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We consider a diffuse-interface tumor-growth model which has the form of a phase-field

system. We characterize the singular limit of this problem. More precisely, we formally

prove that as the coefficient of the reaction term tends to infinity, the solution converges
to the solution of a novel free boundary problem. We present numerical simulations which

illustrate the convergence of the diffuse-interface model to the identified sharp-interface

limit.
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1. Introduction

1.1. Diffuse-interface tumor-growth models

Diffuse-interface tumor-growth models have been studied recently in several

articles.39,18,28,27,29 We refer to the reviews in Refs. 17, 19, 33. The basic model is
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composed of a fourth order parabolic equation for the tumor cell phase u : Ω ! R

coupled to an elliptic equation for the nutrient phase σ : Ω ! R:

ut = ∆(−ε−1f(u)− ε∆u) + ε−1p0σu (1.1a)

0 = ∆σ − ε−1p0σu, (1.1b)

where ε2 is the diffusivity corresponding to the surface energy, the positive constant

p0 is a proliferation growth parameter, and f is a bistable function.

Introducing the chemical potential µ : Ω ! R, given by

µ := −ε−1f(u)− ε∆u,

(1.1a)-(1.1b) becomes

ut = ∆µ+ ε−1p0σu, (1.2a)

µ = −ε−1f(u)− ε∆u, (1.2b)

0 = ∆σ − ε−1p0σu. (1.2c)

The above system models the evolution of the first stage of a growing tumor.35

In this stage a tumor grows because of the consumption of nutrients that diffuse

through the surrounding tissue. This stage is referred to as avascular growth, as the

tumor has not yet acquired its own blood supply to nurture itself. Consumption

of nutrients is modeled in (1.2a) and (1.2c) via the reactive terms. To describe the

evolution of the tumor boundary a diffuse-interface description is employed. This is

classically modeled in (1.2a) with a diffusion via the chemical potential µ which de-

pends in a nonlinear manner on u and contains the higher-order regularization ε∆u,

see (1.2b).

Diffuse-interface tumor-growth models fall within the broader class of multicon-

stituent tumor-growth models based on continuum mixture theory.4,9,6 The deriva-

tion of diffuse-interface models within continuum mixture theory has been reviewed

in Ref. 33, and requires the set up of balance laws for each constituent as well as the

specification of constraints on the constitutive choices imposed by the second law of

thermodynamics. Typically, only the cellular and fluidic constituents of a tumor are

modeled as parts of a mixture, while nutrients are considered separately. Recently

however, a diffuse-interface tumor growth model has been proposed that incorpo-

rates all constituents within the mixture and is proven to be thermodynamically

consistent; see Ref. 28. In fact, the model is of gradient-flow type.

The model from Ref. 28 is a modification of (1.2) and it is given by:

ut = ∆µ+ ε−1p(u)(σ − δµ) (1.3a)

µ = −ε−1f(u)− ε∆u (1.3b)

σt = ∆σ − ε−1p(u)(σ − δµ) (1.3c)

where δ > 0 is a small regularization parameter, and the growth function p(u) is
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Fig. 1. Example of the bistable function f(s).

defined by

p(u) :=

(
2p0

p
W (u) u 2 [−1, 1]

0 elsewhere.
(1.4)

Here W (u) := −
R u

−1
f(s) ds is the classical Cahn–Hilliard double well free-energy

density. We assume that the bistable function f(u) has two stable roots ±1, an

unstable root 0 and mean zero:
R 1

−1
f(s)ds = 0. See for an example Fig. 1.

Note that in (1.3a)–(1.3c) we have chosen a particular space–time scaling de-

pendent on ε, which in our opinion is one of the interesting cases. In particular, the

reactive interaction between u and σ responsible for growth, the diffusion of σ, as

well as curvature effects will be shown to survive in the limit. The current study is

most likely very useful in the study of other possible scalings.

The above model has the following multi-constituent interpretation: a tumorous

phase u ⇡ 1, a healthy cell phase u ⇡ −1, and nutrient-rich extracellular water

phase σ ≥ 0. We refer to Ref. 28 for the interpretation of σ as part of a mixture.

Note that, compared to (1.2a)-(1.2c), the reactive terms have been modified to

be thermodynamically consistent. They include a regularization part δµ and they

have been localized to the interface (since p(u) is nonzero if u 2 (−1, 1)); see Ref. 28

for more details. The unknown pair (u, σ) is a dissipative gradient flow for the energy

functional

E(u, σ) :=
Z

Ω

⇣ε
2
|ru|2 + 1

ε
W (u) +

σ2

2δ

⌘
.

We refer to Theorem 1.1 for the proof of this property in a slightly more general

context.

Note that there are various scalings of interest (cf. for instance Ref. 12) and that

the one chosen in the definition of E(u, σ) above is only one of them. Furthermore,

an important extension of the above energy includes effects due to chemotaxis. We

shall not consider chemotaxis in this work, as this deserves a completely dedicated

study of its own.
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In this work, we shall be interested in the singular limit ε # 0 of (1.3a)-

(1.3c) together with homogeneous Neumann boundary conditions. We furthermore

shall be interested in numerical simulations which validate the identified singu-

lar limit and which go beyond the assumptions underlying the theory. We note

that many articles involving singular limits have appeared over the years3,15,34,2,13

including overviews25,32,31 and numerical studies24,14. Articles involving formal

asymptotics1,11,12 are of particular interest for the analysis in for this paper.

1.2. The main results

We have to deal with a fourth order equation, at least if we substitute (1.3b) into

(1.3a), which is a generalization of the Cahn-Hilliard equation. In this form, it seems

complicated to deduce the singular limit; on the other hand, it is quite standard

to pass to the limit in the Allen-Cahn equation and thus in associated phase-field

models as well. More precisely, one knows how to pass to the limit as ε ! 0 in the

equation

αut = ∆u+
1

ε2
(
f(u) + εµ

)
,

namely equation (1.5b) below (cf. section 3.2). This motivates us to first consider

the corresponding phase field approximation (1.5a)-(1.5e) and pass to the limit as

ε ! 0 in this problem. Setting α = 0 in the corresponding result then yields the

limit of the original Cahn-Hilliard type system.

It will turn out that the problems in both cases α > 0 and α = 0 are gradient

flows and that the corresponding limit problems as ε # 0 are also gradient flows.

This will be discussed in the sequel.

In order to study the singular limit of Problem (1.3a)-(1.3c) as ε # 0, we therefore

introduce the following phase-field model

αµε
t + uε

t = ∆µε + ε−1p(uε)(σε − δµε) in Ω⇥ (0,+1),

ε−1µε − αuε
t = −ε−2f(uε)−∆uε in Ω⇥ (0,+1),

σε
t = ∆σε − ε−1p(uε)(σε − δµε) in Ω⇥ (0,+1),

(1.5a)

(1.5b)

(1.5c)

together with the boundary and initial conditions

∂µε

∂ν
=

∂uε

∂ν
=

∂σε

∂ν
= 0 on ∂Ω⇥ (0,+1),

αµε(·, 0) = αµε
0, uε(·, 0) = uε

0, σε(·, 0) = σε
0, on Ω.

