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Dynamic Bargaining and Stability

with Veto Players∗

Vincent Anesi† John Duggan‡

April 15, 2016

Abstract

This note examines the structure of stationary bargaining equilibria
in the finite framework of Anesi (2010). The main result establishes
a tight connection between the set of equilibrium absorbing points
and the von Neumann-Morgestern solutions: assuming that players
are patient, that the voting rule is oligarchical, and that there is at
least one veto player with positive recognition probability, a set of
alternatives corresponds to the absorbing points of an equilibrium if
and only if it is a von Neumann-Morgenstern solution. We also apply
our analysis of ergodic properties of equilibria to the persistent agenda
setter environment of Diermeier and Fong (2012). We show that all
equilibria are essentially pure, and we extend their characterization of
absorbing sets to allow an arbitrary voting rule and by removing the
restriction to pure strategy equilibira.

1 Introduction

Since the seminal work of Baron (1996), bargaining games with an endoge-
nous status quo have become more and more prominent in the literature
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on dynamic collective decision-making.1 In these games, each period be-
gins with a status quo alternative inherited from the previous period, and
a player is chosen randomly to propose any feasible alternative, which is
then subject to an up or down vote. If the proposal is voted up, then it is
implemented in that period and becomes the next period’s status quo; if it
is voted down, then the ongoing status quo is implemented and remains in
place until the next period; this process continues ad infinitum. Anesi (2010)
was the first to consider the finite framework, where the set of alternatives
is finite and players have strict preferences. His main goal was to provide a
noncooperative interpretation for von Neumann-Morgenstern solutions (von
Neumann and Morgenstern, 1944), whose rationale in the voting context
had been questioned by political scientists (e.g., McKelvey et al. 1978). As-
suming patient players, he shows that given a von Neumann-Morgenstern
solution Y for the voting rule and a sufficiently high discount factor, there
is a stationary Markovian equilibrium σ such that the set A(σ) of absorbing
alternatives under σ is equal to Y . Left open is the opposite logical direc-
tion: conditions under which given a stationary Markovian equilibrium σ,
the set A(σ) of absorbing alternatives is a von Neumann-Morgenstern solu-
tion.2 Concentrating on pure strategy equilibria, Diermeier and Fong (2012)
obtain this direction by assuming, in addition to high discount factors, that
the same player proposes with probability one in every period.

The main objective of this note is to contribute further to this research
program by examining the structure of (mixed-strategy) stationary Marko-
vian equilibria in the finite framework of Anesi (2010). The analysis relies
on the characterization of the ergodic properties of equilibria. Namely, we
show that when the Nakamura number of the voting rule is high relative
to the number of alternatives, all ergodic sets are singleton; in particular, if
there is a veto player (so that the Nakamura number is infinite), then be-
ginning from any given status quo, the equilibrium process transitions with
probability one to the set of absorbing alternatives. Moreover, we show that
if there is a veto player with positive recognition probability and players are
patient, then starting from any given alternative, there is a unique absorbing
point (which can depend on the alternative given) to which the equilibrium
process transitions.

1To cite a few of the many examples, Kalandrakis (2004, 2010), Diermeier and Fong
(2011, 2012), Battaglini and Palfrey (2012), Bowen and Zahran (2012), Duggan and Ka-
landrakis (2012), Nunnari (2014), Richter (2014), Baron and Bowen (2014), Zápal (2014),
Anesi and Seidmann (2015) and Dziuda and Loeper (2015) all use such games.

2Anesi (2010) shows by example that, under majority voting, equilibrium absorbing
sets may not be von Neumann-Morgenstern solutions.
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These results allow us to establish a tight connection between the set of
equilibrium absorbing points and the von Neumann-Morgenstern solutions.
Maintaining the assumption that players are patient and there is at least one
veto player with positive recognition probability, we increase the structure
of our model in two directions. First, we assume that the voting rule is
oligarchical, i.e., agreement of all veto players is necessary and sufficient for
a proposal to pass, so that the von Neumann-Morgenstern solution is unique.
Our main result is that under these conditions, the equilibrium absorbing
alternatives comprise the von Neumann-Morgenstern solution of the voting
rule. Second, allowing a general voting rule, we add the assumption that
there is a persistent agenda setter, i.e., a fixed player who proposes with
probability one in each period. We apply our analysis of ergodic properties of
equilibria to show that all equilibria are essentially pure, and we again obtain
the equivalence between equilibrium absorbing points and von Neumann-
Morgenstern solutions. Thus, we extend Theorem 1 of Diermeier and Fong
(2012) by generalizing the quota rules to an arbitrary voting rule and by
removing the restriction to pure strategy equilibria.

Noncooperative foundations for von Neumann-Morgenstern solutions in
political economy have been investigated in several different institutional
settings, including electoral competition (Anesi 2012) and committee voting
(Anesi and Seidmann 2014). In particular, Diermeier et al. (2013) consider
a discrete version of the divide-the-dollar environment, in which players bar-
gain over allocations of a private good. As we do in Section 4, these authors
assume the existence of at least one veto player and obtain a characteriza-
tion of stationary Markov equilibria in terms of von Neumann-Morgenstern
solutions. Aside from their focus on the pure distribution setting, their re-
sult differs from ours in several other important ways: they concentrate on
pure strategy equilibria, assume that only veto players can make proposals,
and impose an additional refinement on equilibrium proposals (i.e., when a
proposer is indifferent between proposing to change the status quo and not,
she does not).

Committees with veto players, who can block proposals to move away
from current policies, constitute an empirically important class of institu-
tions (e.g., the United Nations Security Council and presidential veto power
in the US Congress). An extensive body of literature has developed to
explore the relationships between members’ policy preferences and policy
outcomes in such committees. A complete review of this literature would
take us far afield, but we should explain this note’s relationship to the closely
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related contribution by Nunnari (2014). He analyzes a bargaining game with
an endogenous status quo in the divide-the-dollar environment with three
players — one being a veto player, with an additional vote needed for pas-
sage of a proposal — and equal recognition probabilities. In this setting,
he constructs a stationary Markov perfect equilibrium in which the policy
implemented by the committee eventually converges to the veto player’s
ideal policy, irrespective of the discount factor and the initial status quo.
Although Nunnari’s framework is not nested with ours, his result is con-
sistent in spirit with our result that if there is a veto player with positive
recognition probability, then for any given status quo alternative, there is a
unique alternative to which it is absorbed. In general, this absorbing point
can depend on the alternative given, but Nunnari demonstrates that in his
equilibrium, it is in fact independent of the initial alternative.

