparity maps per minute. A typical applica-
tion could be the parking monitoring for empty stalls
detection. PandaBoard can be successfully used to ob-
tain disparity maps at QQVGA resolution, by using the
proposed stereo matching technique, at a rate of 4 fps.

Future work will consider the development of an al-
gorithm able to detect in real-time the presence and the
distance of a moving target in the stereo cameras range

19

by considering a 3D scoring matrix extension [41] of the
proposed stereo matching implementation.

References

1. Ambrosch K., Kubinger W. (2010) Accurate
hardware-based stereo vision. Computer Vision and
Image Understanding 114(11):1303 – 1316, DOI
http://dx.doi.org/10.1016/j.cviu.2010.07.008

2. Baker H.H., Binford T.O. (1981) Depth from Edge
and Intensity Based Stereo. In: Proceedings of the
7th International Joint Conference on Artificial In-
telligence - Volume 2, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, IJCAI’81, pp 631–
636.

3. Banahan M., Brady D., Doran M. (1991) The C
Book: Featuring the ANSI C Standard. Addison-
Wesley.

4. Bertozzi M., Broggi A., Caraffi C., Rose M.D., Fe-
lisa M., Vezzoni G. (2007) Pedestrian detection by
means of far-infrared stereo vision. Computer Vision
and Image Understanding 106(23):194 – 204, DOI
http://dx.doi.org/10.1016/j.cviu.2006.07.016

5. Bobick A.F., Intille S.S. (1999) Large Occlusion
Stereo. International Journal of Computer Vision
33(3):181–200, DOI 10.1023/A:1008150329890

6. Boykov Y., Veksler O., Zabih R. (2001) Fast approx-
imate energy minimization via graph cuts. Pattern
Analysis and Machine Intelligence, IEEE Transac-
tions on 23(11):1222–1239, DOI 10.1109/34.969114

7. Buttazzo G.C. (2004) Hard Real-time Computing
Systems: Predictable Scheduling Algorithms And
Applications (Real-Time Systems Series). Springer-
Verlag TELOS, Santa Clara, CA, USA.

8. Chandrapala T. (2011) Real time Stereo Vision
based on biologically motivated algorithms using
GPU. 17th ERU Research Symposium: University
of Moratuwa, Sri Lanka.

9. Chen D., Varodayan D., Flierl M., Girod B. (2008)
Distributed stereo image coding with improved dis-
parity and noise estimation. In International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP).

10. Cox I.J., Hingorani S.L., Maggs B.M., Rao
S.B. (1996) A Maximum Likelihood Stereo Algo-
rithm. Computer Vision and Image Understanding
63(3):542–567.

11. D-Link (2011) DCS-942L Datasheet.
http://www.dlink.com/.

12. Deng Y., Lin X. (2006) A Fast Line Segment Based
Dense Stereo Algorithm Using Tree Dynamic Pro-
gramming. In: Leonardis A., Bischof H., Pinz A.
(eds) Computer Vision ECCV 2006, Lecture Notes
in Computer Science, vol 3953, Springer Berlin Hei-
delberg, pp 201–212, DOI 10.1007/11744078 16

13. Devy M., Boizard J.L., Galeano D.B., Lindado H.C.,
Manzano M.I., Irki Z., Naoulou A., Lacroix P., Fil-
latreau P., Fourniols J.Y., Parra C. (2011) Stereovi-
sion Algorithm to be Executed at 100Hz on a FPGA-
based Architecture. In: Advances in Theory and Ap-
plications of Stereo Vision, Dr. Asim Bhatti, DOI
10.5772/14037

14. Dieny R., Thevenon J., Martinez-del-Rincon J.,
Nebel J.C. (2011) Bioinformatics inspired algorithm
for stereo correspondence. In: VISAPP, Vilamoura,
Portugal.

15. Dos Santos-Paulino A., Nebel J.C., Florez-Revuelta
F. Evolutionary algorithm for dense pixel matching
in presence of distortions, EvoStar, Granada, Spain,
23-25 April 2014.