(1.5d)

(1.5e)

Here, Ω is a smooth bounded domain of RN (N ≥ 2), ν is the outer unit normal vec-

tor to ∂Ω and α is a positive constant. We denote by (Pε) the problem (1.5a)-(1.5e).

Setting α = 0 in the singular limit of Problem (Pε), we will obtain the singular limit

of Problem (1.3a)-(1.3c). Problem (Pε) possesses the Lyapunov functional

Eε(u, µ, σ) :=

Z

Ω

⇣ε
2
|ru|2 + 1

ε
W (u) +

αµ2

2
+

σ2

2δ

⌘
.
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We will prove in section 2 that Problem (Pε) is a gradient flow associated to the

functional Eε(u, µ, σ).

Theorem 1.1. Let (uε, µε, σε) be a smooth solution of Problem (Pε). Then

Eε(u
ε, µε, σε) is decreasing along solution orbits.

We will show in the following that, if in some sense

µε −! µ, uε −! u, σε −! σ,

then the triple (µ, u, σ) is characterized by a limit free boundary problem, where the

interface motion equation appears as the limit of the equation (1.5b). A rigorous

proof of the convergence of the solution of the equation (1.5b) may for instance be

found in Ref. 1. According to Ref. 1, the function u only takes the two values −1

or 1 and the interface which separates the regions where {u = −1} and {u = 1}
partially moves according to its mean curvature.

Assumption on initial conditions: We assume that as ε # 0,

µε
0 −! µ0, uε

0 −! u0, σε
0 −! σ0,

in some sense and that there exists a closed smooth hypersurface without boundary

Γ0 ⇢⇢ Ω which divides Ω into two subdomains Ω+(0) and Ω−(0) such that

u0 =

8
>><
>>:

−1 in Ω−(0),

1 in Ω+(0).

(1.6)

We also assume that Ω+(0) is the region enclosed by Γ0 and that Ω−(0) is the region

enclosed between ∂Ω and Γ0.

Now, we are ready to introduce a free boundary problem namely the singular

limit of Problem (Pε) as ε # 0:

u(x, t) =

(
1 in Ω+(t), t 2 (0, T ]

−1 in Ω−(t), t 2 (0, T ]

αVn = −(N − 1)κ+ Cµ on Γ(t), t 2 (0, T ]

αµt + ut = ∆µ+ 2
p
2p0(σ − δµ)δ0(x− Γ(t)) in Ω⇥ (0, T ],

σt = ∆σ − 2
p
2p0(σ − δµ)δ0(x− Γ(t)) in Ω⇥ (0, T ],

(1.7a)

(1.7b)

(1.7c)

(1.7d)

together with the boundary and initial conditions

∂µ

∂ν
=

∂σ

∂ν
= 0 on ∂Ω⇥ (0, T ],

αµ(·, 0) = αµ0, σ(·, 0) = σ0, on Ω,

Γ(0) = Γ0,

(1.7e)

(1.7f)

(1.7g)



6 D. Hilhorst, J. Kampmann, T.N. Nguyen & K.G. van der Zee

Here, Γ(t) ⇢⇢ Ω is a closed hypersurface; Ω+(t) is the region enclosed by Γ(t);

Ω−(t) = Ω \ (Ω+(t) [ Γ(t)); δ0 is the Dirac distribution; Vn : Γ(t) ! R
N is the

normal velocity of the evolving interface Γ(t), κ is the mean curvature at each point

of Γ(t) and

C =

Z 1

−1

p
W (s)/2 ds

]−1

.

We denote by (P0) the problem (1.7a)-(1.7g) and define

ΓT :=
[

t2(0,T ]

Γ(t)⇥ {t}.

Definition 1.1. We say that the triple (ΓT , µ, σ) is a solution of Problem (P0) if

(1) the set
[

0tT

Γ(t)⇥{t} is smooth, namely Γ(t) is a smooth hypersurface which

lies entirely within Ω for all t 2 [0, T ] and Γ(t) varies smoothly in time;

(2) for all test functions

ψ 2 FT := {ψ 2 C2,1(Ω⇥[0, T ]) such that
∂ψ

∂ν
= 0 on ∂Ω⇥[0, T ] and ψ(T ) = 0},

we have

Z T

0

Z

Ω

(−αµ− u)ψt −
Z

Ω

(αµ0 + u0)ψ(0)

=

Z T

0

Z

Ω

µ∆ψ + 2
p
2p0

Z T

0

Z

Γ(t)

(σ − δµ)ψ, (1.8)

and
Z T

0

Z

Ω

−σψt −
Z

Ω

σ0ψ(0) =

Z T

0

Z

Ω

σ∆ψ − 2
p
2p0

Z T

0

Z

Γ(t)

(σ − δµ)ψ.

Now, in order to state the next result, we need some notations. Let n+(t), n−(t)

be the outer unit normal vectors to ∂Ω+(t) and ∂Ω−(t), respectively. Note that

n+ = −n− on ΓT , so we may define n := n+ = −n− on ΓT . We define [[·]] the jump

across Γ(t), by [[φ]] := φ+ − φ−, where φ± should be understood as the following

limit

φ±(·) := lim
ρ!0−

φ(·+ ρn±(t)) on Γ(t).

We also define

Q+
T :=

[

t2(0,T ]

Ω+(t)⇥ {t}, and Q−
T :=

[

t2(0,T ]

Ω−(t)⇥ {t}.
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Theorem 1.2. Assume that Problem (P0) possesses a solution (ΓT , µ, σ) such that

ΓT is smooth on the time interval (0, T ) and that µ and σ are smooth up to ΓT on

both sides of ΓT . Then the triple (ΓT , µ, σ) satisfies:

αµt = ∆µ in Q+
T [Q−

T ,

σt = ∆σ on Q+
T [Q−

T ,

[[µ]] = [[σ]] = 0 on ΓT ,

[[
∂µ

∂n
]] = −2Vn + 2

p
2p0(σ − δµ) on ΓT ,

[[
∂σ

∂n
]] = −2

p
2p0(σ − δµ) on ΓT ,

αVn = −(N − 1)κ+ Cµ on ΓT ,

(1.9a)

(1.9b)

(1.9c)

(1.9d)

(1.9e)

(1.9f)

together with the boundary and initial conditions

∂µ

∂ν
=

∂σ

∂ν
= 0 on ∂Ω⇥ (0, T ],

µ(·, 0) = µ0, σ(·, 0) = σ0, on Ω,

Γ(0) = Γ0.