More generally, this note is also part of the growing body of research
on bargaining with an endogenous status quo (cf. footnote 1). In much
of this literature, the focus is either on the one-dimensional spatial model
with single-peaked preferences or on distributive models in which a fixed
surplus is allocated across players. With few exceptions, this work explicitly
constructs classes of absorbing stationary Markov equilibria. Assuming a
finite set of alternatives and veto players (or a persistent agenda setter), we
obtain necessary conditions for equilibrium ergodic sets that do not rely on
constructive techniques and that permit a full characterization of equilib-
rium absorbing points (provided that players are sufficiently patient). In a
framework that assumes a general voting rule and general (finite or infinite)
set of alternatives, Duggan and Kalandrakis (2012) provide conditions under
which every stationary Markov perfect equilibrium determines an aperiodic
transition over policies, with fast convergence from any given initial pol-
icy to an ergodic distribution (that can depend on the starting point), and
this ergodicity result holds in our finite framework as well, in light of well-
known results on finite-state Markov chains. Those authors can also obtain
uniqueness of the ergodic distribution, but that result relies on the presence
of shocks to the status quo each period.

2 Dynamic Bargaining Framework

Consider the following dynamic bargaining model. The set X of alternatives
is finite with |X| ≥ 2, and individuals are numbered 1, . . . , n. In each of an
infinite number of discrete periods t = 1, 2, . . ., a status quo x ∈ X is given,
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and a proposer is drawn from the fixed distribution (ρ1, . . . , ρn), where ρi ≥ 0
for each i and

∑n
i=1 ρi = 1. The selected individual makes a proposal y ∈ X,

and all players then simultaneously vote to accept or to reject the chosen
proposal. If the group C of individuals who accept belongs to the collection
D of decisive groups, then the outcome for the current period is zt = y; and
otherwise, if C is not decisive, then zt = x is the outcome for the current
period. In both cases, the current outcome zt becomes the status quo in
the next period, where the process is repeated. Assume the voting rule
D is nonempty and monotonic. It is collegial if there is some individual
who belongs to every decisive group and has a veto, i.e., the intersection⋂
D ≡

⋂
C∈D C 6= ∅ is nonempty, and we refer to such an individual as a

veto player. The rule is oligarchical if in addition the set of veto players is
itself decisive, i.e.,

⋂
D ∈ D, in which case a coalition is decisive if and only

if it contains all veto players.

Each individual i has a stage utility function ui : X → < such that for
all distinct x, y ∈ X, we have ui(x) 6= ui(y). Define the dominance relation
� on X such that for all x, y ∈ X, the relation x � y holds if and only if
{i : ui(x) > ui(y)} ∈ D. A von Neumann-Morgenstern solution (or vNM
solution) is a set S ⊆ X satisfying both internal stability (for all x, y ∈ S,
¬(x � y)) and external stability (for all x /∈ S, there exists y ∈ S with
y � x). Note that when the voting rule is oligarchical, the dominance
relation � is transitive, so that the vNM solution is unique and consists of
the maximal elements of �. Given a sequence z = (z1, z2, . . .) of outcomes,
the payoff to player i is the normalized discounted utility

Ui(z) = (1− δ)
∞∑
t=1

δt−1ui(z
t),

where δ ∈ [0, 1) is a common discount factor. We extend payoffs to proba-
bility distributions over such sequences via expected utility. The status quo
in period 1 is an exogenously given alternative x0.

The above elements define a dynamic game, and we focus on subgame
perfect equilibria in stationary Markov strategies. Specifically, a stationary
Markov strategy for player i is a pair of mappings σi = (πi, αi) such that
πi : X ×X → [0, 1] and αi : X ×X → [0, 1], where:

• πi(x, y) is the probability that player i proposes y given status quo x,

• αi(x, y) is the probability that player i accepts alternative y if it has
been proposed and the status quo is x.
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We term πi the proposal strategy and αi the voting strategy of player i, and
we let σ = (σ1, . . . , σn) denote a profile of stationary Markov strategies.
A proposal (resp., voting) strategy is pure if for all x, y ∈ X, we have
πi(x, y) ∈ {0, 1} (resp., αi(x, y) ∈ {0, 1}). Let α(x, y) be the probability
that y passes if proposed given status quo x, i.e.,

α(x, y) =
∑
C∈D

(∏
i∈C

αi(x, y)

)(∏
i/∈C

(1− αi(x, y))

)
.

Given such a profile σ, let P (·|σ) denote the stochastic transition process
engendered by σ, so that

P (x, y|σ) =
∑
i

ρiπi(x, y)α(x, y)

is the probability that next period’s outcome is y given that the outcome
in the current period is x. Then P (x, Y |σ) =

∑
y∈Y P (x, y|σ) is the proba-

bility that next period’s outcome belongs to Y given current outcome x. In
general, define P 1(·|σ) = P (·|σ), and given t ≥ 2, let P t(·|σ) be the t-step
transition defined by

P t(x, y|σ) =
∑
z∈X

P 1(x, z|σ)P t−1(z, y|σ),

so that P t(x, ·|σ) gives the distribution over outcomes t periods in the future,
given outcome x in the current period.

The expected discounted payoff, or dynamic payoff, starting from out-
come x in a given period for player i is

Vi(x|σ) = (1− δ)

[
ui(x) + δ

∞∑
t=1

δt−1
∑
z∈X

ui(z)P
t(x, z|σ)

]
.

Of course, this dynamic payoff is the unique solution to the recursion

Vi(x|σ) = (1− δ)ui(x) + δ
∑
y∈X

P (x, y|σ)Vi(y|σ). (1)

A stationary Markov profile σ is a stationary bargaining equilibrium if
proposals and votes are optimal at all histories; that is, if (i) for all x ∈ X
and all i ∈ {1, . . . , n}, πi(x, ·) puts positive probability on solutions to

max
y∈X

α(x, y)Vi(y|σ) + (1− α(x, y))Vi(x|σ),
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and (ii) for all x, y ∈ X and all j ∈ {1, . . . , n}, we have αj(x, y) = 1 if
Vj(y|σ) ≥ Vj(x|σ), and we have αj = 0 if Vj(y|σ) < Vj(x|σ). Note that the
optimality condition (ii) on voting strategies incorporates the refinement
that players do not cast stage-dominated votes. Moreover, the condition
assumes deferential voting strategies, so that a player votes for a proposed
alternative if indifferent between acceptance and rejection. Because of this
assumption, existence of a stationary bargaining equilibrium does not fol-
low from known existence results for Markov perfect equilibria in stochastic
games. Nevertheless, existence is not an issue: our first theorem does not re-
quire the deferential voting restriction; the others assume that D is collegial
and that the discount factor is high, in which case results by Muto (1984)
and Anesi (2010) imply that the game possesses a stationary bargaining
equilibrium.3

A set Y ⊆ X of alternatives is invariant under σ if for all x ∈ Y , we
have P (x, Y |σ) = 1, and it is ergodic if it is minimal among invariant sets
according to set inclusion. We let E(σ) denote the collection of ergodic sets
under σ. An alternative x is absorbing if P (x, x|σ) = 1, or equivalently, {x}
is ergodic. If there is some t such that P t(x, y|σ) > 0, then y is reachable
from x. Let A(x|σ) be the set of absorbing points that are reachable from x,
and let A(σ) be the set of absorbing points of σ, i.e., A(σ) =

⋃
x∈X A(x|σ).