16. Dubbelman G., Van der Mark W., Van Den Heuvel
J.C., Groen F.C.A. (2007) Obstacle detection dur-
ing day and night conditions using stereo vision. In:
Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, pp 109–116,
DOI 10.1109/IROS.2007.4399055

17. Faggioli D., Checconi F., Trimarchi M., Scordino
C. An EDF scheduling class for the Linux kernel.
11th Real-Time Linux Workshop (RTLWS), Dres-
den, Germany, September 2009.

18. FLIR (2011) Thermal imaging guidebook for indus-
trial applications.

19. Forstmann S., Kanou Y., Ohya J., Thuering
S., Schmitt A. (2004) Real-Time Stereo by us-
ing Dynamic Programming. In: Computer Vi-
sion and Pattern Recognition Workshop, 2004.
CVPRW ’04. Conference on. pp 29–29, DOI
10.1109/CVPR.2004.154

20. Forsyth D.A., Ponce J. (2002) Computer Vision: A
Modern Approach. Prentice Hall Professional Tech-
nical Reference.

21. Fowers J., Brown G., Cooke P., Stitt G. (2012) A per-
formance and energy comparison of FPGAs, GPUs,
and multicores for sliding-window applications. In
Proceedings of the ACM/SIGDA international sym-
posium on Field Programmable Gate Arrays (FPGA
’12). ACM, New York, NY, USA, 47-56.

22. Gai P., Bini E., Lipari G., Natale M.D., Abeni L.
(2000) Architecture for a Portable Open Source Real
Time Kernel Environment. In: Proceedings of the
Second Real-Time Linux Workshop and Hand’s on
Real-Time Linux Tutorial.

23. Gaisler J. (2002) A Portable and Fault-Tolerant Mi-
croprocessor Based on the SPARC V8 Architecture.
In Proceedings of the 2002 International Conference
on Dependable Systems and Networks (DSN ’02).
IEEE Computer Society, Washington, DC, USA,
409-415.

24. Geiger D., Ladendorf B., Yuille A. (1995) Oc-
clusions and binocular stereo. International Jour-
nal of Computer Vision 14(3):211–226, DOI
10.1007/BF01679683

20

25. Goss C.F. (2013) Machine Code Optimization
- Improving Executable Object Code. CoRR
abs/1308.4815.

26. Gudis E., Van der Wal G., Kuthirummal S., Chai
S. (2012) Multi-Resolution Real-Time Dense Stereo
Vision Processing in FPGA. In: Field-Programmable
Custom Computing Machines (FCCM), 2012 IEEE
20th Annual International Symposium on. pp 29–32,
DOI 10.1109/FCCM.2012.15

27. Held M., Karp R.M. (1961) A Dynamic Program-
ming Approach to Sequencing Problems. In: Pro-
ceedings of the 1961 16th ACM National Meeting
(ACM ’61), New York, NY, USA, pp 71.201–71.204,
DOI 10.1145/800029.808532

28. Hengstler S., Aghajan H. (2006) A Smart Cam-
era Mote Architecture for Distributed Intelligent
Surveillance. In ACM SenSys Workshop on Dis-
tributed Smart Cameras (DSC).

29. Higgins D., Thompson J., Gibson T., Thompson
J.D., Higgins D.G., Gibson T.J. (1994) Improving
the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic
Acids Research 22:4673–4680.

