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Abstract

In this article we present a new approach to the problem of calculating compilers. In particular,

we develop a simple but general technique that allows us to derive correct compilers from high-

level semantics by systematic calculation, with all details of the implementation of the compilers

falling naturally out of the calculation process. Our approach is based upon the use of standard

equational reasoning techniques, and has been applied to calculate compilers for a wide range of

language features and their combination, including arithmetic expressions, exceptions, state, various

forms of lambda calculi, bounded and unbounded loops, non-determinism, and interrupts. All the

calculations in the article have been formalised using the Coq proof assistant, which serves as a

convenient interactive tool for developing and verifying the calculations.

1 Introduction

The ability to calculate compilers has been a key objective in the field of program transfor-

mation since its earliest days. Starting from a high-level semantics for a source language,

the aim is to transform the semantics into a compiler that translates source programs into a

lower-level target language, together with a virtual machine that executes the resulting tar-

get programs. There are two important advantages of this approach. Firstly, the definitions

for the compiler, target language and virtual machine are systematically derived during

the transformation process, rather than having to be manually defined by the user. And

secondly, the resulting compiler and virtual machine do not usually require subsequent

proofs of correctness, as they are correct by construction (Backhouse, 2003).

The idea of calculating compilers in this manner has been explored by a number of

authors; for example, see Wand (1982a); Meijer (1992); Ager et al. (2003b). However, it

has traditionally been viewed as an advanced topic that requires considerable knowledge

and experience with concepts such as continuations and defunctionalisation (Reynolds,

1972). In this article, we show that compilers can in fact be calculated in a simple and

straightforward manner, without the need for such techniques, using standard equational

reasoning. Our new approach builds upon previous work in the area, and focuses specifi-

cally on compilers that target stack-based virtual machines.

The starting point of our calculation process is the semantics for the source language

in the form of an evaluation function. We then formulate an equational specification that

captures the correctness of the compiler. Using this specification, we calculate definitions
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of the compiler and the virtual machine by constructive induction (Backhouse, 2003), using

the desire to apply the induction hypotheses as the driving force for the calculation process.

While our approach avoids direct use of continuations and defunctionalisation, these con-

cepts are nonetheless useful for explaining the underlying ideas, and for comparing to other

work in the literature. Therefore, we present our approach in two stages, firstly introducing

the basic ideas in a series of transformation steps that include the use of continuations and

defunctionalisation, and then showing how these steps can be combined into a single step

that calculates directly from the compiler specification.

The techniques that we use are all well-known. Our contribution is to show how they can

be applied in a novel manner to give a new approach to calculating compilers that is both

simple and generally applicable. It has been used to calculate compilers for a wide range

of language features and their combination, including arithmetic expressions, exceptions,

local and global state, various forms of lambda calculi, bounded and unbounded loops,

non-determinism and interrupts. A key ingredient for the scalability of our approach is

the use of partial specifications to avoid predetermining implementation decisions. For

example, the specification of a compiler for a language with exceptions may not stipulate

how the compiler should behave when the result is an uncaught exception, as this requires

up-front knowledge about how exceptions are to be implemented. Rather, the details of this

behaviour are determined during the calculation process itself.

We develop our approach gradually. We introduce the basic methodology using a simple

expression language, starting with a stepwise calculation, which we then combine into

a single calculation (section 2). Subsequently, we refine the methodology as we apply it

to languages of increasing complexity: the use of partial specifications is demonstrated

on a language with exceptions (section 3); the use of configurations is demonstrated on

a language with state (section 4); and finally the use of rule induction for dealing with

non-compositional semantics is demonstrated on a lambda calculus (section 5).

All our programs and calculations are written in Haskell, but we only use the basic

concepts of recursive types, recursive functions, and inductive proofs. Whereas in many

articles calculations are often omitted or compressed for brevity, in this article they are

the central focus, so they are presented in detail. All the calculations have also been

mechanically verified using the Coq proof assistant, and the proof scripts are available

as online supplementary material at dx.doi.org/xxxx, together with all Haskell code

and an appendix that covers an additional example.

2 Arithmetic Expressions

To introduce our approach, we begin by considering a simple language of arithmetic ex-

pressions comprising integer values and an addition operator:

data Expr = Val Int | Add Expr Expr

We calculate a compiler for this language in a series of steps, starting with the definition

of a semantics for the language, to which we then apply a number of transformations.

These transformation steps involve continuations and defunctionalisation. However, we

then simplify the process by combining the separate transformation steps, which results in

a simple but powerful new approach to calculating compilers.

dx.doi.org/xxxx
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2.1 Step 1 – Define the semantics

The semantics for our expression language is most naturally given by defining a function

that simply evaluates an expression to an integer value:

eval :: Expr → Int

eval (Val n) = n

eval (Add x y) = eval x+ eval y

Note that the definition for eval is compositional, in the sense that the semantics of

addition is given purely in terms of the semantics of its two argument expressions. With a

view to using simple inductive proof methods, we will typically aim to define our semantics

in such a compositional manner. However, this may not always be possible, and in section 5

we will see an example that uses a non-compositional semantics.

2.2 Step 2 – Transform into a stack transformer

The next step is to transform the evaluation function into a version that utilises a stack,

in order to make the manipulation of argument values explicit. In particular, rather than

returning a single value of type Int, we seek to derive a more general evaluation function,

evalS, that takes a stack of integers as an additional argument, and returns a modified stack

given by pushing the value of the expression onto the top of the stack. More precisely, if

we represent a stack as a list of integers (where the head is the top element)

type Stack = [Int ]

then we seek to derive a function

evalS :: Expr → Stack → Stack

such that:

evalS x s = eval x : s (1)

The operator : is the list constructor in Haskell, which associates to the right. For example,

m : n : s is the list obtained by prepending two elements m and n to the list s.

Rather than first defining the function evalS and then separately proving by induction

that it satisfies the above equation, we aim to calculate a definition for evalS that satisfies

the equation by constructive induction (Backhouse, 2003) on the expression x, using the

desire to apply the induction hypotheses as the driving force for the calculation process.

Specifically, we will start with the term evalS x s and gradually transform it by equational

reasoning. The goal is to arrive at a term t such that we can take evalS x s = t as a defining

equation for evalS. We do this by induction on the expression x, so we have to do a

calculation for each case of x. In the base case, Val n, the calculation is easy:

evalS (Val n) s

= { specification (1) }

eval (Val n) : s

= { definition of eval }

n : s
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= { define: pushS n s = n : s }

pushS n s

Note that in the final step we defined an auxiliary function, pushS, that captures the idea

of pushing a number onto the stack. With the above calculation we have discovered the

definition of evalS for expressions of the form Val n, namely:

evalS (Val n) s = pushS n s

In the inductive case, Add x y, we proceed as follows:

evalS (Add x y) s

= { specification (1) }

eval (Add x y) : s

= { definition of eval }

(eval x+ eval y) : s

Now we appear to be stuck, as no further definitions can be applied. However, as we are

performing an inductive calculation, we can make use of the induction hypotheses for the

two argument expressions x and y, namely:

evalS x s′ = eval x : s′

evalS y s′ = eval y : s′

In order to use these hypotheses, it is clear that we must push the values eval x and eval y

onto the stack, which can readily be achieved by introducing another auxiliary function,

addS, that captures the idea of adding together the top two numbers on the stack. The

remainder of the calculation is then straightforward:

(eval x+ eval y) : s

= { define: addS (n : m : s) = (m+n) : s }

addS (eval y : eval x : s)

= { induction hypothesis for y }

addS (evalS y (eval x : s))

= { induction hypothesis for x }

addS (evalS y (evalS x s))

Note that pushing eval x onto the stack before eval y in this calculation corresponds to the

addition operator evaluating its arguments from left-to-right. It would be perfectly valid to

push the values in the opposite order, which would correspond to right-to-left evaluation.

In conclusion, we have calculated the following definition

evalS :: Expr → Stack → Stack

evalS (Val n) s = pushS n s

evalS (Add x y) s = addS (evalS y (evalS x s))

where

pushS :: Int → Stack → Stack

pushS n s = n : s
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addS :: Stack → Stack

addS (n : m : s) = (m+n) : s

Finally, our original evaluation function eval can now be recovered from our new func-

tion by substituting the empty stack into equation (1) from which evalS was constructed,

and selecting the unique value in the resulting singleton stack:

eval :: Expr → Int

eval x = head (evalS x [ ])

We conclude by noting that introducing pushS and addS may seem rather unnecessary

at this point, and indeed, the above calculation can be performed without them. But we

will see that subsequent steps are based on being able to encapsulate such operations as

functions. However, the issue of when we need to introduce new definitions will become

clear when the separate steps are combined together in section 2.5.

2.3 Step 3 – Transform into continuation-passing style

The next step is to transform the new function evalS into continuation-passing style (CPS)

(Reynolds, 1972), in order to make the flow of control explicit. In particular, we seek to

derive a more general evaluation function, evalC, that takes a function from stacks to stacks

(the continuation) as an additional argument, which is used to process the stack that results

from evaluating the expression. More precisely, if we define a type for continuations

type Cont = Stack → Stack

then we seek to derive a function

evalC :: Expr → Cont → Cont

such that:

evalC x c s = c (evalS x s) (2)

We calculate the definition for evalC directly from this equation by constructive induction

on the expression x. The base case is once again easy,

evalC (Val n) c s

= { specification (2) }

c (evalS (Val n) s)

= { definition of evalS }

c (pushS n s)

while for the inductive case we calculate as follows:

evalC (Add x y) c s

= { specification (2) }

c (evalS (Add x y) s)

= { definition of evalS }

c (addS (evalS y (evalS x s)))

= { function composition }
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(c◦addS) (evalS y (evalS x s))

= { induction hypothesis for y }

evalC y (c◦addS) (evalS x s)

= { induction hypothesis for x }

evalC x (evalC y (c◦addS)) s

In conclusion, we have calculated the following definition:

evalC :: Expr → Cont → Cont

evalC (Val n) c s = c (pushS n s)

evalC (Add x y) c s = evalC x (evalC y (c◦addS)) s

Our previous evaluation function evalS can then be recovered by substituting the identity

continuation into equation (2) from which evalC was constructed:

evalS :: Expr → Cont

evalS x = evalC x (λ s → s)

The notation λx → e is Haskell syntax for a lambda abstraction, in which x is the name of

the bound variable and the expression e is the body.

2.4 Step 4 – Transform back to first-order style

The final step is to transform the evaluation function back into first-order style, using

the technique of defunctionalisation (Reynolds, 1972). In particular, rather than using

functions of type Cont = Stack → Stack for continuations passed as arguments and returned

as results, we define a datatype that represents the specific forms of continuations that we

actually need for the purposes of our evaluation function.

