
Hackett, Jennifer and Hutton, Graham (2015) Programs
for cheap! In: Thirtieth Annual ACM/IEEE Symposium on
Logic in Computer Science, 6-10 July 2015, Kyoto,
Japan.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/32701/1/pfc.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33576370?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Programs for Cheap!

Jennifer Hackett and Graham Hutton

School of Computer Science

University of Nottingham, UK

Abstract—Write down the definition of a recursion operator
on a piece of paper. Tell me its type, but be careful not to let
me see the operator’s definition. I will tell you an optimization
theorem that the operator satisfies. As an added bonus, I will
also give you a proof of correctness for the optimisation, along
with a formal guarantee about its effect on performance. The
purpose of this paper is to explain these tricks.

I. INTRODUCTION

At the risk of seeming off-message for a logic conference,

modern programmers are too busy to bother proving theorems

about their programs. Free theorems [1] provide a handy

shortcut, as they allow us to conclude useful properties of

functional programs without any proof whatsoever, provided

the programs are suitably polymorphic. In this paper we apply

this technique to the area of program optimisation, developing

a generic optimisation pattern for recursive programs that can

be instantiated for a wide variety of operators.

The focus of this paper is on a particular technique for

optimising recursive programs: the worker/wrapper transfor-

mation [2]. This is a simple but general transformation based

around a change of data representation. The transformation re-

places a program that uses some type A with the combination

of a worker program that uses a new type B and a wrapper

program that converts between the two types as necessary.

The idea behind the transformation is that the change of type

allows the use of more efficient operations.

The worker/wrapper transformation was originally formu-

lated and proved correct for recursive programs defined in

terms of least fixed points [2]. It has subsequently also been

developed for programs written as folds [3] and unfolds [4],

and some progress has been made towards unifying the various

different approaches [5]. Most recently, in the context of least

fixed points it has been shown how rigorous arguments can

be made about the effect of the transformation on a program’s

efficiency, based on improvement theory [6].

Thus far, all instances of the worker/wrapper transformation

have centered on an application of a rolling or fusion rule,

properties that allow functions to be moved into and out of a

recursive context. Variants of these rules exist for a wide class

of recursion operators, so this seems a natural starting point

for developing a generic theory. As it turns out, the appropriate

generalisations of rolling and fusion rules are the categorical

notions of weak and strong dinaturality.

Dinaturality arises in category theory as a generalisation of

the notion of natural transformations, families of morphisms

with a commutativity property. For example, the natural trans-

formation reverse : [A] → [A] that reverses the order of a list

satisfies the property reverse ◦ map f = map f ◦ reverse,

where map applies a function to each element of a list.

In a simple categorical semantics where objects correspond

to types and arrows correspond to functions, natural trans-

formations correspond to the familiar notion of parametric

polymorphism, and the commutativity properties arise as free

theorems for the types of polymorphic functions.

However, as a model of polymorphism, natural transforma-

tions have a significant limitation: their source and target must

be functors. This means that polymorphic functions where the

type variable appears negatively in either the source or target,

for example fix : (A → A) → A, cannot be defined as natural

transformations. For this reason, the concept of naturality is

sometimes generalised to dinaturality and strong dinaturality.

To put it in categorical terms, dinatural transformations gener-

alise natural transformations to the case where the source and

target of the transformation may have mixed variance.

It is widely known that there is a relationship between

(strong) dinaturality and parametricity, the property from

which free theorems follow [7], [8]. The exact details of this

relationship are unclear, and the situation is not helped by

the wide variety of models of parametricity that have been

developed. However, it is known that parametricity for certain

types entails strong dinaturality [9]. For the purposes of this

paper, we assume that all recursion operators of interest are

strongly dinatural; in practice, we are not aware of any such

operators in common use where this assumption fails.

Our paper has two main contributions. First of all, we

develop a generic version of the worker/wrapper transforma-

tion, applicable to a wide class of recursion operators, with

a correctness theorem based around the categorical notion of

strong dinaturality. Secondly, we provide an equally general

improvement theorem for the transformation, based around a

modified notion of dinaturality we call “lax strong dinatural-

ity”. This theorem allows us to make formal guarantees about

the performance effects of the worker/wrapper transformation

when applied to the same wide class of operators. This

guarantee can be phrased informally as “the worker/wrapper

transformation never makes programs worse”.

In this way, we establish strong dinaturality as the essence

of the worker/wrapper transformation, and obtain a general

theory that is applicable to a wide class of recursion operators.

Furthermore, the efficiency side of the theory suggests a gen-

eral categorical viewpoint on theories of program improvement

in terms of preorder-enriched categories. This echoes earlier

work by Hoare and others on a similar approach to program

refinement [10], [11]. Finally, we observe that not only do all

existing worker/wrapper theories arise as instances of our new

general theory, but the theory can also be used to derive new

instances, including a theory for monadic fixed-points and an

interesting degenerate case for arrow fixed-points.

II. WORKER/WRAPPER FOR LEAST FIXED POINTS

In this section, we present a version of the worker/wrapper

transformation for the particular case of recursive programs de-

fined as least fixed points, i.e. using general recursion, together

with proofs of correctness. We then discuss the limitations

of this presentation of the technique, and the problem of

generalising to a wider range of recursion operators.

A. Review Of The Theory

The general form of the worker/wrapper transformation is

based on a simple change of type. Given two types, A and B ,

along with functions abs :B → A and rep :A → B , we attempt

to factorise an original program that uses type A into a worker

that uses the new type B and a wrapper that performs the

necessary change of data representation. The wrapper allows

the new worker program to be used in the same contexts as the

original program. In order for this to be possible, we require

the additional assumption that abs ◦ rep = idA, essentially

capturing the idea that rep provides a faithful representation

of elements of A in B . The worker/wrapper transformation

can be presented with weaker forms of this assumption, but

for now we only consider this strong formulation.

In the particular case for programs defined as least fixed

points, we have the original program written as a fixed point

of a function f : A → A, and wish to derive a new function

g : B → B , such that the following equation holds:

fix f = abs (fix g)

In this case, fix f is the original program of type A, while

abs is the wrapper and fix g is the worker of type B .

Our use of least fixed points means that we must choose an

appropriate semantic basis where this notion makes sense; the

traditional choice is the category Cpo of complete pointed

partial orders and continuous functions. Our theory will also

make use of the following two rules. Firstly, the rolling rule,

allowing functions inside a fixed point to be “rolled” out:

fix (f ◦ g) = f (fix (g ◦ f))

Secondly, the fusion rule, which assuming the function h is

strict (i.e. h ⊥ = ⊥) can be stated as follows:

h (fix f) = fix g ⇐ h ◦ f = g ◦ h

The original paper [2] provided the following proof of cor-

rectness for the worker/wrapper transformation:

fix f

= { abs ◦ rep = id }
fix (abs ◦ rep ◦ f)

= { rolling rule }
abs (fix (rep ◦ f ◦ abs)

= { define g = rep ◦ f ◦ abs }
abs (fix g)

This proof gives us a direct definition for the new function g , to

which standard techniques can then be used to ‘fuse together’

the functions in the definition for g to give a more efficient

implementation for the worker program fix g .

