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Abstract We examine the relationship between confidence in own absolute perfor-

mance and risk attitudes using two confidence elicitation procedures: self-reported

(non-incentivised) confidence and an incentivised procedure that elicits the certainty

equivalent of a bet based on performance. The former procedure reproduces the Bhard-

easy effect^ (underconfidence in easy tasks and overconfidence in hard tasks) found in

a large number of studies using non-incentivised self-reports. The latter procedure

produces general underconfidence, which is significantly reduced, but not eliminated

when we filter out the effects of risk attitudes. Finally, we find that self-reported

confidence correlates significantly with features of individual risk attitudes including

parameters of individual probability weighting.

Keywords Overconfidence . Underconfidence . Experiment . Risk preferences

JEL Classifications C91 . D81

1 Introduction

In this paper we report an experiment investigating relationships between measures of

individuals’ confidence assessments of their own performance and their risk attitudes.

Our broad motivation flows from a large literature originating in psychology in the

1970s and documenting apparently systematic biases in individuals’ assessments of their

own abilities, both relative to others and in absolute terms. For example, a classic

experimental approach to eliciting absolute confidence might ask subjects to respond to

various quiz questions with right and wrong answers and then to report assessments of
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their own performance (e.g., by responding to questions of roughly the form Bhow many

questions do you think you got right?^ or Bhow likely is that you got this question right?^).

A range of studies using approaches like this, starting with the classic study of Fischhoff

et al. (1977), document systematic miscalibration, usually in the form of either overcon-

fidence (i.e., over-predicting own actual success rate) or a hard-easy effect (i.e.,

overestimating success for ‘hard’ tasks and underestimating success for ‘easy’ ones).1

This literature has, in turn, stimulated significant streams of work in both empirical

and, more recently, theoretical economics. For example, findings of overconfidence in

own performance relative to that of others (e.g., Svenson 1981) has motivated many

studies by experimental economists on the relationship between relative confidence,

relative ability, and willingness to take risks in strategic environments (e.g., Camerer

and Lovallo 1999; Hoelzl and Rustichini 2005; Moore and Cain 2007; Niederle and

Vesterlund 2007). Confidence about own abilities has been shown to affect many

important spheres of economic behaviour including consumer decision making

(Grubb 2015), trading in financial markets (Biais et al. 2005; Kent and Hirshleifer

2015), innovative activity (Herz et al. 2014), investment in education (Dunning et al.

2004), and decision making among managers and CEOs (Malmendier and Tate 2015).

Given this, it is not surprising that economists have shown interest in developing

theoretical models to examine the implications of biases in confidence (e.g., Compte

and Postlewaite 2004; Dubra 2004; Gervais et al. 2011; Ludwig et al. 2011).2

Our study has two primary motivations. One flows from an apparent clash between

particular stylized findings from the established psychological literature and more

recent evidence emerging from experimental economics. We discuss the relevant

evidence in more detail in the next section, but the crucial motivating feature to note

is that the recent evidence from experimental economics has tended to reveal either

much less evidence of systematic miscalibration or strikingly different patterns of

miscalibration where it does occur. So, what might account for this difference? One

distinctive feature of much of the newer literature is that it employs various (financial)

incentive mechanisms to motivate revelation of confidence, whereas the psychology

studies tended to rely on non-incentivised self-reported confidence. One possibly

tempting—though in fact it will turn out misleading—diagnosis would be that the

newer evidence provides more accurate confidence measurement as a consequence of

incentivised revelation techniques. In this paper, however, we investigate another

possibility: that some of the differences between findings of economists and psychol-

ogists may be a consequence of biases in measured confidence induced by incentive

mechanisms which fail to control for the influence of individual risk attitudes.

Our second motivation is to explore the possibility that confidence judgements may

be intrinsically related to risk attitudes. It seems plausible that there could be a positive

association between individuals being more confident in their own performance and

being more willing to take risks. For example, overconfidence about own abilities and a

willingness to take risks might be common consequences of particular personality traits

1 Other early studies include Lichtenstein and Fischhoff (1981) and Lichtenstein et al. (1982). See Keren

(1991) or Alba and Hutchinson (2000) for reviews.
2 A related literature in psychology has challenged the interpretation of findings from miscalibration studies,

arguing that observed overconfidence and the hard-easy effect may be partly artefacts of the confidence

elicitation tools and/or methods used to analyse data, rather than biases in individual information-processing

(see Olsson (2014) for a review).
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(e.g., egotism), emotional states or dispositions (e.g., optimism). While these consid-

erations suggest a possible linkage between individual confidence assessments and risk

attitudes, as far as we know, there is no existing evidence to support such linkage.

In Section 2, we underpin the two motivations just highlighted with a more detailed

discussion of key aspects of the background experimental literature, with particular

focus on evidence related to assessments of absolute confidence.

Section 3 then introduces our experimental design. This has two core components: one

involves the use of two distinct methods for the elicitation of (absolute) confidence; the

other involves procedures for independently measuring individual risk attitudes. One of

our confidence measurement tools is a non-incentivised tool designed to be analogous to

procedures that have been used extensively in psychological research; the other is an

incentivised choice based procedure. We designed the latter to be incentive compatible for

revelation of confidence for risk neutral subjects but, in common with other incentive

mechanisms that have been used in the recent literature, our procedure will result in biased

confidence measurements for non-risk-neutral subjects. Thus, we use elicited risk attitudes

to adjust incentivised confidence measures for departures from risk neutrality. We also

examine whether individual risk attitudes predict self-reported (non-incentivised) confi-

dence judgements. In the implementation of the design (explained in detail in Section 3),

measurement of risk attitudes precedes elicitation of confidence. In presenting the design,

however, we begin by introducing our tools for confidence measurement.

In Section 4 we present our results. There are three primary findings. First, our two

tools produce markedly different patterns of confidence miscalibration, mimicking the

stylised facts of existing research (the non-incentivized tool reproduces the familiar

hard-easy effect, while our incentivised tool reveals general underconfidence). Second,

when we filter out the effects of risk attitudes on incentivised measurements of

confidence, we find that measured miscalibration is much reduced. This shows that

incentivised mechanisms for confidence elicitation can be biased in the absence of

suitable controls for risk preferences. Finally, we find that confidence, as measured by

non-incentivized self-reports, correlates significantly with features of individual risk

attitudes including parameters of individual probability weighting functions. Moreover

the directions of association are intuitively plausible: for example, reported confidence

is positively associated with risk parameters that imply greater willingness to take risk.