Within the definitions for evalS and evalC, there are only three forms of continuations

that are used, namely one to invoke the evaluator, one to push an integer onto the stack, and

one to add the top two values on the stack. We begin by separating out these three forms,

by giving them names and abstracting over their free variables. That is, we define three

combinators for constructing the required forms of continuations:

haltC :: Cont

haltC = λ s → s

pushC :: Int → Cont → Cont

pushC n c = c◦pushS n

addC :: Cont → Cont

addC c = c◦addS

Using these combinators, our evaluation functions can now be rewritten as follows:

evalS :: Expr → Cont

evalS x = evalC x haltC

evalC :: Expr → Cont → Cont

evalC (Val n) c = pushC n c

evalC (Add x y) c = evalC x (evalC y (addC c))
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It is easy to check by unfolding definitions that these definitions are equivalent to the pre-

vious versions. The next stage in applying defunctionalisation is to define a new datatype,

Code, whose constructors represent the three combinators. We write the definition in gen-

eralised algebraic datatype (GADT) style to highlight the correspondence:

data Code where

HALT :: Code

PUSH :: Int → Code → Code

ADD :: Code → Code

The types for the constructors in this definition are obtained simply by replacing occur-

rences of Cont in the types for the combinators by Code. The use of the name Code for

the type reflects the fact that its values represent code for a virtual machine that evaluates

arithmetic expressions using a stack. For example, PUSH 1 (PUSH 2 (ADD HALT)) is the

code that corresponds to the expression Add (Val 1) (Val 2).

The fact that values of type Code represent continuations of type Cont is formalised by

the function exec, which maps the former to the latter:

exec :: Code → Cont

exec HALT = haltC

exec (PUSH n c) = pushC n (exec c)

exec (ADD c) = addC (exec c)

By expanding out the definitions for the type Cont and its three combinators, we see that

exec is a first-order, tail recursive function that executes code using an initial stack to give

a final stack. That is, exec is a virtual machine for executing code:

exec :: Code → Stack → Stack

exec HALT s = s

exec (PUSH n c) s = exec c (n : s)

exec (ADD c) (n : m : s) = exec c ((m+n) : s)

Finally, defunctionalisation itself proceeds by replacing occurrences of the combinators

pushC, addC and haltC in the evaluation functions evalS and evalC by their respective

counterparts from the datatype Code, which results in the following two definitions:

comp :: Expr → Code

comp x = comp′ x HALT

comp′ :: Expr → Code → Code

comp′ (Val n) c = PUSH n c

comp′ (Add x y) c = comp′ x (comp′ y (ADD c))

That is, we have now derived a function comp that compiles an expression to code, which

is itself defined in terms of an auxiliary function comp′ that takes a code continuation

as an additional argument. This is essentially the same compiler as developed by Hutton

(2007, Chapter 13), except that all the required compilation machinery — compiler, target

language, and virtual machine — has now been systematically derived from a high-level

semantics for the source language using equational reasoning techniques.
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Note that the code produced by our compiler is not a sequence of instructions, the form

that one would typically associate with machine code. Rather, the code is in a form called

continuation-passing style notation (Appel, 1991). This representation of code was first

used in early compilers for Scheme (Steele, 1978; Adams et al., 1986), and has proved to be

beneficial for implementing optimising compilers (Appel, 1991). Despite sharing the same

name, one should not confuse code represented in this style with the continuation-passing

style semantics in section 2.3. In the former, continuations are represented symbolically,

whereas in the latter continuations are functions.

The correctness of the compilation functions comp and comp′ is captured by the follow-

ing two equations, which are consequences of defunctionalisation, or can be verified by

simple inductive proofs on the expression argument:

exec (comp x) s = evalS x s

exec (comp′ x c) s = evalC x (exec c) s

In order to understand these equations, we expand their right-hand sides using the original

specifications (1) and (2) for the new evaluation functions, to give:

exec (comp x) s = eval x : s

exec (comp′ x c) s = exec c (eval x : s)

The first equation now states that executing the compiled code for an expression produces

the same result as pushing the value of the expression onto the stack, which establishes

the correctness of comp. In turn, the second equation states that compiling an expression

and then executing the resulting code together with additional code gives the same result

as executing the additional code with the value of the expression on top of the stack, which

establishes the correctness of comp′. These are the same correctness conditions as used by

Hutton (2007, Chapter 13), except that they are now satisfied by construction.

2.5 Combining the transformation steps

We have now shown how a compiler for simple arithmetic expressions can be developed

using a systematic four-step process, which is summarised below:

1. Define an evaluation function in a compositional manner;

2. Calculate a generalised version that uses a stack;

3. Calculate a further generalised version that uses continuations;

4. Defunctionalise to produce a compiler and a virtual machine.

However, there appear to be some opportunities for simplifying this process. In particular,

steps 2 and 3 both calculate generalised versions of the original evaluation function. Could

these steps be combined to avoid the need for two separate generalisation steps? In turn,

step 3 introduces the use of continuations, which are then immediately removed in step 4.

Could these steps be combined to avoid the need for continuations? In fact, it turns out that

all the transformation steps 2–4 can be combined together. This section shows how this

can be achieved, and explains the benefits that result from doing so.
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In order to simplify the above stepwise process, let us first consider the types and

functions that are involved in more detail. We started off by defining a datatype Expr that

represents the syntax of the source language, together with a function eval :: Expr → Int

that provides a semantics for the language, and a datatype Stack that corresponds to a stack

of integer values. Then we derived four additional components:

• A datatype Code that represents the code for the virtual machine;

• A function comp :: Expr → Code that compiles expressions to code;

• A function comp′ :: Expr → Code → Code that also takes a code continuation;

• A function exec :: Code → Stack → Stack that provides a semantics for code.

Moreover, the relationships between the semantics, compilers and virtual machine were

captured by the following two correctness equations:

exec (comp x) s = eval x : s (3)

exec (comp′ x c) s = exec c (eval x : s) (4)

The key to combining the transformation steps is to use these two equations directly as

a specification for the four additional components, from which we then aim to calculate

definitions that satisfy the specification. Given that the equations involve three known

definitions (Expr, eval and Stack) and four unknown definitions (Code, comp, comp′, and

exec), this may seem like an impossible task. However, with the benefit of the experience

gained from our earlier calculations, it turns out to be straightforward.

We begin with equation (4), and proceed by constructive induction on the expression x.

In each case, we aim to rewrite the left-hand side exec (comp′ x c) s of the equation into

the form exec c′ s for some code c′, from which we can then conclude that the definition

comp′ x c = c′ satisfies the specification in this case. In order to do this we will find that

we need to introduce new constructors into the Code type, along with their interpretation

by the function exec. In the base case, Val n, we proceed as follows:

exec (comp′ (Val n) c) s

= { specification (4) }

exec c (eval (Val n) : s)

= { definition of eval }

exec c (n : s)

Now we appear to be stuck, as no further definitions can be applied. However, recall that

we are aiming to end up with an expression of the form exec c′ s for some code c′. That is,

in order to complete the calculation we need to solve the equation:

exec c′ s = exec c (n : s)

Note that we can’t simply use this equation as a definition for exec, because the variables n

and c would be unbound in the body of the definition. The solution is to package these two

variables up in the code argument c′ by means of a new constructor in the Code datatype

that takes these two variables as arguments,

PUSH :: Int → Code → Code
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and define a new equation for exec as follows:

exec (PUSH n c) s = exec c (n : s)

That is, executing the code PUSH n c proceeds by pushing the value n onto the stack and

then executing the code c, hence the choice of the name for the new constructor. Using

these ideas, it is now straightforward to complete the calculation:

exec c (n : s)

= { definition of exec }

exec (PUSH n c) s

The final expression now has the form exec c′ s, where c′ = PUSH n c, from which we

conclude that the following definition satisfies specification (4) in the base case:

comp′ (Val n) c = PUSH n c

For the inductive case, Add x y, we begin in the same way as above by first applying the

specification and the definition of the evaluation function:

exec (comp′ (Add x y) c) s

= { specification (4) }

exec c (eval (Add x y) : s)

= { definition of eval }

exec c (eval x+ eval y : s)

Once again we appear to be stuck, as no further definitions can be applied. However, as we

are performing an inductive calculation, we can make use of the induction hypotheses for

the two argument expressions x and y, namely

exec (comp′ x c′) s′ = exec c′ (eval x : s′)

exec (comp′ y c′) s′ = exec c′ (eval y : s′)

In order to use these hypotheses, it is clear that we must push eval x and eval y onto the

stack, by transforming the expression that we are manipulating into the form exec c′ (eval y :

eval x : s) for some code c′. That is, we need to solve the equation

exec c′ (eval y : eval x : s) = exec c (eval x+ eval y : s)

First of all, we generalise from the specific values eval x and eval y to give:

exec c′ (m : n : s) = exec c ((n+m) : s)

Once again, however, we can’t simply use this equation as a definition for exec, this time

because the variable c is unbound in the body. The solution is to package this variable up

in the code argument c′ by means of a new constructor in the Code datatype

ADD :: Code → Code

and define a new equation for exec as follows:

exec (ADD c) (m : n : s) = exec c ((n+m) : s)
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That is, executing the code ADD c proceeds by adding the top two values on the stack and

then executing the code c, hence the choice of the name for the new constructor. Using

these ideas, the remainder of the calculation is straightforward:

exec c (eval x+ eval y : s)

= { definition of exec }

exec (ADD c) (eval y : eval x : s)

= { induction hypothesis for y }

exec (comp′ y (ADD c)) (eval x : s)

= { induction hypothesis for x }

exec (comp′ x (comp′ y (ADD c))) s

The final expression now has the form exec c′ s, from which we conclude that the following

definition satisfies the specification in the inductive case:

comp′ (Add x y) c = comp′ x (comp′ y (ADD c))

Note that as in section 2.2, we chose to transform the stack into the form eval y :eval x :s.

We could equally well have chosen the opposite order, eval x : eval y : s, which would have

resulted in right-to-left evaluation for Add. We have this freedom in the calculation because

the semantics defined by eval does not specify an evaluation order.

Finally, we complete the development of our compiler by considering the function comp::

Expr → Code, whose correctness was specified by equation (3). In a similar manner to

equation (4), we aim to rewrite the left-hand side exec (comp x) s of the equation into

the form exec c s for some code c, from which we can then conclude that the definition

comp x = c satisfies the specification. In this case there is no need to use induction as

simple calculation suffices, during which we introduce a new constructor HALT :: Code in

order to transform the expression being manipulated into the required form:

exec (comp x) s

= { specification (3) }

eval x : s

= { define: exec HALT s = s }

exec HALT (eval x : s)

= { specification (4) }

exec (comp′ x HALT) s

In conclusion, we have calculated the following definitions:

data Code = HALT | PUSH Int Code | ADD Code

comp :: Expr → Code

comp x = comp′ x HALT

comp′ :: Expr → Code → Code

comp′ (Val n) c = PUSH n c

comp′ (Add x y) c = comp′ x (comp′ y (ADD c))

exec :: Code → Stack → Stack

exec HALT s = s
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exec (PUSH n c) s = exec c (n : s)

exec (ADD c) (m : n : s) = exec c ((n+m) : s)

These are precisely the same definitions as we produced in the previous section, except

that they have now been calculated directly from a specification of compiler correctness,

rather than indirectly by means of a series of separate transformation steps.

In summary, we have shown how a compiler for simple arithmetic expressions can be

developed using a combined three-step approach, which is summarised below:

1. Define an evaluation function in a compositional manner;

2. Define equations that specify the correctness of the compiler;

3. Calculate definitions that satisfy these specifications.

Our full methodology for calculating compilers is given at the end of the article in

figure 1 on page 42. For the purpose of exposition, however, we will introduce the details

of the general approach step-by-step using example languages of increasing complexity,

gradually refining our approach as we progress. These refinements to the methodology

should not be confused with its application to calculate correct compilers.

