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Impurities from the CCS chain can greatly influence the physical properties of
CO2. This has important design, safety and cost implications for the compres-
sion, transport and storage of CO2. There is an urgent need to understand and
predict the properties of impure CO2 to assist with CCS implementation. How-
ever, CCS presents demanding modelling requirements. A suitable model must
both accurately and robustly predict CO2 phase behaviour over a wide range of
temperature and pressure, and maintain that predictive power for CO2 mixtures
with numerous, mutually interacting chemical species. A promising technique
to address this task is molecular simulation. It offers a molecular approach, with
foundations in firmly established physical principles, along with the potential to
predict the wide range of physical properties required for CCS. The quality of
predictions from molecular simulation depends on accurate force-fields to de-
scribe the interactions between CO2 and other molecules. Unfortunately, there
is currently no universally applicable method to obtain force-fields suitable for
molecular simulation.

In this paper we present two methods of obtaining force-fields: the first being
semi-empirical and the second using ab initio quantum-chemical calculations. In
the first approach we optimise the impurity force-field against measurements of
the phase and pressure-volume behaviour of CO2 binary mixtures with N2, O2,
Ar and H2. A gradient-free optimiser allows us to use the simulation itself as the
underlying model. This leads to accurate and robust predictions under conditions
relevant to CCS. In the second approach we use quantum-chemical calculations
to produce ab initio evaluations of the interactions between CO2 and relevant im-
purities, taking N2 as an exemplar. We use a modest number of these calculations
to train a machine-learning algorithm, known as a Gaussian process, to describe
these data. The resulting model is then able to accurately predict a much broader
set of ab initio force-field calculations at comparatively low numerical cost. Al-
though our method is not yet ready to be implemented in a molecular simulation,
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we outline the necessary steps here. Such simulations have the potential to de-
liver first-principles simulation of the thermodynamic properties of impure CO2,
without fitting to experimental data.

1 Introduction

1.1 CCS Problem and Pipeline Operating Window

Carbon capture and storage depends upon safe and economical transport of CO2.
Pipelines are already widely used in hydrocarbon transport and are a strong pos-
sibility for CO2 transport. Pipeline transport of CO2 allows a large volume of
material to be moved directly from the source to the storage1. However, CO2
output from large facilities is likely to contain a varying number and percentage
of impurities, depending upon the capture process. These impurities can sig-
nificantly shift the thermophysical properties of the mixture, relative to that of
pure CO2. Impurities can change the pressure-density behaviour of a CO2 fluid,
with important consequences for pipeline efficiency and CO2 metering. Further-
more, impurities can modify the vapour-liquid equilibrium (VLE) of CO2, and,
in particular, can extend the two-phase region. There are important cost and
safety issues associated with two-phase flow in pipelines so defining the mini-
mum pressure to ensure homogeneous phase flow is a key task. Therefore accu-
rate modelling of the homogeneous phase density and the VLE of impure CO2
is an important focus for CCS modelling. Recent work has defined the expected
operating conditions for CCS pipelines1,2 and the most efficient way of trans-
porting CO2 is in the homogeneous phase, at pressures close to the critical point.
The upper transport temperature will be set by the compressor discharge temper-
ature and the temperature limits of the pipeline and the lower temperature will
correspond to the winter ground temperature of the surrounding soil3. Expected
impurity levels are about . 4%, with N2 , O2, Ar and H2 being key impuri-
ties1,2,4,5. This range of pressure, temperature and impurity level define pipeline
operating conditions and provide a target window for CCS-oriented modelling.
However, CCS-relevant models should aspire to model a wider range of impurity
fraction. This will ensure the robustness of the model, capture the impurity-rich
vapour phase in two-phase flow and make the models applicable to abnormal
pipeline operation.

1.2 Relevant Experiments

Recent literature reviews of data relevant to the CCS transport problem are avail-
able from the IMPACTS project6 and the thesis of Demetriades7. There is an
extensive range of data for CO2+N2 mixtures, several data sets for CO2+O2 and
CO2+Ar mixtures and some very recently published data5,8 on CO2+H2.

1.3 Equations of state

Equations of state (EoS) are a widely used modelling tool in CCS. EoS postulate
expressions for the volume and temperature-dependence of either the fluid pres-
sure9,10 or the Gibbs free energy11,12. These models contain empirical terms that
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describe the deviation from ideal gas behaviour. To optimise their accuracy, EoS
need to be calibrated by fitting their parameters to experimental measurements
on CO2 mixtures.

There is considerable uncertainly over which EoS is most appropriate for
CCS modelling. Options range from simple cubic EoS, such as the Peng-Robinson
model9, which are mathematically simple and numerically cheap, but which
often fail to accurately predict the liquid properties. For pure CO2, the Span-
Wagner EoS11 covers from the triple-point temperature up to very high pressures
and temperatures with very high accuracy. Furthermore an EoS by Yokozeki13

captures solid-liquid coexistence of pure CO2. There are complex EoS for CO2
mixtures, including the SAFT14, PC-SAFT15, GERG12 , EOS-CG6,16 and Deme-
triades models10. Some comparisons to CCS-relevant measurements have been
made6,10,17.