(1.9g)

(1.9h)

(1.9i)

In this case, we say that (ΓT , µ, σ) is a classical solution of Problem (P0) on the

time interval [0, T ].

Problem (P0) possesses the Lyapunov functional

E(Γ, µ, σ) :=
2

C

Z

Γ

1 dΓ +

Z

Ω

⇣αµ2

2
+

σ2

2δ

⌘
,

which is analogous to the Lyapunov functional satisfied by Problem (Pε).

Theorem 1.3. Let (ΓT , µ, σ) be a classical solution of Problem (P0). Then

E(Γ, µ, σ) is decreasing along solution orbits.

Finally, we will formally prove the following result.

Theorem 1.4. Let (µε, uε, σε) be solution of Problem (Pε). We suppose that Prob-

lem (P0) possesses a unique classical solution on the interval [0, T ]. If ε ! 0,

µε −! µ, uε −! u, σε −! σ in a strong enough sense,

then (ΓT , µ, σ) coincide with the classical solution of Problem (P0) and u is given

by (1.7a).

We note that the singular limit corresponds to a moving boundary problem

which is similar to other sharp-interface tumor-growth models.26,8,20,7,10,39,18 The

interesting characteristic of the current singular limit is that the reactive terms of

the phase-field model collapse to the interface in the limit, which is different than

in some other models where the reactive terms remain as bulk contributions.
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The current identified limit is consistent with the multi-constituent mixture in-

terpretation. Indeed, in the diffuse-interface model, the tumor-cell concentration

and the healthy-cell concentration add up to a fixed cell concentration: pure tu-

mor cells where u = 1, pure healthy cells where u = −1, and a mixture at diffuse

interfaces.28 This means that in pure phases we have a full single-constituent cell

concentration. As a consequence, in a pure tumor phase the tumor concentration

can not increase further. Tumor growth thus happens within the diffuse interface,

where the tumor-cell concentration can increase at the cost of healthy cells (pro-

vided, of course, sufficient nutrients are available). Upon collapsing the thickness

of the diffuse interface, one thus expects a Dirac-delta term at the interface to be

responsible for front propagation.

The moving boundary problem (1.9) may be simplified by setting some param-

eters to zero or infinity (formally). In particular, two interesting simplifications are

possible. The first one is when Γ(t) propagates because of nonzero σ at Γ(t), and

σ satisfies a steady interface problem. This is a so-called tumor-front propagation

with quasi-steady nutrient evolution. The second one is when Γ(t) propagates sim-

ply because of a constant nonzero σ = σ0. These two simplifications allow for direct

comparisons with numerical simulations of the diffuse-interface model. We will take

up such a comparison in Section 4 with 2-D and 3-D numerical simulations using

the energy-stable scheme from Ref. 40. We verify the convergence of the diffuse-

interface model to its sharp-interface limit, and explore a situation with topological

changes which is not covered by Theorem 1.2.

The remainder of the paper is organized as follows: In Section 2 we prove The-

orem 1.1, Theorem 1.2 and Theorem 1.3; In Section 3, we formally justify Theo-

rem 1.4. Finally in Section 4 we present numerical experiments.

2. Proof of the main results

2.1. Proof of Theorem 1.1

It is sufficient to prove that

d

dt
Eε(u

ε, µε, σε)  0. (2.1)
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For simplicity, we write u, µ, σ instead of uε, µε, σε. Now, the inequality (2.1) follows

from the following computations:

d

dt
Eε(u, µ, σ) =

Z

Ω

⇣
εrurut + ε−1W 0(u)ut + αµµt +

σσt

δ

⌘

=

Z

Ω

⇣
[−ε−1f(u)− ε∆u]ut + αµµt +

σσt

δ

⌘

=

Z

Ω

⇣
(µ− αεut)ut + αµµt

⌘
+

Z

Ω

σ

δ

⇣
∆σ − ε−1p(u)(σ − δµ)

⌘

= −
Z

Ω

αεu2
t +

Z

Ω

µ(ut + αµt) +

Z

Ω

σ

δ

⇣
∆σ − ε−1p(u)(σ − δµ)

⌘

= −
Z

Ω

αεu2
t +

Z

Ω

µ
⇣
∆µ+ ε−1p(u)(σ − δµ)

⌘

+

Z

Ω

σ

δ

⇣
∆σ − ε−1p(u)(σ − δµ)

⌘

= −
Z

Ω

αεu2
t −

Z

Ω

|rµ|2 −
Z

Ω

|rσ|2
δ

+ ε−1

Z

Ω

p(u)
⇣
µ(σ − δµ)− σ

δ
(σ − δµ)

⌘

= −
Z

Ω

αεu2
t −

Z

Ω

|rµ|2 −
Z

Ω

|rσ|2
δ

− ε−1

Z

Ω

p(u)
⇣p

δµ− σp
δ

⌘2

 0.

2.2. Proof of Theorem 1.2

First, we recall that n+(t), n−(t) are the outer unit normal vectors to ∂Ω+(t) and

∂Ω−(t), respectively and n := n+ = −n− on ΓT . We define Vn = V.n+, where V is

the velocity of displacement of the interface ΓT .

2.2.1. Equations for µ

We recall that u, µ satisfy

Z T

0

Z

Ω

(−αµ− u)ψt −
Z

Ω

(αµ0 + u0)ψ(0)

=

Z T

0

Z

Ω

µ∆ψ + 2
p
2p0

Z T

0

Z

Γ(t)

(σ − δµ)ψ, (2.2)

for all ψ 2 FT . We define the terms A1, A2 and the diffusion term B by

A1 :=

Z T

0

Z

Ω

−αµψt, A2 :=

Z T

0

Z

Ω

−uψt, and B :=

Z T

0

Z

Ω

µ∆ψ.
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Analysis of the terms A1 and A2: Our analysis of the terms A1 and A2 relies

on the Reynolds transport theorem, by which we have

d

dt

Z

Ω±(t)

φψ =

Z

Ω±(t)

⇣
φtψ + φψt

⌘
±
Z

Γ(t)

Vnφ
±ψ,

for all smooth function ψ and for function φ. These equations for the integrals over

Ω±(t) yield

d

dt

Z

Ω+(t)[Ω−(t)

φψ =

Z

Ω+(t)[Ω−(t)

⇣
φtψ + φψt

⌘
+

Z

Γ(t)

Vn[[φ]]ψ.