30. Hirschmuller H., Scharstein D. (2007) Evalua-
tion of Cost Functions for Stereo Matching. In:
Computer Vision and Pattern Recognition, 2007.
CVPR ’07. IEEE Conference on. pp 1–8, DOI
10.1109/CVPR.2007.383248

31. Humenberger M., Zinner C., Weber M., Kub-
inger W., Vincze M. (2010) A fast stereo
matching algorithm suitable for embedded
real-time systems. Computer Vision and Im-
age Understanding 114(11):1180 – 1202, DOI
http://dx.doi.org/10.1016/j.cviu.2010.03.012

32. Free Software Foundation Inc. (2013) GCC, the
GNU Compiler Collection. http://gcc.gnu.org/.

33. Intel (2007) Intel R© coreTMquad processors specifi-
cations. http://www.intel.com.

34. The IPERMOB project (2009) A Pervasive and Het-
erogeneous Infrastructure to control Urban Mobility
in Real-Time. http://www.ipermob.org.

35. Jin S., Cho J., Pham X.D., Lee K.M., Park
S.K., Kim M., Jeon J.W. (2010) FPGA Design
and Implementation of a Real-Time Stereo Vi-
sion System. Circuits and Systems for Video Tech-
nology, IEEE Transactions on 20(1):15–26, DOI
10.1109/TCSVT.2009.2026831

36. Lassmann T., Sonnhammer E.L.L. (2005) Kalign -
an accurate and fast multiple sequence alignment al-
gorithm. BMC Bioinformatics 6:298.

37. Lempitsky V., Rother C., Blake A. (2007) LogCut -
Efficient Graph Cut Optimization for Markov Ran-
dom Fields. In: Computer Vision, 2007. ICCV 2007.
IEEE 11th International Conference on. pp 1–8,
DOI 10.1109/ICCV.2007.4408907

38. Levitin A.V. (2002) Introduction to the Design and
Analysis of Algorithms. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

39. Lewine D. (1991). POSIX programmers guide.
O’Reilly Media, Inc.

40. MacLean W.J., Sabihuddin S., Islam J. (2010)
Leveraging cost matrix structure for hardware
implementation of stereo disparity computation
using dynamic programming. Computer Vision
Image Understanding 114(11):1126–1138, DOI
10.1016/j.cviu.2010.03.011

41. Martnez del Rincon J., Thevenon J., Dieny R., Nebel
J.C. Dense Pixel Matching Between Unrectified And
Distorted Images Using Dynamic Programming. In
International Conference on Computer Vision The-
ory and Applications, 24-26 February, Rome, Italy,
2012.

42. Mouser Electronics. 579-32MX795F512L80VF 32-
bit Microcontroller. http://www.mouser.com.

43. Microchip (2011) MPLAB R© X IDE.
http://microchip.com/.

44. Nalpantidis L., Sirakoulis G.C., Gasteratos A. (2008)
Review of stereo vision algorithms: from software to
hardware. International Journal of Optomechatron-
ics 2(4):435–462.

45. Needleman SB, Wunsch CD (1970) A general
method applicable to the search for similarities in
the amino acid sequence of two proteins. J. Mol. Biol.
48:443–453.

46. Notredame C., Higgins D., Heringa J. (2000) T-
Coffee: A novel method for multiple sequence align-
ments. Journal of Molecular Biology 302:205–217.

47. Ohta Y., Kanade T. (1985) Stereo by Intra-
and Inter-Scanline Search using Dynamic Program-
ming. Pattern Analysis and Machine Intelligence,
IEEE Transactions on PAMI-7(2):139–154, DOI
10.1109/TPAMI.1985.4767639

48. Panda P.R., Catthoor F., Dutt N.D., Danckaert
K., Brockmeyer E., Kulkarni C., Vandercappelle A.,
Kjeldsberg P.G. (2001) Data and memory optimiza-
tion techniques for embedded systems. ACM Trans.
Des. Autom. Electron. Syst. 6(2):149–206, DOI
10.1145/375977.375978

49. Pandaboard.org (2010) PandaBoard.
http://pandaboard.org/.

50. Pandey J.G., Purushottam S., Karmakar A. Shekhar
C. (2012) Platform-Based Extensible Hardware-
Software Video Streaming Module for a Smart Cam-
era System. In International Journal of Modeling
and Optimization vol. 2, no. 4, pp. 482-487, 2012.