These concepts can be reformulated in graph-theoretic terms. Define
the graph of σ, denoted Γ(σ), as follows: for all x, y ∈ X, we have xΓ(σ)y
if and only if P (x, y|σ) > 0. Let Γ1(σ) = Γ(σ), and for each t = 2, 3, . . .,
define Γt(σ) as follows: for all x, y ∈ X, we have xΓt(σ)y if and only if
there exists z ∈ X such that xΓ(σ)zΓ(σ)t−1y. The transitive closure of Γ,
denoted Γ∞(σ), is defined as Γ∞(σ) =

⋃∞
t=1 Γt(σ). Then Y is ergodic if and

only if for all x, y ∈ Y , we have xΓ∞(σ)y and yΓ∞(σ)x; an alternative x
is absorbing if and only if for all y ∈ X, xΓ(σ)y implies y = x; and y is
reachable from x if and only if xΓ∞(σ)y.

It is well-known that from any outcome x, the equilibrium Markov chain
eventually leads to an ergodic set with probability one. To formalize this

3The former shows that there exists a (unique) vNM solution if D is collegial; the latter
that a stationary bargaining equilibrium exists if there is a vNM solution. To be precise,
Anesi (2010) assumes that D is proper (i.e., the complement of any decisive group in D
does not belong to D), which is implied when D is collegial. Moreover, he also assumes
that all players have positive recognition probabilities; but brief inspection of his argument
reveals that the result holds if one assumes instead (as we do) that there is at least one
veto player with positive recognition probability.
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claim, let P∞(x, Y |σ) = lim inf P t(x, Y |σ). Then for all x, we have

P∞

(
x,
⋃
E(σ)|σ

)
= 1,

so that with probability one the set
⋃
E(σ) ≡

⋃
E∈E(σ)E is entered from x

and remains in that set. In graph-theoretic terms, for all x ∈ X, there exist
an ergodic set Y and an element y ∈ Y such that xΓ∞(σ)y.

3 Absorbing Alternatives

Our first result establishes that when the Nakamura number of the bargain-
ing game is large relative to the set of alternatives, every ergodic set is a
singleton, the lone element being an absorbing alternative. To begin, we de-
fine the Nakamura number of the voting rule, denoted N (D), in two cases.
First, in case the rule is non-collegial, let

N (D) = min
{
|G| | G ⊆ D and

⋂
G = ∅

}
.

In words, N (D) is the size of the smallest collection of decisive coalitions
having empty intersection. Second, in case the rule is collegial, the set N (D)
is equal to the cardinality of the integers. It is known that when the number
of players is either three or strictly greater than four, the Nakamura number
of majority rule is three. In general, for a quota rule with quota q,4 the
Nakamura number is

N (D) =

⌈
n

n− q

⌉
,

so it becomes arbitrarily high when both the number of players is large
and the quota is large relative to n. Note that when D is collegial, the
Nakamura number is infinite, so that the assumptions of the following result
are automatically fulfilled.

Theorem 1: Assume |X|(|X| − 1) < N (D), and consider any stationary
bargaining equilibrium σ. For every Y ⊆ X, Y is ergodic if and only if there
is an absorbing alternative x such that Y = {x}.

4We say D is a quota rule if there is a natural number q ∈ [n+1
2
, n] such that D = {C |

|C| ≥ q} consists of all groups satisfying the quota q.
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Proof: One direction is obvious. For the other, suppose toward a contra-
diction that there is an ergodic set Y with |Y | = k ≥ 2, and enumerate the
elements as y1, . . . , yk. For each h = 1, . . . , k, let

Yh = {z ∈ Y \ {yh} | P (yh, z|σ) > 0}

denote the alternatives that occur with positive probability given status
quo yh, and enumerate the elements of this set as zh,1, . . . , zh,`h . For each
h = 1, . . . , k and each ` = 1, . . . , `h, there exists Ch,` ∈ D such that for all
i ∈ Ch,`, we have

Vi(zh,`|σ) ≥ Vi(yh|σ).

Since |Y | ≤ |X| and |Yh| ≤ |X| − 1, we have |Y |(maxh |Yh|) < N (D), so
by assumption there exists i ∈

⋂k
h=1

⋂`h
`=1Ch,`. Let m be a solution to

maxh∈{1,...,k} Vi(yh|σ), so that ym maximizes player i’s dynamic payoff over
Y , i.e., Vi(ym|σ) = maxh=1,...,k Vi(yh|σ). Then for all ` = 1, . . . , `m, we must
have

Vi(zm,`|σ) = Vi(ym|σ).

Thus, all of the alternatives that occur with positive probability following ym
also maximize player i’s dynamic payoff. Since Y is ergodic, this argument
in fact implies that for all h = 1, . . . , k, we have Vi(yh|σ) = Vi(ym|σ), so that
the dynamic payoff of player i is constant on Y , and we can denote this by
V . But choosing any yh and zh,`, we then have

(1− δ)ui(yh) + δV = Vi(yh|σ)

= Vi(zh,`|σ)

= (1− δ)ui(zh,`) + δV ,

which implies ui(yh) = ui(zh,`), a contradiction. We conclude that for every
ergodic set Y , we have |Y | = 1, so that there is an absorbing alternative x
such that Y = {x}. Q.E.D.

The next example illustrates the result in the case of two alternatives
and majority rule, i.e., D = {C ⊆ N | |C| > n/2}. Because the Nakamura
number of majority rule is equal to three if n 6= 4 and to four if n = 4, it is
always strictly larger than |X|(|X| − 1) = 2, and the premise of Theorem 1
always holds in this case.

Example 1: Let the set of alternatives be X = {x, y}, and assume ma-
jority rule. It is readily checked that for every stationary Markov strategy
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profile σ and every player i, there is κ > 0 (which depends on σ) such that
Vi(x|σ)−Vi(y|σ) = κ[ui(x)−ui(y)]. Therefore, in any stationary bargaining
equilibrium, voters who prefer x to y accept proposal x given status quo
y and reject proposal y given status quo x with probability one; the same
holds in reverse for those who prefer y to x. This in turn implies that if a
majority of players prefer x to y then, conditional on being recognized to
make a proposal, those players (successfully) propose x with probability one
when the status quo is y, and they are indifferent between proposing x or y
when the status quo is x, as a proposal to change x to y would be rejected.
Hence, in every stationary bargaining equilibrium σ, we have A(x|σ) = {x},
and we have A(y|σ) = {x} if at least one of the players who prefer x to y
has a positive recognition probability, while A(y|σ) = {y} otherwise.5 �

Theorem 1 does not apply in the majority-rule case if there are more than
two alternatives; cycles can arise and ergodic sets with multiple elements can
be supported in equilibrium as Example 2, below, illustrates. But for a large
set of players and quota rules with higher quotas, the result does apply. As
noted above, when the voting rule D is collegial, the Nakamura number
takes an infinite value, so the conditions of Theorem 1 are satisfied.