Hence we haveZ

Ω+(t)[Ω−(t)

−φψt =

Z

Ω+(t)[Ω−(t)

φtψ +

Z

Γ(t)

Vn[[φ]]ψ − d

dt

Z

Ω+(t)[Ω−(t)

φψ. (2.3)

In our case, we choose φ := αµ in (2.3) and integrate from 0 to T . This yields

A1 =

Z T

0

Z

Ω+(t)[Ω−(t)

αµtψ +

Z T

0

Z

Γ(t)

Vn[[αµ]]ψ −
Z T

0

d

dt

Z

Ω+(t)[Ω−(t)

αµψ

=

Z T

0

Z

Ω+(t)[Ω−(t)

αµtψ +

Z T

0

Z

Γ(t)

αVn[[µ]]ψ +

Z

Ω+(0)[Ω−(0)

αµ(0)ψ(0). (2.4)

Similarly, we apply the formula (2.3) for φ := u to obtain

A2 =

Z T

0

Z

Ω+(t)[Ω−(t)

utψ +

Z T

0

Z

Γ(t)

Vn[[u]]ψ +

Z

Ω+(0)[Ω−(0)

u(0)ψ(0)

= 2

Z T

0

Z

Γ(t)

Vnψ +

Z

Ω+(0)[Ω−(0)

u(0)ψ(0). (2.5)

Analysis of the term B: We write B as the sum

B =

Z T

0

⇣Z

Ω+(t)

µ∆ψ +

Z

Ω−(t)

µ∆ψ
⌘
.

Integration by parts yields
Z

Ω−(t)

µ∆ψ = −
Z

Ω−(t)

rµrψ +

Z

Γ(t)

∂ψ

∂n−
µ−

=

Z

Ω−(t)

∆µψ −
Z

Γ(t)

∂µ−

∂n−
ψ −

Z

∂Ω

∂µ

∂ν
ψ +

Z

Γ(t)

∂ψ

∂n−
µ−

=

Z

Ω−(t)

∆µψ +

Z

Γ(t)

∂µ−

∂n
ψ −

Z

∂Ω

∂µ

∂ν
ψ −

Z

Γ(t)

∂ψ

∂n
µ−

and Z

Ω+(t)

µ∆ψ =

Z

Ω+(t)

∆µψ −
Z

Γ(t)

∂µ+

∂n
ψ +

Z

Γ(t)

∂ψ

∂n
µ+

which implies that
Z

Ω+(t)[Ω−(t)

µ∆ψ =

Z

Ω+(t)[Ω−(t)

∆µψ −
Z

Γ(t)

[[
∂µ

∂n
]]ψ +

Z

Γ(t)

∂ψ

∂n
[[µ]]−

Z

∂Ω

∂µ

∂ν
ψ.
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Integrating this identity from 0 to T , we obtain

B =

Z T

0

Z

Ω+(t)[Ω−(t)

∆µψ

−
Z T

0

Z

Γ(t)

[[
∂µ

∂n
]]ψ +

Z T

0

Z

Γ(t)

∂ψ

∂n
[[µ]]−

Z T

0

Z

∂Ω

∂µ

∂ν
ψ. (2.6)

Conclusion: Combining (2.2), (2.4) (2.5) and (2.6), we then have for all ψ 2 FT ,

Z T

0

Z

Ω+(t)[Ω−(t)

αµtψ +

Z T

0

Z

Γ(t)

Vn(α[[µ]] + 2)ψ

+

Z

Ω+(t)[Ω−(t)

α(µ(0)− µ0)ψ(0) +

Z

Ω+(t)[Ω−(t)

(u(0)− u0)ψ(0)

=

Z T

0

Z

Ω+(t)[Ω−(t)

∆µψ −
Z T

0

Z

Γ(t)

[[
∂µ

∂n
]]ψ +

Z T

0

Z

Γ(t)

∂ψ

∂n
[[µ]]−

Z T

0

Z

∂Ω

∂µ

∂ν
ψ

+

Z T

0

Z

Γ(t)

2
p
2p0(σ − δµ)ψ. (2.7)

By using test functions with suitable supports, namely ψ 2 C1
0 (Q+

T ) and ψ 2
C1

0 (Q−
T ), we deduce that

αµt = ∆µ in Q+
T [Q−

T . (2.8)

Similarly, by taking ψ 2 C1
0 (QT ) such that

∂ψ

∂n
= 0 on ΓT (we refer to Remark 2.1

below for the construction of such functions), we obtain

Vn(2 + α[[µ]]) = −[[
∂µ

∂n
]] + 2

p
2p0(σ − δµ) on ΓT . (2.9)

Now, we take ψ 2 C1
0 (QT ) to deduce that
Z T

0

Z

Γ(t)

∂ψ

∂n
[[µ]] = 0 for all ψ 2 C1

0 (QT ). (2.10)

Therefore,

[[µ]] = 0 on ΓT . (2.11)

It follows from (2.9) and (2.11) that

2Vn = −[[
∂µ

∂n
]] + 2

p
2p0(σ − δµ) on ΓT .

Now, for the initial conditions, we use the test function ψ 2 FT such that ψ = 0 on

∂Ω⇥ (0, T ) to obtain

u(0) + αµ(0) = u0 + αµ0,

which in view of (1.6) implies that

µ(0) = µ0, u(0) = u0
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Finally, the remaining term in (2.7) allows us to conclude that

∂µ

∂ν
= 0.

Therefore, µ satisfies the equations:

αµt = ∆µ in Q+
T [Q−

T ,

2Vn = −[[
∂µ

∂n
]] + 2

p
2p0(σ − δµ) on ΓT ,

[[µ]] = 0 on ΓT ,

together with the boundary condition and the initial condition:

∂µ

∂ν
= 0, µ(0) = µ0.

Remark 2.1. Let eψ 2 C1
0 (QT ). In the following, we construct a function ψ 2

C1
0 (QT ) such that

∂ψ

∂n
|ΓT

= 0 and ψ = eψ on ΓT . (2.12)

Let ed(x, t) be the signed distance function to Γ(t) (see (3.3) below). Since[

0tT

Γ(t)⇥ {t} is smooth, there exists δ small enough such that ed(x, t) is smooth

in

V := {(x, t) 2 Ω⇥ [0, T ], |ed(x, t)| < δ};
moreover for all (x, t) 2 V there exists a unique (y, t) in Γ(t) ⇥ {t} such that

|ed(x, t)| = |x− y| and (red(x, t), t) = n(y, t). More precisely,

(y, t) = J(x, t) := (x−red(x, t)ed(x, t), t),

where the projection operator J is a smooth map from V into R
N+1. We define ψ

on V by

ψ(·) := eψ(J (·)).
Then ψ is smooth on V and (2.12) holds. Moreover, we can extend ψ to a smooth

function on QT .

