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Abstract

In this paper, we propose a novel visual tracking framework,based on a decision-theoretic online learning algo-
rithm namely NormalHedge. To make NormalHedge more robust against noise, we propose an adaptive Normal-
Hedge algorithm, which exploits the historic information of each expert to perform more accurate prediction than
the standard NormalHedge. Technically, we use a set of weighted experts to predict the state of the target to be
tracked over time. The weight of each expert is online learned by pushing the cumulative regret of the learner
towards that of the expert. Our simulation experiments demonstrate the effectiveness of the proposed adaptive
NormalHedge, compared to the standard NormalHedge method.Furthermore, the experimental results of several
challenging video sequences show that the proposed tracking method outperforms several state-of-the-art methods.

Keywords: Visual tracking, decision-theoretic online learning, particle filter, appearance changes

1. Introduction

Visual tracking is an overwhelming research topic
in computer vision due to its wide applications such
as intelligent video surveillance (Zhou et al., 2009a;
Yu et al., 2013), video content analysis (Gao et al.,
2011, 2012b) and human-robot interaction (Gao et al.,
2012a; Yu et al., 2012). In the past few decades,
a large number of visual tracking algorithms
have been proposed (Zhou et al., 2008, 2009a,b;
Zhang et al., 2012, 2013b,a), among which par-
ticle filter (Isard and Blake, 1996) and its vari-
ants (Pérez et al., 2002; Ross et al., 2007; Zhou et al.,
2008) have attracted increasing interests because of
their tractability and flexibility. Although they provide
an appealing framework for visual tracking, the track-
ing performance becomes significantly poor when
there are illumination changes, partial occlusion, pose
changes and background clusters in complex scenes.

The main reason why particle filter based tracking
methods tend to fail in complex scenes is that parti-
cle filter is in fact a generative framework which is
very sensitive to model mismatches. Letxt andyt be
the hidden state and the available measurement of the
tracked target at timet. The purpose of particle filter
is to estimate the statext given all the available mea-
surements{y1, y2, . . . , yt} up to timet. Particle filter
based tracking method uses a set of weighted particles
to approximate the posterior distribution of the state.
In practice, the weight is computed as the observation
likelihood defined by a measurement processp(yt |xt)
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which models how the observation is generated from
the hidden state. The tracking result is either the par-
ticle with the highest weight or the average weight of
all the particles. The problem with such a generative
framework is that it is fairly difficult to precisely deter-
mine the measurement process. Using a model which
is different from the one of generating the observation
may lead to poor tracking performance.

Decision-theoretic online learning (DTOL) is a re-
search topic that allows us to study how to dynami-
cally allocate resources among a number of experts.
It was first introduced inFreund and Schapire(1997),
where the Hedge algorithm was proposed to solve the
learning problem. In contrast to traditional generative
frameworks, Hedge algorithm uses a set of experts to
explain the observations regardless of how the obser-
vations are generated. In other words, Hedge does not
rely on the measurement process. The quality of the
“explanation” is defined by a loss function, which de-
pends only on the measurement rather than the hidden
state. The resource assigned to each expert depends
on the cumulative loss of this expert and a learning
rate parameter. Although the Hedge algorithm is not
sensitive to model mismatches, the best learning rate
parameter cannot be obtained at all times, especially
when the number of experts is large. That is to say, the
Hedge algorithm cannot ensure the best predication in
various applications. Recently, a novel and completely
parameter-free algorithm for DTOL, called Normal-
Hedge, was proposed inChaudhuri et al.(2009) in or-
der to overcome the drawback of the original Hedge
algorithm. NormalHedge has a potential function for
each expert and computes the expert weights based on
the derivative of its potential. The NormalHedge algo-

Preprint submitted to Signal Processing August 17, 2014



rithm is straightforward and easy to implement, which
makes it suitable for real-time applications such as vi-
sual tracking. Chaudhuri et al.(2010) used Normal-
Hedge to estimate hidden states in a continuous state
space with noisy observations. Their simulation ex-
periments, in the one-dimensional state space, showed
that their algorithm vastly outperformed the standard
Bayesian algorithm.

Chaudhuriet al.’s work indicates the possibility
of applying NormalHedge to visual tracking. How-
ever, we observed that directly applying NormalHedge
to practical visual tracking has several constraints.
Firstly, it is unclear how to exploit historic information
of each expert before making a decision at the current
time. The algorithmic work ofChaudhuri et al.(2010)
was only applied to an one-dimensional state space in
which the true state remained stationary or changed
at a constant velocity. In the meantime, a fixed per-
centage factor was used, which controls how much
the historic information of each expert will be used to
compute its cumulative regret. However, in practice,
due to the difference among different experts, using a
fixed percentage factor for all the experts is irrational
and likely ends up with poor tracking performance.
Secondly, determining the loss of each expert dur-
ing visual tracking is challenging. InChaudhuri et al.
(2010), the negative sum of the scores for each expert
was used. As a result, it is required to specify each
candidate’s position in the entire state space, which is
time consuming. Finally, it is not clearly defined yet
how the experts can be transferred from the current
instance to the next one. In other words, the transi-
tion of the experts between two consecutive instances
needs to be carefully re-visited.