Section 5 discusses broader implications and concludes.

2 Background literature

In this section, we review dimensions of the literature relating to confidence

miscalibration which are most closely related to, and motivate, our contribution.

Because we are interested in possible relationships between individuals’ confidence

judgements and their risk attitudes, which we interpret as features of individuals, we

focus mainly on evidence related to the calibration of own absolute performance.3

3 In our experiment we focus exclusively on absolute, rather than relative, confidence judgements. Note that

biases in judgements about relative performance may reflect misperceptions about own performance or the

performance of others, and measurement of judgements about relative performance may be complicated by

strategic and/or social comparison concerns. Our focus on absolute confidence avoids such complications.
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We begin by looking more closely at our earlier assertion that recent

research by experimental economists has revealed rather different patterns in

(absolute) confidence miscalibration compared to the earlier psychology litera-

ture. One of the first papers in experimental economics to study absolute

confidence miscalibration is by Blavatskyy (2009). In his experiment, subjects

answer a set of 10 multiple choice quiz questions before choosing between two

payment schemes. Either one question is selected at random and the subject

receives a payoff if they answered this question correctly, or the subject

receives the same payoff with a stated probability set by the experimenter to

be equal to the percentage of correctly answered questions (although the subject

does not know this is how the probability is set). Subjects could also indicate

indifference. The majority choose the second payment scheme which

Blavatskyy interprets as reflecting a tendency towards underconfidence. He also

elicits risk attitudes in a separate part of the experiment but finds no significant

relationship between these risk attitudes and choices of payment scheme. In our

study, by contrast and as explained below, we do find significant correlations

between risk attitudes and confidence.4

In a related contribution, Urbig et al. (2009) elicit confidence about own

performance over a set of 10 multiple choice quiz questions. They use an

incentivized mechanism that elicits confidence via probability equivalents for

bets based on own performance. In their data the average elicited probability

equivalent is extremely close to the actual rate of success. Both Blavatskyy

(2009) and Urbig et al. (2009) note the difference between their findings and

those from the earlier psychology literature, and speculate that the difference

may be due to the introduction of incentivized elicitation devices. However,

neither study contains a benchmark treatment for comparing the elicited confi-

dence with a non-incentivized tool. Our study includes such a comparison.

Clark and Friesen (2009) study subjects’ confidence in relation to two types

of real effort tasks involving verbal and numerical skills. They study forecasts

of own performance using quadratic scoring rule (QSR) incentives and find that

underconfidence is more prevalent than overconfidence. One potential limitation

of QSR incentives, however, is that they may result in biased measurements of

confidence if subjects are not risk neutral. Recognizing this Clark & Friesen

use a binary lottery incentive procedure which, for an expected utility maxi-

mizer, induces risk neutrality. However, departures from expected utility theo-

ry—for example due to non-linear probability weighting—may result in the

procedure failing to induce risk neutrality (we return to this point below in

more detail).5

4 There are various differences between our methodologies that might explain this key difference in findings.

For example, Blavatskyy (2009) does not directly elicit confidence measures, as we do, but rather infers

underconfidence from the choice of payment scheme. As such, his measure of an individual’s confidence is

rather coarse, potentially limiting his analysis of the relation between individual risk attitudes and confidence.

Our measurement of risk attitudes is more detailed and also allows us to distinguish attitudes to consequences

and attitudes to chance.
5 Clark and Friesen (2009) also study forecasts of relative performance and compare (QSR) incentivized

forecasts with non-incentivized forecasts. They find little if any effect of incentives on calibration.
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A potentially significant feature of the three experiments discussed in the last three

paragraphs is that they all elicit confidence in relation to performance across sets of

tasks. By contrast, much of the earlier psychological literature investigating confidence

calibration assessed it with reference to performance in single tasks. This may be a

significant distinction because there is evidence that miscalibration varies between

measurements based on single versus sets of tasks. For example, Gigerenzer et al.

(1991), Liberman (2004) and Griffin and Brenner (2008) report that when beliefs are

elicited about aggregate performance in sets of tasks most subjects are either well-

calibrated or underconfident whereas overconfidence is evident when elicitation is at

the single task level. We study confidence on a single task level. Hence our evidence is

more directly comparable with the original confidence calibration studies.

Hollard et al. (2015) elicit absolute confidence in relation to single tasks and

compare confidence in visual perception and quiz tasks contrasting three elic-

itation tools: non-incentivized self-reports; the QSR; and the Becker-deGroot-

Marschak (BDM) mechanism. They find highest overconfidence in the non-

incentivized self-reports followed by BDM and then QSR. BDM-elicited confi-

dence being higher than QSR-elicited confidence is consistent with the effects

of risk aversion, but since they do not elicit risk attitudes we cannot tell

whether that difference is caused by risk attitudes or something else, such as

differences in understanding of the elicitation procedures. With our methodol-

ogy we will be able to identify the extent to which elicited confidence is

affected by risk attitudes.

Our study is also related to a growing literature on elicitation of subjective

beliefs. Offerman et al. (2009); Trautmann and van de Kuilen (2015) and

Andersen et al. (2014) elicit subjects’ beliefs about uncertain events in a two-

step process, using estimates of individual risk attitudes to filter out the effect

of risk attitudes from measured beliefs. Our experiment also uses estimated risk

attitudes to filter out the effect of risk attitudes from beliefs but a key

difference is that we are concerned with biases in subjective estimates of

confidence in own performance (not biases in assessments of naturally deter-

mined chance events). A second difference from these studies is that we use the

parametric method developed by Fehr-Duda et al. (2006) to estimate individual

risk attitudes under rank-dependent utility (RDU) theories. This method gives

us a rich measure of risk attitudes which separates attitudes to consequences

from attitudes to probabilities. In our analysis, we use the measured risk

attitudes for two distinct purposes: first, by comparing risk-adjusted to unad-

justed confidence we are able to track the effect of risk attitudes on confidence

elicited using our incentivized mechanism; second, by relating measured risk

attitudes to (non-incentivised) self-reported confidence we are able to test for an

intrinsic relationship between confidence and risk attitudes.