2.6 Reflection

We conclude this section with some reflective remarks on our original and combined

approaches to calculating a compiler for arithmetic expressions, together with some com-

ments on the relationship between derivations and proofs.

Simplicity The original approach required the use of continuations and defunctionali-

sation, which are traditionally regarding as being ‘advanced’ concepts, and may not be

familiar to some readers who may be interested in calculating compilers. In contrast,

the combined approach only uses simple equational reasoning techniques, in the form of

constructive induction on the syntax of the source language.

Directness The original approach was driven by the desire to define generalised versions

of the semantics for the source language, and the correctness of the resulting compiler arose

indirectly as a consequence of the use of defunctionalisation. In contrast, the combined

approach starts directly from the compiler correctness equations, from which the goal is

then to calculate definitions that satisfy these equations. The use of equations of this form

to express and then prove compiler correctness can be traced back to the pioneering work

on compiler verification by McCarthy & Painter (1967).

Similarity The calculations in the combined approach proceed in a very similar manner

to those in the original approach. Indeed, if we combine the original steps that introduce a

stack and continuation into a single step by means of the specification

evalC x c s = c (eval x : s) (5)
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then the calculations have precisely the same structure, except that in the original ap-

proach we introduce continuation combinators that are defunctionalised to code construc-

tors, whereas in the combined approach we introduce the code constructors directly. The

correspondence also becomes syntactically evident if we use an infix operator, say $$, for

the function exec. Then the specification for comp′ in the combined approach becomes

comp′ x c $$ s = c $$ (eval x : s) (6)

which has the same structure as specification (5) above for evalC, except that we use $$

rather than function application (itself sometimes written as infix $), comp′ rather than

evalC, and code rather than continuations. Using these specifications, the two calculations

then become essentially the same. To illustrate this point, the base cases are shown side-

by-side below; the inductive cases are just as similar.

evalC (Val n) c s

= { specification (5) }

c (eval (Val n) : s)

= { definition of eval }

c (n : s)

= { define: push n c s = c (n : s) }

push n c s

comp′ (Val n) c $$ s

= { specification (6) }

c $$ (eval (Val n) : s)

= { definition of eval }

c $$ (n : s)

= { define: PUSH n c $$ s = c $$ (n : s) }

PUSH n c $$ s

Mechanisation Eliminating the use of continuations is also important from the point of

view of mechanically verifying our calculations. In particular, when using our original

approach to calculate compilers for more sophisticated languages, we sometimes needed to

store continuations on the stack. For example, this arises when considering languages that

support exception handling as we shall do in section 3. However, this has the consequence

that the stack type becomes non-strictly-positive, and hence unsuitable for formalisation

in proof assistants such as Coq and Agda (Dybjer, 1994). In contrast, there is no such

problem when mechanising the calculations in our combined approach. All our compiler

calculations have been mechanically verified in the Coq system, and the proof scripts are

available online as supplementary material. The only difference between the calculations

in the article and their formalisation in Coq is that in the latter case we define the virtual

machines as relations rather than as functions, because the termination checker for Coq

only accepts functions whose definitions are structurally recursive.

Partiality Because the ADD instruction fails if the stack does not contain at least two

values, the function exec the implements the virtual machine is partial. As remarked by

Ager et al. (2003a), such partiality is “inherent to programming abstract machines in

an ML-like language”. If desired, exec could be turned into a total function by using

a dependently typed language to make the stack demands of each machine instruction

explicit in its type (McKinna & Wright, 2006). However, we do not require such additional

effort here as we are only interested in the behaviour of exec for well-formed code produced

by our compiler, as expressed in specifications (3) and (4).
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Exposition Given the benefits of the combined approach, why didn’t we simply present

this straight off rather than first presenting a more complicated approach? The primary

reason is that the original, stepwise approach provides motivation and explanation for the

specifications and calculations that are used in the combined approach. Moreover, starting

off with the stepwise approach also facilities a comparison with related work (section 6),

which is traditionally based upon the use of continuations and defunctionalisation.

Derivation vs proof The purpose of our calculations is to derive definitions that satisfy

their specifications. In addition, the calculations can also be read as proofs that the defini-

tions satisfy their specifications. In particular, each of our calculations starts off by applying

a specification; if we remove this first step from the calculation and add a new step at the

end that applies the definition, the calculation can then be read as a proof. For example,

our calculation of the definition comp′ (Val n) c = PUSH n c from specification (4),

exec (comp′ (Val n) c) s

= { specification (4) }

exec c (eval (Val n) : s)

= { definition of eval }

exec c (n : s)

= { define: exec (PUSH n c) s = c (n : s) }

exec (PUSH n c) s

can also be read as a proof that this definition satisfies the specification:

exec c (eval (Val n) : s)

= { definition of eval }

exec c (n : s)

= { define: exec (PUSH n c) s = c (n : s) }

exec (PUSH n c) s

= { definition of comp′ }

exec (comp′ (Val n) c) s

We could have performed all calculations in the article in this form instead. Indeed, our

calculations in Coq proceed in this way. However, from the point of view of discovering

definitions, as opposed to verifying them, we prefer the derivation-based approach.

3 Exceptions

We now extend the language of arithmetic expressions from section 2 with simple primi-

tives for throwing and catching an exception:

data Expr = Val Int | Add Expr Expr | Throw | Catch Expr Expr

Informally, Catch x h behaves as the expression x unless evaluation of x throws an

exception, in which case the catch behaves as the handler expression h. An exception

is thrown if evaluation of Throw is attempted. To define the semantics for this extended

language in the form of an evaluation function, we first recall the Maybe type:

data Maybe a = Just a | Nothing
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That is, a value of type Maybe a is either Nothing, which we view as an exceptional value,

or has the form Just x, which we view as a normal value (Spivey, 1990). Using this type,

our original evaluator can be rewritten to take account of exceptions as follows:

eval :: Expr → Maybe Int

eval (Val n) = Just n

eval (Add x y) = case eval x of

Just n → case eval y of

Just m → Just (n+m)

Nothing → Nothing

Nothing → Nothing

eval Throw = Nothing

eval (Catch x h) = case eval x of

Just n → Just n

Nothing → eval h

This function could also be defined more concisely by exploiting the fact that the Maybe

type is monadic, but for calculation purposes we prefer the above definition. Monads are

an excellent tool for abstraction, in particular for hiding the underlying ‘plumbing’ of com-

putations. However, when calculating compilers such low-level details matter, in particular

how different language features interact, so we prefer to use non-monadic definitions. The

same comment applies to a number of other functions in this article.

The next step is to define equations that specify the correctness of the compiler for

the extended language, by refining the equations for arithmetic expressions. As the source

language becomes more complex, the more reasonable alternatives there are for how such a

refinement is made. Because the calculation process is driven by the form of the specifica-

tion, its choice plays a key role in determining the resulting implementations. We illustrate

this idea by considering two alternative approaches for exceptions.

Moreover, we will also see a refinement of the calculation process itself, in particular

by starting with a partial specification for the compiler, including a partial definition for

the type of stack elements. The missing components in the specification are then derived

during the calculation process. We will also see an example of a calculation that gets stuck,

which requires us to go back and change the specification accordingly.

3.1 First approach: one code continuation

The first approach simply extrapolates the specification from section 2, in which the com-

pilation function comp′ takes a single code continuation as an additional argument. To this

end, we use the same type for the new version of this function:

comp′ :: Expr → Code → Code

However, rather than taking Stack = [Int ] as before, we use an alternative representation

of stacks, in which the elements are wrapped up in a new datatype Elem:

type Stack = [Elem ]

data Elem = VAL Int



ZU064-05-FPR paper 18 July 2015 7:37

16 Patrick Bahr and Graham Hutton

The reason for this change is that we will extend Elem with a new constructor during the

calculation process. We could also start with the original stack type and observe during

the calculation that we need to change the definition to make it extensible. Indeed, this is

precisely what happened when we did this calculation for the first time.

For arithmetic expressions, the desired behaviour of comp′ was specified by the equation

exec (comp′ x c) s = exec c (eval x : s). In the presence of exceptions, this equation needs to

be refined to take account of the fact that eval now returns a value of type Maybe Int rather

than Int. When eval succeeds, it is straightforward to modify the specification:

exec (comp′ x c) s = exec c (VAL n : s) if eval x = Just n

However, if eval fails it is not clear how comp′ should behave, which we make explicit by

introducing a new, but as yet undefined, function fail to handle this case:

exec (comp′ x c) s = fail x c s if eval x = Nothing

Just as with the function comp′ itself, we aim to derive a definition for fail that satisfies

this equation during the calculation process. In summary, we now have the following

partial specification for the new compilation function comp′ in terms of an as yet undefined

function fail :: Expr → Code → Stack → Stack:

exec (comp′ x c) s = case eval x of (7)

Just n → exec c (VAL n : s)

Nothing → fail x c s

We could now start to calculate a definition for comp′ from this equation by constructive

induction on x. However, the calculation would soon get stuck. In particular, note that each

of the variables x, c and s has two occurrences in the case expression in specification (7).

Consequently, in order to use the induction hypotheses during the calculation, we have

to make sure that the instantiations of x, c and s are aligned. For example, during the

calculation for addition, we would encounter the following term:

case eval y of

Just m → exec (ADD c) (VAL m : VAL n : s)

Nothing → fail (Add x y) c s

To apply the induction hypothesis for y, this term would need to be rewritten to match the

form of specification (7). To this end, the use of the code ADD c and the stack VAL m :

VAL n : s in the Just case above means that the Nothing case needs to be rewritten into

the form fail y (ADD c) (VAL n : s). The natural way to achieve this would be to introduce

fail y (ADD c) (VAL n : s) = fail (Add x y) c s as a new defining equation for fail. However,

this is not a valid definition because the expression x is unbound in the body. In conclusion,

we get stuck trying to keep the expression argument to fail aligned. A similar issue occurs

with the code argument when applying the induction hypothesis for x.