In order to achieve robust visual tracking in com-
plex scenes, in this paper, we propose a novel tracking
framework based on an adaptive NormalHedge algo-
rithm, which uses a set of weighted experts to predict
the state of the target to be tracked. The major con-
cept of the proposed method is an adaptive mecha-
nism that determines how much historic information
should be used in the estimation of the state at the cur-
rent time. In particular, we compute the percentage
factor of each expert according to its current loss and
the learner’s expected loss. This makes more sense
than using the same percentage factor for all the ex-
perts (Chaudhuri et al., 2010). In addition, in order
to characterize the loss of each expert, we define the
loss of each expert as the negative similarity measure
between the expert and the target template. Finally,
we propagate the experts obtained at the previous time
to the current time using a second-order autoregres-
sive dynamic model. The contributions of this paper
can be summarized as the following three-folds:1) We
proposed an improved decision-theoretic online learn-
ing algorithm, which is more robust to noise.2) We
proposed a tracking framework based on the proposed
learning algorithm.3) Experiments on both simula-

tion and video data validate the effectiveness of the
proposed tracking method.

The rest of the paper is organized as follows. We
first review the related work on visual tracking in sec-
tion 2. Then we introduce the proposed adaptive Nor-
malHedge algorithm in section3. Section4 shows the
application of the proposed adaptive NormalHedge al-
gorithm in visual tracking. Experimental results on
simulation data and challenging video sequences are
reported in section5. Finally, we conclude this paper
in section6.

2. Related work

In the literature, a large number of tracking algo-
rithms have been proposed, which focus on the devel-
opment of effective appearance models and inference
methods. In this section, in order to clarify the moti-
vation of promoting the proposed method, we summa-
rize various appearance models and inference methods
reported in the literature.

2.1. Appearance modeling

Appearance modeling is to represent the target to
be tracked using the information extracted from the
image region outlined by the target. In the literature,
many features have been used to represent the target
such as color (Bradski, 1998), shape (Isard and Blake,
1996), texture (Shahrokni et al., 2005) and kinematic
features (Castellini et al., 2011). For a number of
tracking applications, color is an optimal choice be-
cause of its descriptive power and the fact that color
information is readily accessible in the image. Color
histogram has been commonly used in visual track-
ing (Pérez et al., 2002; Comaniciu et al., 2003) due to
its simplicity, efficiency and robustness to rotation and
scaling. However, color histogram cannot be used to
model the spatial relationship between two pixels in
an image. Adding spatial information into color his-
togram may improve its discriminative power. Along
this line, color spatiograms (Birchfield and Sriram,
2005) and correlograms (Zhao and Tao, 2005) have
been employed in visual tracking. These methods
model the target’s appearance from a global perspec-
tive. When the target is locally occluded, their rep-
resentation ability will significantly degrade. In or-
der to overcome this shortcoming, some part-based
appearance models (Fieguth and Terzopoulos, 1997;
Smith and Gatica-Perez, 2004; Adam et al., 2006)
have been proposed. For example, inAdam et al.
(2006), a target candidate was divided into multiple
patches and each one was represented by a color his-
togram. The robustness of this research work to occlu-
sions can be achieved by integrating the vote maps of
multiple patches.

Appearance models mentioned above are usually
fixed before the tracking begins, which makes it
hard to deal with the target’s appearance variations
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arising during the tracking. InJepson et al.(2003),
Jepson proposed a framework to adaptively learning
the appearance model for visual tracking. The ap-
pearance model involved a mixture of stable image
structures, learned over a long time sequence. This
model can be adapted to slowly changing appearance.
In Collins et al. (2005), an online feature selection
method was proposed to select features that discrim-
inate the target from its background. The feature se-
lection was done online when new observations were
available. The selected features adapted to the envi-
ronmental changes and also obtained superior track-
ing results, even though the contrast between the tar-
get and its background was poor. InRoss et al.(2007),
a tracking method was introduced, which incremen-
tally learned a low-dimensional subspace representa-
tion, and efficiently adapted to the appearance changes
of the target. When the target experiences significant
changes of pose, scale and illumination, this system
still reasonably tracked the target. Recently, sparse
coding was widely used for appearance modeling.
In Wang et al.(2012), each target candidate was di-
vided into a set of patches and each patch was sparsely
represented by a set of target templates and identity
basis functions. The representation coefficients of all
the patches were concatenated to form the final feature
representation. InJia et al.(2012), with a fixed spa-
tial layout, local patches sampled from different tem-
plates were combined together as basis functions to
code the patches sampled from each target candidate.
The final feature representation was obtained using an
alignment pooling operator which reserved the struc-
tural relationship between two local codes.