A later paper based on folds [3] gave a proof of correct-

ness for the worker/wrapper transformation based on fusion.

Adapting this proof to the fix case, we obtain:

fix f = abs (fix g)
⇔ { abs ◦ rep = id }
abs (rep (fix f)) = abs (fix g)

⇐ { unapplying abs }
rep (fix f) = fix g

⇐ { fusion, assuming rep is strict }
rep ◦ f = g ◦ rep

This proof gives a specification for the new function g in terms

of the given functions rep and f , from which the aim is then

to calculate an implementation. It also appears as a subproof

of the complete proof for the worker/wrapper transformation

for fixed points that is presented in [5].

Both of the above proofs essentially have only one non-

trivial step. In the first proof, this is the application of the

rolling rule. In the second proof, it is the use of fusion.

We illustrate this theory with a simple example. Consider

the naı̈ve polymorphic function reverse : [T] → [T] that

reverses a list of elements of type T , defined by:

reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

This can be written as a least fixed point as follows:

reverse = fix f

f r [] = []
f r (x : xs) = r xs ++ [x]

To obtain a more efficient version of reverse using the

worker/wrapper transformation, we shall apply the idea of

difference lists, lists represented by functions on lists. In

particular, we take A = [T] → [T], B = [T] → [T] → [T],
and define abs : B → A and rep : A → B by:

abs afunc = λxs → afunc xs []

rep rfunc = λxs ys → rfunc xs ++ ys

It is straightforward to verify that abs ◦ rep = id . Using the

fusion-based formulation we take rep ◦ f = g ◦ rep as our

specification for the new function g , for which we calculate a

definition by case analysis. Firstly, for the empty list:

(rep ◦ f) r []
= { composition }
rep (f r) []

= { definition of rep }
λys → f r [] ++ ys

= { definition of f }

λys → [] ++ ys

= { [] is the unit of ++ }
id

= { define g r ′ [] = id }
g (rep r) []

= { composition }
(g ◦ rep) r []

Secondly, for a non-empty list:

(rep ◦ f) r (x : xs)
= { composition }
rep (f r) (x : xs)

= { definition of rep }
λys → f r (x : xs) ++ ys

= { definition of f }
λys → (r xs ++ [x]) ++ ys

= { associativity of ++ }
λys → r xs ++ ([x] ++ ys)

= { definition of ++ }
λys → r xs ++ (x : ys)

= { definition of rep }
λys → rep r xs (x : ys)

= { define g r ′ (x : xs) = λys → r ′ xs (x : ys) }
g (rep r) (x : xs)

= { composition }
(g ◦ rep) r (x : xs)

Note that the calculation for g did not require the use

of induction. Expanding out the resulting new definition

reverse = abs (fix g), we obtain the familiar “fast reverse”,

reverse xs = rev ′ xs []

rev ′ [] ys = ys

rev ′ (x : xs) ys = rev ′ xs (x : ys)

where fix g is replaced by the equivalent recursive definition

rev ′. Thus we see that the transformation from naı̈ve to fast

reverse is an instance of the worker/wrapper transformation.

B. Generalising From The Fix Case

There are several reasons why we would like to generalise

the least fixed point presentation to a wider range of settings.

Firstly, the full power of the fixed-point operator fix is not

always available to the programmer. This is becoming increas-

ingly the case as the popularity of dependently typed languages

such as Agda and Coq increases, as these languages tend to

have totality requirements that preclude the use of general

recursion. Secondly, the general recursion that is provided by

the use of fixed-points is unstructured, and other recursion

operators such as folds and unfolds can be significantly easier

to reason with in practice. Finally, the least fixed points

presentation is tied to the framework of complete pointed

partial orders, preventing us from applying the theory to

languages where this semantic model does not apply.

Sculthorpe and Hutton [5] made some way toward gener-

alising the worker/wrapper transformation, giving a uniform

presentation of various worker/wrapper theories. However, this

is somewhat unsatisfactory, as it does little to explain why such

a uniform presentation is possible, only demonstrating that

it is. Nevertheless, this work provided a vital stepping-stone

toward the general theory we present in this paper.

In the previous subsection, we noted that both proofs center

on an application of either the rolling rule or fusion. For this

reason, we believe it is appropriate to view these rules as

the “essence” of the worker/wrapper transformation. Thus, to

generalise the worker/wrapper transformation, the first step is

to generalise these rules. In this case, the appropriate gener-

alisation of the rolling rule is the category-theoretic notion of

dinaturality. The fusion rule can be similarly generalised to

the notion of strong dinaturality.

III. DINATURALITY AND STRONG DINATURALITY

Now we shall explain the concepts of dinaturality and strong

dinaturality, including their relationship with the rolling rule

and fusion. For this section, we assume a small amount of

knowledge of category theory, up to functors.

Firstly, we present the notion of a natural transformation.

For two functors F,G : C → D between categories C and D, a

family of arrows αA : F A → G A is a natural transformation

if, for any f : A → B , the following diagram commutes:

F A
αA //

F f

��

G A

G f

��
F B

αB // G B

This diagram is a coherence property, essentially requiring that

each of the αA “do the same thing”, independent of the choice

of the particular A. In this way, natural transformations provide

a categorical notion of parametric polymorphism.

However, some polymorphic operators, such as fix : (A →
A) → A cannot be expressed as natural transformations. This

is because natural transformations require both their source

and target to be functors, whereas in the case of fix the source

type A → A is not functorial because A appears in a negative

position. It is natural to ask whether there is a categorical

notion that captures these operators as well, where the source

and target may not be functors. The notion of dinaturality was

developed for precisely such cases.

For two functors F,G : Cop × C → D, a family of arrows

αA :F (A,A) → G (A,A) is a dinatural transformation if, for

any h : A → B , the following diagram commutes:

F (A,A)
αA // G (A,A)

G (idA,h)

##
F (B ,A)

F (h,idA)
;;

F (idB ,h) ##

G (A,B)

F (B ,B)
αB

// G (B ,B)
G (h,idB)

;;

For fix , this property exactly captures the rolling rule. To

see this, take C = Cpo and D = Set (the category of

sets and total functions), let F (X ,Y) = Hom (X ,Y) and

G (X ,Y) = Y , and assume we are given a (continuous)

function f ∈ F (B ,A) = B → A. Then chasing the function

f around the above diagram, we obtain the rolling rule:

f ◦ h
� fix

// fix (f ◦ h)
�

h

##
f
7

Hom (h,idA)
;;

�

Hom (idB ,h) ##

h (fix (f ◦ h)) = fix (h ◦ f)

h ◦ f �
fix

// fix (h ◦ f)
7 id

;;

Note that G (h, idB) expands simply to idB because G ignores

its contravariant argument. We can use this diagram-chasing

technique to obtain rolling rules for other recursion operators

such as fold and unfold . Thus we see that dinaturality can be

considered a generalisation of the rolling rule.