The majority of EoS are fundamentally based on empirical parametric ex-
pressions, which leads to several limitations. The quality of the agreement is
very sensitive to the postulated parametric expression and the effectiveness of
the parameter fitting; and there are no systematic and universally reliable ap-
proaches to either of these. Furthermore, the predictions can only be as good as
the available measurements. Thus effective data fitting requires careful and la-
borious construction and fitting of the EoS to comprehensive experimental data.
Even then extrapolation of the model is dubious, and modest extrapolations in
pressure, temperature or impurity concentration can lead to wayward model pre-
dictions, for even the most well-established EoS. For example, a quantitative
failing of the GERG EoS12 when predicting CO2−H2 phase behaviour, in the
CCS operating window, has recently been demonstrated5,10. The SAFT family
of EoS14,15 has a basis in physical modelling, meaning they have the potential to
address some of these issues. However, they still require fitting to experiments
and it is not yet clear whether these outperform empirical EoS in terms of accu-
racy and robustness6,10,17. There is a clear need for modelling based on robust
physical and chemical principles to complement EoS approaches.

1.4 Molecular simulation

A suitable CCS model must both accurately and robustly predict CO2 phase be-
haviour over a wide range of temperature and pressure, and maintain that pre-
dictive power for CO2 mixtures with numerous, mutually interacting chemical
species. A promising technique to address this demanding task is molecular sim-
ulation. It offers a molecular approach, with foundations in firmly established
physical principles, along with the potential to predict the wide range of physical
properties required for CCS.

Molecular simulations have a number of advantages over EoS. Macroscopic
physical properties are predicted from models of the interactions between con-
stituent molecules. Thus simulations have a more rigorous treatment of molecu-
lar mixing and the effect of temperature than EoS. Therefore we might expect im-
proved robustness with respect to changes due to temperature and impurity frac-
tion. Simulations can readily compute pressure-volume behaviour, phase separa-
tion and other properties such as specific heat, viscosity and speed of sound18–20.
Simulations have some disadvantages, primarily their computational cost, par-
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ticularly if results with very low statistical uncertainty are required. However,
the ongoing growth in computing power is mitigating this. A further difficulty is
that the accuracy of prediction depends on having an effective and fast method
to compute the interactions between the constituent molecules of the fluid of
interest. Unfortunately, there is currently no universally applicable methods to
compute intermolecular potentials that are suitable for molecular simulation.

In this paper we present two methods of obtaining force-fields: the first being
semi-empirical and the second being from ab initio quantum-chemical calcula-
tions. In the first approach we optimise the impurity force-field against measure-
ments of the phase and pressure-volume behaviour of CO2 mixtures, containing
impurities that are common in CCS. We use a gradient-free optimiser, which en-
ables us to use the simulation itself as the underlying model. Our approach leads
to accurate and robust predictions under conditions relevant to CCS. In the second
approach we use quantum-chemical calculations to produce ab initio evaluations
of the force-field between CO2 and relevant impurities. We use a modest number
of these calculations to train a machine-learning algorithm, known as a Gaussian
process, to describe these data. The resulting model is then able to accurately
predict a much broader set of ab initio force-field calculations at comparatively
low numerical cost. Although our method is not yet ready to be implemented in a
molecular simulation, we outline the necessary steps here. Such simulations have
the potential to deliver first-principles simulation of the thermodynamic proper-
ties of impure CO2, without fitting to experimental data.

2 Simulations from semi-empirical molecular interactions

All molecular simulations require a method to evaluate the interactions between
molecules. Semi-empirical force-fields are most commonly used. Here a sim-
ple mathematical form is chosen for the potential between pairs of molecules,
with a small number of parameters characterising the interaction between alike
molecules, while further parameters define the cross-species interaction. The
total interaction is the sum over all binary pairs. This summation neglects the
influence of the surrounding molecules on the pair interactions. However, these
“non-additive” interactions are known to be important for VLE and other proper-
ties21. In practice, the neglect of these higher-order interactions is compensated
for by fitting binary force-field parameters to experiments. However, this fun-
damentally semi-empirical approach will, unavoidably, lead to a finite range of
temperature and pressure applicability for a given parameterisation.

Currently available molecular force-fields for common CCS impurities are
fitted to experiments on the pure fluid around its critical point22. This often in-
volves temperatures that are much lower than the CCS operating window. There-
fore they are generally unsuited to simulate mixtures at these higher tempera-
tures. Some binary mixture simulations have been performed that optimise the
mixing parameters but these are also for lower temperatures23. In this section we
run molecular simulations for CO2 mixtures at CCS-relevant temperatures, using
literature force-fields. We then perform a re-optimisation of the impurity param-
eters, fitting directly to mixture measurements at CCS-relevant temperatures.
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2.1 Background

The significant increase in available computing power in the last few decades has
made computer simulation a very valuable and powerful tool. The Monte Carlo
simulation method has become widely used to generate equilibrium properties.
For example, direct NPT simulation, where the number of molecules, pressure
and temperature are specified and the density is predicted, leads to the pressure-
density behaviour in the homogeneous phase. Furthermore very effective meth-
ods exist to model VLE behaviour.