2.2.2. Equations for σ

Since the computations in this section are similar to the previous ones, we will only

give a sketch of the necessary steps. For ψ 2 C1
0 (QT ), we have

Z T

0

Z

Ω

−σψt =

Z T

0

Z

Ω

σ∆ψ − 2
p
2p0

Z T

0

Z

Γ(t)

(σ − δµ)ψ. (2.13)

We define two terms

C :=

Z T

0

Z

Ω

−σψt and D :=

Z T

0

Z

Ω

σ∆ψ.
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One can easily deduce that

C =

Z T

0

Z

Ω+(t)[Ω−(t)

σtψ +

Z T

0

Z

Γ(t)

Vn[[σ]]ψ,

and

D =

Z T

0

Z

Ω+(t)[Ω−(t)

∆σψ −
Z T

0

Z

Γ(t)

[[
∂σ

∂n
]]ψ +

Z T

0

Z

Γ(t)

∂ψ

∂n
[[σ]].

It follows that

Z T

0

Z

Ω+(t)[Ω−(t)

σtψ +

Z T

0

Z

Γ(t)

Vn[[σ]]ψ =

Z T

0

Z

Ω+(t)[Ω−(t)

∆σψ

−
Z T

0

Z

Γ(t)

[[
∂σ

∂n
]]ψ +

Z T

0

Z

Γ(t)

∂ψ

∂n
[[σ]]− 2

p
2p0

Z T

0

Z

Γ(t)

(σ − δµ)ψ.

and hence we have

σt = ∆σ in Q+
T [Q−

T ,

[[
∂σ

∂n
]] = −2

p
2p0(σ − δµ) on ΓT ,

[[σ]] = 0 on ΓT ,

This concludes the proof of Theorem 1.2

2.3. Proof of Theorem 1.3

We prove below that

d

dt
E(Γ, µ, σ)  0. (2.14)
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The inequality (2.14) follows from the following computations and Theorem 4.3

p.355 and (4.12) p.356 in Ref. 21:

d

dt
E(Γ, µ, σ)

=
2

C

Z

Γ

(N − 1)κVn +

Z

Ω+[Ω−

⇣
αµµt + δ−1σσt

⌘

=
2

C

Z

Γ

[Cµ− αVn]Vn +

Z

Ω+[Ω−

⇣
αµµt + δ−1σσt

⌘

=

Z

Γ

2µVn −
Z

Γ

2α

C V 2
n +

Z

Ω+[Ω−

⇣
µ∆µ+ δ−1σ∆σ

⌘

=

Z

Γ

µ
⇣
− [[

∂µ

∂n
]] + 2

p
2p0(σ − δµ)

⌘
−

Z

Γ

2α

C V 2
n +

Z

Ω+[Ω−

⇣
µ∆µ+ δ−1σ∆σ

⌘

=

Z

Γ

2
p
2p0µ(σ − δµ)−

Z

Γ

2α

C V 2
n −

Z

Ω+[Ω−

|rµ|2 +
Z

Ω+[Ω−

δ−1σ∆σ

=

Z

Γ

2
p
2p0µ(σ − δµ)−

Z

Γ

2α

C V 2
n −

Z

Ω+[Ω−

|rµ|2

−
Z

Ω+[Ω−

|rσ|2
δ

+

Z

Γ

δ−1σ[[
∂σ

∂n
]]

which in turn implies that

d

dt
E(Γ, µ, σ)

=

Z

Γ

2
p
2p0

⇣
µ(σ − δµ)− δ−1σ(σ − δµ)

⌘

−
Z

Γ

2α

C V 2
n −

Z

Ω+[Ω−

|rµ|2 −
Z

Ω+[Ω−

|rσ|2
δ

= −
Z

Γ

2α

C V 2
n −

Z

Ω+[Ω−

|rµ|2 −
Z

Ω+[Ω−

|rσ|2
δ

−
Z

Γ

2
p
2p0

⇣p
δµ− σp

δ

⌘2

 0.

3. Formal derivation of Theorem 1.4

This section is devoted to prove formally theorem 1.4. We shall derive in turn

equations for u,Γ(t), µ, σ.

3.1. Equation for u

First, we formally show that u only takes two values ±1. To that purpose, we rewrite

Equation (1.5b) in the form

αuε
t = ∆uε + ε−2f(uε) + ε−1µε.

By setting τ := t/ε2, we obtain

αuε
τ = ε2∆uε + f(uε) + εµε.
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When ε is small, we neglect the effect of diffusion term ε2∆uε and of the term εµε

with respect to the term f(uε), which yields the ordinary differential equation

α
duε

dτ
⇠= f(uε). (3.1)

Note that τ ! 1 as ε ! 0. Remembering that ±1 are two stable zeros of this

equation. We formally deduce that as ε # 0
8
>><
>>:

uε(x, t) approaches − 1 if uε(x, 0) < 0

uε(x, t) approaches 1 if uε(x, 0) > 0.

(3.2)

This implies that the function u which is the limit of uε only takes two values ±1.

3.2. Formal derivation of the interface equation

We define

Ω−(t) = {x 2 Ω : u(x, t) = −1}, Ω+(t) = {x 2 Ω : u(x, t) = 1},
and

Γ(t) := Ω\(Ω−(t) [ Ω+(t)).

Since roughly speaking, the regions {u = −1} and {u = 1} are the ”limit” of the

regions {uε ⇡ −1} and {uε ⇡ 1} as ε ! 0, Γ(t) can be considered as the limit as

ε ! 0 of Γε(t) which is the interface between the two regions

{x 2 Ω : uε(x, t) ⇡ −1} and {x 2 Ω : uε(x, t) ⇡ 1}.
We recall that 0 is an unstable equilibria of Equation (3.1), and define

Γε(t) = {x 2 Ω : uε(x, t) = 0} for each t ≥ 0.

In what follows, we will use a formal asymptotic expansion to derive the equation

describing Γ(t). We need some preparations.

1. Signed distance function: We assume that the interface Γ(t) is a smooth, closed

hypersurface without boundary of RN . Further, we suppose that Ω+(t) is the region

enclosed by Γ(t) and that Ω−(t) is the region enclosed between ∂Ω and Γ(t). Let

d̃(x, t) be the signed distance function to Γ(t) defined by

d̃(x, t) =

8
>><
>>:

dist(x,Γ(t)) for x 2 Ω−(t),

− dist(x,Γ(t)) elsewhere.

(3.3)

Note that d̃ = 0 on ΓT and |rd̃| = 1 in a neighborhood of ΓT .

2. Outer expansion: It is reasonable to assume that outside a neighbourhood of ΓT ,

uε has the expansion

uε(x, t) = ±1 + εu±
1 (x, t) + ε2u±

2 (x, t) + . . . (3.4)
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3. Inner expansion: Near ΓT , we assume that uε has form

uε(x, t) = U0(x, t, ξ) + εU1(x, t, ξ) + ε2U2(x, t, ξ) + . . . (3.5)

Here Uj(x, t, z), j ≥ 0 are defined for x 2 Ω, t ≥ 0, z 2 R and ξ := d̃(x, t)/ε.