For some purposes, however, the notion of dinaturality is

too weak. For example, the composition of two dinatural

transformations is not necessarily dinatural. For this reason,

the stronger property of strong dinaturality is sometimes used.

This property is captured by the following diagram, which

should be read as “if the diamond on the left commutes, then

the outer hexagon commutes”.

F (A,A)
αA //

F (idA,h)

##

G (A,A)
G (idA,h)

##
X

p
;;

q ##

F (A,B) ⇒ G (A,B)

F (B ,B)
αB

//
F (h,idB)

;;

G (B ,B)
G (h,idB)

;;

If we set X = F (B ,A), p = F (h,A) and q = F (B , h),
then the diamond on the left commutes trivially and the outer

hexagon reduces to ordinary dinaturality. Thus we confirm that

strong dinaturality is indeed a stronger property.

Applying strong dinaturality to fix in a similar manner to

above, we see that it corresponds to a fusion rule. Choosing

some x :X and letting p x = f :A → A and q x = g :B → B ,

we chase values around the diagram as before:

f
� fix

//
�

Hom (idA,h)

##

fix f
�

h

##
x
7

p

;;

�

q
##

h ◦ f = g ◦ h ⇒ h (fix f) = fix g

g
�

fix
//

7 Hom (h,idB)

;;

fix g

7 id

;;

Thus, strong dinaturality in this case states that h ◦ f = g ◦ h
implies h (fix f) = fix g . The fusion rule is precisely this

property, with an extra strictness condition on h . This strictness

condition can be recovered by treating F and G as functors

from the strict subcategory Cpo⊥ in which all arrows are

strict. The functor F (X ,Y) is still defined as the full function

space Cpo (X ,Y), including non-strict arrows.

Thus we see that while dinaturality is a generalisation

of the rolling rule, strong dinaturality is a generalisation of

fusion. Because rolling and fusion rules are the essence of the

worker/wrapper transformation, it makes sense to use (strong)

dinaturality as the basis for developing a generalised theory.

We develop such a theory in the next section.

IV. WORKER/WRAPPER FOR STRONG DINATURALS

Suppose we have chosen a particular programming language

to work with, and let C be the category where the objects are

types in that language and the arrows are functions from one

type to another. Then a polymorphic type ∀x . T where x

appears in both positive and negative positions in T can be

represented by a functor F : Cop × C → Set, where F (A,A)
is the set of terms in the language of type T [A/x]. In turn,

a recursion operator that takes terms of type F (A,A) and

produces terms of type G (A,A) can be represented by a

strong dinatural transformation from F to G. It is known that

for certain types, strong dinaturality will follow from a free

theorem [9]. For example, the free theorem for the typing fix :
(A → A) → A is fusion, which we showed in the previous

section to be equivalent to strong dinaturality.

Now we present the first of the two central results of this

paper, in the form of a general categorical worker/wrapper

theorem, which is summarised in Fig. 1. The data in the

theorem can be interpreted as follows:

• The category C is a programming language.

• The objects A and B are types in the language.

• The functors F,G are families of types, i.e. types with a

free variable.

• The arrows abs and rep are functions in the language.

• The elements f and g are terms in the language.

• The strong dinatural α is a recursion operator.

Under these interpretations, we can see that the theorem allows

us to factorise an original program written as αA f into a

worker program αB g and wrapper function G (rep, abs).
The wealth of conditions in Fig. 1 requires some explana-

tion. Previous worker/wrapper theorems in the literature had

varying numbers of possible correctness conditions, ranging

from just one in the original theory [2] to a total of five in

[5]. This variation is a result of the way previous theories

were first developed separately and then unified, and all

previous conditions are included in some generalised form

in our presentation. The nine conditions given in this paper

were chosen to best expose the symmetries in the theory. In

practical applications, one selects the condition that results in

the simplest calculation for the worker program.

The conditions are related in various ways. Firstly, the (2)

and (3) groups of conditions are categorically dual. This can

be seen by exchanging C for the opposite category Cop , and

then swapping the roles of abs and rep. Note that the dinatural

transformation is still in the same direction.

Secondly, each numeric condition (n) implies the corre-

sponding condition (nβ), which in turn implies (nγ). Thus

the γ conditions are the weakest conditions for the theorem.

These relationships can be proved as follows:

Given:

• A category C containing objects A and B

• Functors F,G : Cop × C → Set

• Arrows abs : B → A and rep : A → B in C
• The assumption abs ◦ rep = idA

• Elements f ∈ F (A,A) and g ∈ F (B ,B)
• A strong dinatural transformation α : F → G

If any one of the following conditions holds:

(1) g = F (abs, rep) f
(1β) αB g = αB (F (abs, rep) f)
(1γ) G (rep, abs) (αB g) = G (rep, abs) (αB (F (abs, rep) f))

(2) F (rep, id) g = F (id , rep) f
(2β) G (rep, id) (αB g) = G (id , rep) (αA f)
(2γ) G (rep, abs) (αB g) = G (id , abs ◦ rep) (αA f)

(3) F (id , abs) g = F (abs, id) f
(3β) G (id , abs) (αB g) = G (abs, id) (αA f)
(3γ) G (rep, abs) (αB g) = G (abs ◦ rep, id) (αA f)

then we have the factorisation:

αA f = G (rep, abs) (αB g)

The conditions of the theorem are related as

shown in the following diagram:

(1)

qy %-

��

(2)

��

(3)

��

(1β)

qy %-

��

(2β)

��

(3β)

��
(2γ) ks +3 (1γ) (3γ)+3ks

Fig. 1. The Worker/Wrapper Theorem for Strong Dinatural Transformations

• (1) is weakened to (1β) by applying αB to each side.

• (2) implies (2β) and (3) implies (3β) by strong dinatu-

rality. Note that because the target of the functors is Set,

strong dinaturality can be written pointwise as

F (h, id) f = F (id , h) g
⇒
G (h, id) (αA f) = G (id , h) (αB h)

• (1β), (2β) and (3β) can be weakened to their correspond-

ing γ conditions by applying G (rep, abs), G (id , abs)
and G (rep, id) to each side respectively.

Thirdly, using the assumption that abs ◦rep = id , condition

(1) implies conditions (2) and (3). The same can be said of

the corresponding β conditions. In the first case this can be

shown by simply applying F (rep, id) or F (id , abs) to both

sides of condition (1). In the second case, one applies either

G (rep, id) or G (id , abs) to both sides of (1β), and the result

then follows from applying dinaturality.

Finally, using abs ◦ rep = id all three γ conditions are

equivalent. In fact, the right hand sides are all equal. The proof

that (1γ) is equivalent to (2γ) is as follows:

G (rep, abs) (αB (F (abs, rep) f))
= { functors }
G (id , abs) (G (rep, id) (αB (F (id , rep) (F (abs, id) f))))

= { dinaturality }
G (id , abs) (G (id , rep) (αA (F (rep, id) (F (abs, id) f))))

= { functors }
G (id , abs ◦ rep) (αA (F (abs ◦ rep, id) f))

= { abs ◦ rep = id implies F (abs ◦ rep, id) = id }
G (id , abs ◦ rep) (αA f)

The proof for (1γ) and (3γ) is dual. Thus we see that all three

are equivalent. The basic relationships between the conditions

are summarised in the right-hand side of Fig. 1.