Our exploration of the relationship between risk attitudes and confidence

connects with previous studies investigating links between other individual

characteristics and confidence. Some studies have focused on gender differ-

ences and find that overconfidence is more pronounced among men than

women (see Croson and Gneezy 2009 for a discussion of some of these).

However other studies, for example Clark and Friesen (2009), find no gender

differences in confidence. More recently, there has been interest in how
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personality traits and economic preferences interact. For example, it has been

found that personality traits such as openness and extraversion predict confi-

dence and overconfidence, respectively (Schaefer et al. 2004); neuroticism and

cognitive ability predict risk taking (Rustichini et al. 2012); and narcissism

predicts higher confidence and more willingness to bet on one’s own perfor-

mance (Campbell et al. 2004). Becker et al. (2012) review the relationships

between economic preferences and psychological personality traits, finding

mixed evidence on associations between risk preferences and personality traits.

In their own data, these authors find only weak correlations between risk

preferences and personality traits, and their best model for predicting life

outcomes such as health, earnings and education includes both personality

traits and risk preferences. None of these studies, however, report how risk

attitudes correlate with elicited confidence at the individual level. This is a

significant gap which our study seeks to address.

3 Methods

Our experiment had two parts. In the first part, we used a procedure (common

across all subjects, and explained in detail later) to elicit risk attitudes. In the

second part, we measured confidence about own performance in the context of

a standard quiz framework, using two different techniques, which we now

explain.

In Part 2 of the experiment, subjects responded to a series of two-item multiple-

choice questions, each of which asked them to judge which of a pair of cities had the

highest population. Subjects could earn £0.50 for each correct answer. The quiz is

included as Appendix A.

For each quiz response, we elicited a measure of confidence. We employed

two different procedures for measuring confidence implemented in two treat-

ments in a between subjects design. In the Reported Confidence treatment, we

elicited confidence using a simple non-incentivised self-report. Our method

was as follows: alongside each quiz answer the subject completed the

statement:

I am ___% confident that my answer is correct.

In the Inferred Confidence treatment we measured confidence using a new

incentivised procedure. Figure 1 illustrates the tool which has a choice list format.6

At the top of the figure, the subject has to choose which of two cities has the higher

population. They are then required to complete the table below the quiz question

choosing either A or B in each of the 20 rows.

6 A choice list elicitation procedure was used as early as Cohen et al. (1987) to elicit risk preferences.

Andersen et al. (2006) and Isoni et al. (2011) extensively discuss the advantages and disadvantages of using

choice lists as elicitation tools. We use choice lists mainly because of the clear interpretable framework of the

decision environment (the value of betting on one’s own answer) and the relative ease with which subjects

may see that truthful revelation is in their best interest.
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Given the construction of the table, subjects are expected to choose Option B in the

first row and Option A in the last row. At some point they will likely switch from

Option B to A, and this switchpoint is used to measure their confidence in their answer.

For example, suppose a subject thinks she has a 67% chance of being correct. Her

expected earnings from Option A are £6.70 and so if she wants to maximise her

expected earnings she should switch from B to A at row 8. We will refer to these

switchpoints as certainty equivalents (CE) and under expected value maximisation

(EV) the CE can be interpreted as revealing an individual’s subjective probability of

success (±2.5%).

More generally, the CE picks up some mix of assessment of their chances of success

with (possibly several) aspects of risk attitudes including non-linear attitudes to conse-

quences and probabilities. For example, if the subject is a risk averse expected utility

maximiser she will switch at a later row. If we were to incorrectly assume that this

subject makes choices according to the EV model, we would interpret this later

switchpoint as indicating a lower subjective probability of success. In this case our

estimate of the subject’s confidence would be biased and, even if the individual is

perfectly calibrated in that her subjective probability accurately reflects her underlying

performance, we would incorrectly record underconfidence. Similarly, if choices are

made based on non-linear attitudes to probabilities, we would obtain biased measures

of confidence if we were to infer confidence through the lens of a model that fails to

incorporate these attitudes, and as a result we would attribute systematic miscalibration

to well-calibrated subjects.

Which of the following cities has the larger population? 

 City X   City Y 

Tick one of the boxes to indicate your answer. 

In each row of the table choose either Option A or B.

Row 
Option A: 

Lottery 

Your Choice Option B: 

Guaranteed 

Amount 
A             B 

1 

You get £10.00 if 

your city choice is 

correct and £0.00 if 

not 

£10.00 

2 £9.50 

3 £9.00 

4 £8.50 

5 £8.00 

6 £7.50 

7 £7.00 

8 £6.50 

9 £6.00 

10 £5.50 

11 £5.00 

12 £4.50 

13 £4.00 

14 £3.50 

15 £3.00 

16 £2.50 

17 £2.00 

18 £1.50 

19 £1.00 

20 £0.50 

Fig. 1 Our incentivised confidence elicitation tool
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To allow for non-linear attitudes to consequences and/or probabilities we

infer confidence from CEs using one of the most common and parsimonious

specifications for risk preferences, Rank Dependent Utility (RDU) theory. Under

RDU, there should be a unique switchpoint at which the utility of the certainty

equivalent will be (approximately) equal to the value of the lottery.7 Hence,

under the RDU model (which contains expected utility and expected value

theories as special cases) we may write:

U CEið Þ ¼ U £10ð Þw Conf ið Þ þ U £0ð Þ 1−w Conf ið Þð Þ ð1Þ

where CEi is an individual’s certainty equivalent for question i, U(.) is a utility

function defined on money payoffs and w(.) is an RDU probability weighting

function. In expression (1) we treat confidence as a subjective probability

judgement that underlies choices, but may be prone to biases and

miscalibration. The function w(.) is then interpreted as capturing attitudes to

chance distinct from miscalibration.8 Rearranging Eq. (1) we obtain the prob-

ability that a subject assigns to being correct in question i, denoted Confi, as:

Conf i ¼ w−1 U CEið Þ−U £0ð Þ

U £10ð Þ−U £0ð Þ

� �
ð2Þ

Under the EV model both the value function and the probability weighting function

are linear so confidence can be inferred directly from an observed CE as Confi=CEi/10.