2.1.1 Grand Equilibrium Monte Carlo. Grand Equilibrium Monte Carlo
(GEMC) is a molecular simulation method that predicts two-phase coexistence
behaviour20. The GE algorithm involves running Monte-Carlo (MC) simulations
on two separate boxes, corresponding to the liquid and gas phases, which sample
the properties of these phases in coexistence. These simulations involve imposing
the temperature and mole fraction of the liquid phase and then predicting the
coexistence pressure, the gas mole fraction and the densities of the two coexisting
phases. Full details of the method are described elsewhere20,24.

2.1.2 Molecular Potentials. In semi-empirical force-fields, the Van der Waals
forces are often represented by the Lennard-Jones (LJ) potential which details the
repulsive and attractive interactions between atoms

U(r) = 4ε

[(
σ

r

)12
−
(

σ

r

6
)]

, (1)

where r is the separation between two particles and ε and σ are the energy and
size parameters respectively. For interactions between the particles of the same
species, the LJ potential remains as above but for interactions between different
particles, ε and σ are found using the Lorenz-Bertholet combining rules

σi j = η
σi +σ j

2
, (2)

εi j = ξ
√

εiε j. (3)
(4)

These two new parameters η and ξ scale all of the LJ interactions between a
given pair of particle types i and j and effectively allow arbitrary modification to
the combination rules between two molecules while leaving the self interaction
unchanged.

Electrostatic interactions can be problematic in molecular simulation because
of the slow decay of the interaction with molecular separation. However, an
efficient way to model electrostatic interactions in non-polar molecules is to use
a point quadrupole potential25, the formula for which is given in equation 18
of Deublein et al.24. This quadruple potential requires a single parameter per
molecular species, the quadrupole moment, Q. As this interaction is electrostatic
the expression is valid for the interaction between alike and distinct molecules.

2.1.3 Force-fields for CO2 and CCS impurities. Force-fields for more
complex diatomic, triatomic and larger molecules can be constructed by combin-
ing multiple LJ and quadrupole sites together, with each individual contribution
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Fig. 1 Diagrams of two force-field types: a two centre Lennard-Jones with quadrupole
(a) used for diatomic molecules and a three centre Lennard-Jones with quadrupole (b)
used for CO2.

summed to give the total potential. For example, a simple diatomic molecule can
be created by fixing two identical LJ sites a specific bond length from one an-
other and placing a quadrupole site at the centre (see figure 1a), an arrangement
known as the two-centre Lennard-Jones plus quadrupole (2CLJQ) potential26.
This force-field requires 4 parameters, ε and σ for the LJ terms, the bond length,
L and the quadrupole moment, Q. 2CLJQ force-fields are available for diatomic
molecules, including N2, O2

22 and H2
5. Similarly, a CO2 force-field has been

obtained using a three-centre Lennard-Jones plus point quadrupole model, to rep-
resent this triatomic molecule27 (see figure 1b and table 1). As Ar is monatomic
and non-polar, we use a single Lennard-Jones site with no quadrupole22. These
literature force-fields were obtained by fitting self interactions to experimental
data for the corresponding pure fluid around its critical point. For CO2 this is
close to the working temperature of CCS transport pipelines. Indeed, simula-
tion results from this force-field are within ∼ 2% of experiments on pure CO2
for the density and vapour pressure in the CCS transport window22. However,
the temperature ranges used to fit the impurity force-fields for N2 and O2 are
less well matched to the CCS transport problem. The critical points for both
of these materials are closer to 100K which is significantly lower than that of the
273-310K CCS region. These impurity force-fields perform well for the pure ma-
terial around its critical point but, because of the empirical nature of the original
fitting, they are unlikely to perform as well at this much higher temperature. To
compound this we also require that they predict properties of a mixture of which
the impurity is only a small percentage. This is in contrast to the original fitting,
which only used self interactions to optimise for the pure material properties22.

εC/kB (K) σC (Å) εO/kB (K) σO (Å) Q (DÅ) L (Å)
12.3724 2.8137 100.493 2.9755 4.0739 1.2869

Table 1 3CLJQ Force-field for pure CO2
27.

There are some CO2 binary mixtures that have been simulated with the avail-
able force-fields and good agreement with VLE data was obtained with the opti-
misation of the Lorenz-Bertholet mixing parameters23. However, this compari-
son does not use the detailed CO2 force-field27 and was performed for tempera-
tures below the CCS transport window.
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2.2 Simulations with literature force-fields

Source ε/kB (K) σ (Å) Q (DÅ) L (Å) η ξ

N2 Vrabec22 34.897 3.3211 1.4397 1.0464 1.0000 1.0000
Optimised 35.272 3.4267 1.3836 1.0594 1.0646 0.9970

O2 Vrabec22 43.183 3.1062 0.8081 0.9699 1.0000 1.0000
Optimised 43.649 3.1315 0.8036 0.9741 1.0010 1.0216

Ar Vrabec22 116.79 3.3952 N/A N/A 1.0000 1.0000
Optimised 114.87 3.5462 N/A N/A 1.0497 0.9839

H2 Tenorio5 12.500 2.5900 -0.4233 0.7400 1.0000 1.1000
Optimised 12.745 2.6742 -0.4243 0.7019 0.9929 1.1428

Table 2 2CLJQ Force-fields for nitrogen, oxygen, argon and hydrogen from the literature
and optimised force-fields from this work. The parameters ε and σ refer to alike
molecules, η and ξ specify the interaction parameters between unlike molecules via the
mixing rules (eqns (2) and (3)) and Q parameterised the quadrupole interaction between
both the like and unalike molecules, via the standard quadrupole formula l24,25.