Fortunately, there is a simple solution to the problem of keeping the arguments to fail

aligned that allows the calculation to proceed: we remove the Expr and Code arguments

that caused problems, as these turn out to be unnecesssary. This yields the following revised
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specification, where fail has now the type Stack → Stack:

exec (comp′ x c) s = case eval x of (8)

Just n → exec c (VAL n : s)

Nothing → fail s

We now calculate a definition for comp′ from this equation by constructive induction

on x, aiming to rewrite the left-hand side exec (comp′ x c) s into the form exec c′ s for some

code c′, from which we can then conclude that the definition comp′ x c = c′ satisfies the

specification in this case. As in the previous section, in order to do this we will find that

we need to introduce new constructors into the code type, along with their interpretation

by exec. Moreover, this time around we will also need to add a new constructor to the

stack type. To simplify the presentation, we introduce these new components within the

calculations as we go along. The base cases for Val n and Throw are easy:

exec (comp′ (Val n) c) s

= { specification (8) }

exec c (VAL n : s)

= { define: exec (PUSH n c) s = exec c (VAL n : s) }

exec (PUSH n c) s

and

exec (comp′ Throw c) s

= { specification (8) }

fail s

= { define: exec FAIL s = fail s }

exec FAIL s

The inductive case for Add x y starts in the same manner as the language without excep-

tions. First we apply the specification, then we introduce a code constructor ADD to bring

the stack arguments into the form that we need to apply the induction hypothesis:

exec (comp′ (Add x y) c) s

= { specification (8) }

case eval x of

Just n → case eval y of

Just m → exec c (VAL (n+m) : s)

Nothing → fail s

Nothing → fail s

= { define: exec (ADD c) (VAL m : VAL n : s) = exec c (VAL (n+m) : s) }

case eval x of

Just n → case eval y of

Just m → exec (ADD c) (VAL m : VAL n : s)

Nothing → fail s

Nothing → fail s

However, transforming the stack in the Just case alone is not sufficient to allow us to apply

the induction hypothesis for y. In particular, for the inner case expression above to match
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the form of specification (8), the use of the stack VAL m : VAL n : s in the Just case means

that the argument of fail in the Nothing case must be VAL n : s rather than just s. This

observation gives our first defining equation for fail, and we continue as follows:

case eval x of

Just n → case eval y of

Just m → exec (ADD c) (VAL m : VAL n : s)

Nothing → fail s

Nothing → fail s

= { define: fail (VAL n : s) = fail s }

case eval x of

Just n → case eval y of

Just m → exec (ADD c) (VAL m : VAL n : s)

Nothing → fail (VAL n : s)

Nothing → fail s

= { induction hypothesis for y }

case eval x of

Just n → exec (comp′ y (ADD c)) (VAL n : s)

Nothing → fail s

= { induction hypothesis for x }

exec (comp′ x (comp′ y (ADD c))) s

Finally, we consider the inductive case for Catch x h. For this case, getting to the appli-

cation of the induction hypothesis for h is straightforward:

exec (comp′ (Catch x h) c) s

= { specification (8) }

case eval x of

Just n → exec c (VAL n : s)

Nothing → case eval h of

Just m → exec c (VAL m : s)

Nothing → fail s

= { induction hypothesis for h }

case eval x of

Just n → exec c (VAL n : s)

Nothing → exec (comp′ h c) s

Now we are in a similar position to the calculation for Add, i.e. the Nothing case does not

match the form of specification (8). In order for this to match, the Nothing case needs to be

of the form fail s. That is, we need to solve the equation:

fail s = exec (comp′ h c) s

Note that we can’t simply use this equation as a definition for fail, because h and c are

unbound in the body of the equation. As we only have the stack argument s at our disposal,

one approach would be to modify this argument. In particular, we could assume that

the handler h and its code continuation c are provided on the stack by means of a new
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constructor HAN in the Elem datatype, and define a new equation for fail as follows:

fail (HAN h c : s) = exec (comp′ h c) s

However, this approach would result in the source language expression h being stored on

the stack by the compiler, whereas it is natural to expect all expressions in the source

language to be compiled away. An alternative approach that avoids this problem is to

assume that the entire handler code comp′ h c is provided on the stack by means of a

HAN constructor with a single argument. In particular, if we define

fail (HAN c′ : s) = exec c′ s

then by taking c′ = comp′ h c we obtain the equation

fail (HAN (comp′ h c) : s) = exec (comp′ h c) s

which is now close to the form that we need. Based upon this idea, we resume the calcula-

tion, during which we introduce a code constructor UNMARK to bring the stack argument

in the Just case into the form that we need to apply the induction hypothesis for x by

removing the unused handler element, a process known as ‘unmarking’ the stack:

case eval x of

Just n → exec c (VAL n : s)

Nothing → exec (comp′ h c) s

= { define: fail (HAN c′ : s) = exec c′ s }

case eval x of

Just n → exec c (VAL n : s)

Nothing → fail (HAN (comp′ h c) : s)

= { define: exec (UNMARK c) (VAL n : HAN : s) = exec c (VAL n : s) }

case eval x of

Just n → exec (UNMARK c) (VAL n : HAN (comp′ h c) : s)

Nothing → fail (HAN (comp′ h c) : s)

= { induction hypothesis for x }

exec (comp′ x (UNMARK c)) (HAN (comp′ h c) : s)

= { define: exec (MARK c′ c) s = exec c (HAN c′ : s) }

exec (MARK (comp′ h c) (comp′ x (UNMARK c))) s

The final step above introduces a code constructor MARK that encapsulates the process of

pushing handler code onto the stack, similarly to the PUSH constructor for values.

We complete the development of our compiler by considering the top-level compilation

function comp :: Expr → Code. For arithmetic expressions, the desired behaviour of comp

was specified by the equation exec (comp x) s = eval x : s. Based upon our experience with

comp′, in the presence of exceptions we refine this equation as follows:

exec (comp x) s = case eval x of (9)

Just n → VAL n : s

Nothing → fail s

To calculate a definition for comp from this equation, we aim to rewrite the left-hand side

exec (comp x) s into the form exec c′ s for some code c′, and hence define comp x = c′. The
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calculation proceeds in the same manner as in section 2.5, during which we introduce a

new code constructor HALT to bring the stack argument in the Just case into the form that

we need to apply the specification for comp′:

exec (comp x) s

= { specification (9) }

case eval x of

Just n → VAL n : s

Nothing → fail s

= { define: exec HALT s = s }

case eval x of

Just n → exec HALT (VAL n : s)

Nothing → fail s

= { specification (8) }

exec (comp′ x HALT) s

In conclusion, we have now calculated the target language, compiler, and virtual ma-

chine for our language with exceptions, as summarised below.

Target language:

data Code = HALT | PUSH Int Code | ADD Code |

FAIL | MARK Code Code | UNMARK Code

Compiler:

comp :: Expr → Code

comp x = comp′ x HALT

comp′ :: Expr → Code → Code

comp′ (Val n) c = PUSH n c

comp′ (Add x y) c = comp′ x (comp′ y (ADD c))

comp′ Throw c = FAIL

comp′ (Catch x h) c = MARK (comp′ h c) (comp′ x (UNMARK c))

Virtual machine:

type Stack = [Elem ]

data Elem = VAL Int | HAN Code

exec :: Code → Stack → Stack

exec HALT s = s

exec (PUSH n c) s = exec c (VAL n : s)

exec (ADD c) (VAL m : VAL n : s) = exec c (VAL (n+m) : s)

exec FAIL s = fail s

exec (MARK c′ c) s = exec c (HAN c′ : s)

exec (UNMARK c) (VAL n : HAN : s) = exec c (VAL n : s)

fail :: Stack → Stack

fail [ ] = [ ]
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fail (VAL n : s) = fail s

fail (HAN c : s) = exec c s

Note that the two equations that we derived for the function fail do not yield a total

definition, because there is no equation for empty stack. In the definition above, we have

chosen to define fail [ ] = [ ] in this case. In principle any choice would be fine, because the

calculation does not depend on it. Our choice is motivated by the following observation: if

we instantiate s = [ ] in specification (8) we then obtain the empty stack as the result when

evaluation fails, which is a natural representation of an uncaught exception.

Note also that exec and fail are defined mutually recursively, and correspond to two exe-

cution modes for the virtual machine, the first for when execution is proceeding normally,

and the second for when an exception has been thrown and a handler is being sought.

In the latter case, the function fail implements the process known as ‘unwinding’ the

stack (Chase, 1994a,b), in which elements are popped from the stack until an exception

handler is found, at which point execution then transfers to the handler code.

The compiler derived above is essentially the same as that presented by Hutton &

Wright (2004), except that our compiler here uses code continuations, and has been derived

directly from a specification of its correctness, with all the compilation machinery falling

naturally out of the calculation process. There was little room for alternative choices in the

process: we could have compiled addition differently using the fact that it is commutative,

and we could have compiled exception handlers dynamically as described above. Other-

wise, the calculation process was fully determined by the desire to apply the induction

hypotheses and to arrive at a term of the form exec c′ s. This observation underlines the

systematic nature of our approach, which only leaves a few design choices.

Finally, we note that the code produced by the above compiler is not fully linear, because

the MARK constructor takes two arguments of type Code. This branching structure corre-

sponds to the underlying branching in control flow in the semantics of the Catch operation

of the language. However, as demonstrated by Hutton & Wright (2004), if desired we can

systematically transform the compiler to produce linear code, by modifying MARK to take

a code pointer as its first argument rather than code itself. Moreover, this transformation

requires little additional effort to establish its correctness (Bahr, 2014).

3.2 Second approach: two code continuations

The approach presented in the previous section started with the same type for comp′ as

for simple arithmetic expressions in section 2. In the context of exceptions, however, this

approach made it more difficult to formulate the specification for comp′, as the type for the

function does not provide an explicit mechanism for dealing with failure.

In this second approach we modify the type for comp′ to reflect the addition of excep-

tions to the language. In particular, just as the evaluation function eval returns a Maybe

type to represent the two forms of results that can be produced, we refine the type of comp

to take two code continuations as arguments rather than just one:

comp′ :: Expr → Code → Code → Code

The initial type for stacks is unchanged:
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type Stack = [Elem ]

data Elem = VAL Int

The idea behind the new type for comp′ is that the first continuation argument will be

used if evaluation is successful and the second if evaluation fails, an approach sometimes

called double-barrelled continuations (Thielecke, 2002). This intuition is formalised in the

following specification for the intended behaviour of comp′, in which the arguments sc and

fc are the success and failure code continuations, and s is the stack:

exec (comp′ x sc fc) s = case eval x of (10)

Just n → exec sc (VAL n : s)

Nothing → exec fc s

From this specification, we calculate the definition for comp′ by constructive induction on

the expression x. The cases for Val and Throw are again easy:

exec (comp′ (Val n) sc fc) s

= { specification (10) }

exec sc (VAL n : s)

= { define: exec (PUSH n c) s = exec c (VAL n : s) }

exec (PUSH n sc) s

and

exec (comp′ Throw sc fc) s

= { specification (10) }

exec fc s

Because the failure continuation is built into comp′, the calculation for Catch now be-

comes much simpler. In particular, we don’t have to manipulate the Nothing case into a

form that uses fail, as the execution of any code sequence with a stack of the appropriate

shape suffices. Hence, we can immediately apply the induction hypotheses:

exec (comp′ (Catch x h) sc fc) s

= { specification (10) }

case eval x of

Just n → exec sc (VAL n : s)

Nothing → case h of

Just m → exec sc (VAL m : s)

Nothing → exec fc s

= { induction hypothesis for h }

case eval x of

Just n → exec sc (VAL n : s)

Nothing → exec (comp′ h sc fc) s

= { induction hypothesis for x }

exec (comp′ x sc (comp′ h sc fc)) s

The calculation for Add also becomes simpler. However, we still need to bring the stack

arguments into the right form for the induction hypotheses. As before, we introduce a code
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constructor ADD that does this for the Just case. Adjusting the stack argument for the

Nothing case is now simpler compared to the calculation in section 3.1 as we may use any

code sequence, for which purpose we introduce a POP constructor:

exec (comp′ (Add x y) sc fc) s

= { specification (10) }

case eval x of

Just n → case eval y of

Just m → exec sc (VAL (n+m) : s)

Nothing → exec fc s

Nothing → exec fc s

= { define: exec (ADD c) (VAL m : VAL n : s) = exec c (VAL (n+m) : s) }

case eval x of

Just n → case eval y of

Just m → exec (ADD sc) (VAL m : VAL n : s)

Nothing → exec fc s

Nothing → exec fc s

= { define: exec (POP c) (VAL : s) = exec c s }

case eval x of

Just n → case eval y of

Just m → exec (ADD sc) (VAL m : VAL n : s)

Nothing → exec (POP fc) (VAL n : s)

Nothing → exec fc s

= { induction hypothesis for y }

case eval x of

Just n → exec (comp′ y (ADD sc) (POP fc)) (VAL n : s)

Nothing → exec fc s

= { induction hypothesis for x }

exec (comp′ x (comp′ y (ADD sc) (POP fc)) fc) s

We complete the calculation by considering the top-level compilation function comp ::

Expr → Code. Starting from a specification of the desired behaviour,

exec (comp x) s = case eval x of (11)

Just n → VAL n : s

Nothing → s

we calculate a definition for comp as follows, during which we introduce a new code

constructor HALT that is used in both the success and failure cases:

exec (comp x) s

= { specification (11) }

case eval x of

Just n → VAL n : s

Nothing → s

= { define: exec HALT s = s }

case eval x of

Just n → exec HALT (VAL n : s)
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Nothing → exec HALT s

= { specification (10) }

exec (comp′ x HALT HALT) s

We could also have introduced a special-purpose code constructor for the failure case, say

exec CRASH s = s, but for our simple exception language it suffices to use HALT for both

cases. However, for a more sophisticated source language that features different kinds of

exceptions, using such an additional constructor may be important.

