
Badiee, A. and Ashcroft, I.A. and Wildman, Ricky D. 
(2016) The thermo-mechanical degradation of ethylene 
vinyl acetate used as a solar panel adhesive and 
encapsulant. International Journal of Adhesion and 
Advesives, 68 . pp. 212-218. ISSN 0143-7496 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/32875/1/1-s2.0-S0143749616300549-main%20%281%29.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/33576471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


The thermo-mechanical degradation of ethylene vinyl acetate used
as a solar panel adhesive and encapsulant

A. Badiee, I.A. Ashcroft n, R.D. Wildman

Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK

a r t i c l e i n f o

Article history:

Accepted 13 March 2016
Available online 17 March 2016

Keywords:

Ageing

Dynamic Mechanical Analysis

Thermal analysis

Durability

Photovoltaic encapsulants

a b s t r a c t

The thermal ageing of an ethylene-vinyl acetate (EVA) polymer used as an adhesive and encapsulant in a

photovoltaic module has been investigated. The EVA is used to bond the silicon solar cells to the front

glass and backing sheet and to protect the photovoltaic materials from the environment and mechanical
damage. Using a range of experimental techniques, including Dynamic Mechanical Analysis, Differential

Scanning Calorimetry and Thermo-gravimetric Analysis, it was possible to show a link between changes

in mechanical properties with both the transient temperature and the degree of long-time thermal

ageing. Importantly, it was possible to show that the ageing related property changes were likely due to
long term structural changes rather than any modification of the chemistry of the material.

& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In order to support the continuing and growing consumer
demand for energy, there is an expanding need for sustainable
energy sources [1]. Solar energy harvesting methods, such as those
employing photovoltaic (PV) modules, are a step towards achiev-
ing this goal. Currently, however, PV module take-up and instal-
lation is dependent upon government subsidy, owing to the
marginal economic benefit to the user as a consequence of the
high capital cost and relatively low lifetime [2,3].

The lifetime of a PV module is generally limited by the degra-
dation of the constituent parts, leading to a decrease in efficiency
and eventual failure [4–7]. One part that is particularly susceptible
to degradation is the adhesive encapsulant. The encapsulant is
used to bond the silicon cell to the front glass and backing sheet in
a lamination process into a weatherproof structure, called a PV
module or a solar panel. The encapsulant is also essential for
mechanical protection and electrical insulation and is expected to
protect the solar cells from environmental damage, including rain,
snow, dust, thermal and mechanical stresses. Degradation of this
layer can lead to optical decoupling owing to discolouration, with
subsequent power loss, loss in adhesion strength, delamination
and corrosion in metallic parts due to acetic acid production [8].

Currently, the most common encapsulant material for PV
modules is ethylene-vinyl acetate (EVA), which is a copolymer of
ethylene and vinyl acetate [9]. It is popular in the PV industry

owing to its low cost, high adhesion strength and high transpar-

ency, with glass like transmission properties in the range of

400 nm to 1100 nm [8,10,11]. In addition to this, EVA has high

electrical resistivity, a low polymerisation temperature and a

relatively low water absorption ratio, all of which points to it being

a good, cost effective, choice for a PV module encapsulant [12]. A

typical EVA co-polymer formulation for PV modules is 28–33% by

weight vinyl acetate, compounded with additives such as curing

agents, ultra violet (UV) absorbers, photo antioxidants and thermo

antioxidants. Despite this, EVA undergoes chemical degradation

when it is exposed to the environmental conditions seen in ser-

vice, especially heat, humidity and UV irradiance, leading to

material ageing and the possibility of a complex interaction of

several different ageing mechanisms.
Determining the effect of environmental stresses and artificial

ageing on polymeric materials is of concern in many engineering

applications and has been the subject of significant research [13–

17]. A number of authors have considered the effect of laminating

conditions and ageing processes on EVA in PV devices [18–20]. Wu

and colleagues [21] reported that humidity was the main cause of

the reduction in adhesion strength in PV modules on ageing and

that temperature determined the speed of degradation, with the

loss of adhesion due to humidity ingress demonstrating an expo-

nential relationship. Rashtchi et al. [22] studied moisture absorp-

tion in EVA and showed that the spectral region between

3400 cm�1 and 3700 cm�1 is the best indicator of moisture pre-

sence. They also showed that double-bonded water is initially

absorbed in the EVA matrix, followed by single-bonded water, the

latter being lost first on drying. Iwamoto et al. [23] Investigated
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the presence of free and bonded water in EVA with different vinyl