2.2. Inference methods

Given the appearance model of the target template,
how can one infer the target’s state in the current
frame? Existing solutions can be roughly classified
into two categories: direct optimization and proba-
bilistic approximations. The first class takes a direct
optimization approach, where iterative gradient based
search (Zhao et al., 2007; Comaniciu et al., 2000) or
linear program (Hager et al., 2004; Wu and Fan, 2009)
are used to obtain the tracks. The advantage of this
direct optimization is its efficiency with the imple-
mentation of modern nonlinear programs (Zhu et al.,
1997). These approaches work well when certain
assumptions hold or the computational resource is
well constrained. However, the performance of di-
rect optimization is not stable in complex scenes.
For example, once the tracker fails, it cannot re-
cover and then re-track the target. The second
class takes a “hypothesis generation” and “observa-
tion verification” approach by fusing the probabilis-
tic information. The representative methods include
Kalman filter (Gutman and Velger, 1990) and parti-
cle filter (Isard and Blake, 1998; Pérez et al., 2002;
Hess and Fern, 2009). Both Kalman filter and parti-

cle filter are based on a generative framework that re-
lies on the used measurement process. However, in
practice, it is difficult to precisely determine the mea-
surement process. Therefore, they will achieve poor
performance when a model different from the one of
generating the observation is used.

In recent years, some novel tracking frame-
works were proposed with impressive tracking per-
formances. For example, tracking by detection
methods (Grabner and Bischof, 2006) formulated vi-
sual tracking as a detection problem that detects
whether the target appears or not within each can-
didate region. More sophisticated machine learn-
ing technologies such as semi-supervised learn-
ing (Grabner and Leistner, 2008) and multiple in-
stance learning (Babenko et al., 2009) were also
used in visual tracking. Very recently, novel
learning methods (Yu et al., 2014c,b; Zhang et al.,
2014; Yu et al., 2014a) attract increasing interests
in computer vision. In particular, sparse coding
based methods (Mei and Ling, 2009; Mei et al., 2011;
Zhang et al., 2013b, 2012, 2013a) achieve desired per-
formance compared to traditional methods. For exam-
ple, inMei and Ling(2009), a tracking method based
on sparse representation was proposed, where each
target candidate is sparsely represented by a set of
target templates and identity basis. The representa-
tion coefficients were obtained usingℓ1-minimization.
The candidate with the smallest error when recon-
structing it only using the target templates and the
associated coefficients was chosen as the tracking re-
sult. This method is very time-consuming becauseℓ1-
minimization was solved for each candidate.

3. Adaptive NormalHedge algorithm

In this section, we first describe the decision-
theoretic online learning problem and the Normal-
Hedge algorithm (Chaudhuri et al., 2009). Then we
introduce in details the proposed adaptive Normal-
Hedge algorithm. For convenience, Table1 lists im-
portant notations used in the rest of this paper.

Table 1: Important notations used in this paper and their descrip-
tions.

Notation Description

ℓit loss of experti at timet
ℓAt expected loss under a distribution at timet
ri

t instantaneous regret of experti at timet
Ri

t cumulative regret of experti in the firstt times
xt state of the tracked target at timet
yt observation at timet
ωi

t weight of particlei at timet

3.1. DTOL and NormalHedge algorithm

Decision-theoretic framework for online learning
(DTOL) is formulated in such a way: At timet, a
learner has access to a set ofN experts and maintains
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a distributionwi
t over experts 1,2, . . . ,N. Each expert

incurs a lossℓit, and the learner’s expected loss under
this distribution is

ℓAt =

N
∑

i=1

wi
tℓ

i
t (1)

The goal of the learner is to maintain a distribution
over experts such that its cumulative loss over time
is low, compared to the cumulative loss of the expert
with the lowest cumulative loss. That is, the learner
attempts to minimize its net loss

t
∑

τ=1

ℓAτ −min
i

t
∑

τ=1

ℓiτ

Starting with the seminal work
of Littlestone and Warmuth (1994), the
DTOL has been well-studied in the litera-
ture (Cesa-Bianchi et al., 1997; Freund and Schapire,
1997; Cesa-Bianchi and Lugosi, 2006). The
classical solution to DTOL, the Hedge(β) algo-
rithm (Freund and Schapire, 1997), updates the
distribution using the multiplicative rule

wi
t+1 = wi

t · Uβ(ℓ
i
t)

whereUβ : [0,1]→ [0,1] is a function, parameterized
by β ∈ [0,1], which satisfies

βr ≤ Uβ(r) ≤ 1− (1− β)r

Since it is very difficult to set theβ parameter prop-
erly, in particular when the number of experts is large,
the Hedge(β) algorithm cannot be directly applied in
practice. InChaudhuri et al.(2009), a parameter-free
algorithm for DTOL was presented, named Normal-
Hedge. The idea is to introduce a new notion of regret.
At any timet, the learner’s instantaneous regret to ex-
perti is ri

t = ℓ
A
t − ℓ

i
t, and its cumulative regret to expert

i in the firstt times is

Ri
t =

t
∑

τ=1

ri
τ = Ri

t−1 + (ℓAt − ℓ
i
t) (2)

The goal of the learner is to minimize this cumula-
tive regretRi

t over all the expertsi (in particular, the
best expert), for any timet. The NormalHedge algo-
rithm allows the weight to be updated for experti as

wi
t+1 ∝

[Ri
t]+

ct
exp

(

([Ri
t]+)

2

2ct

)

(3)

where [x]+ denotes max{0, x} andct is a scale param-
eter satisfying

1
N

N
∑

i=1

exp

(

([Ri
t]+)

2

2ct

)

= e (4)

In order to make NormalHedge more robust in prac-
tical systems,Chaudhuri et al.(2010) introduced the

NormalHedge algorithm. Let 0< α < 1 be the per-
centage factor, the cumulative regret to experti in the
first t times is computed as

Ri
t =

t
∑

τ=1

ri
τ = αRi

t−1 + (ℓAt − ℓ
i
t) (5)

Note that Eq.2 is a special case of Eq.5 whenα is set
to one.