We computed the homogeneous density and VLE behaviour of CO2 binary
mixtures using the GE method20, implemented in the ms2 software24, for each
impurity in table 2. These simulations used the 3CLJQ force-field for CO2 and
2CLJQ force-fields for the impurity, as detailed in table 1 and 2 respectively. In
both the liquid and gas simulations we used 20,000 MC steps for equilibration
and 100,000 production steps, from which the ensemble-average properties were
extracted. The liquid simulations involved 800 particles and the gas runs had
an average of 500 particles. The chemical potential in the liquid simulation was
computed using Widom’s insertion method, with 2,000 test insertions per MC
step. The Lennard-Jones cutoff radius was chosen to be the maximum value
allowed by the box size, which was typically larger than 17Å. These simulation
settings have previously been shown to be adequate for quantitative simulations
of CO2 mixtures with comparable diatomic molecules23.

The GEMC method imposes a temperature T and a liquid mole fraction x
from which the coexistence properties are found. The method requires an initial
estimate of the coexistence pressure P0, although it does not have to be exact as
the true value will be found from the vapour simulation. Therefore, we took the
initial pressure estimate from experimental data for the mixture under investiga-
tion, interpolating to the desired mole fraction where necessary. If the simulated
coexistence pressure differed significantly from the initial estimate P0, we per-
formed a second set of simulations where P0 was set to the previously simulated
value, thus ensuring the system had converged with respect to the choice of P0.
Using the simulation parameters above, a full coexistence simulation, compris-
ing an NPT run followed by a GE run, takes around 20 hours on a single core
of a 3GHz processor. A homogeneous density simulation takes between 3 and 4
hours.

Using the simulation parameters and literature force-fields in table 2, we per-
formed a set of simulations for mixtures of CO2 with the CCS-relevant impu-
rities, N2, O2, Ar and H2 and compared to coexistence and homogeneous mea-
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surements in the window of temperature and pressure relevant to CCS transport.
We use CO2+N2, here, as an exemplar and the results are shown in figure 2. The
agreement for the vapour mole fraction is moderately poor everywhere, except
for lower pressures at T = 293K. The coexistence pressure agreement for both
temperatures worsens as the simulation pressure increases and, while the pres-
sure performs better than that of the vapour mole fraction, the disagreement is
sometimes outside the statistical error of the simulation. For the homogeneous,
supercritical phase (figure 2b) the general agreement for the density is good with
the exception of a single point at T = 300K. The results for O2, Ar and H2,
shown in the Supplementary Information, are entirely comparable to N2. Gen-
erally, the homogeneous phase density is predicted well, but the predictions are
unacceptable for the coexistence pressure and are more erroneous still for the gas
mole fraction.
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N2 mol fraction
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Fig. 2 Comparison between CO2 + N2 measurements (solid symbols) and simulations
using the literature force-field (open symbols) and the optimised force-field (shaded
symbols), from table 2: (a) coexisting mol fraction (experimental data at 273K28 and
293K 29); and (b) homogeneous phase pressure-density behaviour (experimental data for
mixtures 30 and pure N2

31).

2.3 Optimisation of impurity force-fields

2.3.1 The simplex method. For each impurity in this study, we optimised
the force-field to CCS-relevant data to improve the quantitative accuracy of sim-
ulations of CO2 mixtures in the CCS region of temperature and pressure. Using
binary mixture measurements as a basis for comparison, the parameters of the
impurity force-fields were changed using an iterative optimisation method. The
experimental data for CO2 mixtures used for this optimisation are a combination
of coexisting mole fraction, coexisting densities (where available) and homoge-
neous phase density data, along with density data for the pure additive, all at
several temperatures. We used a reduced set of representative data, to control
the number of concurrent simulations needed. The experimental data used for
optimisation correspond exactly to those data presented in the figures in the Sup-
plementary Information.

During this optimisation, we held the CO2 force-field fixed and made small
adjustments to the values of the six impurity force-field parameters (ε, σ, Q, L, η
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and ξ, where the Lorenz-Bertholet mixing parameters refer to the interaction be-
tween CO2 and the impurity), using the literature force-fields as a starting point.
To quantify the disagreement between the simulation and experiments, we con-
structed an error function that sums over the square fractional deviation between
experiments and simulations,

E(ε,σ,Q,L,η,ξ) =
Nc

∑
i=1

(
xE

vi− xS
vi

xE
vi

)2

+
Nc

∑
i=1

(
PE

vi−PS
vi

PE
vi

)2

+
Ncρ

∑
i=1

(
ρE

ci−ρS
ci

ρE
ci

)2

+
Nhm

∑
i=1

(
ρE

mi−ρS
mi

ρE
mi

)2

+
Np

∑
i=1

(
ρE

pi−ρS
pi

ρE
pi

)2

,

(5)

where E and S denote experiment and simulation, respectively, xv is the coexist-
ing vapour mole fraction, Pv is the coexisting vapour pressure, ρci is the coex-
isting density (liquid or vapour), ρm is the homogeneous phase density for the
CO2 mixture, ρpis the homogeneous phase density for the pure impurity, and Nc,
Ncρ, Nhm and Np are the number of data points for the coexisting mole fraction,
coexisting density, mixture density and pure additive density, respectively.