acetate content. Their FTIR results showed that one- and two-

bonded water coexist in the copolymer and increasing the vinyl

acetate content also increased the proportion of two-bonded

water. In the case of two-bonded water every OH is hydrogen

bonded to a C¼O. In one-bonded water, an OH is bonded to C¼O

of ester group and another OH is free. Two-bonded water is

initially absorbed in the EVA matrix, followed by one-bonded

water. However, one-bonded water is lost first by increasing

temperature, followed by the two-bonded water. Badiee et al [24]

investigated the effect of UV ageing on the chemical degradation

of EVA. Their results indicated significant chemical changes,

including the formation of carboxylic acid, lactone and unsatu-

rated groups, which caused discolouration in EVA. Their results

also illustrated the dominant degrading influence of UV compared

to other degradation factors. The influence of the degree of ageing

on the thermal stability of EVA has been investigated by placing

EVA granules in a laboratory oven at 85 °C, in air and measuring

the material properties at different times up to 30 weeks [25]. The

results showed that EVA undergoes a two-step degradation, where

the first stage is acetic acid evolution and the second involves

main chain degradation. Both of these degradation steps shift to

lower temperature as a consequence of oxidation and chain scis-

sion as ageing proceeds, therefore, the degradation accelerates

following ageing. Significant work has been performed to under-

stand the chemical processes involved in degradation. It has been

reported that the initial product of EVA degradation is exclusively

acetic acid [26]. The effect of degradation on the physical proper-

ties of EVA, for example, glass transition temperature, has been

reported [27]. Buch et al. [28,29] studied the behaviour of epoxy

resin at elevated temperatures, its thermal degradation and

thermo-oxidation. They showed that the degradation of epoxy

resin is a two stage process where the second stage occurs only in

the presence of oxygen and leads to material loss whereas in the

case of EVA chain session happens even in the absence of oxygen.

In their paper the activation energy of thermal degradation was

calculated using different methods and no significant difference

was found between them.
These previous studies have illustrated the main mechanisms

through which thermal degradation of EVA occurs. However, the

influence of thermal ageing on the mechanical properties and

structure of EVA, which directly affect its encapsulant capabilities,

has not been thoroughly investigated and there is a missing link

between the ageing process and consequences of that ageing

within the context of mechanical behaviour. This paper seeks to

address the need to understand the changes in mechanical prop-

erties on thermal ageing of EVA by examining the link between the

chemistry, the structure and the mechanical behaviour. In this

paper the samples are tested dry and without UV exposure to

isolate the thermal degradation affects.

2. Methodology

The approach taken in this paper was to determine the reaction

kinetics of thermal degradation of the EVA and then to relate the

state of degradation to the physical and mechanical properties. This

should, in theory, enable the properties of EVA, which are critical to

its role as an adhesive encapsulant, to be predicted from its thermal

history. This methodology was achieved by the use of a number of

experimental thermal analysis methods, as described below.

2.1. Experimental techniques to characterize the encapsulant

material

The characterisation of EVA was separated into two parts. First,

the mechanical properties as a function of temperature and ther-

mal ageing were determined. Secondly, the degradation rate of the

material was determined as a function of temperature. Three

experimental techniques were used to achieve this. Differential

Scanning Calorimetry (DSC), Thermo-gravimetric Analysis (TGA)

and Dynamic Mechanical Analysis (DMA). These techniques enable

the investigation of structure and state of the material as the

temperature is changed (DSC), the evolution of degradation pro-

ducts from a sample exposed to changes in temperature and thus,

the reaction rates (TGA) and the viscoelastic mechanical properties

of the material and their relation with the thermal conditions

(DMA). The base material was a cured EVA copolymer with 33%

vinyl acetate and gel content of 80%, which was supplied in

0.5 mm thick sheets (provided by Ecole Polytechnique Fédérale de

Lusanne (EPFL)). The curing process is fully described in [30]. The

EVA sheets were aged in a dark laboratory oven at 85 °C for up to

80 days.

2.1.1. Dynamic Mechanical Analysis (DMA)

DMA was used to investigate the temperature dependant vis-

coelastic properties of the EVA. Samples were loaded in tension

with a cyclic strain of 15 μm at a frequency of 1 Hz. The storage

modulus, loss modulus and phase angle (i.e., the lag between

stress and strain) were then calculated. The temperature was

ramped from �70 °C to 100 °C with a heating rate of 5 °C/min in

air to determine the relationship between mechanical properties

and temperature.