Given these relationships, it suffices to prove the theorem

for one of the γ conditions. For example, it can be proved for

(2γ) simply by applying the assumption abs ◦ rep = id :

G (rep, abs) (αB g)
= { (2γ) }
G (id , abs ◦ rep) (αA f)

= { abs ◦ rep = id }
G (id , id) (αA f)

= { functors }
αA f

We include these trivial conditions as it allows us to break up

the proof as a whole into individually trivial steps.

Conditions (1), (2) and (3) are precisely the three correct-

ness conditions given in the original worker/wrapper theory

for fold [3], while the corresponding β and γ conditions

are weakenings of those conditions. The β conditions are

simply the weakenings obtained by adding a recursive context,

while the γ conditions are weakened further so that they

are all equivalent, much like the two weakened conditions

of Sculthorpe and Hutton [5]. However, those two conditions

correspond here to the conditions (1β) and (2β), which in this

generalised setting are not in general equivalent.

It is also worth noting that only conditions (2) and (3) rely

on strong dinaturality, which is necessary for them to imply the

β conditions. With all other conditions, the theorem follows

from the weaker dinaturality property.

In earlier work, weaker versions of the assumption abs ◦
rep = id were also considered [2], [5]. For example, the

proof of correctness for the original presentation of the

worker/wrapper transformation in terms of least fixed points

still holds if the assumption is weakened to abs ◦ rep ◦ f = f ,

or further to fix (abs ◦ rep ◦ f) = fix f .

The lack of weaker alternative assumptions means that our

new theory is not a full generalisation of the earlier work.

While this is not a significant issue, it is a little unsatisfactory.

In our theorem, the assumption abs ◦ rep = id is used four

times. For each of those four uses, a different weakening can

be made. The four weakened versions are as follows:

(C1) αA (F (abs ◦ rep, id) f) = αA f

(C2) αA (F (id , abs ◦ rep) f) = αA f

(C3) G (id , abs ◦ rep) (αA f) = αA f

(C4) G (abs ◦ rep, id) (αA f) = αA f

We call these assumptions (Cn), as they are related to the (C)

assumptions from the literature. The first two assumptions,

(C1) and (C2), are used to prove that (1γ) is equivalent to

(2γ) and (3γ) respectively, while (C3) and (C4) are used to

prove the result from those two same conditions. As expected

from this, (C1) is dual to (C2), and (C3) is dual to (C4).

There is also some duality between (C1) and (C4), and

between (C2) and (C3). Strengthening the assumptions by

removing the application to f gives us

(C1) αA ◦ F (abs ◦ rep, id) = αA

(C2) αA ◦ F (id , abs ◦ rep) = αA

(C3) G (id , abs ◦ rep) ◦ αA = αA

(C4) G (abs ◦ rep, id) ◦ αA = αA

in which case the duality holds exactly.

Despite these relationships, however, we have yet to devise

a single equality weaker than abs ◦ rep = id that implies the

correctness of the generalised worker/wrapper theorem. We

suspect that doing so would require additional assumptions to

be made about the strong dinatural transformation α.

V. EXAMPLES

In this section, we demonstrate the generality of our new

theory by specialising to four particular dinatural transfor-

mations. The first two such specialisations give rise to the

worker/wrapper theories for fix and fold as presented in

previous papers. The last two specialisations are new.

A. Least Fixed Points

Firstly, we shall consider the least fixed point operator,

fix : (A → A) → A. This can be considered a dinatural

transformation of type F → G if we take the following

definitions for the underlying functors F and G:

F (A,B) = Cpo (A,B)

G (A,B) = B

Recalling the discussion from section III, we note that the

functors must be typed F,G :Cpo
op
⊥

×Cpo⊥ → Set in order

to obtain the correct strong dinaturality property.

By instantiating the theorem from Fig. 1 for the fix operator,

we obtain the following set of preconditions:

(1) g = rep ◦ f ◦ abs
(2) g ◦ rep = rep ◦ f
(3) abs ◦ g = f ◦ abs

(1β) fix g = fix (rep ◦ f ◦ abs)
(2β) fix g = rep (fix f)
(3β) abs (fix g) = fix f

(1γ) abs (fix g) = abs (fix (rep ◦ f ◦ abs))
(2γ) abs (fix g) = abs (rep (fix f))
(3γ) abs (fix g) = fix f

Note that the functions abs and rep must be strict, because

they are arrows in Cpo⊥. However, the hom-sets Cpo (A,A)
and Cpo (B ,B) are the full function spaces, so their re-

spective elements f and g need not be strict. By instantiating

the conclusion of the theorem we obtain the worker/wrapper

factorisation fix f = abs (fix g) from [2], [5].

As one would expect from the previous section, the first

five of the preconditions correspond to the five conditions

given for the general fix theory of Sculthorpe and Hutton [5].

However that theory had only one strictness requirement: for

condition (2), rep must be strict to imply the conclusion. Here,

we require both abs and rep to be strict for all conditions.

We can eliminate most of these strictness conditions using

two observations. Firstly, we note that the strictness of abs is

guaranteed by the assumption abs ◦ rep = id :

abs ⊥
� { monotonicity }
abs (rep ⊥)

= { abs ◦ rep = id }
⊥

Secondly, by examining the proof we can see that the full

power of strong dinaturality is only needed for conditions (2)

and (3), and in all other cases dinaturality suffices. As there are

no strictness side conditions for the rolling rule, we can also

elide strictness conditions for the normal dinaturality property.

As condition (3) relies on strong dinaturality being applied

with abs , for which we already have strictness guaranteed,

the only strictness condition remaining is the requirement that

rep be strict in (2) as in the earlier paper.

B. Folds

Next, we consider the fold operator. For a functor H with

an initial algebra µH, the fold operator for the type A takes

an arrow of type H A → A and extends it to an arrow of type

µH → A. That is, we have the following typing:

fold : (H A → A) → µH → A

The type µH can be thought of as a least fixed point of H,

and is a canonical solution to the equation µH ∼= H (µH).
Informally, the fold operator reduces a structure of type µH
to a single value of type A by recursing on all the subterms,

and then assembling the subresults according to f .

One of the key properties of the fold operator is the fusion

law. Given arrows f : H A → A, g : H B → B , h : A → B ,

fusion is captured by the following implication:

h ◦ fold f = fold g ⇐ h ◦ f = g ◦ H h

This can be recast into the language of strong dinatural

transformations in a straightforward manner. In particular, if

we define the functors F,G : Cop × C → Set by

F (A,B) = C (H A,B)

G (A,B) = C (µH,B)

then the operator fold is a strong dinatural transformation from

F to G. The strong dinaturality property corresponds precisely

to the fusion law given above.