Example 2: Let n = 3, X = {x, y, z}, and suppose that the players’ utilities
and discount factor satisfy the following inequalities:

(3− δ)−1 [(3 + δ)u1(y)− 2δu1(x)] < u1(z) < u1(y) < u1(x) ;

(3− δ)−1 [(3 + δ)u2(x)− 2δu2(z)] < u2(y) < u2(x) < u2(z) ;

(3− δ)−1 [(3 + δ)u3(z)− 2δu3(y)] < u3(x) < u3(z) < u3(y) .

We further assume that D is majority rule, so that there is no vNM so-
lution. Moreover, the three players have the same recognition probability,
i.e., ρi = 1/3 for each i = 1, 2, 3. Under these assumptions, there is a (pure
strategy) stationary bargaining equilibrium such that: given status quo x,
players 2 and 3 propose and accept y, whereas player 1 maintains the sta-
tus quo; given status quo y, players 1 and 2 propose and accept z, whereas
player 3 maintains the status quo; and given status quo z, players 1 and
3 propose and accept x, whereas player 2 maintains the status quo. (We
provide the precise details of the equilibrium construction in the supple-
mentary appendix.) The induced Markov chain on X is depicted in Figure

5If exactly n/2 players prefer x to y, then it immediately follows from the equilibrium
voting strategies above that proposals to change status quo alternatives must be rejected
in any stationary bargaining equilibrium σ, so that A(x|σ) = {x} and A(y|σ) = {y} in
this case. Equilibrium ergodic sets are again singleton.
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1, where arrows represent transitions, labeled by the transition probabilities
and the coalitions of players who support the transitions. Observe that there
is no absorbing alternative and that the only ergodic set is the entire set of
alternatives X. �

z y

x

2
3
, {1, 3} 2

3
, {2, 3}

2
3
, {1, 2}

1
3
, {2} 1

3
, {3}

1
3
, {1}

Figure 1: Equilibrium Markov chain with a Condorcet cycle

An important implication of Theorem 1 for a stationary bargaining equi-
librium σ is that for each alternative x, we have A(x|σ) 6= ∅. This in turn
implies that beginning from any given alternative, the equilibrium Markov
chain eventually transitions to an absorbing alternative with probability one.

4 Bargaining Equilibria and vNM-Solutions

We now increase the structure imposed on the analysis by considering the
case of patient players and assuming that there is at least one veto player
with positive recognition probability; in particular, Theorem 1 applies and
ergodic sets are therefore singleton. The following result establishes that
for any given alternative, there is in fact a unique alternative (which may
depend on the alternative given) to which it is absorbed.

Theorem 2: Assume that there is at least one veto player with positive
recognition probability, i.e., there exists i ∈

⋂
D with ρi > 0. Then there ex-
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ists δ ∈ (0, 1) such that for all δ ∈ (δ, 1), all stationary bargaining equilibria
σ, and all x ∈ X,

∣∣A(x|σ)
∣∣ = 1.

Proof: By Theorem 1, we know that for all x ∈ X, we have A(x|σ) 6= ∅. To
deduce a contradiction, suppose there are a sequence of discount factors {δk}
converging to one and corresponding stationary bargaining equilibria {σk}
such that for each k, there exist xk with |A(xk|σk)| ≥ 2. Then {Γ(σk)} is the
corresponding sequence of equilibrium graphs. Since X is finite, we can go to
a subsequence (still indexed by k) on which these alternatives and graphs are
constant, and henceforth we write x = xk for the given alternative and Γ =
Γ(σk) for the equilibrium graph. Abusing notation slightly, let A = A(σk)
denote the set of absorbing alternatives of σk, and let A(y) = A(y|σk) denote
the absorbing alternatives reachable from any alternative y; these sets are
constant along the sequence, and we have |A(x)| ≥ 2. Let player i be a
vetoer with ρi > 0, and let w minimize the stage payoff of player i among
absorbing alternatives reachable from x, i.e., ui(w) = miny∈A(x) ui(y). Let
{y1, y2, . . . , ym} be a path from x to w, so that

x = y1Γy2 · · ·Γym−1Γym = w,

and let y` be the highest indexed alternative such that |A(y`)| ≥ 2, and note
that ` < m. Since player i is a vetoer, we have

Vi(y`+h|σk) ≥ Vi(y`+h−1|σk)

for all k and all h = 1, . . . ,m− `. This implies that Vi(y`|σk) ≤ Vi(w|σk) for
all k, and thus we have

lim inf
k→∞

Vi(y`|σk) ≤ ui(w). (2)

By construction, there exists z ∈ A(y`) \ {w}, so that ui(z) > ui(w). Then
there exist z1, . . . , zh ∈ X such that

y` = z1Γz2 . . .Γzh−1Γzh = z.

Thus, for all k, there exist Ck1 , . . . , C
k
h−1 ∈ D such that for all r = 1, . . . , h−1

and all j ∈ Ckr , we have Vj(zr|σk) ≤ Vj(zr+1|σk). It follows that if player
i proposes zr+1 given status quo zr, the proposal will pass with probability
one.6 Note, moreover, that the probability that i is recognized as proposer
is ρi > 0. Since player i’s equilibrium proposal strategy in equilibrium

6This inference uses the assumption of deferential voting.
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σk is optimal, the expected payoff from σki starting from status quo y` is
at least equal to the following strategy: if the status quo is zj for some
j = 1, . . . , h− 1, then propose zh+1 with probability one, and vote to accept
zh+1 but reject any other proposal; and for other status quos, propose and
vote as in σki . We denote the latter strategy by σ̃ki and the resulting strategy
profile by σ̃k. Accordingly, P t(z1, zh|σ̃k) is the probability that zh = z is
reached from status quo y` = z1 after t-periods. Note that the probability
that player i is selected as proposer h− 1 times in t periods goes to one as
t goes to infinity, and thus limt→∞ P

t(z1, zh|σ̃k) = 1. Given any ε > 0, we
can choose t sufficiently high that P t(z1, zh|σ̃k) > 1− ε, and then we have

Vi(y`|σk) ≥ Vi(y`|σ̃k) ≥ (1− (δk)t−1) min
r∈X

ui(r) +

(δk)t−1
[
(1− ε)ui(z) + εmin

r∈X
ui(r)

]
,

where the right-hand side reflects player i’s payoff if z is in place t periods
in the future and remains in place thereafter, with the worst alternative in
all other cases. Taking the limit as k →∞, we see that

lim inf
k→∞

Vi(y`|σk) ≥ (1− ε)ui(z) + εmin
r∈X

ui(r).

Since this inequality holds for all ε > 0, we conclude that

lim inf
k→∞

Vi(y`|σk) ≥ ui(z) > ui(w),

contradicting (2). Q.E.D.

Theorem 2 is silent on the connections between absorbing alternatives
and vNM solutions. It shows that given any alternative x, there is a unique
absorbing alternative, say y, to which it is absorbed. In particular, if x is
not itself absorbing, then y 6= x, but Theorem 2 does not imply that y � x,
and so it leaves the possibility that the set A(σ) of absorbing alternatives
may violate external stability. The following example demonstrates that the
presence of a veto player is not sufficient to deliver external stability of the
absorbing alternatives.