Estimation under the RDU model requires knowledge of both the utility function and

the probability weighting function.

Part 1 of the experiment required subjects to make a series of lottery choices, from

which we estimate individual risk attitudes in the form of their utility and probability

weighting functions. We use these estimates to filter out the effects of risk attitudes on

elicited confidence in our incentivized procedure and to study the relationship between

individual confidence and risk attitude. For the purpose of estimating U(.) and w(.), we

use a simple and easy to understand procedure introduced in Fehr-Duda et al. (2006)

and successfully employed to estimate utility function and probability weighting

function parameters in several subsequent studies (including: Bruhin et al. 2010;

Fehr-Duda et al. 2010; and Epper et al. 2011). Because it uses a choice list elicitation

task which is very similar in structure to our incentivised confidence elicitation task, it

is particularly well suited to our study as its use minimises the cognitive load involved

in subjects learning how to respond to the two types of task.

The procedure requires each subject to complete 25 tables of the form given in

Fig. 2. Each table consists of 20 rows, where each row is a choice between a two-

outcome lottery and a guaranteed amount of money, with the guaranteed amount of

money decreasing from the high outcome to the low outcome of the lottery in equal

7 For compactness, the discussion now proceeds as if CE is revealed accurately by our procedure but the

reader should keep in mind that there is, of course, an element of approximation.
8 In the literature on prospect theory, probability weights are sometimes interpreted as reflecting misperception

of underlying probabilities, sometimes reflecting subjective attitudes to chance, and sometimes a mixture of

the two. For discussion and a formalisation following the latter mixed approach, see Abdellaoui et al. (2011).

For a thorough discussion of prospect theoretic models see Wakker (2010).
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increments moving down the rows. The subject’s certainty equivalent, CEL, of lottery L

can be written as in (3), where the high prize of the lottery x1L occurs with probability

p1L and the low prize of the lottery x2L occurs otherwise:

U CELð Þ ¼ U x1Lð Þw p1Lð Þ þ U x2Lð Þ 1−w p1Lð Þð Þ: ð3Þ

We use the switching point from choosing the guaranteed amount (Option B) to the

lottery L (Option A) as our estimate of the subject’s certainty equivalent of the lottery.

The 25 lotteries are summarized in Table 1 and were adapted from Fehr-Duda et al.

(2006).

To estimate U(.) and w(.) we first specify functional forms for utility and probability

weighting functions. We follow Bruhin et al. (2010) in their choice of flexible and

interpretable functions which have been widely used elsewhere in the empirical

literature. On this basis we use the power form for the utility function:

U xð Þ ¼ xα: ð4Þ

This specification is parsimonious in modelling risk attitudes via a single

curvature parameter, α, and has been shown to provide a good fit to a wide

range of choice data. To allow for non-linear probability weighting in the

For each row of the table please choose either Option A or B. 

Row 
Option A: 

Lottery 

Your Choice Option B: 

Guaranteed amount of A B 

1 

50% chance of £10.00 

and 

50% chance of £0.00 

£10.00 

2 £9.50 

3 £9.00 

4 £8.50 

5 £8.00 

6 £7.50 

7 £7.00 

8 £6.50 

9 £6.00 

10 £5.50 

11 £5.00 

12 £4.50 

13 £4.00 

14 £3.50 

15 £3.00 

16 £2.50 

17 £2.00 

18 £1.50 

19 £1.00 

20 £0.50 

Fig. 2 Sample table for risk attitude elicitation (Part 1 of the experiment)
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estimation of RDU parameters, we use the linear-in-log-odds function of Gold-

stein and Einhorn (1987):

w pð Þ ¼
βpγ

βpγ þ 1−pð Þγ
: ð5Þ

This specification is credited with providing a good account of individual heteroge-

neity (Wu et al. 2004) and its two parameters have the advantage of having clear

intuitive interpretations (Lattimore et al. 1992; Bruhin et al. 2010): the parameter β

captures ‘elevation’ of the probability weighting function (with greater β reflecting

more ‘optimism’); the parameter γ controls curvature (for γ<1, the smaller is γ the

stronger is the deviation from linearity).

Finally, operationalizing the model requires specification of some stochastic element

in the decision process. Following Epper et al. (2011) we assume that the observed

switching point, cCEL is given by:

cCEL ¼ CEL þ ϵL; ð6Þ

where the error terms, ϵL, are independent draws from a normal distribution

with zero mean. Heteroskedasticity in the error variance across elicitation tables

is accounted for, as in Epper et al. (2011), by assuming the standard deviation

of the distribution of the error term, vL, is proportional to the difference

between the guaranteed amounts in Option B as one moves down the rows

of the table. Hence, vL= v(x1L− x2L), where v denotes an additional parameter to

be estimated. The normalized standard deviation v, and the parameters of U(.)

and w(.), are then obtained by maximum likelihood estimation.

Table 1 Lotteries used in Part 1 of the experiment

Lottery p x1 x2 Lottery p x1 x2

1 0.05 £4 £0 14 0.5 £10 £0

2 0.05 £8 £2 15 0.5 £10 £4

3 0.05 £10 £4 16 0.5 £30 £0

4 0.05 £30 £10 17 0.75 £4 £0

5 0.1 £2 £0 18 0.75 £8 £2

6 0.1 £4 £2 19 0.75 £10 £4

7 0.1 £10 £0 20 0.9 £2 £0

8 0.25 £4 £0 21 0.9 £4 £2

9 0.25 £8 £2 22 0.9 £10 £0

10 0.25 £10 £4 23 0.95 £4 £0

11 0.5 £2 £0 24 0.95 £8 £2

12 0.5 £4 £2 25 0.95 £10 £4

13 0.5 £8 £2

p denotes the probability of the first outcome, x1
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To summarise our setup, in Part 1 we elicited risk attitudes (i.e., utility and

probability weighting parameters) for every subject, using versions of Fig. 2 and the

parameter sets of Table 1. These tasks were identical for all subjects except that the

order of tasks was randomized across subjects. In Part 2 we elicited confidence, varying