3.2. Adaptive NormalHedge algorithm
The standard NormalHedge algorithm computes the

cumulative regret of an expert at the current time by
summing the learner’s instantaneous regret to this ex-
pert and the cumulative regret to this expert at the pre-
vious time (see Eq.2). Although further improve-
ment as shown in Eq.5 is effective as it allows the
learner to easily recover from past mistakes, there is
still a problem in properly setting the percentage fac-
tor. In Chaudhuri et al.(2010), the authors addressed
this problem by running multiple copies of Normal-
Hedge with multiple values of the percentage factor,
and then choosing the output of the copy that per-
forms the best in an online style. However, this so-
lution is not optimal. First of all, the solution is very
time-consuming when running multiple copies of Nor-
malHedge at the same time. Secondly, setting the per-
centage factor with a fixed values for all the experts is
questionable as there are both good and poor experts
at each time. For good experts that perform well at
the current time, it is reasonable to assume that they
have provided correct prediction at the previous times.
Therefore, we should setα to a large value. In con-
trast, for poor experts, we should setα to a small value.

In order to overcome the shortcoming of the stan-
dard NormalHedge algorithm, we propose an adaptive
NormalHedge algorithm. The idea is the use of an
adaptive mechanism to determine how much historic
information of each expert should be used at the cur-
rent time. We adaptively setα for each expert accord-
ing to the learner’s instantaneous regret to this expert
as

α =

{

1− 1
2 exp−γ|ℓAt − ℓ

i
t | if ℓAt > ℓ

i
t

1
2 exp−γ|ℓAt − ℓ

i
t | else

(6)

whereγ is a constant that controls the shape of the ex-
ponential function. The motivation behind this mech-
anism is that, for a good expert whose current regret
is less than the learner’s expected regret, we increase
the percentage of its previous cumulative regret when
computing its current cumulative regret. On the con-
trary, for a poor expert, we reduce the percentage of
its previous cumulative regret. The proposed adaptive
NormalHedge is shown in Algorithm1.

4. Visual tracking based on adaptive Normal-
Hedge

Motivated by the latest progress of DTOL, espe-
cially the NormalHedge algorithm, we consider visual
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Algorithm 1: Adaptive NormalHedge

1 initializeRi
t = 0, wi

t = 1/N;
2 for t = 1,2, . . . do
3 Each experti incurs lossℓit;
4 Compute learner’s expected loss using Eq.1;
5 Compute percentage factor using Eq.6;
6 Update cumulative regrets using Eq.5;
7 Find ct > 0 satisfying Eq.4;
8 Update weight using Eq.3;
9 end

tracking as a DTOL problem and propose a solution to
visual tracking based on the proposed adaptive Nor-
malHedge algorithm presented in Section3.2. The
proposed tracking algorithm approximates the state
posterior distribution by a set of weighted experts of
the DTOL. The weight of each expert is computed by
our proposed adaptive NormalHedge algorithm. The
tracking result is obtained by the average weight of all
the experts.

Let xt and yt be the state and noisy observation
at time t, respectively. Given all the available ob-
servationsy1:t−1 = {y1, y2, . . . , yt−1} up to time t −
1, we approximate the state posterior distribution
p(xt−1|y1:t−1) at timet − 1 by a set of weighted experts
{xi

t−1,w
i
t−1}i=1...N whereN is the number of experts and

wi
t−1 is the weight of thei-th expert. At the current time

t, in order to obtain the approximation ofp(xt |y1:t), the
proposed tracking algorithm goes through three steps:
experts prediction, experts weighting and experts re-
sampling.

Experts prediction: Experts at timet are obtained
from the last timet − 1 by a second-order autoregres-
sive dynamical model

xt ∼ N(g(xt−1, xt−2),Σd), (7)

whereN(µ,Σ) is the normal distribution with meanµ
and covarianceΣ, and

g(xt−1, xt−2) = Axt−1 + Bxt−2, (8)

whereA andB define a constant acceleration model.
Experts weighting: For thei-th expertxi

t, a kernel-
weighted histogramq(xi

t) = {ql(xi
t)}l=1...L can be com-

puted from its corresponding candidate image whereL
is the number of histogram bins. In this work, we use
the HSV histogram as reported inPérez et al.(2002).
The target template histogram isq∗ that has been ob-
tained in the first frame. We define the loss of thei-th
expert as

ℓit = −exp{−λD2[q∗, q(xi
t)]}, (9)

whereD[q∗, q(xi
t)] is a distance function derived from

the Bhattacharyya similarity coefficient (Pérez et al.,
2002) and defined as

D[q∗, q(xi
t)] =















1−
L

∑

l=1

√

q∗l ql(xi
t)















1
2

(10)