We optimised the model parameters by using the simplex method32 to im-
prove the error function. The simplex method is a simple downhill optimiser
that will locate a local minimum in the error, which is desirable for this sys-
tem as straying too far from the literature force-field would be unphysical. The
simplex method is also gradient free, which is important for our system as gen-
erating accurate gradients of the error function by simulation is very expensive.
For the initial simplex, we used the literature force-field and formed the sim-
plex nodes by individually scaling-up all parameters by 5%, apart from η and
ξ, which were scaled-up by 10%. This approach leads to a seven point simplex.
As approximately 20 data points were used for each impurity, the initial simplex
requires 140 simulations (the longest of which is ∼ 20 hours). However, as these
simulations are independent they can be run in parallel on separate cores. Sub-
sequent iterations require only a single simplex point, reducing the number of
simulations to ∼ 20 per iteration. The simplex optimisation is ended when the
difference between error terms at different points on the simplex becomes of the
same order as the statistical uncertainties of the simulations. At this point the
simplex had shrunk sufficiently that no further meaningful improvement in the
agreement could be achieved. This typically required 10-20 iterations.

2.3.2 CO2 + N2. Figure 2a shows that, for the optimised force-field, there is
a clear improvement in the coexistence predictions for both temperatures when
predicting vapour pressure and, particularly, vapour mole fraction. Figure 2b
shows that, in the homogeneous single phase, predictions of the pure N2 proper-
ties remain consistent with the experimental data as we intended and, while the
mixture density does suffer slightly at 265K, this is more than compensated for
by the large increase in accuracy in the coexistence phase. For CO2+N2 we held
back the coexisting density data, to test whether the resulting optimised force-
field could predict these data. Predictive results from the optimised force-field
for these measurements are shown in figure 3b. The results are reasonable, but
there is a noticeable deficiency in the predictions for high densities in both the

1–23 | 9



homogeneous and coexisting phase (figure 2b and c). To address this for the
optimisations of O2, Ar and H2, we include coexisting density data when avail-
able. These optimisations proceeded in a very similar manner to CO2+N2 and
are detailed in the Supplementary Information.

2.4 Predictive simulations

To test the robustness of the predictions from the optimised force-field we ran
a series of predictive simulations to compare with CCS-relevant measurements.
In all cases these included coexisting mole fractions and densities, along with
homogeneous phase densities. The range of temperature, pressure and impurity
fraction encompassed by these comparisons is much more extensive than the
data used for fitting. For the coexistence simulations in the vicinity of the critical
point, we found noticeable noise in the gas mole fraction. To address this we used
larger simulations, with 150,000 run steps and 1200 and 750 particles in the liquid
and gas runs, respectively. We also averaged the predictions over 10 independent
simulation runs of the same conditions. Comparison of the simulation predictions
with a wide range of measurements are shown in figures 3- 7.

2.4.1 CO2+N2. In figure 3a the coexistence pressure is predicted very accu-
rately, at all temperatures. The gas mole fraction is also predicted well but at high
pressures minor noise and systematic deviation become evident. The coexisting
density (figure 3b) shows good agreement for the gas density, apart from minor
deviations approaching the critical pressure. This deviation is probably due to in-
accuracies in the coexisting gas mole fraction, rather than an inability to predict
the gas density at the correct mole fraction. The coexisting liquid density shows
reasonable agreement but has clear underprediction in the approach to the criti-
cal point. This slight underprediction of the density in the high density region is
also evident in the homogeneous phase predictions in figure 3c, where low and
moderate densities are predicted well.

2.4.2 CO2+O2. The coexisting mole fraction predictions for CO2+O2 mix-
tures are shown in figure 4a. Here, as with CO2+N2, the coexistence pressure is
predicted accurately at all temperatures and the gas mole fraction is well captured
everywhere except close to the critical point, where there is some systematic de-
viation, along with noise in the simulation results. In an improvement over the
CO2+N2 performance, the coexisting and homogeneous phase densities are pre-
dicted accurately everywhere, including at high densities (see figure 4 b and c).

2.4.3 CO2+Ar. Figure 5 shows that the CO2+Ar results are comparable to
the CO2+N2 results, in that the measurements are generally predicted accurately,
except for the gas mole fraction close to the critical point and the pressure-density
behaviour at high densities.

2.4.4 CO2+H2. In figure 6a the simulations predict accurately the coexis-
tence pressure. The gas mole fraction is predicted reasonably accurately, al-
though the predictions are systematically a little too high. At 295.K the mea-
sured mole fractions approach rapidly from about 12MPa, to give a critical point
at about 15MPa, a feature that the simulations do not capture even though the co-
existence pressure is correctly predicted at all pressures. It is noteworthy that the
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Fig. 3 Simulations (lines) for CO2 + N2 mixtures using our optimised force-field,
compared with measurements (points) of coexisting mole fraction28,29,33 (a); coexisting
density28,34 (b); and the pressure-density behaviour of the homogeneous phase30 (c).
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density28 (b); and the pressure-density behaviour of the homogeneous phase37(c).
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Fig. 7 Simulations (lines) for the CO2 + H2 bubble and dew point computed from our
optimised force-fields, compared with measurements5 (symbols).

widely-used GERG equation of state drastically overpredicts these data10, giving
a critical pressure of ∼ 25MPa. The simulations predict accurately the density in
the coexisting and homogeneous phases everywhere (see figure 6 b and c).