Instantiating the worker/wrapper theorem from Fig. 1 in this

context gives the following set of preconditions:

(1) g = rep ◦ f ◦ H abs

(2) g ◦ H rep = rep ◦ f
(3) abs ◦ g = f ◦ H abs

(1β) fold g = fold (rep ◦ f ◦ H abs)
(2β) fold g = rep ◦ fold f

(3β) abs ◦ fold g = fold f

(1γ) abs ◦ fold g = abs ◦ fold (rep ◦ f ◦ H abs)
(2γ) abs ◦ fold g = abs ◦ rep ◦ fold f

(3γ) abs ◦ fold g = fold f

Instantiating the conclusion gives us fold f = abs ◦ fold g .

In this case, the first five preconditions and the conclusion are

precisely those given for the fold theory in [5].

We note that it is unnecessary to assume anything about the

object µH in this presentation: strong dinaturality is sufficient

to get all the necessary properties of the fold operator. We

speculate that this may be related to the link between strong

dinaturality and initial algebras as observed by Uustalu [8].

C. Monadic Fixed Points

Monads are a mathematical construct commonly used in

programming language theory to deal with effects such as state

and exceptions [12]. Languages like Haskell use monads to

embed effectful computations into a pure language. In this

context, a value of type M A for some monad M is an effectful

computation that produces a result of type A, where the nature

of the underlying effect is captured by the monad M.

Formally, a monad is a type constructor M equipped with

two operations of the following types:

return : A → M A

bind :M A → (A → M B) → M B

The bind operation is often written infix as >>=. The monad

operations must obey the following three monad laws:

xm >>= return = xm

return x >>= f = f x

(xm >>= f)>>= g = xm >>= (λx → f x >>= g)

Given these operations and properties, the type constructor M

can be made into a functor by the following definition:

(M f) xm = xm >>= (return ◦ f)

Sometimes it is useful to perform recursive computations

within a monad. For many effects, the appropriate interpre-

tation of recursion is unclear, as there are multiple plausible

implementations with different semantics. Furthermore, while

one could define a uniform monadic recursion operator using

fix , for most monads this results in nontermination. For

these reasons, some monads come equipped with a monadic

fix operation mfix : (A → M A) → M A. Monadic fix

operations are required to follow a number of laws, but here

we concern ourselves only with one such law, which follows

from parametricity [13]. For any strict function s :A → B and

functions f : A → M A, g : B → M B , we have:

M s (mfix f) = mfix g ⇐ M s ◦ f = g ◦ s

This property is similar to the fusion property of the ordinary

fix operator. In fact, if we define functors F (A,B) =
C (A,M B) and G (A,B) = M B , we can see that

this property precisely states that mfix is a strong dinatural

transformation from F to G. Thus we can instantiate our

worker/wrapper theorem for the case of monadic fixed points.

The preconditions are listed below. Note that once again we

have a strictness side condition on rep, though in this case we

cannot eliminate it from conditions as we could before as we

lack the necessary non-strict rolling rule property. However,

once again we can ignore strictness conditions on abs .

(1) g = M rep ◦ f ◦ abs
(2) g ◦ rep = M rep ◦ f
(3) M abs ◦ g = f ◦ abs

(1β) mfix g = mfix (M rep ◦ f ◦ abs)
(2β) mfix g = M rep (mfix f)
(3β) M abs (mfix g) = mfix f

(1γ) M abs (mfix g) = M abs (mfix (rep ◦ f ◦ abs))
(2γ) M abs (mfix g) = M (abs ◦ rep) (mfix f)
(3γ) M abs (mfix g) = mfix f

Instantiating the conclusion gives the worker/wrapper factori-

sation mfix f = M abs (mfix g). This theorem is more-or-

less what one might expect given the similarity between mfix

and the normal fix operation, but monadic recursion has not

previously been studied in the context of the worker/wrapper

transformation and the theorem is entirely new. It is our

general theory that allows us to quickly and easily generate

a theorem that can now be used to apply the worker/wrapper

transformation to programs written using monadic recursion.

Note that we used none of the monad operations and rules,

relying entirely on the strong dinaturality property of mfix , so

our theory requires only that M be a functor to ensure that F

and G are truly functorial in both A and B .

D. Arrow Loops

Unfortunately, monads cannot capture all notions of effect-

ful computation we may wish to use. For this reason, we may

sometimes choose to use a more general framework such as

arrows [14]. An arrow is a binary type constructor Arr together

with three operations of the following types:

arr : (A → B) → Arr A B

seq : Arr A B → Arr B C → Arr A C

second : Arr A B → Arr (C × A0) (C × B)

The seq operator is typically written infix as ≫. Arrows are

required to obey a number of laws, which we shall not list

here. However, we do note the associativity law:

(f ≫ g) ≫ h = f ≫ (g ≫ h)

In general, arrows are a particular form of category, where

the objects are the same as the underlying category of the

programming language, and Arr A B represents the set of

arrows from A to B . The operation arr is thus a functor

from the underlying category of the language to the category

represented by the arrow structure.

Thus far, arrows have no notion of recursion. However,

some arrows provide an extra loop combinator [15]:

loop : Arr (A× C) (B × C) → Arr A B

Intuitively, loop connects one of the outputs of an arrow back

into one of its inputs, as in the following picture:

A //

f

// B

⇒

A //

loop f

// B

C // // C //

Once again, loops are expected to satisfy a number of laws

that we shall not list here. It follows from the laws of arrows

and loops that if f ≫ second (arr h) = second (arr h) ≫
g then loop f = loop g , implying that loop is a dinatural

transformation F → G between the following functors:

F (X ,Y) = Arr (A× X) (B × Y)

G (X ,Y) = Arr A B

Therefore, by instantiating our worker/wrapper theorem we

can conclude that, given abs and rep such that abs ◦ rep = id

and one of the following preconditions:

(1) g = second (arr abs) ≫ f ≫ second (arr rep)
(2) g ≫ second (arr rep) = second (arr abs) ≫ f

(3) second (arr abs) ≫ g = f ≫ second (arr rep)

(1β) loop g = loop (second (arr abs) ≫ f ≫

second (arr rep))
(2β) loop g = loop f

(3β) loop g = loop f

(1γ) loop g = loop (second (arr abs) ≫ f ≫

second (arr rep))
(2γ) loop g = loop f

(3γ) loop g = loop f

then we can conclude loop f = loop g .

We have again instantiated our general theory to produce a

novel worker/wrapper theory with very little effort, allowing

the worker/wrapper transformation to be applied to programs

written using the arrow loop combinator. Just as was the case

for monadic recursion, our theorem is based entirely on the

property of strong dinaturality, and thus does not require any

of the arrow laws to hold beyond the assumption that the loop

operator is strongly dinatural. Note that in this case we have

a degenerate form of the conclusion where the wrapper is just

the identity, because the functor G ignores its inputs.

VI. WORKER/WRAPPER FOR IMPROVEMENT

Thus far, we have only addressed the problem of proving the

generalised worker/wrapper transformation correct. However,

any useful optimisation must do more than simply preserve the

meaning of a program: the transformed program ought to be

in some way better than the original with respect to resource

usage. At the very least, it should not be worse. We refer to

this as the problem of improvement.

