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Robust Filtering for Discrete-Time Markovian
Jump Delay Systems

Zidong Wang, Senior Member, IEEE, James Lam, Senior Member, IEEE, and Xiaohui Liu

Abstract—In this letter, we study the robust filtering problem
for linear uncertain discrete time-delay systems with Markovian
jump parameters. The system under consideration is subjected to
time-varying norm-bounded parameter uncertainties, time-delay
in the state, and Markovian jump parameters in all system
matrices. A filter is designed to guarantee that the dynamics of
the estimation error is robustly stochastically stable in the mean
square, irrespective of the admissible uncertainties as well as the
time-delay. It is shown that the problem addressed can be solved
in terms of the solutions to a set of coupled matrix Riccati-like
inequalities.

Index Terms—Algebraic matrix inequalities, Markovian jump
systems, robust filtering, time delay, uncertain systems.

I. INTRODUCTION

I T has come to be well recognized that the popular Kalman
filtering theory is very sensitive to system data and has poor

performance robustness when a good system model is hard to
obtain or the system drifts. Various approaches have then been
developed to improve the robustness of traditional Kalman fil-
ters for systems with or without time-delays, see, e.g., [2], [10].

In practice, the dynamics may experience abrupt changes in
their structure and parameters caused by phenomena such as
component failures or repairs changing subsystem interconnec-
tions and environmental disturbance. Such systems can be mod-
eled as systems with Markovian jump parameters. In the past
decade, the optimal regulator, controllability, observability, sta-
bility and stabilization problems have been extensively studied
for jump linear systems, see [4] and references therein. The fil-
tering problem of systems with jumping parameters has also
gained much attention, see [8] and references therein. Further-
more, the robust Kalman filtering problem was studied in [6] for
continuous-time uncertain jump systems, and the discrete-time
counterpart of [6] was developed in [4], where the time-delay
has not been taken into account. More recently, in [3], [5], the
robust filtering problem was investigated for continuous time-
delay jumping systems with norm-bounded uncertainties and
polytopic uncertainties, respectively. Up to now, the robust filter
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design problem for uncertain discrete time-delay systems with
Markovian jump parameters has not yet been fully investigated.

It is, therefore, our interest in this letter to tackle the fil-
tering problem for a class of discrete time-delay uncertain sys-
tems with Markovian jumping parameters. Different from the
methods used in [3], [5], the parameterization approach adopted
in this letter will lead to much explicit design freedom. The ex-
pected robust filters, when they exist, are usually a large set, and
the freedom can be used to meet further desired performance
requirements.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Let be a time homogeneous Markov chain taking
values in a finite set , with transition proba-
bility from mode at time to mode at time ,

(1)

with , and .
Consider the following class of uncertain discrete time-delay

Markovian jump systems in a fixed complete probability space

(2)

(3)

where is the state, is the measurement output,
is an unknown positive integer time delay of the system. We

assume when , . For fixed system
mode, are known constant matrices
with appropriate dimensions. and are
real-valued matrix functions representing norm-bounded pa-
rameter uncertainties and satisfy

(4)

where for fixed system mode, , and are
known real constant matrices of appropriate dimensions which
characterize how the uncertain parameter in enters the
nominal matrix and ; and is an unknown
time-varying matrix function meeting

(5)

Remark 1: The system in (2) and (3) can be used to repre-
sent many important physical systems subject to modeling error,
time-delay and random failures and structural changes, see e.g.,
[6] and references therein.

Assumption 1: The matrix is of full
row rank.

In this letter, the linear filter under consideration is of the
following structure:

(6)
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where is the state estimate, and for fixed system mode, the
constant matrices and are filter parameters to be
designed.

Notice that the set comprises various operation modes of
the system in (2) and (3), and the Markov chain
takes values in the finite set . For presentation
convenience, we denote

(7)

(8)

(9)

(10)

Now let us work on the system mode . The
error state is given by , where is the state
estimate of . Then, it follows from (2), (3), and (6) that

(11)

Moreover, we define

(12)

(13)

(14)

(15)

Then, an augmented system can be obtained from (2)–(4) and
(11) that

(16)

Assumption 2: For all , there exists a scalar
such that .