Example 3: Let the set of alternatives be X = {x, y, a, b}, let there be four
players, each with recognition probability 1/4, and let the voting rule be
such that a coalition is decisive if and only if it contains {1, 2} and at least
one other player, i.e., D = {C | 1, 2 ∈ C and |C| ≥ 3}. This voting rule
makes players 1 and 2 veto players, but it is not oligarchical. Stage payoffs
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satisfy

u1(x) < u1(b) < u1(a) < u1(y), u2(x) < u2(a) < u2(b) < u2(y),

u3(b) < u3(y) < u3(a) < u3(x), and u4(a) < u4(y) < u4(b) < u4(x) .

Under these assumptions, {x, y} is the unique vNM solution. We further
assume that

3u3(x) + u3(a) < 5u3(y)− u3(b) and 3u4(x) + u4(b) < 5u4(y)− u4(a).

Note that the veto players both prefer y to x, but no other player agrees, and
thus it is not the case that y � x. It is readily checked that if the discount
factor δ is sufficiently close to one, then there is a stationary bargaining
equilibrium that generates the Markov chain depicted in Figure 2,7 where
arrows represent transitions, labeled by the transition probabilities and the
coalitions that support the transitions (the proposers who initiate the transi-
tions are starred). Moreover, this equilibrium is such that: given status quo
x, each player proposes her favorite alternative in {y, a, b}, and this proposal
passes; given status quo y, all players maintain the status quo; given status
quo a, player 3 maintains the status quo, whereas all other players obtain
the outcome y; with analogous actions at status quo b. In particular, given
status quo x, players 3 and 4 are willing to vote for proposal y in order to
avoid obtaining their least preferred alternative, which occurs with proba-
bility 1/4 if the status quo is maintained — our assumptions guarantee that,
for δ sufficiently close to one, Vi(x|σ) < Vi(y|σ) for each i = 3, 4. And given
status quo x, players 1 and 2 are willing to vote for any of a and b in order
to avoid remaining at their least preferred alternative for another period.
Here, the set of absorbing alternatives is A(σ) = {y}, and thus we have
x /∈ A(σ), yet it is not the case that y � x, violating external stability. �

The next result strengthens the assumptions of Theorem 2 to provide a
tight connection between equilibrium ergodic sets and vNM solutions: if the
voting rule is oligarchical, then for every stationary bargaining equilibrium,
the set of absorbing points is equal to the unique vNM solution.

Theorem 3: Assume D is oligarchical, and that there is at least one veto
player with positive recognition probability, i.e., there exists i ∈

⋂
D with

ρi > 0. Then there exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1) and all station-
ary bargaining equilibria σ, A(σ) is the unique von Neumann-Morgenstern
solution.

7Details are provided in the supplementary appendix.
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1
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1, {1∗, 2∗, 3∗, 4∗}

1
2 , {1

∗, 2∗, 3, 4}

Figure 2: Multiple paths

Proof: One direction follows from Anesi (2010). For the other, consider any
sequence {δk} of discount factors converging to one and any corresponding
sequence {σk} of stationary bargaining equilibria. We must show that for
high enough k, the set A(σk) of absorbing points of σk is equal to the vNM
solution. Let player i be a vetoer with ρi > 0. Clearly, the set A(σk) is
internally stable, for else there exist x, y ∈ A(σk) such that x � y, but then
given status quo y, player i could successfully propose x, contradicting the
fact that y is an absorbing alternative. To establish external stability, con-
sider any xk ∈ X \A(σk). By Theorem 2, for sufficiently high k, there exists
yk such that A(xk|σk) = {yk}, so that starting from xk, the equilibrium
Markov process is absorbed into yk. Letting {Γ(σk)} be the corresponding
sequence of equilibrium graphs, we can also identify an alternative wk that
minimizes player i’s dynamic payoff over the outcomes distinct from xk that
occur with positive probability given status quo xk, i.e.,

Vi(wk|σk) = min
z 6=xk:xkΓ(σk)z

Vi(z|σk).

Since X is finite, we can go to a subsequence (still indexed by k) on which
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these alternatives and graphs are constant, and henceforth we write x = xk,
y = yk, w = wk, and Γ = Γ(σk). Let {z1, . . . , zm} be a path from w to y, so
that

w = z1Γz2 · · ·Γzm−1Γzm = y.

Since i is a veto player, it follows that Vi(w|σk) ≥ Vi(x|σk) and that for
each h = 1, . . . ,m − 1, we have Vi(zh+1|σk) ≥ Vi(zh|σk). In particular, we
have ui(y) ≥ Vi(w|σk). Now suppose toward a contradiction that we have
ui(x) > Vi(w|σk). Then

Vi(x|σk)
= (1− δ)ui(x) + δP (x, x|σk)Vi(x|σk) + δ

∑
z 6=x

P (x, z|σk)Vi(z|σk)

> (1− δ)Vi(w|σk) + δP (x, x|σk)Vi(x|σk) + δ
[
1− P (x, x|σk)

]
Vi(w|σk),

which implies

Vi(x|σk) > Vi(w|σk),

a contradiction. We conclude that ui(y) ≥ Vi(w|σk) ≥ ui(x), which further
implies ui(y) > ui(x). This inequality holds for every veto player, and since
the voting rule is oligarchical, we conclude that y � x, as required. Q.E.D.

The following example illustrates Theorem 3 with the variation of the
game in Example 3, modified so as to have an oligarchical voting rule.

Example 4: In Example 3, we examined a game in which the voting rule
was collegial, but not oligarchical, and we constructed a stationary bar-
gaining equilibrium (see Figure 2) whose absorbing set was not a vNM
solution. Consider now the same game but with oligarchical voting rule
D = {C|1, 2 ∈ C}, so that players 1 and 2 no longer need an additional vote
for passage of a proposal. In this case, {y} is the unique vNM solution. It is
easy to see that the strategy profile depicted in Figure 2 is still a stationary
bargaining equilibrium:8 all successful proposals to amend status quos are
accepted by players 1 and 2, and the latter successfully propose their ideal
alternative y (which is absorbing) at any status quo. But the absorbing set
{y} of this equilibrium now coincides with the unique vNM solution for the
oligarchical rule D. Moreover, it follows from Theorem 3 that, in this game,
there cannot be a stationary bargaining equilibrium with an absorbing set
that differs from {y}. �

8Recall that arrows represent transitions, labeled by the transition probabilities and the
coalitions that support the transitions, and that the proposers who initiate the transitions
are starred.
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5 Persistent Agenda Setter

It is worthwhile to summarize briefly the steps in the analysis above. First,
Theorem 1 assumes that the Nakamura number of the voting rule is high
relative to the number of alternatives; then Theorem 2 adds more structure
by assuming a veto player. The additional structure of an oligarchic rule is
then used in Theorem 3 to obtain a characterization of stationary bargaining
equilibria in terms of vNM solutions. Our next theorem adds structure to
Theorems 1 and 2 in a different direction: it casts the analysis into the
persistent agenda setter model (Diermeier and Fong 2011, 2012), in which
some player i is given the sole power to make proposals.

