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TIME-RANDOMIZED STOPPING PROBLEMS FOR A FAMILY OF

UTILITY FUNCTIONS∗

IKER PEREZ† AND HUILING LE†

Abstract. This paper studies stopping problems of the form V = inf0≤τ≤T E[U(
max0≤s≤T Zs

Zτ
)]

for strictly concave or convex utility functions U in a family of increasing functions satisfying cer-
tain conditions, where Z is a geometric Brownian motion and T is the time of the nth jump of
a Poisson process independent of Z. We obtain some properties of V and offer solutions for the
optimal strategies to follow. This provides us with a technique to build numerical approximations of
stopping boundaries for the fixed terminal time optimal stopping problem presented in [J. Du Toit
and G. Peskir, Ann. Appl. Probab., 19 (2009), pp. 983–1014].
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1. Introduction. The type of optimal stopping problem which is related to the
one studied in this paper has been studied by many authors. Pioneering solutions were
first presented by Graversen, Peskir, and Shiryaev in [11] and Du Toit and Peskir in
[6] on the optimal stopping problems

inf
τ∈[0,1]

E

[(

Bτ − max
0≤s≤1

Bs

)2]

and inf
τ∈[0,1]

E

[(

Bλ
τ − max

0≤s≤1
Bλ

s

)2]

,

where B stands for a Brownian motion and Bλ denotes a Brownian motion with
drift λ. In particular, stopping rules obtained were defined as the first entry time of
an underlying stochastic process, accounting for the distance between the Brownian
motion and its running maximum, entering some stopping region.

Within a financial context, considering a geometric Brownian motion Z, Shiryaev,
Xu, and Zhou in [18], Du Toit and Peskir in [7], and Dai et al. in [4] derived results
on the stopping problems

V1 = inf
τ∈[0,T ]

E

[

MT

Zτ

]

and V2 = sup
τ∈[0,T ]

E

[

Zτ

MT

]

,

where MT stands for the maximum of Z over the entire time interval [0, T ]. The use
of probabilistic techniques in [7] enabled the authors to extend work in [18] and derive
so-called bang-bang strategies in problem V2; these defined a goodness index through
parameters describing the dynamics of Z and categorized processes as either good
(never to stop) or bad (immediate stop). Also, an analysis on problem V1 surprisingly
led to a different optimal stopping rule for a given subset of parameters; in this
case, the solution to V1 was found to be given by a time-dependent optimal stopping
boundary for an underlying stochastic process to cross.

Elie and Espinosa in [9] and Espinosa and Touzi in [10] addressed optimal stopping
problems for a more general family of mean reverting diffusions with similar financial
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motivations. In their case the terminal time bounding the time space is random, and
it is given by the hitting time of the diffusion to zero. In [10] the optimal stopping
problem infτ∈[0,θ]E[U(Xτ − max0≤s≤θ Xs)] is defined as the first crossing time of a
time-dependent boundary by some underlying stochastic process, where X stands for
a mean reverting diffusion, U is some increasing and convex loss function, and θ is
the first hitting time of X to zero. On the other hand, [9] provides a solution to the
problem

inf
τ∈[0,θ]

E

[(

max0≤s≤θ Xτ −Xτ

max0≤s≤θ Xτ

)2]

.

The result is consistent with those in [7], [18], and [4], where a restrictive time-
dependent stopping boundary is defined, implying that the immediate stop is close to
optimal.

In this paper, we address questions similar to those in [7], [9], [18], and [4] in an
extended time-randomized context, where the stopping terminal deadline is random
and independent from the state of the diffusion of interest. The aim is twofold: to
discuss robustness of developed strategies with respect to different utility criteria
chosen under the influence of such new uncertainty, and to provide approximations to
these under a fixed terminal time set-up. The addition of such uncertainty, modelled
as a Poisson process, has been introduced in [3], in the context of option pricing
in order to offer approximations for American option values. Randomizing, in that
context, was treated as a first step in a more general procedure that involves working
out the expected value of the dependent variable in the random parameter setting and,
finally, letting the variance of the distribution of the randomized variable approach
zero, while holding its mean at a fixed parameter.

We derive a family of time-independent stopping problems with an underlying
two-dimensional diffusion. We discuss the existence of optimal stopping boundaries
and obtain complete solutions through a reduction to a family of boundary value
problems. Also, the detection of “bang-bang” strategies and links to previous work
are analyzed. Our results allow for us to computationally build numerical approxi-
mations to fixed terminal-time optimal stopping problems and suggest the possibility
of extending optimal stopping rules defined in [7] to a more general family of power
utility measures.

The structure of the paper is as follows. In section 2 we introduce the time-
randomized problem, define the family of utility functions of interest and set-up a
time-independent two-dimensional optimal stopping problem fitting the general the-
ory exposed in [17]. Section 3 discusses the existence of bang-bang strategies and
stopping boundaries and introduces the main result in this paper. In section 4, we
provide the proof of the main result. Finally, section 5 discusses the results and
suggests future research directions.

2. A randomized terminal time stopping problem. Let (Ω,F ,P) be a
probability space equipped with a P-augmented natural filtration {Ft}t≥0. For a
fixed n > 0, T denotes the waiting time to the nth jump (Tn) of an Ft-adapted
Poisson process N = (Nt)t≥0 with rate ν, so that

P(T ∈ [t, t+ dt)) =
νntn−1e−νt

(n− 1)!
dt .

Let B = (Bt)t≥0 denote a one-dimensional standard Brownian motion adapted
to {Ft}t≥0, with B0 = 0 and independent of N , and, for fixed constants µ and σ, let
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Z = (Zt)t≥0 denote a geometric Brownian motion given by

Zt = Z0 exp{σBt + (µ− σ2/2)t} .