Figure 7 shows the results for the CO2+H2 phase envelope for H2 concentra-
tions of 3% and 5%, compared to measurements. The bubble point predictions
were computed by direction simulation. However, the GE method is unsuitable
for direction simulation of the dew point5 so we obtained dew point predictions
by interpolating the simulation data in figure 6a. The simulations predict ac-
curately the bubble and dew points for all measurements. Also included is the
prediction of the GERG EoS for the bubble point42, which at 5%H2, signifi-
cantly underpredicts the bubble point. This has implications for pipeline design
as the bubble point defines the limit of the safe regime of operating pressures.
The stronger molecular basis of our simulations leads to a more successful de-
scription of these data.

2.5 Application to EoS

We note that CO2 thermophysical properties are usually modelled using EoS.
EoS are much cheaper, numerically, than simulations and, with sufficiently ef-
fective fitting to high-quality measurements, give more accurate correlations of
the data. However, the ability of EoS to extrapolate to regions where measure-
ments are unavailable, is questionable, even for small changes in temperature or
impurity fraction (for example, see the GERG predictions in figure 7). This is due
to either their lack of physical basis or mathematical approximations. In contrast
to an EoS, molecular simulation provides a physical model, arising from the in-
teractions between CO2 and the relevant impurity. Thus, if a suitable force-field
is available, simulations can provide more robust predictions in regions where no
optimisation or fitting has been done. Thus there is a key complementary role
for molecular simulation in CCS modelling. We propose, here, two methods by
which simulations can improve EoS fitting. Firstly, where experimental data are
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sparse, simulation predictions can be used as surrogate experimental data and in-
cluded in the fitting, to impose improved extrapolation onto the EoS. This will
be particularly useful in regions where experiments are prohibitively difficult,
expensive or unsafe. Secondly, often EoS are fitted to coexistence data via con-
strained optimisation10,43. The constraints are more readily applied if the full
complement of coexistence data is available for each pressure and temperatures.
This requires measurements of the density at coexistence for both the liquid and
the vapour phases. For many experimental techniques the co-existing density is
not measured. Indeed we recently developed an ad hoc method of interpolating
to these density data when fitting an EoS10. However, replacing this method
with simulation data is an attractive alternative. Using simulation data in EoS
fitting will provide a more complete picture of coexistence and numerically more
straightforward fitting. Both of these exploit the superior robustness of simula-
tions over EoS, with respect to changes in temperature, pressure and impurity
fraction.

2.6 Summary and future extensions

We performed simulations of binary mixtures of CO2 with N2, O2, Ar and H2
using two-centre Lennard-Jones plus quadrupole force-fields and compared the
results against mixture data in the CCS region of temperature and pressure. Al-
though the literature force-field for pure CO2 was suitable for CCS transport
modelling, force-fields for the impurities did not given sufficiently accurate pre-
dictions at temperatures relevant to CCS. Therefore we re-optimised the impurity
force-fields by fitting to selected VLE and homogeneous phase measurements for
binary CO2 mixtures, under conditions relevant to CCS transport. We then used
these new force-fields to predict a much broader set of CCS-relevant measure-
ments. For all impurities, the simulations generally gave very good predictions
for coexistence pressure in all cases. The gas mole fraction predictions were
good, except close to the critical point where they showed some minor noise and
systematic deviation from the measurements. The density predictions at high
density were somewhat erroneous for CO2 with N2 and Ar but were very good
throughout for O2 and H2. We have focused on binary mixtures, however the
impurity force-fields developed herein can be used to compute the properties of
CO2 mixtures with many impurity species. The force-fields will also provide
useful predictions for quantities such as specific heat, viscosity and speed of
sound. Our optimisation method will allow force-fields for other impurities to
be similarly optimised where experimental data exists. In the longer term, the
optimisation method in this work can be applied to lower temperatures than we
studied here, down to the triple point of CO2. This will aid in modelling the rup-
ture of CO2 pipelines, where the mixture will cool rapidly as it escapes the high
pressure environment within the pipe. This may necessitate impurity force-fields
that include a weak temperature dependence if they are to be effective over a
larger temperature range.
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3 Ab initio molecular interactions

We demonstrated in section 2 the potential for molecular simulation to improve
upon and complement modelling by EoS. Above we used semi-empirical molec-
ular force-fields, which were optimised to measurements in the relevant regime
of pressure, temperature and impurity concentration. Despite its successes, this
approach has several limitations. Even with fitting, there is not close agreement
with experiments everywhere. Furthermore, fitting simulations is numerically
expensive. Finally, the semi-empirical method requires experimental data for fit-
ting, although it needs less extensive data than EoS fitting. These limitations
arise from the semi-empirical nature of the fitted force-field. In contrast, fully
ab initio approaches21 are also possible, in principle, and have the potential to
address these issues.