Let Di be the voting rule obtained from D by adding player i to every
decisive coalition in D, that is, Di = {C ∪ {i} : C ∈ D}. If player i is the
single agenda setter (i.e., ρi = 1), then any stationary bargaining equilibrium
σ with rule D is also a stationary bargaining equilibrium with rule Di. To see
this, note that if σ is not an equilibrium with ruleDi then, at some status quo
x, i must propose an alternative y that is accepted with rule D and rejected
with rule Di. This implies that i rejects this proposal and, therefore, that
(with rule D) she would have been strictly better off maintaining status quo
x rather than proposing y; a contradiction. Hence, Theorems 1 and 2 can be
applied directly to any voting rule D in the persistent agenda setter model:
their conclusions apply to all stationary bargaining equilibria with collegial
rule Di, including all those that are also stationary bargaining equilibria
with rule D. This yields the following corollary.

Corollary 1: Assume that there is a persistent agenda setter, i.e., there
exists i ∈ {1, . . . , n} with ρi = 1. Then there exists δ ∈ (0, 1) such that
for all δ ∈ (δ, 1), all stationary bargaining equilibria σ, and all x ∈ X,∣∣A(x|σ)

∣∣ = 1.

The preceding argument does not directly yield a version of Theorem 3
for the persistent agenda setter model, as the theorem assumes an oligarchic
rule. Nevertheless, the structure of a single proposer allows us to obtain a
sharper result than Theorem 2, which we will draw on to obtain a charac-
terization of vNM solutions. Our final theorem indeed establishes that this
structure, in addition to ensuring the uniqueness of the absorbing alternative
y from any status quo x, implies that there is a unique path determined in
equilibrium from x to y. In particular, the equilibrium graph Γ(σ) possesses
no “branches,” so that for every alternative x, there is a unique alterna-
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tive z such that xΓ(σ)z, precluding equilibrium Markov chains of the sort
demonstrated in Example 3. Note the further implication that under the
conditions of the theorem, stationary bargaining equilibria are essentially
pure, in the sense that for every non-absorbing alternative x /∈ A(σ), the
proposal strategy πi(x, ·) puts probability one on the single alternative z
such that xΓ(σ)z; if x is an absorbing alternative, then the agenda setter
may mix between proposals that are rejected, but mixing in this case is
nominal. Thus, we find that Diermeier and Fong’s (2012) restriction to pure
strategy equilibria is redundant.

Theorem 4: Assume that there is a persistent agenda setter, i.e., there
exists i ∈ {1, . . . , n} with ρi = 1. Then there exists δ ∈ (0, 1) such that for
all δ ∈ (δ, 1), all stationary bargaining equilibria σ, and all x ∈ X, there
exist a unique absorbing alternative y ∈ X, a unique natural number m ≥ 1,
and unique alternatives z1, . . . , zm ∈ X (which may depend on σ and x) such
that

xΓ(σ)z1Γ(σ) · · · zm−1Γ(σ)zm = y.

Proof: Consider an arbitrary sequence {δk} of discount factors converging
to one and a corresponding sequence {σk} of stationary bargaining equilib-
ria. Going to a subsequence (still indexed by k), we can assume that the
corresponding graph, Γ is constant. Consider an alternative x. By Corollary
1, there exists a unique alternative y such that A(x|σk) = {y} for all k ∈ N.
It suffices to show that for sufficiently high k, there is a unique path between
x and y. We proceed in three steps:

Step 1: The alternative y maximizes player i’s stage utility over the
set R(x) of alternatives reachable from x. Although i may not be a veto
player, being the single agenda setter, she can unilaterally maintain the
status quo. Let b maximize player i’s stage utility over the alternatives
reachable from x, i.e., ui(b) = maxz∈R(x) ui(z). Since R(b) ⊆ R(x), it follows

that ui(b) ≥ maxz∈R(b) ui(z) and thus Vi(b|σk) ≥ ui(b) > Vi(z|σk) for all
z ∈ R(b) \ {b}. Since player i’s proposal strategy is optimal, we conclude
that b is absorbing, and since y is the unique absorbing alternative reachable
from x, we have y = b.

Step 2: Γ is acyclic on R(x). Suppose toward a contradiction that there
exist x1, . . . , xm in R(x) such that x1Γx2Γ · · ·xmΓx1. This implies that

Vi(x1|σk) = · · · = Vi(xm|σk).
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Note that the agenda setter i solves a dynamic programming problem, and
σki is optimal, given σk−i. Since x2 is proposed with positive probability given
status quo x1, it is an optimal choice at x1, given that future choices are
made according to σki . Then it is optimal to always choose x2 at x1, using

σki at all other status quos. Call this strategy σk,1i . We then modify σk,1i so
that at x2, the agenda setter chooses x3 with probability one. The resulting
strategy, σk,2i , is also optimal. In general, we modify σk,ji so that at status
quo xj , the agenda setter chooses xj+1 with probability one, giving us an

optimal strategy at each step. In the end, the strategy σk,mi is optimal,
but following it, the agenda setter just cycles through x1, . . . , xm. It follows
from Step 1 that the agenda setter’s payoff from σk,mi , starting from x1, is
bounded above by

max{ui(xj) | j = 1, . . . ,m} < ui(y).

For sufficiently high k, this payoff is less than the payoff from following σki ,
because following that strategy y is eventually reached with probability one.
This contradiction completes the step.

Step 3. There is a unique path between x and y in Γ. Note that acyclicity
of Γ implies irreflexivity, so that x /∈ R(x). Thus, it follows from Step 2 that
if z ∈ R(x), then z 6= x and R(z) $ R(x). Say z branches if there are
distinct alternatives s and t such that zΓs and zΓt. Suppose toward a
contradiction that some alternative z ∈ R(x) branches, and choose z so that
R(z) is minimal among

{R(w) | w ∈ R(x) and w branches}

according to set inclusion. Note that no alternatives reachable from z can
branch. Then following z are at least two deterministic paths that lead to y.
But as δk → 1, it is not possible to maintain the agenda setter’s indifference
over these paths for arbitrarily high k. Q.E.D.

Next, we record an implication of Theorem 4 for the connections between
vNM solutions and equilibrium absorbing sets in the persistent agenda setter
model. Note that this corollary imposes no restriction on the voting rule
D. The result thus extends Theorem 1 in Diermeier and Fong (2012) by
generalizing their quota rules to an arbitrary voting rule and by removing
the restriction to pure strategy equilibria.

Corollary 2: Assume that there is a persistent agenda setter, i.e., there
exists i ∈ {1, . . . , n} with ρi = 1. Then there exists δ ∈ (0, 1) such that for all
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δ ∈ (δ, 1) and all subsets Y ⊆ X, there is a stationary bargaining equilibrium
σ with A(σ) = Y if and only if Y is a von Neumann-Morgenstern solution
for Di.