Define the running maximum processes M = (Mt)t≥0 and S = (Sλ
t )t≥0 by

(2.1) Mt = max
0≤s≤t

Zs and Sλ
t = max

0≤s≤t
Bλ

s , t ≥ 0 ,

where λ is a fixed constant and Bλ
t = Bt + λt. Recall (cf. [14]) that the distribution

of Sλ
t is given by

(2.2) FSλ
t
(s) = P(Sλ

t ≤ s) = Φ

(

s− λt√
t

)

− e2λsΦ

(−s− λt√
t

)

,

where Φ denotes the cumulative distribution function of a standard normal random
variable.

Definition 2.1. The family U consists of all C2-functions U(x) defined on [1,∞)
that are increasing, strictly concave or convex, and meet the following criteria:

lim
x→+∞

eαxU ′(eαx)P(Sλ
t0

≥ x) = 0 ,(2.3)

lim
x→+∞

eαxU ′(eα(β+x))P(|Bt0 | ≥ x) = 0 ,(2.4)

lim
x→+∞

e2αxU ′′(eα(β+x))P(|Bt0 | ≥ x) = 0 ,(2.5)

for all constants α, β, t0 ∈ R
+, where U ′(x) and U ′′(x) are the first and second order

derivatives of U(x).
For a given function U ∈ U , we consider the optimal stopping problem

(2.6) V = inf
τ∈T

E

[

U

(

MT

Zτ

)]

,

where T stands for the set of all stopping times taking values in [0, T ].

2.1. An alternative expression for V .

Lemma 2.2. For any given utility function U ∈ U , let function ψ be defined as
(2.7)

ψ(k, x) =

⎧

⎪

⎨

⎪

⎩

U(eσx) + σ

∫ ∞

0

∫ ∞

x

eσzU ′(eσz)(1 − FSλ
T
(z)) dzP(Tn−k ∈ dT ) , k < n

U(eσx) , k ≥ n ,

where Tn−k stands for the waiting time until the (n− k)th jump of a Poisson process
with rate ν, λ = (µ−σ2/2)/σ, and FSλ

t
(s) is as in (2.2). Then, (2.6) can be expressed

as the Ft-measurable time-independent optimal stopping problem

(2.8) V = inf
τ∈T

E[ψ(Nτ , Xτ )] ,

where the process X = (Xt)0≤t≤T is given by Xt = Sλ
t −Bλ

t .
Proof. The proof is similar to that in [7, Lemma 1], and so we only summarize

the main steps. We can rewrite V in terms of a Brownian with drift λ and its running
maximum as

V = inf
τ∈T

E[U(eσ(S
λ
T−Bλ

τ ))] .
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Using deterministic times and making use of the law of total expectation, the
term involving the expected value above, restricted to the case when {t ≤ T }, reads

E[U(eσ(S
λ
T−Bλ

t ))1{t≤T}] = E

[

E[U(eσ(S
λ
T −Bλ

t ))1{t≤T}|Ft]
]

= E

[

1{t≤T}E[U(eσ((S
λ
t −Bλ

t )∨(max0≤s≤T−t B
λ
t+s−Bλ

t )))|Ft]
]

.

The independent and stationary increments of Bλ
t imply that max0≤s≤T−t B

λ
t+s−Bλ

t

and Sλ
T−t are equal in law. Hence

E[U(eσ(S
λ
T−Bλ

t ))1{t≤T}] = E

[

1{t≤T}E[U(eσ(Xt∨Sλ
T−t))|Ft]

]

.

The memoryless property of the exponential distribution implies that, conditioned on

Ft, T−t
law
= Tn−Nt

, where Tn−Nt
stands for the waiting time until the (n−Nt)th jump

in a Poisson process with rate ν. Recalling that processes N and B are independent,
the above gives

E[U(eσ(S
λ
T−Bλ

t ))1{t≤T}] = E[1{t=T}U(eσXt)]

+ E

[

1{t<T}

∫ ∞

0

{

U(eσXt)P(Sλ
T ≤ Xt)

}

P(Tn−Nt
∈ dT )

]

+ E

[

1{t<T}

∫ ∞

0

{
∫ ∞

Xt

U(eσz)fSλ
T
(z)dz

}

P(Tn−Nt
∈ dT )

]

,

where fSλ
T
(z) is the density function of Sλ

T . Using property (2.3) and integrating by
parts the inner integral in the last term of the right-hand side, we obtain

E[U(eσ(S
λ
T −Bλ

t ))1{t≤T}]

= E[1{t≤T}U(eσXt)]

+ E

[

1{t<T}σ

∫ ∞

0

∫ ∞

Xt

eσzU ′(eσz)(1 − FSλ
T
(z))dzP(Tn−Nt

∈ dT )

]

= E[ψ(Nt, Xt)1{t≤T}] .

As pointed out in [8] and [7], arguments based on each stopping time being the
limit of a decreasing sequence of discrete stopping times allow us to extend this result
for deterministic times to all stopping times. Consequently, we may rewrite V as

V = inf
τ∈T

E[ψ(Nτ , Xτ )] ,

completing the proof.

2.2. Extension of V . Let D denote the set of possible states in (Nt, Xt) at
which instantaneous stopping is optimal in problem (2.8); we refer to it as the stopping
set. Then, (2.8) is expressed as

(2.9) V = E[ψ(NτD , XτD)] ,

where

τD = inf{t ≥ 0 : (Nt, Xt) ∈ D} .
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We note that {n} × R
+ ⊆ D, since the state n in N indicates forced stopping. This

implies that τD ≤ T < ∞ almost surely.
It is shown in [12] that X , with initial state x ≥ 0, has the law of a Brownian

motion with negative drift −λ reflected at 0. This is identical to the similar process
Xx = (Xx

t )0≤t≤T , where Xx
t = x ∨ Sλ

t − Bλ
t (cf. [5]). On the other hand, the law

of N started at k is equal to that of (Nk
t )t≥0, with Nk

t = k + Nt. In order to make
use of Markovian techniques and provide a solution to our problem we extend (2.9),
allowing it to start at any point and time in the state space, so that