the way we did this across two between-subject treatments. In the Reported Confidence

treatment we used simple, non-incentivized self-reports. In the Inferred Confidence

treatment we used Fig. 1 and Eq. (2), using the elicited risk attitudes from Part 1 for

measuring confidence under RDU.9

After answering all quiz questions and providing their confidence levels (either by

reporting or filling in the table), subjects completed a questionnaire while we checked

their answers. Via this questionnaire, we elicited a variety of things including demo-

graphic information and a basic measure of ambiguity attitudes using a simple (non-

incentivized) version of Ellsberg’s (1961) urn problems.10 Details of the questionnaire

are provided in Appendix B. At the end of the experiment, we used a random incentive

system to pay subjects.11 Subjects were paid based on one randomly drawn row in one

randomly drawn table in one randomly drawn part of the experiment. We used physical

objects (dice, numbered balls and poker chips) to make the independence of the

randomization devices salient, and we explained the randomization procedures with

simple examples and diagrams.

The experiment was conducted at the University of Nottingham, CeDEx lab in 2011.

Subjects were recruited using ORSEE (Greiner 2004). In total 86 subjects participated;

40 in the Inferred Confidence treatment (25 male), and 46 in the Reported Confidence

treatment (23 male). The experiment was conducted in pen and paper format with

subjects seated in cubicles. The experiment lasted approximately 1 hour and the

average payment to participants was £9. The full experimental instructions are available

on request.

4 Results

We structure the results under three subheadings. In Section 4.1, we compare and

contrast the data on average confidence elicited in the two treatments. In Section 4.2,

we present our findings on individual risk attitudes and risk-adjusted confidence.

Finally, in Section 4.3, we examine the relationship between risk attitudes and reported

confidence.12

9 We did not randomize the order of risk and confidence elicitations since we wanted to ensure a common

experience prior to confidence measurement across treatments.
10 We included a basic tool for classifying subjects according to ambiguity attitudes because we conjectured

that such attitudes might play some role in responses to our confidence elicitation tasks. We found no evidence

to support this, however. Summary statistics of the ambiguity data are reported in Appendix B.
11 The random incentive system is a widely used experimental procedure. For a discussion of its rationale and

possible limitations see Bardsley et al. (2010).
12 Before proceeding with the analysis, we dropped the data for four quiz questions that were potentially

misleading because the success rate on each of these questions was less than 40% (whereas reported

confidence judgements were constrained to the interval 50–100%; see Appendix A). We also excluded data

from tables where subjects switched on one row and then switched back again at a later row. Reassuringly,

however, less than 2% of the tables of Part 1 and no table in Part 2 included such non-monotonic responses.
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4.1 Reproducing standard results

Figure 3 provides a quick eye-balling tool for comparing confidence measured

using non-incentivized self-reports with confidence elicited using our incentivised

mechanism (on the assumption that individuals are risk neutral). Consider first the

top left panel. This plots, for each quiz question, the mean of reported confidence

against the average success rate. The 45-degree line provides a natural benchmark

in the sense that a general tendency towards overconfidence would result in points

located above the line whereas a general tendency towards underconfidence would

result in points below it.13

The reported confidence data have a pattern consistent with the familiar ‘hard-

easy effect’. To highlight this, we have drawn a vertical (dashed) line through the

question which is the median in terms of its success rate (at around 68%). If we

define ‘hard’ (‘easy’) questions as those with lower (higher) than median success

rates it is then apparent that, on average, there is overconfidence for all but one of

the hard questions and underconfidence for all of the easy ones. For each question

we measure miscalibration bias as average confidence minus the proportion of

correct answers. We then test whether the mean of the distribution of biases is

equal to zero using a simple t-test. For easy questions there is significant

underconfidence (average bias =−0.115, p= 0.002) while for hard questions there

is significant overconfidence (average bias = 0.070, p= 0.001). Pooling hard and

easy questions we cannot reject the null of zero expected bias (average bi-

as =−0.027, p= 0.312), evidently because the negative bias on easy questions

offsets the positive bias on hard questions.

The top right panel of Fig. 3 provides corresponding analysis for confidence

inferred from our incentivised elicitation tool, but on the assumption that individ-

uals are expected value maximizers. We refer to this measure as ConfEVi and, from

expression 2 above, it is easy to see that this can be calculated directly from an

individual’s switchpoint in any given table because ConfEVi = CEi/10. Here, all of

the observations sit below the 45-degree line indicating a systematic and highly

significant tendency towards underconfidence (average bias =−0.212, p= 0.000).

The bottom two panels provide corresponding analysis, but in this case, each dot

represents a single subject with each individual’s average reported confidence across

tasks plotted against their actual success rate. For the Reported Confidence treatment,

individuals with less than median success rate are overconfident (p=0.085) and

individuals with more than median success rate are underconfident (p=0.041). For

the Inferred Confidence treatment, across all individuals, there is general

underconfidence (p=0.000).

Taken together, the results presented in Fig. 3 reproduce the standard pattern

of findings that motivated our study: using a procedure based on non-

incentivised self-reports of confidence, similar to those used in a range of

psychological studies, we reproduce a hard-easy effect; in contrast, using an

incentivised procedure to elicit confidence we find a marked tendency towards

underconfidence.

13 Histograms of average, subject-level, reported and inferred confidence are also presented in Appendix C.
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4.2 Risk preferences and risk-filtered confidence

As explained above, if individuals have non-linear utility or probability weighting

functions then confidence measures elicited via our incentivised mechanism will, in

part, reflect risk attitudes. This section takes account of this possibility by implementing

analysis to filter out the effects of risk attitudes on our incentivised confidence measures.

To this end, we exploit the data from Part 1 of the experiment to fit risk preference

models separately for each individual. As described in Section 3, we do this using one

of the leading models of risk preference, rank-dependent utility theory (RDU). We

estimate four parameters per experimental subject: the three parameters of the RDU

model (α, β, γ) assuming the power utility function (Eq. 4) and the linear-in-log-odds

probability weighting function (Eq. 5); plus the normalized standard deviation of the

decision errors (v). We omit discussion of the error distribution parameter from the

results since this is not central to our analysis.