In this section we illustrate a nascent technique, with the potential, ultimately,
to lead to completely ab initio predictions of thermophysical properties, such as
those studied above. Computational chemistry has advanced to the stage where
calculations of intermolecular potential energies can be accurately computed, for
small molecules, from ab initio quantum calculations. However, the computa-
tional cost of evaluating the energy at a single point is too large (often minutes or
hours of cpu time per pair of molecules) to be practical within a molecular simu-
lation. Thus it is necessary to fit or interpolate calculated energy data to produce
a potential energy surface. Approaching this problem with traditional parametric
fitting techniques is often laborious and its effectiveness is contingent on a good
initial choice of parametric function. Good choices for a particular molecular
interaction may not translate to other chemistries.

We follow a procedure, proposed by Uteva et al.44 to produce intermolecular
potential energy surfaces efficiently from a relatively small number of training
points. This non-parametric approach uses a machine learning technique to di-
rectly learn the mathematical structure from the data; no selection of parametric
function is necessary. The use of machine learning suggests that this algorithm
may be more readily generalised to new interactions. Indeed the technique has
been readily applied to several distinct chemical systems, without modification44.
Here we apply the algorithm to interpolation of the CO2−N2 interaction. We
use quantum-chemical calculations to produce ab initio evaluations of the inter-
molecular potential between the CO2−N2 binary pair. Using a modest number
of these calculations, we to train a non-parametric model, known as a Gaussian
process, to describe these data. The resulting model is then able to accurately
predict a much broader set of ab initio force-field calculations at comparatively
low numerical cost.

3.1 Intermolecular potential data for CO2−N2

We calculatie data sets of the intermolecular interaction energy of the bimolecular
complex CO2+N2 as a function of their configurational geometry. All molecules
are approximated as linear rigid rotors in their vibrational ground state, with
fixed bond lengths of 1.1632Å and 1.0975Å for the C-O and N-N bonds, re-
spectively. Energy calculations are carried out in Molpro45 using second-order
Möller-Plesset perturbation theory (MP2) and augmented correlation-consistent
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triple-zeta (aug-cc-pVTZ) basis sets. Basis set superposition errors are corrected
using the full counterpoise correction procedure. An energy cutoff of Ecut =
0.005 Eh (Eh ≈ 2625.5 kJ mol−1) is imposed and configurations with intermolec-
ular potentials above this cutoff are excluded from the training and test data sets.
Configurations are also excluded if any interatomic distance is below 1.5 Å or if
all interatomic distances are above 8.5 Å.
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Fig. 8 The geometry of a CO2+N2 pair, described by angles and centre of mass distance
(a) and interatomic distances (b).

As with many molecular systems, the CO2−N2 interaction contains several
symmetries. For example, the intermolecular potential is unchanged by the inter-
change of both N atoms or both O atoms (see ESI for full details). Because of
these symmetries we generate data over the region 1.5Å< r < 10Å, 0< θ1 < π/2,
0 < θ2 < π/2 and 0 < φ < π, where r is the distance between the molecular cen-
tres, θ1 is the angle between r and the CO2 axis, θ2 is the angle between r and the
N2 axis, and φ is the torsional angle of the N2 axis (see figure 8a). This defines a
symmetry-distinct sub-region, which is the smallest region of space from which
the behaviour for all space can be inferred via the symmetries.

3.2 Gaussian Processes

Gaussian processes (GPs)46 are used extensively in machine learning and statis-
tics as regression models. They are ‘non-parametric’ models of functions, which
generalise the linear regression model. The prior specification of a GP consists
of a mean function (often taken as zero) and a covariance function k(x,x′), ex-
pressing the covariance between f (x) and f (x′), where f is the function being
interpolated. Training data, consisting of observations of the value of f at var-
ious locations, are used to update the mean and covariance functions to give a
posterior model that predicts the function at any location.

Properties of the GP model are inherited from the covariance function, for
example, symmetry, differentiability and stationarity. Stationarity is a common
assumption when using GPs. It assumes that the covariance function depends
only on the distance |x−x′| and not the individual positions x and x′. However,
the intermolecular energy is a non-stationary function of distance, as it varies
rapidly at small interatomic separations, but more gently at larger separation.
Designing non-stationary covariance functions is a challenging task47. Instead,
to deal with this non-stationarity we use the inverse interatomic distances as co-
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variates in the GP, to achieve approximate stationarity. Thus the GP coordinates
are x = (1/r1, ...,1/rND) where ri is the interatomic distance, running over all
pairs of nuclei on different molecules. Thus for CO2+N2 this results in an over-
specified system, with ND = 6 dimensions, of which 4 are independent.

We use a GP with a zero mean function and a squared-exponential covariance
function

κ(x,x′) =
ND

∏
i=1

exp
[
− (xi− x′i)

2

2l2
i

]
(6)

where li is the correlation length for each dimension. We generalise this function
to respect the symmetries of the CO2+N2 system. The symmetries mean that
the intermolecular potential is invariant under several permutations of the inverse
interatomic distances x (see the ESI for full details). Let G represent the permu-
tation group containing permutations of elements of x under which the energy
surface is unchanged. If li = l j for all coordinates xi and x j that swap for some
permutation in G, then a covariance function of the form

ksym(x,x′) = σ
2
f ∑

g∈G
κ(gx,x′), (7)

where σ2
f is the signal variance, results in a GP that shares the symmetries of the

energy surface (see the Supplementary Material). The ‘symmetric model’ based
on this covariance function gives predictions that respect the relevant symmetries,
and usually significantly improves the performance44, even within the symmetry-
invariant region covered by the test data, as shown below.