(2.10) V (k, x) = Ek,x[ψ(Nt+τD(k,x), Xt+τD(k,x))|t < T ] = E[ψ(Nk
τD(k,x), X

x
τD(k,x))] ,

with

τD(k, x) = inf{t ≥ 0 : (Nk
t , X

x
t ) ∈ D} ,

where Ek,x denotes the expectation under any Markovian probability measure for
which P(Nt = k,Xt = x|t < T ) = 1, and τD(k, x) stands for the first entry time of

the two-dimensional Markovian process Y k,x
t = (Nk

t , X
x
t ) in D. Then, general theory

in [17] indicates that the solution to the stopping problem is provided by the largest
subharmonic function dominating ψ on the state space. In addition, the optimal
stopping time comes whenever the current state of the Markovian process falls within
the subset of the state space where the value of the gain and dominating functions is
the same, so that D is given by

D = {(k, x) ∈ {0, 1, . . . , n} × R
+ : V (k, x) = ψ(k, x)}

and is complemented by

(2.11) C = Dc = {(k, x) ∈ {0, 1, . . . , n} × R
+ : V (k, x) < ψ(k, x)} .

If a bang-bang strategy were optimal, then {1, . . . , n}×R
+ would be included in either

D or C.

2.3. The infinitesimal generator. The infinitesimal generator of the process
X = Sλ − Bλ is known (cf. [7]) to act on twice differentiable functions f (satisfying
f ′(0) = 0) as

AXf(x) = −λf ′(x) +
1

2
f ′′(x) ,

while the generator of a Poisson counting process acts as ANf(k) = ν[f(k+1)−f(k)].
Therefore, the infinitesimal generator of the two-dimensional Markovian process Yt =
(Nt, Xt) acts on suitable functions f : R2 → R as

(2.12) AY f(k, x) = ν[f(k + 1, x)− f(k, x)]− λ
df(k, x)

dx
+

1

2

d2f(k, x)

dx2
.

Applying the Itô formula to ψ in (2.10) and compensating the jump terms with
a subordinator, we obtain

V (k, x) = E

[

ψ(k, x) +

∫ τD(k,x)

0

AXψ(Nk
s , X

x
s )ds+

∫ τD(k,x)

0

ψx(N
k
s , X

x
s )d(x ∨ Sλ

s )

]

+E

[

−
∫ τD(k,x)

0

ψx(N
k
s , X

x
s )dBs +

∫ τD(k,x)

0

∆ψ(Nk
s , X

x
s )d(N

k
s − νs)

]

+E

[

∫ τD(k,x)

0

ν∆ψ(Nk
s , X

x
s )ds

]

,
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where ∆ψ(Nk
s , X

x
s ) = ψ(Nk

s , X
x
s ) − ψ(Nk

s , X
x
s−

). Now, since Nk
s − νs and Bs are

martingales and since ψx(N
k
s , X

x
s )d(x∨Sλ

s ) is always zero (a change in value in x∨Sλ
s

implies Xx
s = 0 and ψx(N

k
s , X

x
s ) = 0), we get

(2.13) V (k, x) = ψ(k, x) + E

[

∫ τD(k,x)

0

AY ψ(N
k
s , X

x
s )ds

]

.

Note that algebraic calculations show that AY ψ(k, x) is given by

AY ψ(k, x) = ν[ψ(k + 1, x)− ψ(k, x)]−
(

λ− σ

2

)

ψx(k, x)

+
σ

2
eσx

d

dx

∫ ∞

0

U ′(eσx)FSλ
T
(x)P(Tn−k ∈ dT ) .(2.14)

3. Solution to the optimal stopping problem. Noting expression (2.13), the
following two sets play a fundamental role in the descriptions of C and D:

Θ = {(k, x) ∈ {0, 1, . . . , n− 1} × R
+ : AY ψ(k, x) ≥ 0} ,(3.1)

Υ = {(k, x) ∈ {0, 1, . . . , n− 1} × R
+ : AY ψ(k, x) < 0} .(3.2)

Let ∆ =
√
λ2 + 2ν, and define functions R1 and R2 as

(3.3) R1(k, x) =

∫ x

0

V (k + 1, r)e−(λ−∆)rdr ; R2(k, x) =

∫ x

0

V (k + 1, r)e−(λ+∆)rdr .

Lemma 3.1. Let U ∈ U . If Υ = {0, 1, . . . , n−1}×R
+or Θ = {0, 1, . . . , n−1}×R

+,
then a bang-bang stopping strategy is optimal, i.e., τD = 0 or τD = T . Moreover, if
Υ = {0, 1, . . . , n− 1} × R

+, then

V (k, x) = U(eσx)

(

1 +
λ+∆

∆− λ
e−2∆x

)

+
ν

∆
e(λ−∆)x

(

λ+∆

∆− λ
R2(k, x) +R1(k, x)

)

for all (k, x) ∈ {0, 1, . . . , n− 1} × R
+; if Θ = {0, 1, . . . , n− 1} × R

+, then

V (k, x) = ψ(k, x)

for all (k, x) ∈ {0, 1, . . . , n− 1} × R
+.

Proof. Arguments in [17], considering exit times from small balls and making use
of the optional sampling theorem, can be extrapolated to this case and suggest that
for any utility measure U in U , Υ ⊆ C and D ⊆ Θ. If Υ = {0, 1, . . . , n − 1} × R

+,
it follows that (k, x) ∈ C for all (k, x) ∈ {0, 1, . . . , n− 1} × R

+ and stopping is never
optimal until deadline. The explicit expression for V is given as the unique solution
to the boundary value problem

AY V (k, x) = 0 for all (k, x) ∈ {0, 1, . . . , n− 1} × R
+ ,(3.4)

lim
x→0

Vx(k, x) = 0 for all k ∈ {0, 1, . . . , n− 1} ,(3.5)

lim
x→∞

V (k, x) = U(eσx) for all k ∈ {0, 1, . . . , n− 1} .(3.6)

While (3.6) is rather obvious, the derivations of (3.4) and (3.6) are similar to those
of Theorem 3.3, and we omit them here. Making use of (3.5) and (3.6) as boundary
conditions, the explicit solution for V can be obtained solving the ordinary differential
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equation (3.4). We refer the reader to [1] for a collection of ordinary techniques for
solving linear second order differential equations.