Algorithm 2: Visual tracking based on Adaptive
NormalHedge
Input: N (number of experts),A andB (dynamics

functions),A := {x1
1, . . . , x

N
1 } with

xi
1 = x∗0; Ri

0 := 0, wi
0 := 1/N, ∀i

1 for t = 1,2, . . . do
2 Obtain lossesℓit for each experti and compute

learner’s expected losses:ℓAt =
∑N

i=1 wi
t−1ℓ

i
t;

3 Compute percentage factor using Eq.6 ;
4 Update cumulative regrets using Eq.5;
5 Find ct > 0 satisfying Eq.4;
6 Compute weight of each expert using Eq.3;
7 Estimate current tracking result using Eq.11;
8 ResampleN expertsxi

t with replacement from
current expert set according to probabilities
wi

t;
9 Predict experts using Eq.7;

10 end

The motivation behind the definition of the loss func-
tion is that the smaller the loss, the larger the similarity
between the target template and the expert candidate.
After obtaining lossℓit for each experti, we compute
the learner’s expected loss using Eq.1. Afterwards,
we compute the percentage factorα by Eq.6. Finally,
we update regrets for each expert by Eq.5 and weight
each expert using Eq.3. The tracking result̂xt at time
t is estimated as the average of all the experts as

x̂t =

N
∑

i=1

wi
t x

i
t (11)

Experts resampling: When experts were weighted
by Eq.3, the experts with high weights perform well
in the approximation of the state posterior distribu-
tion, and they may hold high confidence in the next
approximation as well. In contrast, for those experts
with low weights, they will make less contributions
to the next approximation. Therefore, we propose to
resample all experts based on their weights. We as-
sociate a number of offspringN i

t with each expertxi
t

in such a way that (N1
t ,N

2
t , . . . ,N

N
t ) follow a multino-

mial distribution with a parameter vector (N,wt) where
wt = [w1

t ,w
2
t , . . . ,w

N
t ]. After resampling, each off-

spring is associated with a weight of 1/N.
The tracking algorithm starts with a set of experts

with the initial statex∗0 obtained by manually labeled
in the first frame, and assign each expert with the same
weight. During each iteration, the tracking algorithm
repeats the three steps shown above. The detailed
tracking procedure is summarized in Algorithm2.

5. Experimental results

5.1. Simulation experiments

In order to evaluate the performance of the proposed
adaptive Normalhedge algorithm, compared with the

5



20 40 60 80 100 120 140 160 180 200
−50

0

50

100

150

Time

P
os

iti
on

 

 
NormalHedge
Adaptive NormalHedge
True state

(a) ρ = 0

20 40 60 80 100 120 140 160 180 200
−50

0

50

100

150

Time

P
os

iti
on

 

 
NormalHedge
Adaptive NormalHedge
True state

(b) ρ = 0.1

20 40 60 80 100 120 140 160 180 200
−50

0

50

100

150

Time

P
os

iti
on

 

 
NormalHedge
Adaptive NormalHedge
True state

(c) ρ = 0.2

Figure 1: Predicted states in the first simulation experiment with ρ being 0, 0.1 and 0.2.
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Figure 2: Predicted states in the second simulation experiment with ρ being 0, 0.1 and 0.2.

standard Normalhedge, we conducted two simulation
experiments. Our experiment setup is similar to that
reported inChaudhuri et al.(2010), which considered
the task of tracking an object in an one-dimensional
state space. At timet, the true state is the posi-
tion zt in the interval [−500,500]. The measurements
correspond to a 1000-dimensional vectorM(t) =
[M(−500, t),M(−499, t), . . . ,M(499, t),M(500, t)] for
locations in the gridG = {−500,−499, . . . ,499,500},
generated by an additive noise processM(x, t) =
H(x, zt)+nt(x), whereH(x, zt) = 1 if |x−zt | ≤ W and 0
otherwise. The additive noisent(x) is randomly gener-
ated using the mixture distribution (1− ρ) · N(0, σ2

o)+
ρ · N(0, (10σo)2) whereσo represents how noisy the
measurements are relative to the signal andρ repre-
sents the fraction of the outliers. In these two simula-
tions, we fixσ = 1.0 and then changeρ. In the exper-
iments, we also haveW = 50 and the total number of
time steps for tracking isT = 200.

Table 2: Simulation results of the first experiment. The RMSE be-
tween the true state and the predicted state overT = 200 time steps
for our adaptive NormalHedge and the standard NormalHedge. The
RMSE is computed over 100 independent simulations.

ρ Normalhedge Adaptive NormalHedge

0.00 15.80± 2.7 2.30± 0.24
0.01 16.10± 5.1 2.40± 0.36
0.02 16.40± 3.4 4.60± 0.88

In the first simulation, the true state changes with
the velocity equivalent to 1 whent ≤ 100 and then re-
mains stationary. Fig.1 shows the true states (Black)
and the states predicted by our adaptive normalhedge
(Red) and the standard normalhedge (Blue) for three
different values ofρ in one independent simulation.
Table2 shows the average and standard deviation of
the Root-Mean-Squared-Error (RMSE) between the

Table 3: Simulation results of the second experiment. The RMSE
between the true state and the predicted state overT = 200 time
steps for our adaptive NormalHedge and the standard Normal-
Hedge. The RMSE is computed over 100 independent simulations.