2.1.2. Differential Scanning Calorimetric (DSC)

DSC is a calorimetry method which measures heat flow as a

function of temperature. This heat flow can vary due to thermally

active transitions such as the glass transition in polymers and

melting, but can also indicate other structural changes that are

driven by thermal processes. In this study all DSC experiments

were conducted in an inert atmosphere with a nitrogen atmo-

sphere (50 ml/min) using a TA instrument (TA-Q10). The DSC

program used to evaluate the behaviour of the previously cured

EVA samples was a heat-cool-heat cycle based on ASTM-D 3418-

08. The first heating was done at 10 °C/min from �75 °C to 200 °C.

The temperature was held at 200 °C for 5 min and then cooled

down at �10 °C/min to �75 °C and held at this temperature for

5 min. This cycle was then repeated for a second time. Samples

were cut into circular disc shapes weighing approximately 8 mg

for this test and experiments were carried out in hermetic Al pans.

2.1.3. Thermo-gravimetric Analysis (TGA)

Thermo-gravimetric Analysis (TGA) is a thermal analysis tech-

nique which measures the amount and rate of change in the

weight of a material as a function of temperature or time in a

controlled atmosphere. TGA measurements are particularly pow-

erful when coupled with knowledge of the chemistry of the

sample, as one can then correlate changes in the weight of the

subject with its chemical state. All experiments in this study were

conducted in an inert atmosphere with a nitrogen atmosphere

(100 ml/min) with a TA instruments TA-SDT 600 and heating rates

of 5, 10, 15 and 20 °C/min; recording mass loss and the rate of mass

loss as a function of temperature. Samples were cut into circular

disc shapes weighing approximately 15 mg and experiments were

carried out in platinum pans.

A. Badiee et al. / International Journal of Adhesion & Adhesives 68 (2016) 212–218 213



2.2. Kinetics of degradation

The rate of material conversion (dα=dt) of a solid state process
has the following general form

dα

dt
¼ k Tð Þf αð Þ ð1Þ

where α is the conversion degree or fractional weight change, t is
the reaction time, k is a rate constant which depends on the
temperature (T) and f ðαÞ is a kinetic model function which is a first
order reaction in this case [31,32]. In this study the conversion
degree is defined as,

α¼
m0�mt

m0�m1

ð2Þ

wherem0,mt andm1 are initial sample mass, sample mass at time
t and sample mass at the end of the reaction, respectively. As the
reactions to be considered here are related to thermal processes, k
(T) is assumed to be of an Arrhenius form, such that Eq. (1)
becomes,

dα

dt
¼ Ae

� E
RTð Þf αð Þ ð3Þ

where A is a pre-exponential (frequency) factor, E is the activation
energy and R is the universal gas constant. For non-isothermal
experiments carried out with constant heating rates, β¼dT/dt, it is
possible to arrive at,

dα

dT
¼
A

β
e

� E
RTð Þf αð Þ ð4Þ

The activation energy can be obtained from non-isothermal
data without choosing the reaction model. The generalised Kis-
singer's method is an established technique to calculate the acti-
vation energy. Kissinger's method is derived by taking the time
derivative of Eq. (3), and noting that at the maximum degradation

rate, d2α=dt2 ¼ 0. This allows for the calculation of E at the max-
imum rate of degradation when the heating rate is constant, and
the time and temperature derivatives of weight loss are linearly
related. Therefore, data can be plotted as a function of time or
temperature and analysed by Kissinger's method.

ln
β

T2
p

¼ ln
A:R

E

� �

�
E

R:Tp
ð5Þ

where Tp is temperature at the maximum degradation rate and β

is the heating rate. It is possible, therefore, to plot ðlnβ=T2
pÞ vs. 1=Tp

and obtain the activation energy and pre-exponential factor from
the slope and intercept respectively. This method allows the
activation energy to be obtained independently of the kinetic
model [33].

3. Results and discussion

3.1. Thermogravimetric Analysis (TGA)

Fig. 1 shows TGA curves corresponding to dynamic experiments
carried out at a range of heating rates. The results show evidence
of a two-step thermal degradation process. The first stage, com-
pleted at around 370 °C, suggests a deacetylation process in the
vinyl acetate fraction. The second stage has previously been
identified as complete chain scission of the residual main chain
(within the interval of 380–480 °C). As should be expected, the
temperature at which the reaction is complete rises as the heating
rate increases. Since the maximum temperature that photovoltaic
systems operate is around 85 °C, chain scission is not considered
as significant; therefore, the focus in this work is on the deacety-
lation of EVA.