In much work on program optimisation in the context of

functional languages, discussion of improvement is limited

to empirical measures such as benchmarks [16] and profil-

ing [17]. This is because the operational behaviour of func-

tional programs can be hard to predict, especially in call-by-

need languages such as Haskell. In essence, empirical methods

are used to circumvent the limitations of theory, which in the

case of improvement is underdeveloped.

In this section, we develop a more rigorous approach to

improvement for the worker/wrapper transformation. Firstly,

we discuss improvement theory à la Sands, which formed the

basis of the approach we used in our previous paper [6]. Sec-

ondly, we review the concept of preorder-enriched categories,

the theoretical machinery we use to model improvement in a

general categorical setting. Thirdly, we discuss the appropriate

generalisation of strong dinaturality in this setting. Finally, we

present a refined version of the worker/wrapper correctness

theorem from Fig. 1 that uses these ideas to formulate an

improvement theorem, which can be used to verify efficiency

properties of the transformation.

A. Improvement Theory à la Sands

Improvement theory is an approach to reasoning about

efficiency based on operational semantics. The general idea

is that two terms can be compared by counting the resources

each term uses in all possible contexts. Given two terms S

and T , if for every context C we know that C[S] requires no

more resources to evaluate than C [T], we say that S is an

improvement of T . This idea can be applied to a wide range

of resources, including both time and space usage.

This theory was developed initially by Sands for the par-

ticular case of the call-by-name lambda calculus [18]. Subse-

quently, Moran and Sands developed a theory for call-by-need

time costs [19], while Gustavsson and Sands developed the

corresponding theory for space usage [20], [21].

While improvement theory provides the machinery needed

to reason about the behaviour of call-by-need languages that

are traditionally considered unpredictable, it is unfortunately

limited by being tied to specific operational semantics. While

subsequent work by Sands [22] goes some way toward rectify-

ing this, we would like a general, categorical theory compatible

with the approach we used earlier in this paper. For this

reason, we shall use an alternate approach to reasoning about

improvement based on preorder-enriched categories.

B. Improvement Theory Via Preorder-Enriched Categories

Category theory offers us one fundamental way to compare

arrows: by asking if they are equal or not. This makes the

theory ideal for reasoning about equivalence of programs.

However, if we wish to reason about other properties, we

require additional structure. For this purpose, we use the ma-

chinery of enriched category theory [23]. In general, categories

can be enriched over a wide variety of structures, but in this

case we shall use preorders to enrich our categories.

A preorder-enriched category is a category where each

hom-set Hom (A,B) is equipped with a preorder �, and

composition is monotonic with respect to this ordering:

f � g ∧ h � j ⇒ f ◦ h � g ◦ j

Functors between preorder-enriched categories are also re-

quired to respect the ordering of arrows:

f � g ⇒ F f � F g

As arrows are used to model programs, the use of a preorder

structure allows us to make ordering comparisons between

programs. Any notion of improvement will lead to an ordering

on programs, so this is precisely the machinery we need to

make general arguments about improvement; while appeals to

a particular semantics are needed to establish an ordering on

programs, once such an ordering is in place we can continue

reasoning with categorical techniques. Where before we used

equational reasoning in our proofs, the preordering allows us

to use the technique of inequational reasoning.

Any ordinary (locally small) category can be treated as

a preorder-enriched category simply by equipping its hom-

sets with the discrete ordering (i.e. f � f for all arrows f).

Thus, any statement true of preorder-enriched categories can

be specialised to a statement that is true of any category.

The use of preorder-enriched categories to compare pro-

grams has previously been considered in the area of program

refinement [10], [11]. While improvement is the problem of

making a program more efficient, refinement is the related

problem of making a program more executable, in the sense

of transforming a specification into an implementation. Our

focus is on improvement, but it is worth noting that all of the

theory in this section can be applied equally to refinement.

C. Generalising Strong Dinaturality

To generalise categorical properties to the setting of order-

enriched categories, we can use the technique of laxification.

Put simply, laxification is the process of replacing equalities

with inequalities (or in the case of 2-categories, with 2-cells).

By applying laxification to the earlier diagram for strong

dinaturality from section III, and drawing the inequalities � as

a new style of arrow +3 , we obtain the following diagram

for lax strong dinaturality:

F (A,A)
αA //

F (A,h)

##

��

G (A,A)
G (A,h)

##

��

X

p
;;

q ##

F (A,B) ⇒ G (A,B)

F (B ,B)
αB

//
F (h,B)

;;

G (B ,B)
G (h,B)

;;

Note that F and G are now functors between order-enriched

categories that respect the arrow ordering. The diagram ex-

presses the following implication in pictorial form:

F (A, h) ◦ p � F (h,B) ◦ q
⇒

G (A, h) ◦ αA ◦ p � G (h,B) ◦ αB ◦ q

We also use the term oplax when the ordering is reversed (i.e.

using � rather than �), and bilax when both lax and oplax

properties hold. To rephrase, a bilax strong dinatural transfor-

mation must satisfy the above property for both the normal

ordering on arrows and the inverse ordering. The choice of

which direction is lax and which is oplax is arbitrary. For the

purposes of this paper, we choose bilax strong dinaturality as

our generalisation of strong dinaturality.

We specifically choose to use bilax strong dinaturality for

two reasons. First of all, in our previous paper on improve-

ment [6] we used a fusion theorem for fixed-points that bears

a great deal of similarity to bilax strong dinaturality, and

its bidirectionality was useful in proving the central theorem

of that paper. Secondly, Johann and Voigtländer’s technique

to generate inequational free theorems from polymorphic

types [24] results in precisely this same bidirectionality.

D. Worker/Wrapper Theorem For Improvement

By using bilax strong dinaturality as our generalisation of

strong dinaturality, we can adapt the theorem we presented in

Fig. 1 to an inequational version. By exchanging Set in the

Given:

• A preorder-enriched category C containing objects A and B

• Functors F,G : Cop × C → Ord that respect the preorder

• Arrows abs : B → A and rep : A → B in C
• The assumption abs ◦ rep ∼= idA

• Elements f ∈ F (A,A) and g ∈ F (B ,B)
• A bilax strong dinatural transformation α : F → G

If any one of the following conditions holds:

(1) g � F (abs, rep) f
(1β) αB g � αB (F (abs, rep) f)
(1γ) G (rep, abs) (αB g) � G (rep, abs) (αB (F (abs, rep) f))

(2) F (rep, id) g � F (id , rep) f
(2β) G (rep, id) (αB g) � G (id , rep) (αA f)
(2γ) G (rep, abs) (αB g) � G (id , abs ◦ rep) (αA f)

(3) F (id , abs) g � F (abs, id) f
(3β) G (id , abs) (αB g) � G (abs, id) (αA f)
(3γ) G (rep, abs) (αB g) � G (abs ◦ rep, id) (αA f)

then we have the factorisation:

αA f � G (rep, abs) (αB g)

The conditions of the theorem are related as

shown in the following diagram:

(1)

qy %-

��

(2)

��

(3)

��

(1β)

qy %-

��

(2β)

��

(3β)

��
(2γ) ks +3 (1γ) (3γ)+3ks

Fig. 2. The Worker/Wrapper Theorem for Bilax Strong Dinatural Transformations

theorem for the preorder-enriched category Ord of preorders

and monotonic functions, we can make ordering comparisons

between the two sides of each precondition and the conclusion.