Proof: Sufficiency follows from Diermeier and Fong (2012).9 For necessity,
suppose toward a contradiction that there are a sequence {δk} of discount
factors converging to one and a sequence {σk} of stationary bargaining equi-
libria such that for each k, the set A(σk) of absorbing points of σk is not
a vNM solution. By the same logic as in the proof of Theorem 3, the set
A(σk) must be internally stable. It follows that A(σk) violates external
stability, so there exists xk ∈ X \ A(σk) such that for all y ∈ A(σk), it is
not the case that y � xk. By Corollary 1 and Theorem 4, for sufficiently
high k, there exist: an alternative yk such that A(xk|σk) = {yk}; a unique
path {xk, zk1 , . . . , zkmk

} from xk to yk; and a coalition Ck ∈ Di such that

Vj
(
xk|σk

)
≤ Vj

(
zk1 |σk

)
for all j ∈ Ck. Going to a subsequence (still in-

dexed by k), we can assume that this coalition and these alternatives are
constant, and henceforth we write C = Ck, x = xk, y = yk, and z1 = zk1 .
Hence, for each k, we have

0 ≤ Vj(z1|σk)− Vj(x|σk)
= Vj(z1|σk)− (1− δk)uj(x)− δkVj(z1|σk)
= (1− δk)(Vj(z1|σk)− uj(x))

for all j ∈ C. This implies Vj(z1|σk) ≥ uj(x) for all j ∈ C. Taking lim-
its and using Vj(z1|σk) → uj(y), we then have uj(y) ≥ uj(x) and, thus,
uj(y) > uj(x) for all j ∈ C. This contradicts our supposition that there is
no absorbing alternative y such that y � x. Q.E.D.

To illustrate Corollary 2, we provide an example with three alternatives
in which starting from any given status quo, equilibrium outcomes are even-
tually absorbed to the ideal point of the agenda setter. Of note, the example
shows that equilibrium dynamics can be non-trivial: even though all players
can anticipate the final outcome, this is not achieved immediately; rather,
starting from the worst alternative of the agenda setter, the agenda setter’s
ideal point is obtained incrementally, first visiting the middle-ranked alter-
native of the agenda setter, and then the ideal alternative. In other words,
the equilibrium features delayed gratification, as the agenda setter exploits
a wedge between the preferences of the other players to achieve her ideal
point in no more than two steps.

9Their equilibrium construction does not rely on the assumption that D is a quota rule.
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Figure 3: Delayed Gratification for the Agenda Setter

Example 5: Let the set of alternatives be X = {x, y, z}, let there be three
players, with player 1 the agenda setter. Assume that the voting rule is such
that D1 = {{1, 2}, {1, 3}, {1, 2, 3}}, i.e., the agenda setter needs the support
of at least one other player to pass a proposal. Stage payoffs satisfy

u1(x) > u1(y) > u1(z), u2(y) > u2(x) > u2(z), and u3(z) > u3(x) > u3(y).

Thus, the unique vNM solution for D1 is the singleton {x}, and Corollary 2
implies that when players are sufficiently patient, x is the unique equilibrium
absorbing point. To investigate dynamics in more detail, assume that

ui(x) <
ui(y) + ui(z)

2

for players i = 2, 3. It can be shown that when δ is sufficiently close to one,10

there is a stationary bargaining equilibrium that generates the Markov chain
depicted in Figure 3, where arrows represent transitions and are labeled by
the coalitions that support the transitions. Note that beginning from status
quo z, the outcome is eventually absorbed into x, the ideal point of the
agenda setter, but this process takes two periods. Even though all players
know that x will eventually be reached, the agenda setter must exploit a
wedge between the preferences of the other players, leveraging player 2’s
strong preference for y (relative to x) to compromise player 3, who then as-
sents to the move from status quo y to alternative x. It is worth noting that
there also exists a stationary bargaining equilibrium in which the agenda
setter successfully proposes x from any status quo — the construction is
similar to Diermeier and Fong’s (2011). This shows that there can be mul-
tiple equilibria, even when the vNM solution is unique, and that dynamics
can depend on the equilibrium. �

10Details are provided in the supplementary appendix.
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Supplementary Appendix (Not for Publication):
Details of the Equilibria in Examples 2, 3 and 5

Example 2. Let the strategy profile σ be defined by:

π1(x, x) = π1(y, z) = π1(z, x) = π2(x, y) = π2(y, z) = π2(z, z)

= π3(x, y) = π3(y, y) = π3(z, x) = 1;

α2(x, y) = α3(x, y) = 1−α1(x, y) = 1; α1(x, z) = α3(x, z) = 1−α2(x, z) = 0;

α2(y, x) = α3(y, x) = 1−α1(y, x) = 0; α1(y, z) = α2(y, z) = 1−α3(y, z) = 1;

α1(z, x) = α3(z, x) = 1−α2(z, x) = 1; α1(z, y) = α2(z, y) = 1−α3(z, y) = 0.

Hence,

α(x, x) = α(x, y) = 1− α(x, z) = 1 , (3)

α(y, y) = α(y, z) = 1− α(y, x) = 1 , (4)

α(z, z) = α(z, x) = 1− α(z, y) = 1 . (5)

Simple calculations then yield

Vi(x|σ) =
(3− δ)2ui(x) + 2(3− δ)δui(y) + 4δ2ui(z)

3 (3 + δ2)
,

Vi(y|σ) =
4δ2ui(x) + (3− δ)2ui(y) + 2(3− δ)δui(z)

3 (3 + δ2)
,

Vi(z|σ) =
2(3− δ)δui(x) + 4δ2ui(y) + (3− δ)2ui(z)

3 (3 + δ2)
;

so that

Vi(x|σ) ≥ Vi(y|σ) iff (3 + δ)ui(x) ≥ (3− δ)ui(y) + 2δui(z) ,

Vi(x|σ) ≥ Vi(z|σ) iff (3− δ)ui(x) + 2δui(y) ≥ (3 + δ)ui(z) , and

Vi(y|σ) ≥ Vi(z|σ) iff (3 + δ)ui(y) ≥ 2δui(x) + (3− δ)ui(z) ,

for each i = 1, 2, 3. Thus, under our assumptions on stage utilities, dynamic
payoffs satisfy V1(y|σ) < V1(z|σ) < V1(x|σ), V2(x|σ) < V2(y|σ) < V2(z|σ),
and V3(z|σ) < V3(x|σ) < V3(y|σ). Combined with equations (3)-(5), these
inequalities imply that σ satisfies the conditions for a stationary bargaining
equilibrium.
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Example 3. The strategy profile σ, described in the example, is defined
by

• Policy strategies given status quo x: π1(x, y) = π2(x, y) = π3(x, a) =
π4(x, b) = 1;

• Policy strategies given status quo y: πi(y, y) = 1 for each i = 1, 2, 3, 4;