51. Raspberry Pi Foundation (2011) Raspberry Pi
Board. http://www.raspberrypi.org/.

52. Raspberry Pi Foundation (2012) Raspbian OS.
http://www.raspbian.org/.

53. Salmen J., Schlipsing M., Edelbrunner J., Hegemann
S., Lüuke S. (2009) Real-Time Stereo Vision: Mak-
ing more out of Dynamic Programming. In: Jiang

21

X., Petkov N. (eds) Computer Analysis of Images
and Patterns, Lecture Notes in Computer Science,
vol 5702, Springer Berlin Heidelberg, pp 1096–1103,
DOI 10.1007/978-3-642-03767-2 133

54. Salvadori C., Petracca M., Bocchino S., Pelliccia R.,
Pagano P. (2014) A low-cost vehicle counter for next-
generations ITS. In: Journal of Real Time Image
Processing, DOI 10.1007/s11554-014-0411-4

55. Sarkar V. (2001) Optimized Unrolling of Nested
Loops, vol 29, Springer, pp 545–581.

56. Scharstein D., Szeliski R. (2002) A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms, vol 47, pp 7–42.

57. Scuola Superiore Sant’Anna and Evidence s.r.l.
(2011) SeedEye board. http://www.evidence.eu.com

58. Singh A.K., Kumar S.A. (2008) Microcontroller and
Embedded System. New Age International (P) Lim-
ited.

59. Summit S. (1995) C programming FAQs: frequently
asked questions. Addison Wesley Longman Publish-
ing Inc., Redwood City, CA, USA.

60. Torr P.H.S., Criminisi A. (2004) Dense stereo
using pivoted dynamic programming. Image
and Vision Computing 22(10):795 – 806, DOI
http://dx.doi.org/10.1016/j.imavis.2004.02.012,
British Machine Vision Computing 2002.

61. Tseng Y.C., Chang N., Chang T.S. (2007) Low Mem-
ory Cost Block-Based Belief Propagation for Stereo
Correspondence. In: Multimedia and Expo, 2007
IEEE International Conference on. pp 1415–1418,
DOI 10.1109/ICME.2007.4284925

62. Veksler O. (2005) Stereo correspondence by dynamic
programming on a tree. In: Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, vol 2, pp 384–390, DOI
10.1109/CVPR.2005.334

63. Vigliar M., Fratello M., Puglia L., Raiconi G. SASC:
A hardware string alignment coprocessor for stereo
correspondence. In Electronics Design, Systems and
Applications (ICEDSA), 2012 IEEE International
Conference, Kuala Lumpur, Malaysia, pp. 56-62, 5-6
Nov. 2012.

64. Wang L., Liao M., Gong M., Yang R., Nister D.
(2006) High-Quality Real-Time Stereo using Adap-
tive Cost Aggregation and Dynamic Programming.
In: 3D Data Processing, Visualization, and Trans-
mission, Third International Symposium on. pp 798–
805, DOI 10.1109/3DPVT.2006.75

65. Wei Y., Tsuhan C., Franchetti F., Hoe J.
(2010) High Performance Stereo Vision De-
signed for Massively Data Parallel Platforms.
Circuits and Systems for Video Technology,
IEEE Transactions on 20(11):1509–1519, DOI
10.1109/TCSVT.2010.2077771

66. Zinner C., Humenberger M., Ambrosch K., Kub-
inger W. (2008) An Optimized Software-Based Im-
plementation of a Census-Based Stereo Matching Al-

gorithm. In: Bebis G., Boyle R., Parvin B., Koracin
D., Remagnino P., Porikli F., Peters J., Klosowski J.,
Arns L., Chun Y., Rhyne T., Monroe L. (eds) Ad-
vances in Visual Computing, Lecture Notes in Com-
puter Science, vol 5358, Springer Berlin Heidelberg,
pp 216–227, DOI 10.1007/978-3-540-89639-5 21