In order to calculate the activation energy based on the gen-

eralised Kissinger's method the temperature of the peak degra-

dation rate (Tp) is required. Fig. 2 shows the derivative of weight

loss with respect to temperature, which yields Tp, as presented in

Table 1. Fig. 3 shows the relationship between ln β=T2
p

� �

and 1=Tp

for one heating rate, from which the activation energy and pre-

Fig. 1. TGA thermogram of at various heating rates.

Fig. 2. Derivative of weight loss as a function of temperature for unaged EVA at

various heating rates.

Table 1

Temperature of peak degradation rate for aged and unaged EVA samples at dif-

ferent heating rates.

Heating rate (°C/

min)

Temperature of peak degradation rate TP (°C)

Unaged Aged for 40

days

Aged for 60

days

Aged for 80

days

5 335.2 336.5 336.6 336.5

10 346.6 348.8 348.6 348.7

15 354.2 355.4 365.0 356.3

20 359.2 361.8 362.2 362.0

Fig. 3. Plot of ln(β/Tp
2) versus 1/(Tp) for unaged EVA.
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exponential factor can be obtained. This approach shows the best
agreement around the peak degradation rate temperature, by
definition, but beyond this point systematic differences are
observed, which could in part be attributable to other processes
occurring, such as dehydration. In the case of unaged EVA the
calculated values for the activation energy and pre-exponential
factor were E¼174 (kJ/mol) and A¼2.46�1014 (min�1) respec-
tively. The generalised Kissinger method was also applied to
thermally aged EVA. Fig. 4 shows the calculated activation energy
for unaged and aged EVA and indicates that there is no clear effect
of ageing on the activation energy.

The determination of the activation energy and the pre-
exponential factor allows predictions to be made about the ther-
mal degradation and associated weight loss over the lifetime of a
module. Assuming that the material was at a module operating
temperature of 85 °C (which is the temperature of the material near
to the cells as they generate heat during the conversion of photons
to electronic potential), the determined activation energies and pre-
exponential factors were used to determine the conversion of
material as a function of time through the solution of Eq. (3). The
key point from this figure is the weight loss predicted after the
typical lifetime of a module (usually considered around 30 years).
Fig. 5 shows that this is predicted to be around 1%, which is likely to
have little impact on the module performance.

3.2. Dynamic Mechanical Analysis (DMA)

Fig. 6 shows the storage modulus (E0) determined as a function
of temperature at a frequency of 1 Hz. As the temperature
increases the curves show the characteristic glassy, rubbery and
viscous regions of a viscoelastic material. Significant changes are
seen in the storage modulus over the observed temperature range,
with 4 decades difference between the moduli at �75 °C and

95 °C. There is a sharp decrease at around �30 °C, which can be

attributed to the glass transition and then another stepped

decrease between 40 °C and 65 °C, perhaps indicating some crystal

melting.
In order to investigate the effect of ageing further on the

mechanical properties of the EVA, the storage modulus at a given

temperature was plotted against the ageing time for the sample.
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Fig. 4. Calculated activation energies for unaged and aged EVA.

Fig. 5. Predicted thermally induced weight loss of EVA over one hundred years

from Eq. (3), illustrating the predicted weight loss after thirty years (desirable

lifetime of a PV module).

Fig. 6. Storage modulus vs temperature for aged and unaged EVA.
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Fig. 7(a–d) shows this for four temperatures. One can see that E0

reduces with increasing time of ageing, although the confidence in
the fit and the calculated gradient decreases with increasing
temperature. As a way of approximating the general trend, E0 vs
temperature for four temperature values was consolidated into
one plot as a mean. This is shown in Fig. 8, which shows a
monotonically decreasing storage modulus as the material ages.
Further, the variation in modulus depends on temperature; as the
measurement temperature increases, the dependence on the
ageing duration weakens (Table 2). That is to say, the storage
modulus reduction rate, when measured at a given temperature,
varies more slowly when measured at a higher temperature than a
lower temperature. It is worth emphasising that this is for the
same ageing condition of 85 °C. It therefore appears that thermal
ageing can result in significant changes in the mechanical prop-
erties, but considering the very small changes in weight loss, this
is unlikely to be associated with chemical changes and any sub-
sequent material volatilisation.