In conclusion, we have now calculated an alternative target language, compiler, and

virtual machine for our language with exceptions, as summarised below.

Target language:

data Code = HALT | PUSH Int Code | ADD Code | POP Code

Compiler:

comp :: Expr → Code

comp x = comp′ x HALT HALT

comp′ :: Expr → Code → Code → Code

comp′ (Val n) sc fc = PUSH n sc

comp′ (Add x y) sc fc = comp′ x (comp′ y (ADD sc) (POP fc)) fc

comp′ Throw sc fc = fc

comp′ (Catch x h) sc fc = comp′ x sc (comp′ h sc fc)

Virtual machine:

exec :: Code → Stack → Stack

exec HALT s = s

exec (PUSH n c) s = exec c (VAL n : s)

exec (ADD c) (VAL m : VAL n : s) = exec c (VAL (n+m) : s)

exec (POP c) (VAL : s) = exec c s

3.3 Reflection

We conclude this section with some comments on the two approaches to calculating a

compiler for exceptions, concerning scalability and partiality.

Scalability In the approach using a single code continuation, the partial specification for

comp′ in terms of an undefined function fail means that additional effort is required to

derive a definition for fail. However, the benefit of this approach is that we obtained a

compiler that implements exceptions using the idea of stack unwinding by purely calcu-

lational methods, with all the required compilation techniques arising naturally during the

calculation process, driven once again by the desire to apply the induction hypotheses.

This approach scales well to more sophisticated languages as it does not require static

knowledge about the scope in which an exception is thrown. Such knowledge is not avail-

able if we consider, for example, a higher-order language, as we shall do in section 5. In
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contrast, the approach using two code continuations exploited that we do have such static

knowledge, in the form of the failure continuation.

We can also identify a third approach, which combines the benefits of the first two. This

‘hybrid’ approach is based upon a function comp′ with separate code continuations for

success and failure as in the second approach, whose behaviour in the case when evaluation

fails is specified in terms of an undefined function fail as in the first:

exec (comp′ x sc fc) s = case eval x of

Just n → exec sc (VAL n : s)

Nothing → fail fc s

The compiler that results from this specification avoids the explicit cleaning up of the stack

with POP instructions of the second approach, but instead relies on stack unwinding in a

similar manner to the first. In the course of the calculation a new stack element constructor

similar to HAN is introduced but no handler argument is necessary as we have an explicit

failure code continuation as part of comp′.

Partiality The calculations in this section followed the general approach from section 2.

However, we used two additional techniques to make the approach more powerful:

• We used a partial specification for the comp′ function. The specification for comp′

is effectively the induction hypothesis for the calculation of its definition. For the

simple expression language in section 2, determining the appropriate induction hy-

pothesis was straightforward. However, the more sophisticated the source language

grows, the more difficult this becomes. The technique of using a partial specification

leaves some of the details of the induction hypothesis open and allows us to derive

these during the calculation itself. Part of the difficulty of determining an appropriate

induction hypothesis lies in the fact that it may need to explicitly refer to details of

the virtual machine implementation. By using a partial specification, these details

are left open and are instead derived during the calculation, such as the function fail

that defines the behaviour of the virtual machine when an exception is thrown.

• We used a partial definition for the Stack type. This technique is crucial for more

sophisticated languages. While our approach is targetted at deriving stack machines,

the actual details of the stack type are difficult to anticipate as they will only become

apparent as we calculate the definition for comp′.

Both of the above techniques are measures to reduce the amount of required prior

knowledge of the result. The calculations in this section start with very few assumptions

about the final outcome. Indeed, these assumptions, expressed in the specification for

comp′, can be summarised as “if evaluation is successful put the resulting value on the

stack and continue execution, otherwise do something else”. The calculation process then

fills out the details of how this is achieved and what “something else” means.

4 State

In this section we extend our source language further, with primitives for reading and

writing a mutable reference cell that stores an integer value:
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type State = Int

data Expr = Val Int | Add Expr Expr | Throw | Catch Expr Expr | Get | Put Expr Expr

Informally, Get returns the current value of the reference cell, while Put x y sets the cell

to the value of the expression x and then behaves as the expression y. Alternatively, we

could have chosen Put to take one argument and instead have an additional sequencing

operator Seq that takes two arguments. However, we prefer to keep the source language

small in order to focus on the essence of the problem.

The addition of state is particularly interesting as it interacts with the exception handling

mechanism of the language. In particular, there are two different ways of combining ex-

ceptions and state from a semantic perspective, depending on whether the current state is

retained or discarded when an exception is thrown. If the state is retained then an exception

handler sees the state as it was when the exception was thrown. If the state is discarded then

the handler sees the state as it was when the enclosing Catch was entered. For brevity, we

refer to the former case as global state, and the latter as local state.

We shall calculate a compiler for the global state semantics. The calculation for the local

state semantics is similar and can be found in the appendix that forms part of the online

supplementary material. Our calculations are based upon the ‘one continuation’ approach

from section 3.1, but we could just as well use any other approach from section 3.

4.1 Specification

The global state semantics retains the current state in case of an exception, which is

reflected in the new type for the evaluation function as follows:

eval :: Expr → State → (Maybe Int,State)

That is, no matter whether an exception is thrown or not, eval always returns a new state.

Using this type, the evaluation function from section 3.1 can be refined to take account of

state by simply threading through the current state. We write the state as q, reserving the

use of the symbol s for stacks throughout the article for consistency:

eval (Val n) q = (Just n,q)

eval (Add x y) q = case eval x q of

(Just n,q′) → case eval y q′ of

(Just m,q′′) → (Just (n+m),q′′)

(Nothing,q′′)→ (Nothing,q′′)

(Nothing,q′)→ (Nothing,q′)

eval Throw q = (Nothing,q)

eval (Catch x h) q = case eval x q of

(Just n,q′) → (Just n,q′)

(Nothing,q′)→ eval h q′

eval Get q = (Just q,q)

eval (Put x y) q = case eval x q of

(Just n,q′) → eval y n

(Nothing,q′)→ (Nothing,q′)
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Note that in the case for Catch, when the handler h is invoked it uses the state q′ from

when the exception was thrown, which formalises our earlier intuition for global state.

Extending the specification of the compilation function comp′ from section 3.1 to state is

straightforward. First of all, the type for comp′ itself remains the same,

comp′ :: Expr → Code → Code

but we refine the type of the execution function exec to transform pairs comprising a stack

and a state, which we term configurations, rather than just transforming a stack:

exec :: Code → Conf → Conf

type Conf = (Stack,State)

More generally, the same principle also applies to semantics that utilise environments or

heaps: all additional data structures required for the semantics are combined with the stack

to form a configuration of type Conf , and the execution function exec transforms such

configurations. The previous type for exec was just the special case where no additional

data structures were required. The initial type for stacks is the same as before:

type Stack = [Elem ]

data Elem = VAL Int

The specification for the desired behaviour of comp′ is similar to the case without state,

except that we now have to thread through the current state:

exec (comp′ x c) (s,q) = case eval x q of (12)

(Just n,q′) → exec c (VAL n : s,q′)

(Nothing,q′) → fail (s,q′)

This is again a partial specification in terms of an as yet undefined function fail for the case

when evaluation fails, this time of type Conf → Conf . In a similar manner to section 3.1,

if fail took x and c as additional arguments, our calculation would get stuck.

4.2 Calculation

We now calculate a definition for comp′ from the specification by constructive induction

on x, during which we also derive fail. The cases for Val and Throw are easy as usual:

exec (comp′ (Val n) c) (s,q)

= { specification (12) }

exec c (VAL n : s,q)

= { define: exec (PUSH n c) (s,q) = exec c (VAL n : s,q) }

exec (PUSH n c) (s,q)

and

exec (comp′ Throw c) (s,q)

= { specification (12) }

fail (s,q)

= { define: exec FAIL (s,q) = fail (s,q) }

exec FAIL (s,q)
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The cases for Add and Catch proceed along similar lines to section 3.1. The calculations

can be found in the appendix in the online supplimentary material.

Finally, we come to the calculations for the new language features. The case for Get is

straightforward, and introduces a code constructor LOAD that encapsulates the process of

pushing the current value of the state onto the top of the stack:

exec (comp′ Get c) (s,q)

= { specification (12) }

exec c (VAL q : s,q)

= { define: exec (LOAD c) (s,q) = exec c (VAL q : s,q) }

exec (LOAD c) (s,q)

The case for Put is more interesting. However, it follows a common pattern that we have

seen a number of times now: we introduce a code constructor SAVE to bring the stack

argument into the form that we need to apply an induction hypothesis, in this case by

popping the top value from the stack and setting the state to this value:

exec (comp′ (Put x y) c) (s,q)

= { specification (12) }

case eval x q of

(Just n,q′) → case eval y n of

(Just m,q′′) → exec c (VAL m : s,q′′)

(Nothing,q′′)→ fail (s,q′′)

(Nothing,q′)→ fail (s,q′)

= { induction hypothesis for y }

case eval x q of

(Just n,q′) → exec (comp′ y c) (s,n)

(Nothing,q′)→ fail (s,q′)

= { define: exec (SAVE c′) (VAL n : s,q′) = exec c′ (s,n) }

case eval x q of

(Just n,q′) → exec (SAVE (comp′ y c)) (VAL n : s,q′)

(Nothing,q′)→ fail (s,q′)

= { induction hypothesis for x }

exec (comp′ x (SAVE (comp′ y c))) (s,q)

In summary, we have calculated the definitions shown below. As in section 3.1, we make

fail into a total function by adding an equation for the case when the stack is empty, and

define the top-level compilation function comp by simply applying comp′ to HALT .