Assumption 2 is not restrictive since can be chosen as
a sufficiently large scalar. Now, let denote the state
trajectory from the initial data . Clearly, the system (16)
admits a trivial zero solution corresponding to the initial data

.
Definition 1: For the uncertain time-delay jump system (16)

and every initial state , the trivial solution is robustly
stochastically stable in the mean square if the following holds:

(17)

We will design a linear uncertainty-independent delay-free
filter (6) for the uncertain time-delay jump system in (2) and (3).
Specifically, we are interested in seeking the filter parameters,

and , such that for all admissible time-varying parameter
uncertainties , the augmented system (16) (and therefore
the error dynamics) is robustly stochastically stable in the mean
square, independent of the unknown time-delay .

III. FILTER ANALYSIS

Theorem 1: Let the filter parameters and be given. If
there exist a set of positive scalars such that
the following matrix inequalities:

(18)

(19)

have positive definite solutions where

(20)

then the augmented system (16) is robustly stochastically stable
in the mean square, independent of the unknown time-delay .

Proof: For , define a Lyapunov functional candidate
for system (16) as

(21)

where is the solution to (18), (19), and

(22)

Then, one has from (16) for and that

(23)

It follows from

that

(24)

From (24) and the definition of in (22), we have

(25)

where denotes the mathematical expectation operator.
It results from the Schur Complement Lemma that, the in-

equalities (18) and (19) indicate

(26)

where .
Note that , and

. It follows from [9] that (26) is equivalent to

(27)
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If for some finite , then it is straightforward to show
that the system (16) is stochastically stable in the mean square.
Assume now that . It follows from (25) and (27) that

(28)
Note that , , and , . Define

(29)
Then, from Assumption 2, we have

(30)

where

(31)

It also follows from (30) that

(32)

which implies and

(33)

Then, based on the relationship (33), following the same line of
the proof of Theorem 1 of [7], we can show that the augmented
system (16) is robustly stochastically stable in the mean square,
independent of the unknown delay .

IV. FILTER SYNTHESIS

For notational simplicity, we define

(34)

(35)

(36)

(37)

(38)

(39)

Theorem 2: If there exist a set of positive scalars
such that the following sets of matrix inequalities

(40)

(41)

together with , respectively, have positive definite solu-
tions and , where the matrices , ,

, , and are defined in (34)–(39), ,
and , then the filter (6) with parameters

(42)

(43)

where is arbitrary orthogonal (i.e., ),
is an arbitrary matrix meeting and

is defined in (41), will be such that the augmented system
(16) is robustly stochastically stable in the mean square, for all
admissible parameter uncertainties , , independent
of the unknown time-delay .

Proof: Set , where ,
, and then define

(44)

where

It is straightforward to verify that and result
in the satisfaction of the condition (18). Our next goal is to show
that (19) is true. We have from (44) that

(45)

(46)

(47)

It follows directly from (40) that . Furthermore,
substituting (43) into (46) and considering the definitions of
and in (35) and (36), we obtain

(48)

Next, after some tedious algebraic manipulations, in terms of
the definitions of , and , we have

(49)

By Assumption 1, we know that , and therefore

(50)

By utilizing (42) and the orthogonality of , we can see that
and

(51)
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Fig. 1. e (solid), e (dashed).

where is defined in (41). Since is an arbitrary
matrix meeting , the relation follows
from (51) easily. To this end, we arrive at the conclusion that

, i.e., the condition (19) is satisfied.
Finally, it follows from Theorem 1 that the augmented system

(16) is robustly stochastically stable in the mean square for all
admissible parameter uncertainties , , independent
of the unknown time-delay .

In the above proof, it is actually assumed that the system ma-
trix is nonsingular. How to obtain less restrictive synthesis
results would be one of our future research topics.

V. NUMERICAL SIMULATION

Assume that the system data of (2) and (3) are as follows:

We choose , . Then, solving the Riccati-
like coupled matrix inequalities (40) and (41) by the algorithm
discussed in [1], we obtain

To illustrate the design flexibility, we shall make use of
the freedom in selecting the parameters ( satisfies

) and ( satisfies ).

Fig. 2. e (solid), e (dashed).

For the system mode 1, we choose , , and
then obtain and from (42) and (43) as follows:

We now consider the system mode 2. In this case, we select
, and obtain

Denote the error states . The responses
of error dynamics to initial conditions are shown in Figs. 1 and
2. The simulation numerical results imply that the desired goal
is well achieved.
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