Figure 4 summarises the results from fitting these models to individuals in our

(‘Nottingham’) study; as a benchmark for our estimates we also report parameters
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Fig. 3 Confidence and success. Top panels: Each dot represents a question. For a given question, Bias =

(Average Confidence) − (Average Success) across subjects. Average Bias is the mean across questions and the

reported p-value is for a two-tailed t-test that the mean of the distribution of biases equals zero. Bottom panels:

Each dot represents a subject. For a given subject, Bias = (Average Confidence) − (Average Success) across

questions. Average Bias is the mean across subjects and the reported p-value is for a two-tailed t-test that the

mean of the distribution of biases equals zero
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obtained by applying the same econometric method to the data reported in Bruhin et al.

(2010) and Epper et al. (2011) (these are labelled the ‘Zurich’ estimates). The results for

Nottingham and Zurich are, qualitatively, very similar. The mean of the utility function

parameter distribution is close to one and for most of the Nottingham subjects (67 out

of 86) we cannot reject the null hypothesis that α=1 at the 5% level of significance

(two-tailed test). Based on the same test procedure, however, for a very large majority

of subjects we do reject linearity of the probability weighting function: for roughly half

the subjects (44 of 86) we reject β=1; for 78 out of 86 subjects we reject γ=1 and for

all except four subjects we reject the joint hypothesis that β=γ=1.

The graph presented in Fig. 4 plots the probability weighting function based on the

median estimates of β and γ of the sample. The Nottingham and Zurich plots both

display the inverse-S shape which overweights (underweights) small (large) probabil-

ities; this is quite typical of the broader empirical literature estimating probability

weighting functions, at least for data gathered from tasks with stated (as opposed to

learned) probabilities (for a review see Starmer 2000; Fehr-Duda et al. 2006). This

correspondence between our estimates and those obtained in Zurich provides some

reassurance that our procedures for estimating the risk preference measures are reliable

(or at least comparably reliable to those based on similar procedures elsewhere in the

literature).14

The significant non-linearity in utility and probability weighting functions for the

majority of our subjects strongly suggests that risk attitudes will be a component of

confidence measured via ConfEVi. Also notice that from the bottom right panel of Fig. 3

it is apparent that ConfEVi <0.5 for a significant proportion of individuals (47.5%).

Given that each task involved a choice between two options, one of which was right,

confidence below 50% is implausibly low. In our incentivised task, however, risk

aversion (say as measured by concavity of the utility function) would tend to depress

ConfEVi. In other words, the data obtained from our incentivised mechanism might

seem more plausible were we to filter out the effect of departures from risk neutrality.

    The Mean of the Estimated Parameters  

     for Nottingham and Zurich Samples  

Nottingham 

(n=86) 

Zurich 

(n=138) 

1.047 (0.22)  1.104 (0.29)  

0.729 (0.16) 0.884 (0.17) 

0.477 (0.07) 0.533 (0.10) 

    Mean standard errors are in parentheses  
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Fig. 4 Estimates of risk preference parameters. The plot is the weighting function based on the median

estimates of β and γ of the sample

14 Histograms of the estimated parameters can be found in Appendix D.
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Using the independent measures of individuals’ risk parameters (based on responses

to Part 1 of the experiment) we estimate risk-adjusted measures of inferred confidence,

based on expression (2) above, as follows:

Conf RDU i
¼ w−1 CEi

10

� �α� �
¼

1

β* CEi

10

� �
−α
−β

� �1
γ þ 1

ð7Þ

The results of filtering out risk in this way are shown in Fig. 5. This figure plots

inferred confidence against actual success rates for each question, with separate panels

for the EV and RDU models. For comparison, we also reproduce the reported confi-

dence in the bottom panel. We observe that (i) the extent of underconfidence falls as we

move from EV to RDU (p=0.025), (ii) the difference between mean biases of reported

and inferred confidence decreases as we filter out risk attitudes (p=0.023), and (iii)

inferred confidence is significantly more noisy than reported confidence (Levene

(1960) variance equality test: p=0.009). These results suggest that, in the absence of

filters for risk attitude, the extent of underconfidence is exaggerated. By filtering out
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Fig. 5 Risk adjusted confidence and success. Each dot represents a question. For a given question, Bias =
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components of these measures attributable to risk attitudes, the overall mean bias falls

from −0.212 (inferred confidence under EV) to −0.086 (inferred confidence under

RDU).

While confidence miscalibration is reduced as a consequence of allowing for risk

attitudes, it is not eliminated and the mean (underconfidence) bias remains significant

for both measures of inferred confidence. Averaging across questions, subjects’ success

rates are 8.6 percentage points higher than their inferred confidences under our RDU

specification. For comparison, success rates are 2.7 percentage points higher than

reported confidence.

Note, however, that zero bias does not imply perfect calibration. If, as in the

bottom panel of Fig. 5, bias is positive for hard questions and negative for easy

questions, the average bias measure may not reveal the extent of miscalibration.

Thus, for a different overall measure of miscalibration we use the average

absolute bias (i.e., the sum of vertical deviations from the 45-degree line).

On this measure, inferred RDU confidence (11.6%) and reported confidence

(10.2%) are not significantly different (p= 0.666).

4.3 Relationship between reported confidence and risk attitudes

So far we have focussed on the relation between risk attitudes and measured

confidence elicited via an incentivised mechanism. Next we explore a possible

connection between risk attitudes and self-reported confidence. It seems plausible

to suppose that confidence might be related to risk attitudes. One reason for

thinking this flows from the fact that various popular contemporary theories of

risk preference allow departures from risk neutrality to arise as consequences of

the way that people assess and/or respond to probabilities. For example, in

prospect theory (Kahneman and Tversky 1979; Tversky and Kahneman 1992)

decisions can be interpreted as being influenced either by misperception of

objective probabilities or by subjective attitudes to whatever probabilities are

perceived. To the extent that such processes reflect generic properties of the way

that humans perceive and respond to risks, that provides reason to expect that

similar processes might operate in relation to confidence judgements because

those judgments are assessments of probabilities. We investigate this possibility

by examining the correlation between individual level risk parameters and report-

ed confidence. Notice that, while we have a reason to believe that ConfEV and

ConfRDU may be correlated with risk attitudes because of an influence introduced

via the measurement technique, in the case of reported confidence, there is no

such transmission mechanism. As such, a correlation between risk attitudes and

reported confidence would be suggestive of an intrinsic link between confidence

and risk attitudes.