Target language:

data Code = HALT | PUSH Int Code | ADD Code |

FAIL | MARK Code Code | UNMARK Code |

LOAD Code | SAVE Code

Compiler:

comp :: Expr → Code

comp x = comp′ x HALT
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comp′ :: Expr → Code → Code

comp′ (Val n) c = PUSH n c

comp′ (Add x y) c = comp′ x (comp′ y (ADD c))

comp′ Throw c = FAIL

comp′ (Catch x h) c = MARK (comp′ h c) (comp′ x (UNMARK c))

comp′ Get c = LOAD c

comp′ (Put x y) c = comp′ x (SAVE (comp′ y c))

Virtual machine:

data Elem = VAL Int | HAN Code

exec :: Code → Conf → Conf

exec HALT (s,q) = (s,q)

exec (PUSH n c) (s,q) = exec c (VAL n : s,q)

exec (ADD c) (VAL m : VAL n : s,q) = exec c (VAL (n+m) : s,q)

exec FAIL (s,q) = fail (s,q)

exec (MARK h c) (s,q) = exec c (HAN h : s,q)

exec (UNMARK c) (VAL n : HAN : s,q) = exec c (VAL n : s,q)

exec (LOAD c) (s,q) = exec c (VAL q : s,q)

exec (SAVE c) (VAL n : s,q) = exec c (s,n)

fail :: Conf → Conf

fail ([ ],q) = ([ ],q)

fail (VAL n : s,q) = fail (s,q)

fail (HAN h : s,q) = exec h (s,q)

4.3 Reflection

Configurations The introduction of state only required a single refinement to our ap-

proach: instead of operating on a stack, the virtual machine exec now operates on a config-

urations comprising a stack and a state. This generalisation from stacks to configurations

arose from the type of the evaluation function eval for global state, which takes an input

state and produces an output state. However, this is an instance of a more general principle,

in which all additional data structures on which eval depends are packaged up in the type

of configurations alongside the stack. This also includes the state in the case of the local

state semantics, even though an output state is not always returned. Similarly, in other cases

where eval takes a data structure as an argument without returning an updated version, we

include it in the configuration type. For example, in a language with variable binding, as

we shall consider in section 5, eval takes an environment as input but does not return an

updated version, but we include the environment in the configuration type.

Global vs local The calculation for the local state semantics is very similar to the calcula-

tion for the global state semantics presented in this section. In fact the compilers that result

from the two semantics for state are precisely the same, with the difference being reflected

in the virtual machines. In particular, in the case of local state the machine operation that

marks that stack with handler code also stores the current state, which is subsequently
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restored if the handler is invoked, while for global state the current state is used when a

handler is invoked. As in all our calculations, these behaviours arose naturally from the

desire to apply induction hypotheses during the calculation process, and didn’t require any

prior knowledge of how the two forms of state can or should be implemented.

5 Lambda Calculus

For our final example, we consider a call-by-value variant of the lambda calculus. To

simplify the presentation, we base our language on simple arithmetic expressions, but the

same techniques apply if the language is extended with other features such as exceptions

and state, and if the evaluation strategy is changed to other approaches such as call-by-

name or call-by-need. We will also see two further refinements of the calculation process:

the use of defunctionalisation to transform the semantics into a first-order form, and the

use of relational semantics rather than functional semantics.

5.1 Syntax

We extend our language of arithmetic expressions with the three basic primitives of the

lambda calculus: variables, abstraction, and application. To avoid having to consider issues

of variable capture and renaming, which are not difficult but would be distracting to the

presentation, we represent variables using de Bruijn indices:

data Expr = Val Int | Add Expr Expr | Var Int | Abs Expr | App Expr Expr

Informally, Var i is the variable with de Bruijn index i > 0, Abs x constructs an abstraction

over the expression x, and App x y applies the abstraction that results from evaluating the

expression x to the value of the expression y. For example, the function λn → (λm →

n+m) that adds two integer values is represented as follows:

add :: Expr

add = Abs (Abs (Add (Var 1) (Var 0)))

5.2 Semantics

Because the language now has first-class functions, it no longer suffices to use integers as

the value domain for the semantics, and we also need to consider functional values:

data Value = Num Int | Fun (Value → Value)

Moreover, the semantics also requires an environment to interpret free variables. Using

de Bruijn indices we can represent an environment e simply as a list of values, with the

value of variable i given by indexing into the list at position i, written as e !! i:

type Env = [Value ]

It is now straightforward to define a function that evaluates an expression to a value in

the context of a given environment:
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eval :: Expr → Env → Value

eval (Val n) e = Num n

eval (Add x y) e = case eval x e of

Num n → case eval y e of

Num m → Num (n+m)

eval (Var i) e = e !! i

eval (Abs x) e = Fun (λv → eval x (v : e))

eval (App x y) e = case eval x e of

Fun f → f (eval y e)

For example, applying eval to the expression App (App add (Val 1)) (Val 2) and the empty

environment [ ] gives the result Num 3, as expected. Note that because expressions in our

source language may be badly formed or fail to terminate, eval is now a partial function.

We will return to this issue at the end of this section.

We could now attempt to calculate a compiler based upon the above semantics. However,

we would get stuck in the Abs case, at least if we used a straightforward specification for

the compiler, due to the fact that eval is now a higher-order function, by virtue of the fact

that abstractions denote functions of type Value → Value. However, this problem is easily

addressed using defunctionalisation, which introduces a new data type Lam for lambda

abstractions. Within the definition for eval there is only one form of such functions that is

actually used, namely in the case for Abs when we return λv → eval x (v : e). We represent

functions of this form by means of a single constructor Clo for the Lam type, which takes

the expression x and environment e as arguments:

data Lam = Clo Expr Env

The name of the constructor corresponds to the fact that an expression combined with an

environment that captures its free variables is known as a closure. The fact that values

of type Lam represent functions of type Value → Value can be formalised by defining a

function that maps from one to the other:

apply :: Lam → (Value → Value)

apply (Clo x e) = λv → eval x (v : e)

The name of this function derives from the fact that when its type is written in curried form

as Lam → Value → Value, it can be viewed as applying the representation of a lambda

expression to an argument value to give a result value. Using these ideas, we can now

apply defunctionalisation to rewrite the semantics for our language in first-order form

by replacing functions of type Value → Value by values of type Lam. This changes the

definition of eval for the Abs and App cases as follows:

eval (Abs x) e = Fun (Clo x e)

eval (App x y) e = case eval x e of

Fun c → apply c (eval y e)

The other cases for the function eval remain unchanged. Moreover, the definition of the

Value type uses the type Lam instead of Value → Value:

data Value = Num Int | Fun Lam
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Because the definitions for Lam and apply are each just single equations, we inline them

to simplify the definitions, resulting in the following semantics:

data Value = Num Int | Clo Expr Env

eval :: Expr → Env → Value

eval (Val n) e = Num n

eval (Add x y) e = case eval x e of

Num n → case eval y e of

Num m → Num (n+m)

eval (Var i) e = e !! i

eval (Abs x) e = Clo x e

eval (App x y) e = case eval x e of

Clo x′ e′ → eval x′ (eval y e : e′)

However, in rewriting eval in first-order form we have now introduced another problem:

the semantics is no longer compositional, i.e. structurally recursive, because in the case for

App x y we make a recursive call eval x′ on the auxiliary expression x′ that results from

evaluating the argument expression x. Hence, when calculating a compiler based upon this

semantics we can no longer use simple structural induction as in our previous examples,

but must use the more general approach of rule induction (Winskel, 1993).

The use of rule induction is another refinement of our calculation methodology. In

order to make this use of rule induction explicit, we reformulate the functional evaluation

semantics eval in a relational manner as a big-step operational (or natural) semantics,

writing x ⇓e v to mean that the expression x can evaluate to the value v within the

environment e. Formally, the evaluation relation ⇓ ⊆ Expr ×Env ×Value is defined by

the following set of inference rules, which are obtained simply by rewriting the above

definition for the eval function in relational style:

Val n ⇓e Num n

x ⇓e Num n y ⇓e Num m

Add x y ⇓e Num (n+m)

e !! i is defined

Var i ⇓e e !! i

Abs x ⇓e Clo x e

x ⇓e Clo x′ e′ y ⇓e v x′ ⇓v:e′ w

App x y ⇓e w

5.3 Specification

For the purposes of calculating a compiler based upon the above semantics, the types for

the compilation function and virtual machine remain the same as for state:

comp′ :: Expr → Code → Code

exec :: Code → Conf → Conf

However, because the semantics now requires the use of an environment, this is included

in the type for configurations, following the advice from section 4.3:

type Conf = (Stack,Env)



ZU064-05-FPR paper 18 July 2015 7:37

Calculating Correct Compilers 33

As with previous examples, a stack is initially defined as a list of values, with the element

type being extended as and when required during the calculation process:

type Stack = [Elem ]

data Elem = VAL Value

The specification for comp′ is similar to the original case for simple arithmetic expres-

sions, except that our semantics is now defined as an evaluation relation ⇓, and the virtual

machine now operates on configurations that comprise a stack and an environment:

exec (comp′ x c) (s,e) = exec c (VAL v : s,e) if x ⇓e v

Note that the precondition x ⇓e v means that the specification only applies to lambda

expressions whose evaluation terminates; we will return to this issue in section 5.5. It is

straightforward to calculate a compiler from the above specification. However, the result

is not satisfactory. In particular, the fact that a value can be a closure that includes an

unevaluated expression means that such expressions will be manipulated by the resulting

virtual machine, whereas as we already noted with exceptions, it is natural to expect all

expressions in the source language to be compiled away. The solution is the same as for

exceptions: we simply replace the expression component of a closure by compiled code

for the expression, by means of the following new type definitions:

data Value′ = Num′ Int | Clo′ Code Env′

type Env′ = [Value′ ]

In turn, these new types are then used to redefine the other basic types:

type Conf = (Stack,Env′)

type Stack = [Elem ]

data Elem = VAL Value′

Changing these definitions means that the above specification for comp′ is no longer

type correct, because eval and exec now operate on different versions of the value type,

namely Value and Value′, respectively. We therefore need a conversion function between

the two types. The case for Num is trivial, while we leave the case for Clo undefined at

present, and aim to derive a definition for this case during the calculation process:

conv :: Value → Value′

conv (Num n) = Num′ n

conv (Clo x e) = ???

We lift conv to environments by mapping the function over the list of values:

convE :: Env → Env′

convE e = map conv e

Using these ideas, it is now straightforward to modify the specification for the compilation

function comp′ to take care of the necessary type conversions:

exec (comp′ x c) (s,convE e) = exec c (VAL (conv v) : s,convE e) if x ⇓e v (13)
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5.4 Calculation

Based upon specification (13), we now calculate definitions for the compiler and the virtual

machine by constructive rule induction on the assumption x ⇓e v. In each case, we aim

to rewrite the left-hand side exec (comp′ x c) (s,convE e) of the equation into the form

exec c′ (s,convE e) for some code c′, from which we can then conclude that the definition

comp′ x c = c′ satisfies the specification in this case. As with previous examples, along the

way we will introduce new constructors into the code and stack types, and new equations

for exec. Moreover, as part of the calculation we will also complete the definition for the

conversion function conv. The cases for Val and Var are straightforward:

exec (comp′ (Val n) c) (s,convE e)

= { specification (13) }

exec c (VAL (conv (Num n)) : s,convE e)

= { definition of conv }

exec c (VAL (Num′ n) : s,convE e)

= { define: exec (PUSH n c) (s,e) = exec c (VAL (Num′ n) : s,e) }

exec (PUSH n c) (s,convE e)

and

exec (comp′ (Var i) c) (s,convE e)

= { specification (13) }

exec c (VAL (conv (e !! i)) : s,convE e)

= { indexing lemma }

exec c (VAL (map conv e !! i) : s,convE e)

= { definition of convE }

exec c (VAL (convE e !! i) : s,convE e)

= { define: exec (LOOKUP i c) (s,e) = exec c (VAL (e !! i) : s,e) }

exec (LOOKUP i c) (s,convE e)

The indexing lemma used above is that f (xs!! i)= (map f xs)!! i, for any strict function f ,

list xs, and index i of the appropriate types. This lemma, which arises as the free theorem

(Wadler, 1989) for the type of !!, allows us to generalise over convE e when defining the

behaviour of exec for the new code constructor LOOKUP that encapsulates the process of

looking up a variable in the environment. Strictness of the function conv follows from the

fact that it is defined by pattern matching on its argument value. Alternatively, we could

have avoided reasoning about strictness by using a list indexing operator that makes the

possibility of failure explicit by returning a Maybe type.