If Θ = {0, 1, . . . , n − 1} × R
+, it is not directly implied that (k, x) ∈ D, since

Θ and D are not necessarily the same set. However, looking into (2.13) we see that
τD(k, x) = 0 is a must, since otherwise V (k, x) > ψ(k, x), which is contradictory.
This implies that instantaneous stopping is optimal and V (k, x) = ψ(k, x) for all
(k, x) ∈ {0, 1, . . . , n− 1} × R

+.
It follows from Lemma 3.1 that for a given U ∈ U ,

D = {n} × R
+ if Θ = {0, 1, . . . , n− 1} × R

+, and

D = {1, 2, . . . , n} × R
+ if Υ = {0, 1, . . . , n− 1} × R

+.

Should conditions of Lemma 3.1 not be met, then the memoryless property of the
exponential distribution poses an independent optimal stopping problem for each
subsequent step in N (cf. [2, 3, 13]) and may give rise to the existence of arrays of
critical points in R

+ dividing the state space {0, 1, . . . , n} × R
+ into sets D and C.

These are referred to as optimal stopping boundaries, and the optimal stopping rule
for a problem V started at an arbitrary (k, x) ∈ C is given by the first crossing time
for process X to a boundary. Formally defined as time functions (constant over time
within jumps in N), stopping boundaries are linked to the number of steps left to
deadline in N at any given point in time, and we denote them as ζ∗t = ζ∗(n−Nk

t ) for
t ≥ 0 (see example in Figure 1).

Fig. 1. Example realization with n = 10 and U(x) = x. The straight horizontal lines correspond

to the optimal stopping boundary ζ∗. The dynamics of Xx are plotted in the jagged line. Here, τ is

the optimal stopping time.

If Θ in (3.1) is nonempty, the theory in [17] implies the existence of “bounding”
functions for the set, in our case, functions on {0, 1, . . . , n− 1} defining the frontier(s)
between Θ and Υ. In what follows we make the following assumption.

Assumption 3.2. Sets Θ and Υ in (3.1)–(3.2) are nonempty, and there exists
an n-dimensional array b such that

Θ = {(k, x) ∈ {0, 1, . . . , n− 1} × R
+ : x ≥ b(k)} , and

Υ = {(k, x) ∈ {0, 1, . . . , n− 1} × R
+ : x < b(k)} .
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We note that determining the veracity of Assumption 3.2 analytically can be a
daunting challenge due to the complexity of (2.14); thus, in the examples discussed
in the closing section this is done numerically. Figure 2 offers examples of choices of
function U meeting this criterion. It is possible to face the existence of two or more
bounding vectors for Θ, leading to a boundary value problem different from the one
studied here (see examples for this case in the final section).

Fig. 2. Numerical examples of the value of functions AY ψ(k, x) with respect to x, for different

fixed values of k. Here, µ = 0.5, σ = 1, ω = 4, and n = 5; the left-hand side plot corresponds to

U(x) = 1
2
(x3/2 + x4/3), and on the right-hand side we have U(x) = 1

2
(x1/2 + x1/4).

Under Assumption 3.2, the existence of an optimal stopping boundary ζ∗ follows
from the existence of bounding values b(k). Heuristic arguments, implying that the
optimal stopping rule will be linked to the time of a big departure of process Z from
its running maximum, suggest that D will be lying above the boundary ζ∗. Thus,
the continuation set C defined by (2.11) is composed of all points (k, x) where x is
smaller than the value of ζ∗ at n− k steps left to deadline, i.e.,

C = {(k, x) ∈ {0, 1, . . . , n} × R
+ : x < ζ∗(n− k)} .

Equivalently,

D = {(k, x) ∈ {0, 1, . . . , n} × R
+ : x ≥ ζ∗(n− k)} .

Note that ζ∗T = ζ(n − n) = ζ∗(0) = 0. Finally, for any starting point (k, x), the
optimal stopping rule τD linked to an optimal boundary ζ∗ takes the form

(3.7) τD(k, x) = inf{t ≥ 0 : Xx
t ≥ ζ∗(n−Nk

t )} .

Therefore, the solution for the optimal stopping problem V will follow from the
correct detection of the values that ζ∗ takes for each step in {0, 1, . . . , n}. With the
aim of exposing the main result in this paper, we define the following functionals. Let
C1 and C2, in terms of the boundary ζ∗ and the set of parameters (λ, σ, ν), be given
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by

C1(k) =
ν

∆
R2(k, ζ

∗(n− k))

+ (ψx(k, ζ
∗(n− k))− (λ−∆)ψ(k, ζ∗(n− k))) · e

−(λ+∆)ζ∗(n−k)

2∆
(3.8)

and

C2(k) = − ν

∆
R1(k, ζ

∗(n− k))

− (ψx(k, ζ
∗(n− k))− (λ+∆)ψ(k, ζ∗(n− k))) · e

−(λ−∆)ζ∗(n−k)

2∆
,(3.9)

where functions R1 and R2 are given by (3.3).
Theorem 3.3. Under Assumption 3.2, for a given U ∈ U , the underlying ex-

tended optimal stopping problem V (k, x) in (2.10) can be recursively decomposed as
follows:

V (k, x) = C1(k)e
(λ+∆)x + C2(k)e

(λ−∆)x

+
ν

∆

{

e(λ−∆)xR1(k, x)− e(λ+∆)xR2(k, x)
}

(3.10)

if x < ζ∗(n− k) and k < n, and

V (k, x) = ψ(k, x)

if x ≥ ζ∗(n − k) or k = n. Function ψ(t, x) is as described in (2.7) and functionals
R1, R2, C1, and C2 are given by (3.3), (3.8), and (3.9).

The value of the optimal stopping boundary ζ∗, at “n − k” steps (or jumps) to
deadline in process N , can be identified as the only positive solution to the integral
equation

(3.11) (λ+∆)C1(k) + (λ−∆)C2(k) = 0 .