The resulting theorem is presented in Fig. 2.

Note that we relax the assumption abs ◦ rep = id to

abs ◦ rep ∼= id in the new theorem, as the full strength

of equality is no longer required. All other equalities have

been weakened to inequalities. The resulting inequalities can

be interpreted as comparisons of efficiency, where f � g

means that f is improved by g in terms of efficiency, i.e.

‘bigger’ in the preorder means ‘better’ in efficiency. Under this

interpretation, the theorem in Fig. 2 gives efficiency conditions

under which we can factorise an original program written

as αA f into a more efficient version comprising a worker

program αB g and a wrapper function G (rep, abs).

The proof of this theorem follows precisely the same form

as the proof of the earlier theorem. The earlier proof can be

transformed into a proof of this theorem by a straightforward

process of replacing equalities with inequalities, so we shall

refrain from giving the proof here.

This simple generalisation of our earlier theorem allows us

to reason about any notion of improvement so long as we

can convince ourselves that our recursion operator treats it

parametrically. We conjecture that this will be the case for a

wide class of resources and operators, though to prove this

will likely require techniques similar to those used in [22].

By using the technique we outlined above to convert

statements about preorder-enriched categories to statements

about ordinary categories, we see that this new theorem for

improvement is a generalisation of our earlier theorem for

correctness. Thus, we have a single unified theory that covers

both aspects of the worker/wrapper transformation.

E. Example: Least Fixed Points

We can instantiate our theorem for least fixed points once

again. To do this, we take the same functors F and G as we

did before, and simply change the target category from Set to

Ord, equipping the sets with the same ordering they had in

the Cpo setting. This allows us to use our theorem to reason

about the definedness of programs. In this manner, we obtain

the following set of preconditions:

(1) g � rep ◦ f ◦ abs
(2) g ◦ rep � rep ◦ f
(3) abs ◦ g � f ◦ abs
(1β) fix g � fix (rep ◦ f ◦ abs)
(2β) fix g � rep (fix f)
(3β) abs (fix g) � fix f

(1γ) abs (fix g) � abs (fix (rep ◦ f ◦ abs))
(2γ) abs (fix g) � abs (rep (fix f))
(3γ) abs (fix g) � fix f

In this case, we only need a strictness side condition for

condition (2), because in the � direction the fusion theorem

h ◦ f � g ◦ h ⇒ h (fix f) � fix g holds with no additional

strictness requirements. In turn, instantiating the conclusion of

our new theorem gives fix f � abs (fix g).
The resulting improvement theorem for fix is similar to the

version from our previous paper [6], with two differences.

Firstly, our new theorem is for arbitrary resource usage in

the Cpo setting, whereas the earlier theorem was specific

to time performance. Secondly, the earlier theorem had no

strictness conditions, whereas the above theorem does. In both

cases, these differences are inherited from the fusion theorem

or strong dinaturality property of the underlying theory.

F. Remarks

The process of generalising from the correctness theorem

of Fig. 1 to the improvement theorem of Fig. 2 was en-

tirely straightforward, our treatment of correctness leading

immediately to a related treatment of improvement. This is

encouraging, as it helps to justify our choice of machinery.

Furthermore, the similarities between the two theorems mean

that it should be straightforward to adapt a proof of correctness

into a proof of improvement, a benefit this work shares with

our previous paper [6]. However, our work improves on that

previous paper by showing that the correctness theorem can be

considered a specialisation of the improvement theorem, which

serves as progress toward uniting the two separate branches

of correctness and efficiency. We hope that more work will go

into unifying these aspects of program optimisation.

VII. CONCLUSION

We began this paper by stating that programmers are too

busy to prove theorems, and the goal of this paper has been

to reduce the number of theorems a programmer need prove.

Our chosen mechanism for doing this was by developing

the worker/wrapper transformation, a general-purpose program

optimisation technique for recursive programs.

Using the categorical concept of strong dinaturality, we have

developed a highly re-usable version of the worker/wrapper

transformation whose correctness theorem can be instantiated

for a wide class of recursion operators without the need for any

proofs. Furthermore, with little extra work, we have expanded

this correctness theorem into a theorem that can deal with

the other side of optimisation, that of improvement. We also

demonstrated the utility of these theorems by instantiating

them for a number of recursion patterns, including some for

which no worker/wrapper theorem had been developed before.

In keeping with our goal of avoiding proofs, what proofs

there were in this paper have all been short and straight-

forward. This reflects the often-stated property of categorical

thinking: “with the right definitions, the proofs are trivial”.

There is much precedence for free theorems being used

to prove the correctness of optimisations. For example, the

correctness of shortcut fusion (also known as foldr /build

fusion) relies on a free theorem that comes from the rank-2

type of build [25]. Furthermore, Seidel and Voigtländer [26]

show that an approach based on free theorems can be used

to derive properties relating to efficiency as well. Our paper

builds on these approaches by developing a theory that treats

both of these aspects of optimisation in a uniform way. We

hope that this approach will be built upon in the future.

The inspiration for using strong dinaturality as a gener-

alisation of fusion came from work by Uustalu [8]. This

idea expands on earlier work where dinaturality was used

in its non-strengthened form in axiomatisations of fixed-point

operators [27], [28]. In that work it served a similar role as in

this paper, as an analogue of the rolling rule.

Beyond the technical results of this paper, there are two

key ideas we hope readers will take away with them. The

first idea is that making the right observations about the deep

mathematical structure of a problem or theory can lead to

straightforward generalisations. If we strip away all the cate-

gorical work, this paper boils down to the observation that the

fusion and rolling rules are the essence of the worker/wrapper

transformation. All the other work comes from simply trying

to generalise these rules as far as they will go.

The second idea that we hope readers will take away is that

higher category theory doesn’t need to be complicated to be

useful. While we have used enriched category theory in this

paper to reason about program improvement, we have tried to

make these ideas as accessible as possible. Despite this drive

toward accessibility and simplicity, the results we have proved

with this framework are decidedly non-trivial. In short, a little

enriched category theory can go a long way.

There are a number of potential avenues for further work

on these ideas. Probably the most straightforward next step

would be to instantiate the new theory we have developed

for various operators, and investigate the particular properties

of each instantiation. This would have two benefits: firstly, it

would make it easier for programmers to use this theory for

their own applications, and secondly, the particular properties

of each instantiation may suggest ways to develop the general

theory. In particular, it would be interesting to see what other

assumptions, if any, are needed to include weakened versions

of the abs ◦ rep = id assumption as seen in earlier papers on

the worker/wrapper transformation [2], [5], [6].