In the case for Add, we can assume x ⇓e Num n and y ⇓e Num m by the inference

rule that defines the behaviour of Add x y, together with induction hypotheses for the

expressions x and y. The calculation then follows the same pattern as for simple arithmetic

expressions, with the minor addition of applying the conversion function conv:

exec (comp′ (Add x y) c) (s,convE e)

= { specification (13) }

exec c (VAL (conv (Num (n+m))) : s,convE e)

= { definition of conv }
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exec c (VAL (Num′ (n+m)) : s,convE e)

=

{

define: exec (ADD c) (VAL (Num′ m) : VAL (Num′ n) : s,e)

= exec c (VAL (Num′ (n+m)) : s,e)

}

exec (ADD c) (VAL (Num′ m) : VAL (Num′ n) : s,convE e)

= { definition of conv }

exec (ADD c) (VAL (conv (Num m)) : VAL (conv (Num n)) : s,convE e)

= { induction hypothesis for y }

exec (comp′ y (ADD c)) (VAL (conv (Num n)) : s,convE e)

= { induction hypothesis for x }

exec (comp′ x (comp′ y (ADD c))) (s,convE e)

In a similar manner, in the case for App we can assume that x ⇓e Clo x′ e′, y ⇓e v,

and x′ ⇓v:e′ w by the rule that defines the behaviour of App x y, together with the induction

hypotheses for x, y and x′. The calculation then proceeds in the now familiar way, by

introducing code and stack constructors as necessary in order to bring the configuration

arguments into the right form for the induction hypotheses. First of all, in order to apply

the induction hypothesis for x′, we save and restore an environment on the stack by means

of a new stack constructor ENV and code constructor RET:

exec (comp′ (App x y) c) (s,convE e)

= { specification (13) }

exec c (VAL (conv w) : s,convE e)

= { define: exec (RET c) (VAL u : ENV d : s, ) = exec c (VAL u : s,d) }

exec (RET c) (VAL (conv w) : ENV (convE e) : s,conv v : convE e′)

= { induction hypothesis for x′ }

exec (comp′ x′ (RET c)) (ENV (convE e) : s,conv v : convE e′)

In turn, to apply the induction hypothesis for y we introduce a new code constructor APP

that encapsulates the idea of applying a closure to an argument value, with both the closure

and the argument being supplied on the stack:

= { define: exec APP (VAL v : VAL (Clo′ c′ e′) : s,e) = exec c′ (ENV e : s,v : e′) }

exec APP (VAL (conv v) : VAL (Clo′ (comp′ x′ (RET c)) (convE e′)) : s,convE e)

= { induction hypothesis for y }

exec (comp′ y APP) (VAL (Clo′ (comp′ x′ (RET c)) (convE e′)) : s,convE e)

To complete the calculation, we would now like to apply the induction hypothesis for x.

For the above expression to have the required form, we need to solve the equation:

conv (Clo x′ e′) = Clo′ (comp′ x′ (RET c)) (convE e′)

However, we can’t simply use this equation as a definition for conv in the case of closures,

because the code variable c is unbound in the body of the equation. We now see that our

earlier choice for defining the behaviour of the RET instruction was incorrect. In particular,

this instruction should not take the code c as an argument, but rather take it from the stack.

That is, we replace the earlier definition

exec (RET c) (VAL u : ENV d : s, ) = exec c (VAL u : s,d)
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by the following new version, in which the stack constructor ENV is replaced by a more

general constructor CLO that takes both code and an environment as arguments:

exec RET (VAL u : CLO c d : s, ) = exec c (VAL u : s,d)

Using this idea we restart the calculation for the App case, which now proceeds to

completion in a straightforward manner, including the definition of conv for closures:

exec (comp′ (App x y) c) (s,convE e)

= { specification (13) }

exec c (VAL (conv w) : s,convE e)

= { define: exec RET (VAL u : CLO c d : s, ) = exec c (VAL u : s,d) }

exec RET (VAL (conv w) : CLO c (convE e) : s,conv v : convE e′)

= { induction hypothesis for x′ }

exec (comp′ x′ RET) (CLO c (convE e) : s,conv v : convE e′)

= { define: exec (APP c) (VAL v : VAL (Clo′ c′ e′) : s,e) = exec c′ (CLO c e : s,v : e′) }

exec (APP c) (VAL (conv v) : VAL (Clo′ (comp′ x′ RET) (convE e′)) : s,convE e)

= { induction hypothesis for y }

exec (comp′ y (APP c)) (VAL (Clo′ (comp′ x′ RET) (convE e′)) : s,convE e)

= { define: conv (Clo x e) = Clo′ (comp′ x RET) (convE e) }

exec (comp′ y (APP c)) (VAL (conv (Clo x′ e′)) : s,convE e)

= { induction hypothesis for x }

exec (comp′ x (comp′ y (APP c))) (s,convE e)

Finally, using the new equation for conv, the case for Abs simply introduces a code

constructor ABS that encapsulates the process of putting a closure onto the stack:

exec (comp′ (Abs x) c) (s,convE e)

= { specification (13) }

exec c (VAL (conv (Clo x e)) : s,convE e)

= { definition for conv }

exec c (VAL (Clo′ (comp′ x RET) (convE e)) : s,convE e)

= { define: exec (ABS c′ c) (s,e) = exec c (VAL (Clo′ c′ e) : s,e) }

exec (ABS (comp′ x RET) c) (s,convE e)

In summary, we have calculated the definitions below. As with a number of earlier

examples, the top-level compilation function comp is defined simply by applying comp′

to a nullary code constructor HALT that returns the current configuration.

Target language:

data Code = HALT | PUSH Int Code | ADD Code | LOOKUP Int Code |

ABS Code Code | RET | APP Code

Compiler:

comp :: Expr → Code

comp x = comp′ x HALT

comp′ :: Expr → Code → Code
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comp′ (Val n) c = PUSH n c

comp′ (Add x y) c = comp′ x (comp′ y (ADD c))

comp′ (Var i) c = LOOKUP i c

comp′ (Abs x) c = ABS (comp′ x RET) c

comp′ (App x y) c = comp′ x (comp′ y (APP c))

Virtual machine:

data Elem = VAL Value′ | CLO Code Env′

exec :: Code → Conf → Conf

exec HALT (s,e) = (s,e)

exec (PUSH n c) (s,e) = exec c (VAL (Num′ n) : s,e)

exec (ADD c) (VAL (Num′ m) : VAL (Num′ n) : s,e) = exec c (VAL (Num′ (n+m)) : s,e)

exec (LOOKUP i c) (s,e) = exec c (VAL (e !! i) : s,e)

exec (ABS c′ c) (s,e) = exec c (VAL (Clo′ c′ e) : s,e)

exec RET (VAL v : CLO c e : s, ) = exec c (VAL v : s,e)

exec (APP c) (VAL v : VAL (Clo′ c′ e′) : s,e) = exec c′ (CLO c e : s,v : e′)

Conversion function:

conv :: Value → Value′

conv (Num n) = Num′ n

conv (Clo x e) = Clo′ (comp′ x RET) (map conv e)

The above compiler is essentially the same as that presented in (Day & Hutton, 2014),

except that it has now been calculated directly from a specification of its correctness.

Note that the code produced by the compiler is not fully linear. Similarly to the MARK

instruction in the compiler for exceptions that we calculated earlier, the ABS instruction

takes two arguments of type Code. However, if desired we can transform the compiler to

produce linear code in a similar manner to that described in section 3.1.

5.5 Reflection

Defunctionalisation The key idea that facilitates a simple calculation in this section is

the use of defunctionalisation to transform the semantics into first-order form. Without

this initial step, formulating an appropriate specification for the lambda calculus compiler

becomes significantly more complicated, as in (Meijer, 1992), due to the presence of a

function type in the value domain. The same idea was also used in the work of Ager et al.

(2003a) to simplify the derivation of abstract machines.

Relational semantics The use of a relational rather than functional semantics arose from

the shift to rule rather than structural induction as the basis for the calculation. In addition,

the relational semantics serves another purpose: it expresses the partiality of the semantics

in a natural way. We can calculate the same compiler using the final functional semantics

in section 5.2, but the calculation is complicated by the need to pay careful attention to

the partiality of the evaluation function. Alternatively, we could have made the partiality

explicit by rewriting the functional semantics in monadic style using the Maybe monad.
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However, using a relational semantics allowed the calculation to proceed in the same

straightforward manner as our previous examples, except that we used the more general

technique of constructive rule induction on the evaluation relation, rather than constructive

structural induction on the syntax for the source language. In this manner, starting from a

relational semantics is a natural generalisation of our previous functional approach.

Soundness and completeness Specification (13) was sufficient for the purposes of calcu-

lating the compiler. However, due to the partiality of the underlying semantics, the speci-

fication only explicitly captures one half of compiler correctness for the lambda calculus,

namely completeness. In particular, the specification states that compiled code can produce

every result value that is permitted by our semantics. The dual property of soundness is just

as important, to ensure that compiled code can only produce results that are permitted by

the semantics. The example languages that we considered prior to this section all had a total

(and deterministic) semantics, for which the resulting calculations also established sound-

ness. Similarly, if we restrict the lambda calculus to a fragment for which the semantics is

total, such as simply typed lambda terms, we immediately obtain the soundness property

from specification (13) as well. In general, however, if we have a relational semantics that

is genuinely partial or non-deterministic, we need to explicitly consider both aspects of

compiler correctness, as in (Hutton & Wright, 2007).

Partial specification In the definition for the conversion function conv, we initially left

the case for closures undefined, as it was not yet clear how it should behave in this case.

As such, equation (13) is a partial specification in terms of an incomplete definition for

the function conv. In a similar manner to the fail function for exceptions, we derived the

missing parts of the definition for conv during the calculation of the compiler. Once again,

this approach is part of our desire to avoid predetermining implementation decisions, but

rather letting these emerge naturally from the calculation process.

Design decisions During the calculation for expressions of the form App x y, we made

a design decision concerning the management of the stack that we subsequently had to

revise because the calculation got stuck. This kind of behaviour is again characteristic of

our approach, in which we try to make as few assumptions as possible, and let ourselves be

guided by the desire to complete calculations by applying induction hypotheses. However,

sometimes we then become stuck, and need to revisit our assumptions and decisions. In

this way, we try to minimise the amount of foresight that is required.