4. Proof of Theorem 3.3. For any x ∈ R
+, V is known at deadline and is

given by V (n, x) = ψ(n, x) = U(eσx). Equation (3.10) provides an iterative method
to work out the numerical value of V at any point in the state space.

It is known (cf. [17, Chapter 3] that the optimal stopping problem V (k, x) in
(2.10) solves

{AY V (k, x) = 0, V (k, x) < ψ(k, x)} for (k, x) ∈ C ,(4.1)

V (k, x) = ψ(k, x) for (k, x) ∈ D ,(4.2)

where AY is the infinitesimal generator of the process Y defined in (2.12). In terms
of ζ∗, this is equivalent to

ν[V (k + 1, x)− V (k, x)]− λVx(k, x) +
1

2
Vxx(k, x) = 0 for x < ζ∗(n− k) ,(4.3)

V (k, x) = ψ(k, x) for x ≥ ζ∗(n− k) .(4.4)

In the following, we show that the mapping x 
→ V (k, x) is continuous for any
fixed value of k in N . Its differentiability while in C follows from the theory in [17].
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Moreover, we show that, for any k < n, the system of equations (4.3)–(4.4) may be
complemented by the following boundary conditions:

lim
x→ζ∗(n−k)

V (k, x) = ψ(k, ζ∗(n− k)) ,(4.5)

lim
x→ζ∗(n−k)

Vx(k, x) = ψx(k, ζ
∗(n− k)) (smooth fit) ,(4.6)

lim
x→0

Vx(k, x) = 0 (normal reflection) .(4.7)

Then, the use of boundary conditions (4.5)–(4.7) allows (3.10) and (3.11) to be derived
by solving the ordinary differential equation (4.3), so that the proof of Theorem 3.3
follows from the application of ordinary techniques for solving linear second order
differential equations with constant coefficients (cf. [1]). In order to show (4.5)–(4.7),
we make use of variations of the methods of solution presented in [17, Chapter 4] and
applied in [7, 15, 16] among others.

4.1. Monotonicity and continuity of V . We recall that V (k, x) ≤ ψ(k, x)
for any x < ζ∗(n − k), so that (4.5) will follow from continuity of the mapping
x 
→ V (k, x). We start by introducing the following lemma for later use.

Lemma 4.1. Let U ∈ U be a strictly convex function, and fix t ≥ 0 and x ∈ R
+.

Then, the random variable eσX
x
t U ′(eσX

x
t ) is integrable.

Proof. Note first that

Xx
t = x ∨ Sλ

t −Bλ
t ≤ max

{

x+ |λ|t+ |Bt|, max
0≤s≤t

{λs+Bs} − λt+ |Bt|
}

≤ max

{

x+ |λ|t+ |Bt|, max
0≤s≤t

|Bs|+ |λ|t+ |Bt|
}

≤ x+ 2 max
0≤s≤t

|Bs|+ |λ|t .

Since U is a nondecreasing and convex function,

0 ≤ E[eσX
x
t U ′(eσX

x
t )] ≤ E[eσ(x+2max0≤s≤t |Bs|+|λ|t)U ′(eσ(x+2max0≤s≤t |Bs|+|λ|t))]

= −
∫ ∞

0

eσw(z)U ′(eσw(z))dP( max
0≤s≤t

|Bs| ≥ z) ,

where w(z) = x+ |λ|t+ 2z. Integrating by parts, the above yields

E[eσX
x
t U ′(eσX

x
t )]

≤ −[eσw(z)U ′(eσw(z))P( max
0≤s≤t

|Bs| ≥ z)]
∣

∣

∞

0

+

∫ ∞

0

[eσw(z)U ′(eσw(z)) + σe2σw(z)U ′′(eσw(z))]P( max
0≤s≤t

|Bs| ≥ z)dz .

Recalling (cf. [7]) that P(max0≤s≤t |Bs| ≥ z) ≤ 2P(|Bt| ≥ z) and noting conditions
(2.4) and (2.5), it follows that

E[eσX
x
t U ′(eσX

x
t )] ≤ ∞.

Lemma 4.2. Fixing U ∈ U and k ≤ n, the mapping x 
→ V (k, x) is nondecreasing
and continuous in R

+.
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Proof. The proof is split into two parts; to start, we show that the gain function
ψ in (2.7) is nondecreasing in x. If k = n, the monotonicity of ψ follows from
ψx(k, x) = σeσxU ′(eσx) ≥ 0. If k < n,

dψ(k, x)

dx
(4.8)

=

∫ ∞

0

{

dU(eσx)

dx
+ σ

d

dx

∫ ∞

x

eσzU ′(eσz)(1 − FSλ
T
(z)) dz

}

P(Tn−k ∈ dT )

=

∫ ∞

0

{

σeσxU ′(eσx)− σeσxU ′(eσx)(1 − FSλ
T
(x))

}

P(Tn−k ∈ dT )

=

∫ ∞

0

σeσxU ′(eσx)FSλ
T
(x)P(Tn−k ∈ dT ) ≥ 0 .

We now show that V is nondecreasing in x. If k = n, then (k, x) ∈ D and so
V = ψ. Therefore V (k, x) = U(eσx), which is a nondecreasing function of x. If k < n,
take values x, y ∈ R

+ with x ≤ y and set τx = τD(k, x) and τy = τD(k, y), where
τD(k, ·) is given by (3.7).

Since the subset {n} × R
+ is included in D, E[ψ(Nk

t , X
·)] will reach a global

minimum at some point on or before deadline. Such a global minimum always exists
and corresponds to the value of V (k, ·). Moreover, τx, τy ≤ T . Then,

V (k, x) = E[ψ(Nk
τx
, Xx

τx
)] ≤ E[ψ(Nk

τy
, Xx

τy
)] ,

implying that

V (k, y)− V (k, x) = E[ψ(Nk
τy
, Xy

τy
)− ψ(Nk

τx
, Xx

τx
)] ≥ E[ψ(Nk

τy
, Xy

τy
)− ψ(Nk

τy
, Xx

τy
)] .