4. Normalization conditions: The stretched space variable ξ gives exactly the

right spatial scaling to describe the rapid transition between the regions {uε ⇡ −1}
and {uε ⇡ 1}. We normalize U0 in such a way that

U0(x, t, 0) = 0.

5. Matching conditions: For ξ ! ±1, we require two expansions (3.4) and (3.5)

to be consistent, i.e.

U0(x, t,−1) = 1, U0(x, t,+1) = −1;

and

Uk(x, t,−1) = u+
k (x, t), Uk(x, t,+1) = u−

k (x, t)

for all k ≥ 1.

Formal interface motion equation We will substitute the inner expansion (3.5)

into (1.5b). We will then compare the terms of the same order to determine equa-

tions of U0 and U1. To that purpose, we start by some computations.

uε
t = U0t + U0z

edt
ε

+ εU1t + U1z
edt + . . . ,

ruε = rU0 + U0z
red
ε

+ εrU1 + U1zred+ . . . ,

∆uε = ∆U0 + 2
red
ε

· rU0z + U0z
∆ed
ε

+ U0zz
|red|
ε2

+ ε∆U1

+ 2red · rU1z + U1z∆ed+ U1zz
|red|
ε

+ . . . ,

f(uε) = f(U0) + εf 0(U0)U1 +O(ε2),

µε = µ+O(ε).

Substituting uε
t ,∆uε, f(uε), µε in (1.5b), collecting all terms of order ε−2 then yields

8
>><
>>:

U0zz + f(U0) = 0

U0(−1) = 1, U0(0) = 0, U0(+1) = −1.

(3.6)

This problem has a unique solution U0. Furthermore, U0 is independent of (x, t),

i.e. U0(x, t, z) = U0(z) and thus, we write U 0
0, U

00
0 instead of U0z, U0zz. We have the

following lemma.
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Lemma 3.1. The solution U0 of equation (3.6) also fulfills the differential equation

U 0
0 = −

p
2W (U0).

As a consequence,
R
R
(U 0

0(z))
2 dz can be written in the form:

Z

R

(U 0
0(z))

2 dz =
p
2

Z 1

−1

p
W (s) ds.

Proof. Multiplying the above mentioned differential equation (3.6) for U0 by U 0
0,

we get

U 00
0 U

0
0 + f(U0)U

0
0 = 0. (3.7)

Keeping in mind that W 0(u) = −f(u), (3.7) can be read as
✓
(U 0

0)
2

2

◆0

− (W (U0))
0
= 0. (3.8)

Integrating this equation from −1 to z, we obtain

(U 0
0(z))

2

2
= W (U0(z)). (3.9)

Moreover, U0 is non increasing, therefore, we deduce that

U 0
0(z) = −

p
2W (U0(z)).

Consequently, we have
Z

R

(U 0
0(z))

2 dz = −
Z

R

U 0
0(z)

p
2W (U0(z)) dz =

p
2

Z 1

−1

p
W (s) ds.

This completes the proof of Lemma 3.1.

We now collect the terms of order ε−1 in the substituted equation (1.5b). Because

we have |red| = 1 in a neighbourhood of Γ(t), we obtain

U1zz + f 0(U0)U1 = U 0
0(α

edt −∆ed)− µ. (3.10)

A solvability condition for this equation is given by the following lemma.

Lemma 3.2 (see Lemma 2.2 in Ref. 1). Let A(z) be a bounded function for

z 2 R. Then the existence of a solution φ for the problem
(
φzz + f 0(U0(z))φ = A(z) , z 2 R

φ(0) = 0,φ 2 L1(R)
(3.11)

is equivalent to
Z

R

A(z)U 0
0(z) dz = 0. (3.12)

Therefore, the existence of a solution U1 of (3.10) is equivalent to
Z

R

h
(U 0

0)
2(z)(αedt −∆ed)(x, t)− µ(x, t)U 0

0(z)
i
dz = 0 (3.13)
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for all (x, t) in a neighbourhood of the interface ΓT . Thus,

(αedt −∆ed)(x, t) =
µ(x, t)

R
R
U 0
0(z) dzR

R
(U 0

0(z))
2
dz

= − 2µ(x, t)R
R
(U 0

0(z))
2
dz

. (3.14)

It follows from Lemma 3.1 that

(αedt −∆ed)(x, t) = −
p
2µ(x, t)

R 1

−1

p
W (s) ds

. (3.15)

Note that, on Γ(t) we have n = n+|Γ = red, κ =
div(n)

N − 1
=

∆ed
N − 1

, and d̃t = −Vn.

Therefore, we deduce that Γ(t) satisfies indeed the interface motion equation (1.7b):

αVn = −(N − 1)κ+

p
2µ

R 1

−1

p
W (s) ds

= −(N − 1)κ+ Cµ on ΓT ,

where C :=
hR 1

−1

p
W (s)/2 ds

i−1

.

3.3. Equations for µ, σ

We will suppose that the following convergence holds in a strong enough sense:

µε −! µ, σε −! σ

as ε # 0 and derive the limit of the reaction term in (1.5a) and (1.5c). To that

purpose, we first prove a stronger version of Lemma 2.1 by Du et al. in Ref. 22 (see

also Refs. 5, 30).

Lemma 3.3. Let γ ⇢⇢ Ω be a smooth hypersurface without boundary, d be the

signed distance to γ, and let g 2 L1(R). Furthermore, let φε 2 L1(Ω) and V ⇢ Ω

be a neighborhood γ such that

kφεkL∞(Ω)  C,

φε is continuous on V,

φε −! φ uniformly in V.

We then have

lim
ε#0

1

ε

Z

U

g
(
d(x)/ε

)
φε(x) dx =

Z 1

−1

g(τ) dτ

Z

γ

φ

for a small enough neighborhood U ⇢ V of γ.

Proof. For simplicity, we prove this lemma in the three-dimensional case and as-

sume that the hypersurface γ has a parametrization α. More precisely, we assume

that there exists an open set W of R2 such that the mapping α from W onto γ is

smooth and that α−1 is continuous from γ onto W . We write the function α as

α(z1, z2) = (α1(z1, z2),α2(z1, z2),α3(z1, z2)) for all (z1, z2) 2 W.
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For δ > 0 small enough, we consider η from W ⇥ [−δ, δ] to R
3, which satisfies

(
ητ (z1, z2, τ) = rd(η(z1, z2, τ)),

η(z1, z2, 0) = α(z1, z2).