3.3. Differential Scanning Calorimetry (DSC)

In order to understand the changes in morphological beha-
viour, DSC was performed with three passages, consisting of a
heating, a cooling and final heating stage (described in Section

2.1). The results of these experiments are shown in Fig. 9, which

shows the DSC thermograms for samples that have been cycled.

There are significant changes around 50 °C and the peaks in this

region can be associated with internal structural changes or

crystallisation transitions. This correlates with the last step in the

DMA results which were associated with crystal melting. In the

second heating, one can observe that the peaks have largely dis-

appeared, suggesting that in the process of going through the

previous cycle the structure has been eliminated and has not

reformed during the cooling process. Fig. 10 compares the first

heating thermograms of the unaged and aged EVA. The glass

transition, determined by a step change in the heat flow typically

between �30 °C and 20 °C, was found to be around �25 °C for

aged and unaged samples, suggesting ageing has no significant

effect on Tg (Fig. 11). The melting transition of the ethylene seg-

ment has been accepted as being associated with a peak with a

shoulder observed between 40 °C and 70 °C [34,35].
The relative crystallinity, Xc, of the samples was calculated as a

function of ageing duration through the following relation,

XC ¼
∆Hf

∆H�
f

� 100% ð6Þ

where ∆H�
f is the fusion enthalpy of the perfect polyethylene

(277.1 J/g) crystal and ∆Hf is the enthalpy of fusion of the EVA
samples, respectively [36]. Analysis of the first heating results

shows that crystallinity decreases due to ageing, (Fig. 12), which

when correlated with the changes in mechanical behaviour, sug-

gests that it is the changes in internal structure that is driving the

changes in the storage modulus, E0. It can also be observed that

there is no change after second heating. This reversion to a con-

stant crystallisation content points towards a reduction in the

structure at higher temperatures, and a consequent reduction in

Fig. 8. Mean storage modulus versus ageing time with line fitting

(y¼�0.87xþ370.7), R2¼0.97.

Table 2

The fitting parameters for storage modulus at different fixed temperatures based

on Fig. 8a–d.

Temperature (°C) Gradient Intercept R
2

�60 �5.84 2051 0.93

20 �0.03 5.52 0.93

40 �0.02 2.65 0.85

95 �0.003 0.97 0.44

Fig. 9. Typical DSC thermogram during heating, cooling and re-heating.

Fig. 10. DSC first heating thermograms for the unaged and aged EVA.

Fig. 11. Glass transition temperature versus ageing time.
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modulus and a weakening in the relationship between ageing

driven modulus reduction at higher temperatures.

4. Summary and conclusions

The thermal degradation of EVA, which is an adhesive polymer

used as encapsulation material in PV modules, has been studied

using techniques that enabled the viscoelastic properties and

thermal stability to be measured. Key findings were that the

activation energy of the first stage of degradation was unaffected

by the ageing process and storage modulus at 1 Hz was sig-

nificantly reduced with increases in temperature. Ageing was

shown to reduce the storage modules monotonically as a function

of ageing degree, though this effect was weakened when mea-

suring at elevated temperatures. TGA measurements showed that

chemical changes due to thermal activation were insignificant,

even over the typical lifetime of the module, but examination of

DSC results suggested that property changes could be connected to

structural modifications.
It can be concluded that when predicting thermal effects on the

mechanical performance of the encapsulant in a PV module the

most significant factor is the transient temperature of the EVA, for

example Fig. 7 shows that modulus is highly sensitive to tem-

perature over the typical operating range of a module. Thermal

cycling or ageing was also seen to bring about a decrease in the

crystallinity of the EVA, although an equilibrium was reached after

which crystallinity remained constant. There is also a long term

progressive degradation in properties due to a thermally activated

chemical reaction, however, this is slow enough at module oper-

ating temperatures to be considered insignificant compared to the

other two thermal effects. Therefore, an efficient method of

modelling mechanical performance would be to use the tem-

perature dependent properties after equilibrium crystallinity has

been reached. In the field, however, the modules will be subjected

to light and humidity as well as elevated temperatures. Any

absorbed moisture would be expected to affect the mechanical

properties of the EVA in a similar way to increasing temperature

and both absorbed moisture and UV would be expected to influ-

ence chemical degradation. This is the subject of future work.
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