Recalling that ψ(k, x) is nondecreasing on x, and noting that Xy
τy

≥ Xx
τy
, implies that

V (k, y) ≥ V (k, x) ,

settling the result on monotonicity for V .
Now, we show that the mapping x 
→ V (k, x) is continuous in x for any fixed

k ≤ n. If k = n, the value function is reduced to U(eσx), which is continuous in x. If
k < n, following previous arguments, we note that

0 ≤ V (k, y)− V (k, x) ≤ E[ψ(Nk
τx
, Xy

τx
)− ψ(Nk

τx
, Xx

τx
)] .

Since ψ(k, x) is continuous in x, for any fixed value of k, the mean value theorem
yields

0 ≤ V (k, y)− V (k, x) ≤ E[(Xy
τx

−Xx
τx
)ψx(N

k
τx
, ν)] ,

where Xx
τx

≤ ν ≤ Xy
τx
. Moreover, noting that Xy

τx
−Xx

τx
= y ∨ Sλ

τx
−Bλ

τx
− x∨ Sλ

τx
+

Bλ
τx

≤ y − x, we have

0 ≤ V (k, y)− V (k, x) ≤ (y − x)E[ψx(N
k
τx
, ν)] .

In order to further simplify the upper bound above, we recall result (4.8) and note
that

ψx(N
k
τx
, ν) ≤ σeσνU ′(eσν) ∨ σeσνU ′(eσν)

∫ ∞

0

FSλ
T
(ν)P(Tn−Nk

τx
∈ dT )

≤ σeσνU ′(eσν) ∨ σeσνU ′(eσν)

∫ ∞

0

P(Tn−Nk
τx

∈ dT ) = σeσνU ′(eσν)
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and that ν ≤ Xy
τx
. If U is concave, then U ′ is a nonincreasing function. We obtain

(4.9) 0 ≤ V (k, y)− V (k, x) ≤ σc(y − x)E[eσX
y
τx ]

for some constant value c > 0. If U is convex, then U ′ is a nondecreasing function,
and so

(4.10) 0 ≤ V (k, y)− V (k, x) ≤ σ(y − x)E[eσX
y
τxU ′(eσX

y
τx )] .

Note that the integrability of eσX
y
τxU ′(eσX

y
τx ) follows from Lemma 4.1, when U is

convex and U ′ is a nondecreasing function. We refer to [7] for a probabilistic proof on
the integrability of the term eσX

y
τx . Now, take the limit as |y − x| → 0 in (4.9) and

(4.10) above to conclude that x 
→ V (k, x) are continuous mappings in R
+, concluding

the proof.

4.2. The condition of smooth fit.

Lemma 4.3 (principle of smooth fit). The optimal stopping boundary ζ∗ is char-
acterized by the fact that, for any fixed k < n, Vx(k, x) exists and is continuous on x,
while Vx(k, ζ

∗(n− k)) = ψx(k, ζ
∗(n− k)).

Proof. Let ε > 0 and τε = τD(k, ζ∗(n − k) − ε). Recall the definition of the set
C in (2.11); then V (k, ζ∗(n − k) − ε) < ψ(k, ζ∗(n − k) − ε). We note that for all
(k, x) ∈ C immediate stopping is optimal; thus, V (k, ζ∗(n − k)) = ψ(k, ζ∗(n − k)) <

E[ψ(Nk
τε
, X

ζ∗(n−k)
τε )], implying

(4.11) ψ(k, ζ∗(n− k))−ψ(k, ζ∗(n− k)− ε) ≤ V (k, ζ∗(n− k))− V (k, ζ∗(n− k)− ε)

and

V (k, ζ∗(n− k))− V (k, ζ∗(n− k)− ε)

≤ E[ψ(Nk
τε
, Xζ∗(n−k)

τε
)− ψ(Nk

τε
, Xζ∗(n−k)−ε

τε
)] .(4.12)

Making use of the mean value theorem, it can be derived from (4.12) that, for
fixed k,

V (k, ζ∗(n− k))− V (k, ζ∗(n− k)− ε) ≤ E[(Xζ∗(n−k)
τε

−Xζ∗(n−k)−ε
τε

)ψx(N
k
τε
, ν)] ,

where X
ζ∗(n−k)−ε
τε ≤ ν ≤ X

ζ∗(n−k)
τε . Recall that, for any U ∈ U , ψx ≥ 0. We note also

that

Xζ∗(n−k)
τε

−Xζ∗(n−k)−ε
τε

= ζ∗(n− k) ∨ Sλ
τε

− (ζ∗(n− k)− ε) ∨ Sλ
τε

≤ ε .

Thus,

V (k, ζ∗(n− k))− V (k, ζ∗(n− k)− ε) ≤ εE[ψx(N
k
τε
, ν)] .(4.13)

Recalling that V is twice differentiable in C, dividing the terms in (4.11) and (4.13)
by ε, and taking the limit as ε → 0 leads to

ψx(k, ζ
∗(n− k)) ≤ Vx(k, ζ

∗(n− k)) ≤ lim
ε→0

E[ψx(N
k
τε
, ν)] .(4.14)

Moreover,

τε = τD(k, ζ∗(n− k)− ε) = inf{s ≥ 0 : Xζ∗(n−k)−ε
s ≥ ζ∗(n−Nk

s )}
= inf{s ≥ 0 : (ζ∗(n− k)− ε) ∨ Sλ

s −Bs − λs ≥ ζ∗(n−Nk
s )}

≤ inf{s ≥ 0 : −Bs ≥ ε+ λs+ ζ∗(n−Nk
s )− ζ∗(n− k)} ε→0−−−→ 0 ,
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since a Poisson process is right continuous. This implies that ν
ε→0−−−→ ζ∗(n− k), since

X
ζ∗(n−k)−ε
τε ≤ ν ≤ X

ζ∗(n−k)
τε . Therefore, by (4.14), the fact that Vx(k, ζ

∗(n − k)) =
ψx(k, ζ

∗(n− k)) follows from the right continuity of Poisson processes.
Next, we show that, for any fixed k < n, Vx(k, x) is continuous at corresponding

values of ζ∗(n− k). For this, we take δ > 0. Thus, in a similar fashion as before, for
any ε ∈ (0, δ),

V (k, ζ∗(n− k)− δ + ε)− V (k, ζ∗(n− k)− δ)

≤E[ψ(Nk
τδ
, Xζ∗(n−k)−δ+ε

τδ
)− ψ(Nk

τδ
, Xζ∗(n−k)−δ

τδ
)] ,

which leads to

V (k, ζ∗(n− k)− δ + ε)− V (k, ζ∗(n− k)− δ) ≤ εE[ψx(N
k
τδ
, ν)] ,

where X
ζ∗(n−k)−δ
τδ ≤ ν2 ≤ X

ζ∗(n−k)−δ+ε
τδ .