We write

η(z1, z2, τ) = (η1(z1, z2, τ), η2(z1, z2, τ), η3(z1, z2, τ))

with ηi : W ⇥ [−δ, δ] ! R. We define U := η({W ⇥ [−δ, δ]}) and choose δ small

enough so that U ⇢ V . Note that

d

dτ
d(η(z1, z2, τ)) = rd(η(z1, z2, τ))ητ (z1, z2, τ) = |rd(η(z1, z2, τ))|2 = 1,

and that d(η(z1, z2, 0)) = d(α(z1, z2)) = 0. Thus we conclude that d(η(z1, z2, τ)) =

τ . We define J(z1, z2, τ) as the determinant of the Jacobian matrix of η at (z1, z2, τ)

and perform the change of coordinates η(z1, z2, τ) = x to obtain
Z

U

g

✓
d(x)

ε

◆
φε(x) dx

=

Z δ

−δ

dτ

Z

W

g

✓
d(η(z1, z2, τ))

ε

◆
φε(η(z1, z2, τ))|J(z1, z2, τ)|dz1dz2

=

Z δ

−δ

dτ

Z

W

g
⇣τ
ε

⌘
φε(η(z1, z2, τ))|J(z1, z2, τ)|dz1dz2.

By applying the change of coordinates τ = εeτ , we have
Z

U

g

✓
d(x)

ε

◆
φε(x) dx

=ε

Z δ

ε

− δ

ε

deτ
Z

W

g (eτ)φε(η(z1, z2, εeτ))|J(z1, z2, εeτ)| dz1dz2.

Therefore,

Aε :=
1

ε

Z

U

g

✓
d(x)

ε

◆
φε(x) dx

=

Z 1

−1

Z

W

1(− δ

ε
, δ
ε
)(eτ) g (eτ)φε(η(z1, z2, εeτ))|J(z1, z2, εeτ)|deτdz1dz2.

In the following, we will apply the dominated convergence theorem to deduce the

limit of Aε as ε # 0. Set

Hε(z1, z2, eτ) := 1(− δ

ε
, δ
ε
)(eτ) g (eτ)φε(η(z1, z2, εeτ))|J(z1, z2, εeτ)|.

For − δ
ε  eτ  δ

ε , we have −δ  εeτ  δ, so that for all ε > 0
∣∣∣1(− δ

ε
, δ
ε
)(eτ) |J(z1, z2, εeτ)|

∣∣∣  sup
z1,z22W, −δτδ

|J(z1, z2, τ)| =: C1.
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Moreover, kφεkL∞(Ω)  C for all ε > 0, therefore,

|Hε(z1, z2, eτ)|  C|g(eτ)| on W ⇥ R. (3.16)

Next, since φε converges uniformly to φ on U and since J is continuous, we have

for all eτ 2 R, (z1, z2) 2 W ,

1(− δ

ε
, δ
ε
)(eτ)φε(η(z1, z2, εeτ)) ! φ(η(z1, z2, 0)) = φ(α(z1, z2)),

J(z1, z2, εeτ) ! J(z1, z2, 0),

as ε # 0. It follows that as ε # 0,

Hε(z1, z2, eτ) ! g(eτ)φ(η(z1, z2, 0))|J(z1, z2, 0)| for all eτ 2 R, (z1, z2) 2 W. (3.17)

Combining (3.16) and (3.17), we have

lim
ε#0

Aε =

Z 1

−1

g(eτ)deτ
Z

W

φ(α(z1, z2))|J(z1, z2, 0)| dz1dz2. (3.18)

Next, we computes |J(z1, z2, 0)|. For this purpose, we write

∂η

∂z1
= (

∂η1

∂z1
,
∂η2

∂z1
,
∂η3

∂z1
),

∂η

∂z2
= (

∂η1

∂z2
,
∂η2

∂z2
,
∂η3

∂z2
),

∂η

∂τ
= (

∂η1

∂τ
,
∂η2

∂τ
,
∂η3

∂τ
).

Note that
∂η

∂τ
(z1, z2, 0) is the outer normal vector to γ at the point η(z1, z2, 0) =

α(z1, z2) and that {∂η
∂u

(z1, z2, 0),
∂η

∂v
(z1, z2, 0)} is a basis of the tangent space of γ

at point η(z1, z2, 0) = α(z1, z2). Therefore,

|J(z1, z2, 0)| =
∣∣∣∣(

∂η

∂z1
^ ∂η

∂z2
).
∂η

∂τ

∣∣∣∣ =
∣∣∣∣
∂η

∂z1
^ ∂η

∂z2

∣∣∣∣
∣∣∣∣
∂η

∂τ

∣∣∣∣

=

∣∣∣∣
∂η

∂z1
^ ∂η

∂z2

∣∣∣∣ |rd(η(z1, z2, 0))| =
∣∣∣∣
∂η

∂z1
^ ∂η

∂z2

∣∣∣∣ (z1, z2, 0)

=

∣∣∣∣
∂α

∂z1
^ ∂α

∂z2

∣∣∣∣ (z1, z2)

where ^ is the vector product. This together with (3.18) implies that

lim
ε#0

Aε =

Z 1

−1

g(eτ)deτ
Z

W

φ(α(z1, z2))

∣∣∣∣
∂α

∂z1
^ ∂α

∂z2

∣∣∣∣ dz1dz2.

On the other hand, in view of the definition of the integral of surface (see Eq. (131),

p. 283 in Ref. 36), we have
Z

γ

φ dγ =

Z

W

φ(α(z1, z2))

∣∣∣∣
∂α

∂z1
^ ∂α

∂z2

∣∣∣∣ dz1dz2.
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Therefore,

lim
ε#0

Aε =

Z 1

−1

g(eτ)deτ
Z

γ

φ

which completes the proof of the lemma.

Application to reaction term: Now we apply Lemma 3.3 to formally compute

the limit as ε # 0 of

1

ε

Z T

0

Z

Ω

p(uε)(σε − δµε)ψ, for ψ 2 FT .

Because of the outer and inner expression of uε in (3.4) and (3.5), we deduce that

for ε small enough

uε(x, t) ⇡

8
>>><
>>>:

±1 if (x, t) is far from ΓT

U0(
d̃(x, t)

ε
) if (x, t) is closed to ΓT .

Therefore

p(uε(x, t)) ⇡

8
>>><
>>>:

0 if (x, t) is far from ΓT

p(U0(
d̃(x, t)

ε
)) if (x, t) is closed to ΓT .