3.2.1 Latin hypercube data The training and test data should ideally cover
evenly a single symmetry-distinct sub-region of x space, and respect the geomet-
ric constraint. We generate candidate co-ordinate sets of the desired size from
Latin hypercube (LHC) sampling of 1/r, cosθ1, cosθ2 and φ, on the ranges spec-
ified above. We then delete points that violate the geometric constraints, reject
the entire LHC if it does not contain at least the target number of points, and
compute the minimum separation of the remaining points in x space. We repeat
this process over a large number of iterations and the candidate data set with the
largest minimum separation is then used in Molpro energy calculations. This
‘maximin’ approach aims to cover evenly the symmetric distinct sub-region of x
space.

3.3 Results

Results are obtained using the GPy package48, modified to include symmetric co-
variance functions49. Zero-mean Gaussian observation error46 is assumed on the
function outputs (referred to as a nugget in geostatistics), with standard deviation
σn. Thus the model’s hyperparameters are σ f , σn and {li}. These hyperparam-
eters are estimated by optimising the log-likelihood over ≈ 30 random restarts,
which typically is sufficient to find the optimal values multiple times. We re-
peated this process for a range of different sizes of training data, all generated
via the LHC algorithm described above. The accuracy of the interpolation was
then tested by computing the root mean square error (RMSE) for the GP interpo-
lations against a much larger test data set. The test set comprised of a very large
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Fig. 9 RMSE against number of training points (LHC size) for CO2+N2, by comparison
to a test LHC set of ∼37,000 points. The lowest energy in the test data is -1.47×10−3 Eh.
The green dashed line indicates an error of 0.1% of the energy cutoff.

LHC of size ∼ 37,000 points (also generated via the same algorithm). Figure 9
shows the RMSE for increasing number of training points. When compared at
a fixed number of training points, the symmetric covariance function typically
gives an RMSE that is 3-7 times more accurate than the non-symmetric version.
An RMSE of 5×10−6 Eh corresponds to a mean error of 0.1% of the high energy
cut off, and this is achieved by the symmetric model with ∼ 200 training points.
Figure 10 further illustrates the high-accuracy of this approach by comparing
computations of the interaction energy with our GP model. This comparison is
along a fixed-angle slice, passing through the energy well minimum, with all of
the angles in figure 8a fixed.
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Fig. 10 CO2+N2 along the angular slice through the deepest part of the well (θ1 = 86◦,
θ2 = 8.5◦, φ = 17◦).
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3.4 Summary

We used quantum-chemical calculations to produce ab initio evaluations of the
interactions between CO2 and N2. Via a modest number of these calculations, we
trained a machine-learning model, known as a Gaussian process. The resulting
model accurately predicts a much broader set of ab initio force-field calculations
at comparatively low numerical cost. Several pieces of future work are neces-
sary to be able to implement GP force-fields into molecular simulations, as we
did with our semi-empirical force-fields in section 2. These are, extension of
the technique to non-additive (three-body) interactions; optimisation of the num-
ber and placement of training data, and streamlining of the computation of the
predicted potential using the symmetric covariance function. This work leads
directly from the algorithm of Uteva et al.44, used here, and has the potential
to lead to first-principles simulation of the thermodynamic properties of impure
CO2, without fitting to experimental data.

4 Conclusions

The goal of this work was to develop methods to predict the thermophysical
properties of impure CO2, to aid in the design and safe operation of CCS tech-
nology, particularly for pipeline transport. Robust modelling methods are needed
because available experimental data do not comprehensively cover the relevant
temperature, pressure and impurity regime. Simulation is a promising molecular
approach, with foundations in firmly established physical principles. However,
molecular simulation requires suitable force-fields to describe the interaction be-
tween CO2 molecules and the impurities and we explored two methods to obtain
such force-fields. We demonstrated that, even with semi-empirical force-fields
this leads to VLE and pressure-density predictions that, when compared to EoS,
are more robust to changes to temperature, pressure and impurity fraction and re-
quire far less comprehensive fitting data. We also described a method to produce
ab initio potential energy surfaces from quantum-chemical calculations, apply-
ing the method to the CO2+N2 binary pair. Although our method is not yet ready
to be implemented in a molecular simulation, we have outlined the necessary
steps above. Such simulations have the potential to deliver first-principles sim-
ulation of the thermodynamic properties, provided the extensions to the method
outlined above can be achieved. This would provide a highly useful tool for CCS
modelling as first-principles simulations could replace the need for laborious ex-
periments and improve equation of state modelling, as described in section 2.5.

Future work for the semi-empirical forcefields will involve simulating a wider
range of CCS-relevant properties, such as specific heat, viscosity and speed of
sound, comparing to measurements on ternary and higher order mixtures, and
extending the range of pressure and temperature. To obtain first-principles pre-
dictions the method for ab initio potential energy surfaces needs to be generalised
to three-body interactions and implemented within a molecular simulation.
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