ρ Normalhedge Adaptive NormalHedge

0.00 3.00± 0.25 1.60± 0.42
0.01 3.30± 0.37 2.60± 0.59
0.02 3.60± 0.62 3.50± 0.67

true states and the predicted ones. The RMSE is com-
puted over 100 independent simulations. In the sec-
ond simulation experiment, we randomly generate the
true state sequence. Similar to the first simulation ex-
periment, we show the predicted states and the corre-
sponding RMSE in Fig.2 and Table3 respectively.

In the first simulation experiment, the true states in-
volve a simple motion (move with a constant veloc-
ity or keep stationary). Although both the standard
Normalhedge and the proposed adaptive Noramlhedge
perform well (as shown in Fig.1), the proposed adap-
tive Noramlhedge is slightly better than the standard
Normalhedge (as shown in Table2). As shown in
Fig 2 and Table3, however, when the true states are
generated randomly, the standard Normalhedge can-
not accurately predict the true states anymore and this
results in large RMSE. In contrast, the proposed adap-
tive Normalhedge still performs well. These two sim-
ulation experiments prove that our adaptive Normal-
hedge is effective when a complex motion is engaged.

5.2. Experiments on video sequences

To demonstrate the effectiveness of the proposed
tracking framework, we select several baseline
trackers for the comparisons, including the frag-
ment based tracker (Frag) (Adam et al., 2006),
the incremental visual tracker (IVT) (Ross et al.,
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2007), the multiple instance learning tracker
(MIL) ( Babenko et al., 2011), the online AdaBoost
tracker (OAB) (Grabner and Bischof, 2006), the ℓ1
norm minimization based tracker (L1) (Mei and Ling,
2009), the minimum error bounded L1 tracker
(BL1) (Mei et al., 2011), the online local sparse
representation based tracker (OLSR) (Wang et al.,
2012), and the structural local sparse appearance
based tracker (SLSA) (Jia et al., 2012) using eight
publicly available test sequences1. These sequences
were recorded either outdoors or indoors. The
challenges raised from these sequences contains
occlusion, illumination, pose changes and so on and
so forth. In the implementation of our tracker, the
expert is a four dimensional variable consisting of
target center coordinates and size. We setγ = 2 ,
N = 600,Σd = diag(5,5,0.5,0.5), λ = 20, A = 2 and
B = −1 for all the test sequences.

To quantitatively assess the performance of the se-
lected trackers, we choose two evaluation criteria. The
first one istracking success rate, which computes the
percentage of correctly tracked frames over the en-
tire sequence. To evaluate whether the target is cor-
rectly tracked or not in a frame, we adopt the PAS-
CAL score (Everingham et al., 2010), which can be
computed asarea(R∗∩Rgt)

area(R∗∪Rgt)
whereR∗ is the bounding box

obtained by a tracker,Rgt is the corresponding ground
truth bounding box, andarea(R) is the area of the
bounding boxR. The target is correctly tracked in a
frame if the score is larger than 0.5. The second one
is center position error, referring to the distance be-
tween the center position of the tracking results and
the ground truth. At timet, let (xt, yt) be the center
position of the tracking result, ( ˆxt, ŷt be the center po-
sition of the ground truth, the center position error at
time t can be computed as

√

(xt − x̂t)2 + (yt − ŷt)2. To
evaluate the overall performance of a tracker, the av-
erage center position error over the entire sequence is
used.

5.2.1. Qualitative Comparison
Occlusion is extremely challenging for visual track-

ing as the appearance of the tracked target will be
changed in this case. In order to test whether or not
our proposed method is robust to occlusion, we con-
duct experiments on two challenging sequences. The
first sequence is thewoman sequence where a woman
is partially occluded by a car. The second sequence is
the face sequence where the face of a woman is par-

1The woman and face sequences are fromhttp://www.cs.
technion.ac.il/~amita/fragtrack/fragtrack.htm. The
singer sequence is fromhttp://cv.snu.ac.kr/research/

~vtd/index.html. The david outdoor, david indoor and sylv
sequences are fromhttp://www.cs.toronto.edu/~dross/
ivt/. The bird sequence is fromhttp://ice.dlut.edu.cn/
lu/Project/iccv_spt_webpage/iccv_spt.htm. TheCAVIAR
sequence is fromhttp://groups.inf.ed.ac.uk/vision/

CAVIAR/CAVIARDATA1/.

tially occluded by a book. Some representative track-
ing results of these two sequences are shown on the
first and the second rows of Fig.3. As we can see,
our tracker is capable of accurately tracking the tar-
get shown on all the representative frames. However,
other trackers either drift to the background or fully
lose the target.

Different from partial occlusion, illumination
changes will affect the global appearance of a tar-
get. We choose two sequencesdavid outdoor and
david indoor to evaluate the performance of the pro-
posed tracker in handling illumination changes. These
two sequences were recorded in outdoor and indoor
environments respectively, and therefore undergo dif-
ferent illumination changes. Some representative
tracking results are shown on the third and fourth rows
of Fig. 3. As we can see, our tracker correctly tracks
the target on all the representative frames and other
trackers somehow fail in the tests.