Table 2 presents the results of OLS regressions where the dependent variable

is average reported confidence (subject level). The table reports two model

specifications. Model 1 uses estimated RDU parameters as regressors, and

Model 2 includes additional controls for average success rates, demographic

variables and the measure of ambiguity aversion elicited from the questionnaire.

Since some of the regressors are estimated, we use bootstrapped standard errors

to account for measurement error in the independent variables.
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Estimates of Model 2 show no significant association between average reported

confidence levels and average success rates across subjects.15 None of the other control

variables have any significant predictive power for confidence levels. Turning to the risk

parameter estimates, curvature of the utility function is positively related to reported

confidence levels in both specifications, with greater risk seeking (as captured by higher

α) associated with higher confidence. We do not find a robust significant effect of the

probability weighting elevation parameter β.16The significant positive effect of γ in both

specifications has a natural interpretation. Recall that γ controls curvature of the

weighting function, then notice that, for our tasks, success rates are such that we are

typically operating in a region where the median subject’s weighting function under-

weights probabilities. In this region, increases in γ reduce underweighting. Hence, the

Table 2 Dependent variable average reported confidence

Explanatory variables Model 1 Model 2

α 0.125*** 0.124**

(0.05) (0.055)

β 0.078 0.097

(0.05) (0.060)

γ 0.096** 0.109**

(0.051) (0.054)

Average success 0.029

(0.112)

Female −0.037

(0.028)

Age −0.013

(0.009)

Ambiguity averse −0.013

(0.032)

Constant 0.453*** 0.704***

(0.078) (0.202)

R
2

0.203 0.251

n 45 43

* 10%, ** 5%, *** 1% significance levels

Standard errors (in parentheses) are obtained by the bootstrap method with 1,000 replications

15 The lack of a significant effect may reflect low power due to our relatively limited sample size. We also

checked the relation between confidence and success in a more disaggregate analysis using responses to each

question (rather than averages) as the dependent variable. In this analysis, there is a positive and significant

association between success and expressed confidence levels; confidence is about 8.5% higher when a

subject’s answer to a question is correct. This relationship fades away in average subject-level analysis which

is consistent with the findings by e.g., Kruger and Dunning (1999) and Massoni and Roux (2012).
16 In Table 2 we report our most parsimonious model, using just the risk attitude variables, and our most

general model. We also examined intermediate cases excluding some of the questionnaire variables. We found

that the significant effects captured by α and γ are robust across model specifications, but the effect captured

by β is sensitive to model specification. For example, if the gender dummy is excluded from Model 2, β

becomes significantly positive at the 5% level. Lack of significance in this specification may also reflect low

power due to our modest sample size.
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positive sign here is consistent with a positive association between underweighting and

underconfidence.17 We believe the analysis in this section is novel, and scientifically

interesting, suggesting the possibility of common psychological mechanisms underpin-

ning risk attitudes and confidence judgements.

5 Discussion

There is a very large empirical literature investigating confidence judgements and much of

this points to the presence of overconfidence in a range of judgements or the existence of a

hard-easy effect. The bulk of this literature, however, rests on data generated from non-

incentivised self-reports of confidence. More recently, the robustness of conclusions from

this line of research has been challenged by studies from experimental economists which

use incentivised tasks to elicit confidence judgements and find that overconfidence is

considerably reduced. Indeed, in these recent studies, underconfidence is the typical finding.

Our study contributes to this literature, and its central novelty lies in combining two

key design features. First, we compare miscalibration of confidence in own absolute

performance across incentivised and non-incentivised confidence elicitation tasks.

Second, our design incorporates procedures for measuring the risk attitudes of our

participants coupled with techniques that allow us to track how filtering out risk

attitudes affects the measurement of confidence via the incentivised procedure. With

the data generated from our design, we are also able to investigate a possible link

between reported confidence and risk attitudes at the individual level.

Using a non-incentivised procedure, designed to be very similar to those used in much

of the background psychology literature, we reproduce the standard finding of a hard-easy

effect.With our new incentivised confidencemeasurement, regardless of whether or not we

filter for risk attitudes, and in line with the recent experimental economics literature, we

observe a general tendency towards underconfidence and the hard-easy effect disappears.

Our primary novel findings then relate to the impacts of risk aversion on measured

confidence. In the context of incentivised confidence elicitation, we find that filtering

out risk attitudes from inferred confidence reduces the degree of underconfidence. We

also observe a striking association between risk attitudes inferred from incentivised

decisions about lotteries and confidence measured using the non-incentivized tool.

Specifically, individuals who are more risk averse tend to express lower confidence.

As far as we know, we are the first to provide direct evidence that risk attitudes play a

significant role in determining confidence judgements. While we have argued that some

such connection is intuitively plausible, the fact that the association appears to work through

both attitudes to consequences and attitudes to chance is striking: in our data confidence is

associated with parameters of both the utility function and the probability weighting

function. In our view the discovery of an association between probability weighting and

confidence is particularly intriguing. To those who tend to think of probability weighting as

reflecting more general underlying principles of cognition, the manifestation of those

17 We also examined the relationship between reported confidence and another simple proxy for risk attitudes

represented as the individual’s average switch point (ASP) in Part 1 of the experiment. This revealed

significant positive association between ASP and reported confidence consistent with higher confidence for

less risk averse individuals. Notice that this ASP measure of risk attitude does not rely on any particular model

of risk preference. Results of this analysis are reported in Appendix E.
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principles in another domain will be reassuring but perhaps not especially surprising.

However, we suspect that many economists previously aware of evidence of probability

weighting may, quite reasonably, think of it as an essentially empirical regularity derived

mainly from observing choices among simple gambles, with stated probabilities. To those

who do interpret it in this more limited way, our results are arguably much more surprising

by establishing a clear empirical connection between responses to probabilities in two very

different domains: one involving attachment of certainty equivalents to gambles with stated

probabilities (Part 1 of our experiment); the other involving self-reported probability

judgements about one’s own success rate in a given question (Part 2 of our experiment).