• Policy strategies given status quo a: π1(a, y) = π2(a, y) = π3(a, a) =
π4(a, y) = 1;

• Policy strategies given status quo b: π1(b, y) = π2(b, y) = π3(b, y) =
π4(b, b) = 1;

• Voting strategies given status quo x: αi(x, y) = 1 for each i = 1, 2, 3, 4,

α1(x, a) = α2(x, a) = α3(x, a) = 1− α4(x, a) = 1 ,

α1(x, b) = α2(x, b) = α4(x, b) = 1− α3(x, b) = 1 ,

so that
α(x, x) = α(x, y) = α(x, a) = α(x, b) = 1 ; (6)

• Voting strategies given status quo y: αi(y, x) = 0 for each i = 1, 2, 3, 4,

α1(y, a) = α2(y, a) = α4(y, a) = 1− α3(y, a) = 0 ,

α1(y, b) = α2(y, b) = α3(y, b) = 1− α4(y, b) = 0 ,

so that
α(y, x) = 1− α(y, y) = α(y, a) = α(y, b) = 0 ; (7)

• Voting strategies given status quo a:

α1(a, x) = α2(a, x) = α3(a, x) = 1− α4(a, x) = 0 ,

α1(a, y) = α2(a, y) = α4(a, y) = 1− α3(a, y) = 1 ,

α1(a, b) = 1− α2(a, b) = α3(a, b) = 1− α4(a, b) = 0 ,

so that

1− α(a, x) = α(a, y) = α(a, a) = 1− α(a, b) = 1 ; (8)
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• Voting strategies given status quo b:

α1(b, x) = α2(b, x) = α4(b, x) = 1− α3(b, x) = 0 ,

α1(b, y) = α2(b, y) = α3(b, y) = 1− α4(b, y) = 1 ,

α1(b, a) = 1− α2(b, a) = α3(b, a) = 1− α4(b, a) = 1 ,

1− α(b, x) = α(b, y) = 1− α(b, a) = α(b, b) = 1 . (9)

It is readily checked that the corresponding dynamic payoffs are:

Vi(y|σ) = ui(y) ,

Vi(a|σ) = ui(a) +
3δ

4− δ
[
ui(y)− ui(a)

]
,

Vi(b|σ) = ui(b) +
4(1− δ)

4− δ
[
ui(b)− ui(y)

]
,

Vi(x|σ) = (1− δ)ui(x) +
δ

4
[2Vi(y | σ) + Vi(a | σ) + Vi(b | σ)]

for each i = 1, 2, 3, 4. Furthermore, we have

Vi(a|σ)− Vi(x|σ)

1− δ
= ui(a)− ui(x) +

δ

4− δ
[
ui(y)− ui(b)

]
and

Vi(b|σ)− Vi(x|σ)

1− δ
= ui(b)− ui(x) +

δ

4− δ
[
ui(y)− ui(a)

]
,

for every i = 1, 2, 3, 4. From our assumptions on u1 and u2, it follows that

V1(x|σ) < V1(b|σ) < V1(a|σ) < V1(y|σ) (10)

and
V2(x|σ) < V2(a|σ) < V2(b|σ) < V2(y|σ) . (11)

In addition,

Vi(y|σ)− Vi(x|σ)

1− δ
= ui(y)− ui(x) +

δ

4− δ
[
2ui(y)− ui(a)− ui(b)

]
for each i = 1, 2, 3, 4. Combined with these equalities, our assumptions on
u3 and u4 imply that there exist δ̄3, δ̄4 ∈ (0, 1) such that, for each i = 3, 4,
Vi(y|σ) > Vi(x|σ) for all δ ∈

(
δ̄i, 1

)
; so that

V3(b|σ) < V3(x|σ) < V3(y|σ) < V3(a|σ) (12)
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whenever δ > δ̄3, and

V4(a|σ) < V4(x|σ) < V4(y|σ) < V4(b|σ) (13)

whenever δ > δ̄4.

Suppose δ > max
{
δ̄3, δ̄4

}
. Inequalities (10)-(13) imply that the voting

strategies defined above satisfy condition (ii) in the definition of a station-
ary bargaining equilibrium. Coupled with (6)-(9), these inequalities also
imply that the proposal strategies defined above satisfy condition (i) in that
definition. This proves that σ is a stationary bargaining equilibrium.

Example 5. The strategy profile σ, described in the example, is defined
by

• Policy strategy given status quo x: π1(x, x) = 1;

• Policy strategy given status quo y: π1(y, x) = 1;

• Policy strategy given status quo z: π1(z, y) = 1;

• Voting strategies given status quo x:

1− α1(x, y) = α2(x, y) = 1− α3(x, y) = 1 ,

1− α1(x, z) = α2(x, z) = α3(x, z) = 1 ,

so that the agenda setter can maintain status quo x, of course, or
successfully propose z (but not y), if desired;

• Voting strategies given status quo y:

α1(y, x) = 1− α2(y, x) = α3(y, x) = 1 ,

1− α1(y, z) = 1− α2(y, z) = α3(y, z) = 1 ,

so that the agenda setter could maintain status quo y or successfully
propose x (but not z), if desired;

• Voting strategies given status quo z:

α1(z, x) = 1− α2(z, x) = 1− α3(z, x) = 1 ,

α1(z, y) = α2(z, y) = 1− α3(z, y) = 1 ,

so that the agenda setter could maintain status quo z or successfully
propose alternative y (but not x).
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It is readily checked that the corresponding dynamic payoffs are:

Vi(x|σ) = ui(x) ,

Vi(y|σ) = (1− δ)ui(y) + δui(x) ,

Vi(z|σ) = (1− δ)(ui(z) + δui(y)) + δ2ui(x)

for each i = 1, 2, 3. Furthermore, we have

Vi(x|σ)− Vi(y|σ)

1− δ
= ui(x)− ui(y)

Vi(x|σ)− Vi(z|σ)

1− δ
= ui(x)− ui(z) + δ(ui(x)− ui(y))

Vi(y|σ)− Vi(z|σ)

1− δ
= ui(y)− ui(z) + δ(ui(x)− ui(y)).

Thus, optimal voting between x and y is determined by comparing stage
payoffs. The difference Vi(x|σ) − Vi(z|σ) is automatically positive for the
agenda setter, and for players 2 and 3, it has the same sign as

ui(x)− δui(y) + ui(z)

1 + δ
,

and for δ close to one, this is negative for players 2 and 3. The difference
Vi(y|σ) − Vi(z|σ) is automatically positive for the agenda setter, and for
players 2 and 3, it has the same sign as

δui(x)− ui(z) + (1− δ)ui(y),

and for δ close to one, this is positive for player 2 and negative for player 3.

It follows that voting strategies satisfy condition (ii) in the definition
of stationary bargaining equilibrium, and it is evident that the agenda set-
ter’s proposal strategy is optimal, satisfying condition (i) in the definition
of stationary bargaining equilibrium. We conclude that σ is a stationary
bargaining equilibrium.
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