The fifth and sixth rows of Fig.3 show some rep-
resentative tracking results of thesylv and bird se-
quences in which the tracked target undergoes pose
changes. When the toy in thesylv sequence has small
pose changes, the proposed tracker successfully tracks
the target in all the representative frames. However,
when the bird in thebird sequence has large pose
changes, the proposed tracker also drifts to the back-
ground. Compared with the other trackers, the pro-
posed tracker still has much better performance. The
remaining two sequences are theCAVIAR andsinger
sequences which come up with the challenges of back-
ground cluster and scale changes. The representative
tracking results of these two sequences are shown on
the last two rows of Fig.3. The proposed tracker also
outperforms the other trackers.

5.2.2. Quantitative Comparison
The PASCAL score plots of the tested trackers on

eight test sequences are shown in Fig.4. As we can
see, our tracker almost achieves the highest PASCAL
scores on all the test sequences. The tracking success
rates and average central position errors are shown in
Tables4 and 5, respectively. The proposed tracker
achieves the highest tracking success rates from all the
sequences. In term of the average central position er-
rors, the proposed tracking method achieves the low-
est errors on seven sequences and the second lowest
error on the remaining one. These results indicate the
overall performance of the proposed tracker on all the
sequences significantly outperforms the other trackers.

Note that the latest baseline trackers (L1, BL1,
OLSA and SLSA) are based on the particle filter
framework. As explained in Section1, these meth-
ods are sensitive to model mismatches. When chal-
lenges such as occlusions and illumination changes
occur, these trackers tend to fail. In contrast, the pro-
posed tracking method is based on the adaptive Nor-
malHedge algorithm which is an explanation frame-
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Table 4: The tracking successful rates of the evaluated trackers on eight test sequences. The highest tracking successful rate for each sequence
is marked in red bold.

woman singer face david outdoor david indoor CAVIAR sylv bird

Frag 0.38 0.25 0.85 0.25 0.21 0.35 0.91 0.34
IVT 0.14 0.27 0.79 0.32 0.91 1.00 0.76 0.17
MIL 0.25 0.25 0.82 0.20 0.19 0.39 0.91 0.51
OAB 0.31 0.27 0.75 0.14 0.11 0.36 0.80 0.90
L1 0.17 0.27 0.81 0.66 0.48 0.38 0.48 0.45
BL1 0.13 0.22 0.58 0.62 0.24 0.89 0.48 0.40
OLSR 0.14 0.98 0.98 0.59 0.23 0.40 0.90 0.65
SLSA 0.97 0.66 0.25 0.79 0.71 0.40 0.98 0.58
Our 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00

Table 5: The average center position errors of the evaluatedtrackers on eight test sequences. The lowest average centerposition error for each
sequence is marked in red bold.

woman singer face david outdoor david indoor CAVIAR sylv bird

Frag 92.26 14.15 9.26 79.17 42.18 57.96 5.89 50.24
IVT 146.67 7.42 12.30 89.20 3.61 3.06 28.12 99.37
MIL 117.70 18.59 14.20 55.35 25.85 57.47 7.74 21.54
OAB 105.42 18.37 14.82 67.21 21.34 23.01 13.38 12.13
L1 94.37 61.26 23.37 24.49 25.23 58.09 46.81 51.11
BL1 88.42 78.08 45.80 39.72 68.09 7.17 42.89 36.72
OLSR 140.83 2.59 4.91 28.99 116.28 61.78 7.67 15.27
SLSA 2.49 4.44 53.61 14.14 15.91 45.75 6.73 20.42
Our 1.76 2.24 3.35 6.31 4.56 2.02 4.29 7.73

work and has the capability to handle complex chal-
lenges. In addition, the adaptive mechanism of the
proposed method also makes our tracker easy to re-
cover from past failure, which further improves our
tracking performance.

We also compare the computational complexity of
the proposed tracking method against that of several
state-of-the-art methods. For a fair comparison, we
select several trackers including IVT, L1, BL1, OLSA
and SLSA which have recently been developed and
implemented in Matlab. In addition, since our tracker
has a similar framework to the particle filter based
tracker (PF), we also choose a PF tracker as a baseline
model. The average tracking speeds (frames/second)
are shown in Table6. It is evident that the average
speed of our tracker is very close to PF and slightly
faster than the IVT tracker and significantly faster than
L1, BL1, OLSA and SLSA trackers. The most time
consuming step is to compute the similarity between
the candidate and the target template. In addition, IVT
tracker uses a fast online manner to update the param-
eter subspace, leading to fast tracking speeds. How-
ever, L1, BL1, OLSA and SLSA trackers are all based
on sparse coding, resulting in a complex optimization
process and an extremely slow tracking speed.