Clearly, ν2
ε→0−−−→ X

ζ∗(n−k)−δ
τδ , since τδ

δ→0−−−→ 0. Dividing expressions in the above
inequality by ε and taking the limit as ε → 0, we obtain

Vx(k, ζ
∗(n− k)− δ) ≤ E[ψx(N

k
τδ
, Xζ∗(n−k)−δ

τδ
)] ,

so that

lim sup
δ→0

Vx(k, ζ
∗(n− k)− δ) ≤ ψx(k, ζ

∗(n− k)) .

To show that the reverse inequality holds, taking ε > 0, we also note that

V (k, ζ∗(n− k)− δ)− V (k, ζ∗(n− k)− δ − ε)

≥E[ψx(N
k
τδ
, ν3)(X

ζ∗(n−k)−δ
τδ

−Xζ∗(n−k)−δ−ε
τδ

)]

for some ν3 ∈ [X
ζ∗(n−k)−δ
τδ , X

ζ∗(n−k)−δ−ε
τδ ]. If we divide the previous expression by ε

and take the limit as ε → 0, it is clear that the left-hand side tends to Vx(k, ζ
∗(n −

k)− δ) and the right-hand side tends to

1

ε
E[ψx(N

k
τδ
, ν3)(X

ζ∗(n−k)−δ
τδ

−Xζ∗(n−k)−δ−ε
τδ

)]

= E

[

ψx(N
k
τδ
, ν3)

(ζ∗(n− k)− δ) ∨ Sλ
τδ

− (ζ∗(n− k)− δ − ε) ∨ Sλ
τδ

ε

]

ε→0−−−→ E[ψx(N
k
τδ
, Xζ∗(n−k)−δ

τδ
)I{Sλ

τδ
<ζ∗(n−k)−δ}] ,

implying that

Vx(k, ζ
∗(n− k)− δ) ≥ E[ψx(N

k
τδ
, Xζ∗(n−k)−δ

τδ
)I{Sλ

τδ
<ζ∗(n−k)−δ}] .

Hence, the right continuity of Poisson processes implies that

lim inf
δ→0

Vx(k, ζ
∗(n− k)− δ) ≥ ψx(k, ζ

∗(n− k)) ,

concluding the proof.
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4.3. The condition of normal reflection.

Lemma 4.4 (normal reflection). For any fixed k < n, limx→0 Vx(k, x) = 0.
Proof. Fix k < n. If ζ∗(n − k) = 0, then Vx(k, x) = ψx(k, x), and from (4.8)

we observe that limx→0 Vx(k, x) = 0. If ζ∗(n − k) > 0, we apply Itô’s formula for
noncontinuous semimartingales to V (Nk

t , X
0
t ), while (Nk

t , X
0
t ) is in the continuation

set C. Function V is twice differentiable in C, and therefore the limit exists. Then,

V (Nk
t , X

0
t ) = V (k, 0) +

∫ t

0

Vx(N
k
s , X

0
s )dX

0
s +

1

2

∫ t

0

Vxx(N
k
s , X

0
s )d[X

0]s

+
∑

s≤t

∆[V (Nk
s , X

0
s )] ,

where, for any two-dimensional Markovian process (Yt)t≥0, ∆[V (Yt)] = V (Yt) −
V (Yt−).

Recall from [7] that dX0
s = dSλ

s −λds−dBs = −λds+dBs+dl0s(X) is a generalized
Itô process so that [X0]s = (

∫ s

0 dBr)
2 =

∫ s

0 dr = s, where l0(X) denotes the local
time of the process X at 0. We plug these expressions appropriately into the previous
equation to obtain

V (Nk
t , X

0
t )− V (k, 0) =

∫ t

0

AXV (Nk
s , X

0
s )ds +

∫ t

0

Vx(N
k
s , X

0
s )dS

λ
s

−
∫ t

0

Vx(N
k
s , X

0
s )dBs +

∑

s≤t

∆[V (Nk
s , X

0
s )] ,(4.15)

where the operator AX is the infinitesimal generator of the process X given by (2.3).
The jumps of the Poisson process Nk

t are of size 1 almost surely. Therefore, the last
term on the right-hand side of (4.15) can be modified as

∑

s≤t

∆[V (Nk
s , X

0
s )] =

∫ t

0

∆[V (Nk
s , X

0
s )]dN

k
s =

∫ t

0

[V (Nk
s−+1, X0

s )−V (Nk
s− , X

0
s )]dN

k
s ,

implying that

V (Nk
t , X

0
t )− V (k, 0) =

∫ t

0

AXV (Nk
s , X

0
s )ds +

∫ t

0

Vx(N
k
s , X

0
s )dS

λ
s

−
∫ t

0

Vx(N
k
s , X

0
s )dBs

+

∫ t

0

[V (Nk
s− + 1, X0

s )− V (Nk
s− , X

0
s )]dN

k
s .