We suggest that the ability of measured (non-linear) probability weighting to predict

behaviour in these very different tasks and domains is a positive signal of the explanatory

scope and significance of the concept of probability weighting within economics.

Given this association between probability weighting and confidence judgements, it is

natural to ask whether other ‘non-standard’ aspects of preference in relation to risk or

uncertainty might also co-vary with confidence judgements. In this respect, an obvious

candidate to consider is ambiguity aversion, particularly since confidence judgments appear

to be intrinsically ambiguous (as opposed to risky). Although this raises issues beyond the

boundaries of the present study, our post-experimental questionnaire did include a task

intended to assess attitudes to ambiguity. Using these data we found that subjects identified

as ambiguity averse did not switch differently in the confidence elicitation tables compared

to ambiguity neutral subjects. Nor did we find any relationship between ambiguity attitudes

and self-reported confidence. This is, of course, far from conclusive evidence that there is

no relationship to discover, and there is certainly scope for further research into this issue

and the broader question—previously highlighted by Hoelzl and Rustichini (2005);

Offerman et al. (2009) and Kothiyal et al. (2011)—of how to assess and control the

potential impact of ambiguity attitudes in the context of incentivised belief elicitation.

We conclude with a brief cautionary remark. Whether or not people’s confidence

judgements are well calibrated is clearly an important issue in a range of economically

relevant field contexts (Harrison and Phillips 2014). As such, economists have, understand-

ably, shown an interest in the large volume of evidence supporting overconfidence in the lab

and field. While it seems entirely appropriate to analyse the consequences of confidence

miscalibration, it now looks naïve to proceed, as some have done in the past, by simply

assuming overconfidence as a reasonable empirical assumption (Odean 1999; Compte and

Postlewaite 2004; Malmendier and Tate 2005; Galasso and Simcoe 2011; Gervais et al.

2011). In contrast, our results, alongside other recent work (e.g., Hoelzl and Rustichini

2005; Moore and Healy 2008; Blavatskyy 2009; Clark and Friesen 2009; Merkle and

Weber 2011), support the following conclusion: while miscalibration of confidence judge-

ments occurs and persists in controlled incentivised decisions, there is currently—and

perhaps ironically—apparent overconfidence regarding the empirical significance of over-

confidence. We hope that our work provides helpful input for recalibration.
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Appendix A: City quiz questions

Athens, Greece        Amsterdam, Netherlands   

Which of the following two cities has the larger population? (23.2%)

Philadelphia, USA    Havana, Cuba

Which of the following two cities has the larger population?  (63.5%)

Los Angeles, USA   Kolkata, India    

Which of the following two cities has the larger population?  (38.1%)

Rome, Italy   Lima, Peru  

Which of the following two cities has the larger population? (59.7%)

Cairo, Egypt   Brasilia, Brazil

Which of the following two cities has the larger population? (57.9%)

Tehran, Iran Seattle, USA  

Which of the following two cities has the larger population? (74.1%)

Warsaw, Poland   Nairobi, Kenya

Which of the following two cities has the larger population?  (57.2%)

San Diego, California, USA Dallas, Texas, USA

Which of the following two cities has the larger population?  (83.8%)

Buenos Aires, Argentina Rio De Janeiro, Brazil

Which of the following two cities has the larger population?  (45.9%)

Seoul, South Korea Singapore, Singapore

Which of the following two cities has the larger population? (96.5%)

Cairo, Egypt  Shanghai, China  

Which of the following two cities has the larger population? (58.4%)

Istanbul, Turkey  Sydney, Australia

(The percentages of correctly given answers are in parentheses.)

Which of the following two cities has the larger population? (59.6%)
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Which of the following two cities has the larger population? (81.3%)

Lima, Peru  Sao Paolo, Brazil

Which of the following two cities has the larger population? (92.8%)

Dubai, United Arab Emirates Tokyo, Japan

Which of the following two cities has the larger population? (92.8%)

Mumbai, India  Berlin, Germany   

Which of the following two cities has the larger population?  (75.4%)

Paris, France Mexico City, Mexico

Which of the following two cities has the larger population? (46.1%)

Budapest, Hungary Caracas, Venezuela  

Which of the following two cities has the larger population? (78.2%)

Milan, Italy Malaga, Spain

Which of the following two cities has the larger population? (69.2%)

Coventry, UK Leicester, UK

Which of the following two cities has the larger population? (65.3%)

Oslo, Norway Stockholm, Sweden
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Appendix B: Post Study Questionnaire

1) What is your sex?        Male Female

2) What is your age?                      _____________

3) [Ellsberg’s Urn Problem:]

Suppose that you are shown a bag which contains 90 balls. Of these, 30 are red. The remaining 60 

balls are some mixture of black and yellow, but you do not know what the mixture is. One ball is 

to be drawn at random from the bag. You are asked to choose one of two options: Option I will 

give you £10 if a red ball is drawn, while Option II will give you £10 if a black ball is drawn. This 

choice may be written as follows:

Red Black Yellow

Option I £10 £0 £0

Option II £0 £10 £0

Which would you choose? Please tick the corresponding box. 

Now suppose, instead, that you are offered a different choice of options, defined in terms of the 

same draw of a ball from the same bag. You must choose one of Options III and IV:

Red Black Yellow

Option III £10 £0 £10

Option IV £0 £10 £10

Which would you choose now? Please tick the corresponding box.

Table 3 Summary statistics of descriptive variables, n = 86

Scale Mean Std error

Female Binary 0 or 1 0.44 0.50

Age Numeric Continuous 20.2 2.17

Ambiguity attitudea Qualitative Ambiguity averse,

seeking, or neutral

Averse: 55

Seeking: 1

Neutral 30

a Subjects classified according to responses in Ellsberg problems in post study questionnaire as follows:

ambiguity averse (Options I and IV chosen); ambiguity seeking (Options II and III); ambiguity neutral

(Options I and III or Options II and IV)
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Appendix C: Histograms of Average Reported Confidence and ConfEV
(Subject Level)
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Appendix D: Histograms of Risk Preference Parameters
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Appendix E: Average Switch Point as an Alternative Risk Measure

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-

duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were made.
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