6. Conclusion and future works

In this paper, we proposed a robust tracking frame-
work, based on an adaptive NormalHedge algorithm.
The main contribution of this paper has two-folds:

Firstly, we improved the standard NormalHedge al-
gorithm and proposed an adaptive NormalHedge al-
gorithm, which overcomes the disadvantages of the
fixed percentage factor used in the standard Normal-
Hedge. Our proposed adaptive NormalHedge algo-
rithm is simple yet effective as it adaptively deter-
mines the percentage factor of each expert accord-
ing to the learner’s instantaneous regret to the ex-
pert’s expectation. Secondly, directly using the stan-
dard NormalHedge algorithm in visual tracking takes
too much computational complexity. We proposed
the corresponding strategies to handle these two prob-
lems. Simulation results showed the effectiveness of
using the proposed adaptive NormalHedge algorithm
in the hidden state estimation with noise observations.
Experiments on several video sequences also show
the proposed tracking algorithm based on the adap-
tive NormalHedge is more robust than several state-
of-the-art trackers. Although the performance of the
proposed tracking method is superior to most of the
state of the art trackers, there are still some room for
further improvement. In the future work, we will make
efforts to implement an effective loss function that can
be used in multiple target tracking.
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Pérez, P., Hue, C., Vermaak, J., Gangnet, M., 2002. Color-based
probabilistic tracking. Proceedings of European Conference on
Computer Vision, 661–675.

Ross, D., Lim, J., Lin, R., Yang, M., 2007. Incremental learning for
robust visual tracking. International Journal of Computer Vision
77 (8), 125–141.

Shahrokni, A., Drummond, T., Fua, P., 2005. Fast texture-based
tracking and delineation using texture entropy. Proceedings of
International Conference on Computer Vision 2, 1154–1160.

Smith, K., Gatica-Perez, D., 2004. Order matters: A distributed
sampling method for multi-object tracking. Proceedings of the
British Machine Vision Conference, 25–32.

Wang, Q., Chen, F., Xu, W., Yang, M., 2012. Online discriminative
object tracking with local sparse representation. Proceedings of
IEEE Workshop on the Applications of Computer Vision, 425–
432.

Wu, Y., Fan, J., 2009. Contextual flow. Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition 1, 33–40.

Yu, J., Rui, Y., Chen, B., 2014a. Exploiting click constraints and
multi-view features for image re-ranking. IEEE Transactionson
Multimedia 16 (1), 159–168.

Yu, J., Rui, Y., Tang, Y., Tao, D., 2014b. High-order distance-
based multiview stochastic learning in image classification.IEEE
Transactions on Cybernetics10.1109/TCYB.2014.2307862.

Yu, J., Rui, Y., Tao, D., 2014c. Click prediction for web image
reranking using multimodal sparse coding. IEEE Transactions
on Image Processing 23 (5), 2019–2032.

Yu, J., Tao, D., Rui, Y., Cheng, J., 2012. On combining multiple
features for cartoon character retrieval and clip synthesis. IEEE
Transactions on Systems, Man, and Cybernetics—Part B: Cyber-
netics 42 (5), 1413–1427.

Yu, J., Tao, D., Rui, Y., Cheng, J., 2013. Pairwise constraints based

9



multiview features fusion for scene classification. PatternRecog-
nition 46 (2), 483–496.

Zhang, S., Yao, H., Sun, X., Liu, S., 2012. Robust visual track-
ing using an effective appearance model based on sparse coding.
ACM Transactions on Intelligent Systems and Technology 3 (3),
1–18.

Zhang, S., Yao, H., Sun, X., Lu, X., 2013a. Sparse coding based
visual tracking: Review and experimental comparison. Pattern
Recognition 46 (7), 1772–1788.

Zhang, S., Yao, H., Sun, X., Wang, K., Zhang, J., Lu,
X., Zhang, Y., 2014. Action recognition based on over-
complete independent components analysis. Information Sci-
ences10.1016/j.ins.2013.12.052.

Zhang, S., Yao, H., Zhou, H., Sun, X., Liu, S., 2013b. Robust visual
tracking based on online learning sparse representation. Neuro-
computing 100, 31–40.

Zhao, Q., Brennan, S., Tao, H., 2007. Differential emd tracking.
Proceedings of IEEE Conference on Computer Vision, 1–8.

Zhao, Q., Tao, H., 2005. Object tracking using color correlo-
gram. Proceedings of IEEE Workshop Performance Evaluation
of Tracking and Surveillance, 263–270.

Zhou, H., Taj, M., Cavallaro, A., 2008. Target detection andtracking
with heterogeneous sensors. IEEE Journal of Selected Topics in
Signal Processing 2 (4), 503–513.

Zhou, H., Wallace, A., Green, P., 2009a. Efficient tracking and ego-
motion recovery using gait analysis. Signal Processing 89 (12),
2367–2384.

Zhou, H., Yuan, Y., Shi, C., 2009b. Object tracking using sift fea-
tures and mean shift. Computer Vision and Image Understanding
113 (3), 345–352.

Zhu, C., Byrd, R., Lu, P., Nocedal, J., 1997. Algorithm 778: L-bfgs-
b: Fortran subroutines for large-scale bound-constrainedopti-
mization. ACM Transaction Mathematical Software 23, 550–
560.

10



Frag IVT MIL OAB L1 BL1 CS APG Our

Figure 3: Sample representative tracking results of the evaluated trackers on eight test sequences.

Table 6: The average tracking speeds (frames/second) comparison between our tracker and several state-of-the-art trackers.

Tracker PF IVT L1 BL1 OLSA SLSA Our

Speed 12.44 11.15 0.18 0.51 0.47 1.93 11.76
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(c) david outdoor
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(d) david indoor
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(g) CAVIAR
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Figure 4: The PASCAL score plots of the evaluated trackers oneight test sequences.
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