Another way to develop this work would be to investigate

particular models of program equivalence and efficiency. By

developing plausible models where our underlying assump-

tions hold, we can argue that our assumptions are justified

in the general case. In particular, it would be useful to

further investigate the relationship between parametricity and

bilax strong dinaturality, hopefully developing a notion of

parametricity which implies bilax strong dinaturality for all

relevant types. If this should turn out to be impossible, we

would also like to know why this is the case.

At the moment, in order to verify preconditions for our

improvement theorem, one would need to fall back on a

pre-existing theory of improvement based on the operational

semantics of a programming language. This is undesirable, as

it increases the amount of theoretical knowledge and proof

skills that a programmer would need to use our theory.

We would like to develop a richer theory of bilax strong

dinaturality as applied to program improvement, to see if

this assumption can be used elsewhere to prove improvement

relations. Ultimately, we would like to see a purely categorical

theory of improvement, allowing improvement relations to be

proved in a purely abstract way without the need to reason at

the level of an underlying concrete semantics.

Finally, we would like to investigate the potential for

automating the worker/wrapper transformation. By far the

biggest hurdle for this would be automating the verification of

the preconditions. We believe that the best approach to doing

this would be to adapt algorithms designed for higher-order

unification [29], the problem of solving equations on lambda

terms. It may even be possible to adapt these algorithms to deal

with the inequational conditions of our improvement theorem.

The HERMIT system [30], [31] has already been used in work

on automating worker/wrapper; it may be possible to integrate

higher-order unification into HERMIT.

ACKNOWLEDGMENTS

The authors would like to thank Thorsten Altenkirch and

Neil Sculthorpe for useful discussions regarding this work,

and Clarissa Littler and Philippa Cowderoy for their helpful

comments on draft versions of the paper.

REFERENCES

[1] P. Wadler, “Theorems for Free!” in Functional Programming Languages

and Computer Architecture, 1989.
[2] A. Gill and G. Hutton, “The Worker/Wrapper Transformation,” Journal

of Functional Programming, vol. 19, no. 2, 2009.
[3] G. Hutton, M. Jaskelioff, and A. Gill, “Factorising Folds for Faster Func-

tions,” Journal of Functional Programming Special Issue on Generic

Programming, vol. 20(3&4), 2010.
[4] J. Hackett, G. Hutton, and M. Jaskelioff, “The Under Performing Unfold:

A New Approach to Optimising Corecursive Programs,” in Symposium

on Implementation and Application of Functional Languages, 2013.
[5] N. Sculthorpe and G. Hutton, “Work It, Wrap It, Fix It, Fold It,” Journal

of Functional Programming, vol. 24, no. 1, 2014.
[6] J. Hackett and G. Hutton, “Worker/Wrapper/Makes It/Faster,” in Inter-

national Conference on Functional Programming, 2014.
[7] E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott, “Functorial

Polymorphism,” Theoretical Computer Science, vol. 70, no. 1, 1990.
[8] T. Uustalu, “A Note on Strong Dinaturality, Initial Algebras and Uniform

Parameterized Fixpoint Operators,” in Fixed Points in Computer Science,
2010.

[9] N. Ghani, T. Uustalu, and V. Vene, “Build, Augment and Destroy,
Universally,” in Programming Languages and Systems: Second Asian

Symposium, 2004.
[10] C. A. R. Hoare, “Data Refinement in a Categorical Setting,” 1987, typed

manuscript.

[11] R.-J. Back and J. Wright, Refinement Calculus: A Systematic Introduc-

tion. Springer, 1998.
[12] P. Wadler, “The Essence of Functional Programming,” in Principles of

Programming Languages, 1992.
[13] L. Erkök and J. Launchbury, “Recursive Monadic Bindings,” in Inter-

national Conference on Functional Programming, 2000.
[14] J. Hughes, “Generalising Monads to Arrows,” Science of Computer

Programming, vol. 37, no. 1-3, 2000.
[15] R. Paterson, “A New Notation for Arrows,” in International Conference

on Functional Programming, 2001.
[16] W. Partain, “The nofib Benchmark Suite of Haskell Programs,” in

Glasgow Workshop on Functional Programming, 1992.
[17] P. M. Sansom and S. L. Peyton Jones, “Formally Based Profiling for

Higher-Order Functional Languages,” ACM Transactions on Program-

ming Languages and Systems, vol. 19, no. 2, 1997.
[18] D. Sands, “Operational Theories of Improvement in Functional Lan-

guages (Extended Abstract),” in Glasgow Workshop on Functional

Programming, 1991.
[19] A. Moran and D. Sands, “Improvement in a Lazy Context: An Opera-

tional Theory for Call-by-Need,” extended version of [32], available at
http://tinyurl.com/ohuv8ox.

[20] J. Gustavsson and D. Sands, “A Foundation for Space-Safe Transfor-
mations of Call-by-Need Programs,” Electronic Notes on Theoretical

Computer Science, vol. 26, 1999.
[21] ——, “Possibilities and Limitations of Call-by-Need Space Improve-

ment,” in International Conference on Functional Programming, 2001.
[22] D. Sands, “From SOS Rules to Proof Principles: An Operational

Metatheory for Functional Languages,” in Principles of Programming

Languages, 1997.
[23] G. M. Kelly, “Basic Concepts of Enriched Category Theory,” in LMS

Lecture Notes, vol. 64. Cambridge University Press, 1982.
[24] P. Johann and J. Voigtländer, “Free Theorems in the Presence of seq,”

in Principles of Programming Languages, 2004.
[25] A. J. Gill, J. Launchbury, and S. L. Peyton Jones, “A Short Cut to

Deforestation,” in Functional Programming Languages and Computer

Architecture, 1993.
[26] D. Seidel and J. Voigtländer, “Improvements for Free,” in Quantitative

Aspects of Programming Languages, 2011.
[27] A. K. Simpson, “A Characterisation of the Least-Fixed-Point Operator

by Dinaturality,” Theoretical Computer Science, vol. 118, no. 2, 1993.
[28] A. K. Simpson and G. D. Plotkin, “Complete Axioms for Categorical

Fixed-Point Operators,” in Logic in Computer Science, 2000.
[29] G. P. Huet, “A Unification Algorithm for Typed λ-Calculus,” Theoretical

Computer Science, vol. 1, no. 1, 1975.
[30] A. Farmer, A. Gill, E. Komp, and N. Sculthorpe, “The HERMIT in

the Machine: A Plugin for the Interactive Transformation of GHC Core
Language Programs,” in Haskell Symposium (Haskell ’12). ACM, 2012,
pp. 1–12.

[31] N. Sculthorpe, A. Farmer, and A. Gill, “The HERMIT in the Tree:
Mechanizing Program Transformations in the GHC Core Language,”
in Proceedings of Implementation and Application of Functional Lan-

guages (IFL ’12), ser. Lecture Notes in Computer Science, vol. 8241,
2013, pp. 86–103.

[32] A. Moran and D. Sands, “Improvement in a Lazy Context: An Op-
erational Theory for Call-by-Need,” in Principles of Programming

Languages, 1999.