Scalability The approach presented in this section also applies to call-by-name and call-

by-need semantics. In the case of call-by-need, the semantics introduces a heap, which

then becomes a component of the virtual machine’s configuration type, similarly to a

state or environment. Our approach also scales to languages that combine lambda calculi

with effects such as state and exceptions. However, when reformulating the functional

semantics for lambda calculi with additional effects, some care is required. In particular,

each equation in the original functional semantics should be translated to precisely one

rule in the relational semantics. For a language with exceptions, the resulting semantics

may not be the most natural formulation. But it is important that there is only one rule per
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language construct. Recall that in the calculation for exceptions, we needed to keep the

Just and the Nothing cases aligned. If we were to decompose the semantics into different

rules to deal with the different cases, we would lose this crucial interaction.

We have included calculations for call-by-name and call-by-need semantics as well as a

call-by-value lambda calculus with exceptions in the supplementary material.

6 Related Work

As noted at the start of this article, the ability to calculate compilers from semantics has

been a key objective in the field of program transformation for many years. In this section

we review a range of related work, and explain how our approach compares.

Definitional Interpreters for Higher-Order Programming Languages (Reynolds, 1972)

Many of the techniques used to derive compilers are due to the seminal work of Reynolds

(1972). In particular, he introduced three key ideas. First of all, the notion of a ‘definitional

interpreter’, to express the semantics for a language as an interpreter written in composi-

tional style. Secondly, the idea of transforming such a semantics into continuation-passing

style, to make control flow explicit in a manner that is independent of the evaluation

order of the semantic meta-language. And finally, the concept of defunctionalisation, to

transform higher-order programs into first-order form by representing functions as data

structures. Using these techniques, Reynolds showed how to transform a definitional inter-

preter for a higher-order language into an equivalent abstract machine.

Deriving Target Code as a Representation of Continuation Semantics (Wand, 1982a)

The derivation of compilers was first considered by Wand (1982a). Starting from a con-

tinuation semantics for the source language, Wand derives a compiler in a series of steps.

Firstly, he reformulates the semantics in an equivalent point-free form using a generalised

composition operator for functions with multiple arguments. During this process, he also

introduces combinators that capture particular forms of argument manipulation. The re-

sulting semantics is then defunctionalised to produce a compiler and a virtual machine.

However, the machine code that results from this process is tree-shaped rather than linear.

In order to rectify this, Wand exploits the fact that the generalised composition operator

can always be associated to the right to augment the compiler with on-the-fly ‘rotation’

operations that transform the resulting code into linear form.

The first difference from our approach is that Wand begins with a semantics that is

already rather operational in style, in the form of a continuation semantics. The use of

continuations can make semantic definitions more complicated, which in turn makes it

more difficult to argue that they are ‘obviously correct’. Secondly, while rewriting the

semantics using generalised composition leads to the introduction of a stack in the virtual

machine, it requires the use of rotation to produce linear code. In contrast, our approach

starts from a compiler specification that explicitly includes a stack, and does not require

the use of rotation. Moreover, whereas Wand introduces continuation combinators that are

defunctionalised to code constructors, in our approach we introduce the code constructors

directly during the calculation, without the need to go via a continuation semantics. The

third important difference is the role of correctness proofs. While the original article did
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not consider correctness proofs, in a later article, Wand (1982b) does sketch an argument

to prove his compilers correct. By contrast, in our approach the correctness property is the

starting point for the derivation process: the derivation of the compiler and proof of its

correctness proceed simultaneously so that each informs the other.

From Interpreter to Compiler and Virtual Machine: A Functional Derivation (Ager

et al., 2003b) Another approach to deriving compilers from semantics has been developed

by Ager et al. (2003b). In this approach, one begins with a definitional interpreter, from

which an abstract machine is derived by first rewriting the semantics in continuation-

passing style and then defunctionalising. One then ‘factorises’ the resulting abstract ma-

chine into a compiler and virtual machine, by introducing a term model that implements a

non-standard interpretation of the operations of the machine. This process involves trans-

formation steps such as “make the definition compositional” and “factorize into a composi-

tion of combinators and recursive calls”. While the authors show how these transformation

can be performed for particular examples, how they may be applied more generally is not

considered. Moreover, there is no argument about the correctness of the resulting compiler,

apart from the statement that all the transformations are semantics preserving. But the

goals of the authors are different to ours: they want to provide more insight into existing

abstract/virtual machines and interpreters for lambda calculi, study relationships between

them, and synthesise new machines and interpreters.

The fundamental difference to our work is best understood by looking at the derivation

of abstract machines in Ager et al. (2003a), on which their later work (Ager et al., 2003b)

is based. We formulated our original calculational approach in sections 2.1 to 2.4 as the

combination of three transformations steps that first introduce a stack, then a continuation,

and finally defunctionalise. If we omit the introduction of a stack, we obtain the method of

Ager et al. (2003a) to derive abstract machines. From this observation we can also conclude

that the approach presented by Ager et al. (2003a) can be simplified by combining the two

transformation steps together in the manner of section 2.5.

Calculating Compilers (Meijer, 1992) In his PhD dissertation, Meijer (1992) develops

a number of techniques to calculate compilers from semantics for a variety of languages

including a call-by-name lambda calculus, an imperative language with if statements and

while loops, and a simple non-deterministic language.

In his lambda calculus calculation, Meijer starts with a higher-order functional seman-

tics, in which compositionality is made explicit by defining the semantics using a fold

operator on the syntax for the language. He then specifies an equivalent stack-based se-

mantics, for which an implementation is calculated using algebraic properties of folds such

as fusion and universality. The resulting stack-based semantics is then defunctionalised to

produce a compiler and virtual machine. While Meijer emphasises the idea of calculating

compilers as we do, his approach of starting with a higher-order semantics defined as a fold

significantly complicates the methodology. In particular, the specification for the stack-

semantics has the form of an adjunction rather than a simple equation as in our approach,

which results in a much more complicated calculation process.

Meijer’s calculation for the imperative language is impressive. As in our original step-

wise approach in section 2, he calculates a semantics in continuation-passing style, but
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instead of a stack machine, he targets a register machine. The main calculation proceeds

using structural induction, but the presence of unbounded loops leads to an auxiliary use

of fixpoint induction in which we are required to ‘guess’ the correct induction hypothesis.

The use of explicit (register) names in order to target a register machine also makes the

calculation much more cumbersome. But the result is a compiler and virtual machine that

is more closely aligned with typical hardware architectures. Our approach can also be

applied to a language with unbounded loops. In contrast to Meijer’s work, however, we do

not need to use fixpoint induction or guess an induction hypothesis.

In his calculation for the non-deterministic language, Meijer also uses continuation-

passing style. Moreover, as in our second approach to exceptions in section 3.2, he uses

two continuations to distinguish between success and failure. However, in order to deal

with non-determinism, he begins with a semantics expressed as a set-valued function. The

same idea can also be used to adapt our approach to non-deterministic languages.

Meijer is able to calculate fairly realistic compilers by also considering optimising trans-

formations that improve the quality of the compiled code. However, in general his approach

requires more upfront knowledge about the desired compiler, whereas we aimed to reduce

such knowledge as much as possible by using partial specifications.

Deriving a Lazy Abstract Machine (Sestoft, 1997) In this work the author derives an

abstract machine for a call-by-need lambda calculus from a big-step operational semantics.

While Sestoft’s article derives an abstract machine rather than a compiler, it is still valuable

to compare with our approach. His work is also noteworthy as it does not rely on the use of

continuations or defunctionalisation, in contrast to the other related work above. Instead,

the author presents a derivation that is guided by his insight into the source language.

The derivation given by Sestoft specifically targets the call-by-need lambda calculus,

rather than being more generally applicable. He analyses the characteristics of the se-

mantics, such as how laziness is handled and substitutions are represented, and presents

techniques to reflect these characteristics in an efficient manner in an abstract machine. The

correctness of the resulting machine is established separately. In contrast, our approach

tries to minimise the insight that is necessary to transform a semantics into a compiler.

Moreover, in our approach the derivation is the correctness proof. However, in return for

the added effort in Sestoft’s derivation, the resulting abstract machine implementation is

able to perform a number of optimisations that improve its performance.

7 Conclusion and Further Work

In this article we presented a new approach to the problem of calculating compilers. Our

approach builds upon previous work in the field, and was developed and refined by con-

sidering a series of languages of increasing complexity. Figure 1 summarises the general

methodology, which can then be adapted as necessary depending on the nature of the

source language. For example, as we have seen, for a number of language features and their

combination it suffices to use the initial functional semantics as the basis for the compiler

specification, and to calculate the compiler by structural induction on the language syntax.

Moreover, it is advantageous to define the semantics in a compositional style, because
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1. Define a semantics for the language:

– Define an evaluation function

– Defunctionalise to produce a first-order semantics

– Rewrite the semantics in relational style

2. Define equations that specify the correctness of the compiler:

– The equations relate the compiler to the semantics via a virtual machine

– The specification may contain additional undefined components

– The virtual machine operates on configurations comprising a stack and

any additional data structures on which the semantics depends

3. Calculate definitions that satisfy the specifications:

– The calculations proceed by constructive rule induction

– We calculate all unknown components in the specification

– The driving force is the desire to apply induction hypotheses

Fig. 1: General methodology for calculating correct compilers

the use of rule induction places additional restrictions on the format of the semantics as

discussed in section 5.5. The key attributes of our approach are as follows:

• Directness – it is based upon the idea of calculating compilers directly from high-

level specifications of their correctness, rather than indirectly by applying a series of

transformations to a semantics for the source language;

• Simplicity – it only requires simple equational reasoning techniques in the form of

constructive induction, and avoids the need for more sophisticated concepts such as

continuations and defunctionalisation during the calculation phase;

• Partiality – it uses partial (incomplete) specifications and definitions when necessary

to avoid predetermining implementation decisions, with the missing components

also being derived as part of the calculation process;

• Goal driven – it avoids the need for ‘Eureka steps’ by using the desire to apply

induction hypotheses as the clear goal for the calculation process, from which the

compilation machinery then arises in a natural manner;

• Flexible – it considers alternative design choices, and revisits assumptions when

calculations get stuck, to emphasise that calculating compilers is usually not a purely

deterministic process but still requires flexibility and creativity;

• Formalisation – it is readily amenable to mechanised formalisation, and all the cal-

culations in the article have been mechanically verified using the Coq system, with

the proofs being available online as supplementary material.

Note that the formalisation in Coq is not restricted to post-hoc verification of calculations

that have been performed by hand. The calculation style presented in this article can

be emulated in Coq by using partial definitions, and in this way Coq can be used as

an interactive tool to derive correct-by-construction compilers. The Coq system not only

guides the user through the calculation process, but also checks its correctness. Moreover,
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using Coq’s code extraction facility (Letouzey, 2008), we can extract the compiler and the

virtual machine implementation fully automatically if so desired.

There are many possible avenues for developing the approach further. Interesting topics

for further work include: providing mechanical support for the calculation process in an

equational reasoning system such as HERMIT (Sculthorpe et al., 2013); adapting the ap-

proach to different forms of virtual machines, such as register-based machines or machines

with specific instruction sets; considering how to exploit additional algebraic structure

during the calculation process, such as folds and monads; extending the approach to source

languages that are typed; considering further language features such as (delimited) contin-

uations and concurrency; exploring additional compilation concepts such as optimisation

and modularity; and applying the technique to larger languages.
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