Thus,

E[V (Nk
t , X

0
t )]− V (k, 0)

t
=

E[
∫ t

0
AXV (Nk

s , X
0
s )ds]

t
+

E[
∫ t

0
Vx(N

k
s , X

0
s )dS

λ
s ]

t

+
E[
∫ t

0 [V (Nk
s−

+ 1, X0
s )− V (Nk

s−
, X0

s )]dN
k
s ]

t
.(4.16)

Therefore, we take on both sides of (4.16) the limit as t → 0 to obtain

AY V (k, 0) = AXV (k, 0) + Vx(k, 0
+) · lim

t→0

E[Sλ
t ]

t

+ [V (k + 1, 0)− V (k, 0)] · lim
t→0

E[Nk
t − k]

t
.(4.17)
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The random variable Nk
t − k follows a Poisson distribution with rate νt so that

E[Nk
t −k]
t

t→0−−−→ ν. Therefore, (4.17) becomes

(4.18) AY V (k, 0) = AXV (k, 0) + Vx(k, 0
+) · lim

t→0

E[Sλ
t ]

t
+ANV (k, 0) ,

where AN is the infinitesimal generator of the process Nt. Recalling that AY =
AX +AN , (4.18) reduces to

Vx(k, 0
+) · lim

t→0

E[Sλ
t ]

t
= 0 .

However, note that

E[Sλ
t ] ≥ E[St]− |λ|t =

√
tE[|Bt|]− |λ|t

for all t ≥ 0, due to St
law
= |Bt| law

=
√
t|B1|. Thus, dividing the above by t and letting

t → 0 yields

lim
t→0

E[Sλ
t ]

t
> lim

t→0

E[|Bt|]√
t

− |λ| = ∞,

so that Vx(k, 0
+) = 0.

5. Discussion. The result in Theorem 3.3 allows us to iteratively compute, for
a choice of utility function U ∈ U satisfying conditions in Assumption 3.2, the values
of the optimal stopping boundary ζ∗ associated to the problem of optimally halting a
stochastic process Z driven by a geometric Brownian motion with drift µ and variance
σ2. This boundary allows us to define an optimal stopping rule, so that the expected
value in (2.6) is optimized according to the choice of U . The signal to halt has been
explained to be given by the first crossing time of the underlying process Xt to the
boundary ζ∗.

It is key to understand that different processes Z will be related to different
optimal boundaries. Assuming a given value of steps to deadline n and a given
common expected rate of jumps ν, different parameters (µ′, σ′), defining another
process, will link to a different optimal stopping boundary. Such a boundary could
be either more permissive, allowing for a broader range of values of Xt not to fall in
the stopping set D, or more restrictive, reducing its value and therefore forcing the
sale as soon as the process slightly takes off from zero.

5.1. Existence. An example of a family of functions meeting conditions in As-
sumption 3.2 is given by the family of combined power utility functions, i.e., functions
U(x) of the form

U(x) =

m
∑

i=1

αix
δi ,

with m ≥ 0, 0 ≤ δi < 1 for all i ∈ {1, 2, . . . ,m} (strictly concave) or 1 < δi for all
i ∈ {1, 2, . . . ,m} (strictly convex); 0 ≤ αi ≤ 1, and

∑m

i=1 αi = 1. Direct numerical
analysis of functions AY ψ(k, x) in (2.13) reveals the existence of common properties
for measures of this kind. For all (k, x) ∈ {1, 2, . . . , n} × R

+ there exist u1, u2 ∈ R+

with u1 < u2 so that

AY G(k, x) < 0 if µ ≥ u2 and

AY G(k, x) > 0 if µ ≤ u1 .
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Moreover, for any µ ∈ (u1, u2), conditions in Assumption (3.2) are met. It follows
that for this family of functions, the optimal stopping set D can partially be defined
as

D = {n} × R
+ if µ ≥ u2 ,(5.1)

D = {0, 1, . . . , n} × R
+ if µ ≤ u1 , and(5.2)

D = {(k, x) ∈ {0, 1, . . . , n} × R
2 : x > ζ∗(n− k)} if µ ∈ (u1, u2) .(5.3)

Expressions for value functions and optimal stopping boundaries can therefore be
obtained using results in Theorem 3.3.

As mentioned in the introduction, the structure of the optimal stopping rules pre-
sented in [7] led to the categorization of processes into three different groupings. The
solution to our randomized problem for the family of combined power utility functions
suggests that we can still make use of a categorization similar to that described in [7]
and presented in (5.1)–(5.3).

5.2. Approaching the original fixed terminal time problem. There is an
obvious reciprocity within the fixed time deadline and randomized set-up problems
with power functions U(x). The random variable T , defined as the terminal stopping
time, is modelled as the nth jump in a Poisson process with rate ν. Thus, it is possible
to modify the values of both n and ν to create strong estimates of true deadlines,
which are Gamma distributed. For some fixed T ′ > 0, it is possible to set ν = n

T ′ and
asymptotically fix T = T ′ as n → ∞, decreasing the variance to infinitesimally small
numbers. Such an approach results in the same optimal selling boundaries introduced
in [7] under a fixed terminal time T set-up, as shown in Figure 3.

Fig. 3. Estimate of continuous optimal selling boundary for fixed terminal time parameter

T = 10, λ = −0.25, σ = 1. The number of breaks n used to build this estimate is 40, ν = 4. The

time τ stands for the optimal stopping time.

5.3. Different utility functions. It is also possible to extend the work to
functions U in U satisfying conditions different from those in Assumption 3.2. The
nature of the sets Θ and Υ in (3.1) and (3.2) is linked to each choice of U and
determines the nature of the stopping set D to be defined. For instance, the choice
of squared logarithmic utility function U(x) = (log(x))2, leading to the randomized
terminal time optimal stopping problem

(5.4) inf
τ∈[0,T ]

E[(Bλ
τ − max

0≤s≤T
Bλ

s )
2] ,
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Fig. 4. Value of function AY ψ(k, x) for different fixed values of k, with respect to x. Case

µ = 0.5 and choice of measure U(x) = log(x).

shows the existence of two bounding points for the set Θ for any fixed value of k,
when µ > 0, as shown in Figure 4. This is consistent with results in [17] and [6]. Such
an observation implies the existence of two stopping boundaries, therefore leading to
a boundary value problem different from that offered by (4.1) and (4.2).
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