Thus we can apply Lemma 3.3 by setting

g(ξ) := p(U0(ξ)) and φε := (σε − δµε)ψ,

where ψ 2 FT . This yields

P 0(ψ(t)) := lim
ε#0

1

ε

Z

Ω

p(uε)(σε − δµε)ψ = lim
ε#0

1

ε

Z

U(t)

p(uε)(σε − δµε)ψ

=

Z 1

−1

p(U0(ξ)) dξ

Z

Γ(t)

(σ(t)− δµ(t))ψ(t),

where U(t) is a small enough neighborhood of Γ(t). Recalling that in view of the

definition of p and of Lemma 3.1

p(U0) = 2p0
p

W (U0) = −
p
2p0 U

0
0,

we get

P 0(ψ(t)) = −
p
2p0

Z 1

−1

U 0
0(ξ) dξ

Z

Γ(t)

(σ(t)− δµ(t))ψ(t)

= 2
p
2p0

Z

Γ(t)

(σ(t)− δµ(t))ψ(t).
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Hence, we formally conclude that, for all ψ 2 FT

lim
ε#0

1

ε

Z T

0

Z

Ω

p(uε)(σε − δµε)ψ = 2
p
2p0

Z T

0

dt

Z

Γ(t)

(σ(t)− δµ(t))ψ(t). (3.19)

Conclusion: Now, we recall the definition of a weak solution of the equation for

µε:

Z T

0

Z

Ω

(−αµε − uε)ψt −
Z

Ω

(αµε
0 + uε

0)ψ(0)

=

Z T

0

Z

Ω

⇣
µε∆ψ + ε−1p(uε)(σε − δµε)ψ

⌘

for ψ in FT and take the limit ε ! 0 on both sides, to obtain in view of (3.19)

Z T

0

Z

Ω

(−αµ− u)ψt −
Z

Ω

(αµ0 + u0)ψ(0)

=

Z T

0

Z

Ω

µ∆ψ + 2
p
2p0

Z T

0

dt

Z

Γ(t)

(σ − δµ)(t)ψ(t).

This together a similar argument for the equation for σ completes the proof of

Theorem 1.4.

4. Numerical experiments

In this section we briefly explore the main theoretical result (Theorem 1.4) with

2-D and 3-D numerical experiments. In these experiments we compare numerical

simulations obtained for the diffuse-interface model for various ε > 0 with the sharp-

interface limit evolution. For simplicity, we shall restrict ourselves to cases for which

we can obtain the exact solution for the sharp-interface model. This spares us from

having to discretize the sharp-interface model.

We restrict ourselves to the parameter values α = δ = 0, but include an ad-

ditional parameter β ≥ 0 to control the inertia of the nutrient. We thus consider:

ut = ∆µ+ ε−1p(u)σ , (4.1a)

µ = −ε−1f(u)− ε∆u , (4.1b)

βσt = ∆σ − ε−1p(u)σ . (4.1c)

In particular, we focus on the two limiting cases for β, because they allow for an

exact solution of the corresponding sharp-interface limit. For β = 0, the nutrient

evolution is said to be quasi-static, while for β ! 1 the nutrient is simply constant

and equal to its initial condition.
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4.1. Discretization of the diffuse-interface model

Because (4.1) is a stiff system for small ε, one has to be careful in choosing a

time discretization: naive schemes have severe stability requirements. We therefore

adopt the recently proposed second-order time-accurate convex-splitting scheme,

see Ref. 40, which for (4.1) is given by:

uk+1 − uk

τ
= ∆µ̃+ ε−1p̃k+1/2 σk+1 + σk

2
,

µ̃ = −ε−1f̃k+1/2 − ε∆
uk+1 + uk

2
− α1τ∆(uk+1 − uk) + α2τ(u

k+1 − uk) ,

β
σk+1 − σk

τ
= ∆

σk+1 + σk

2
− ε−1p̃k+1/2 σk+1 + σk

2
,

for k = 0, 1, 2, . . ., and where τ is the time-step size (assumed constant).

This scheme is essentially a Crank–Nicolson scheme with special treatment of

the nonlinear terms, in particular, the free energy W (u) is split into a convex Wc(u)

and concave part −We(u) thereby inducing a splitting of f(u) = fc(u)−fe(u), which

are treated in a more implicit and explicit manner, respectively:

f̃k+1/2 := fc(u
k+1)− uk+1 − uk

2
f 0
c(u

k+1)− fe(u
k)− uk+1 − uk

2
f 0
e(u

k) .

The nonlinearity coming from p(u) is treated by extrapolation:

p̃k+1/2 := p( 32u
k − 1

2u
k−1) ,

where for the first time step (k = 0), we take u−1 = u0.

The parameters α1 and α2 are stabilization parameters. For the system with δ >

0 and β = 1, it is proven in Ref. 40 that for α1 and α2 sufficiently large, the above

scheme is stable in the sense that the Lyapunov functional Eε decreases along time-

discrete solution orbits. The case δ = 0 is open, but numerical results seem to

indicate the the scheme’s stability is independent of δ. We refer to Ref. 40 for more

details on and properties of the scheme.

For the discretization in space, we employ centred finite differences with grid-

size h, although one may also employ a spectral method or Galerkin finite element

method; see for the latter, e.g., Ref. 28.

4.2. Test case I: Growing circular tumor

For the first test case, we consider a growing circular tumor, which start at radius ρ0,

and a quasi-static nutrient evolution (β = 0).

4.2.1. Exact solution of sharp-interface limit

Before going into the comparison, let us first describe the exact solution of the sharp-

interface limit. When it comes to the sharp-interface model, the initial condition is
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given by (in polar coordinates):

Γ(0) = Γ0 = {r = ρ0} ,
or in terms of the radius ρ(t) of the tumor:

ρ(0) = ρ0 . (4.2a)

For β = 0, one may verify that the sharp-interface limit in Theorem 1.2 simplifies

to (note that µ reduces to a constant in space for constant κ):

∆σ = 0 in Q+
T [Q−

T , (4.2b)

[[σ]] = 0 on ΓT , (4.2c)

Vn = −
p
2p0σ on ΓT , (4.2d)

[[
∂σ

∂n
]] = −2

p
2p0σ on ΓT , (4.2e)

To close the above system we need to specify a suitable boundary condition

for σ. We assume that the boundary condition is a (time-dependent) axi-symmetric

Dirichlet condition:

σ(x, t) = σD

(
|x|, t

)
, on ∂Ω⇥ (0, T ] . (4.2f)

Because of axi-symmetry, the initial circular tumor will indeed remain circular and

its radius evolves according to:

ρ0(t) = −Vn . (4.2g)

Eqs. (4.2a)–(4.2g) fully specify the sharp-interface model in terms of {ρ,σ}. Its
solution can be found in an exact manner for a smart choice of σD. To be precise,

we shall describe a manufactured solution which satisfies all equations except (4.2f),

but which then of course specifies σD. The manufactured solution for σ consists of

two parts (automatically satisfying (4.2b) and (4.2c)):

σ(r, t) =

8
<
:
σρ(t) r  ρ(t) ,

σR − log(r/R)

log(ρ(t)/R)
(σR − σρ(t)) r > ρ(t) ,

where σR > 0 and R > ρ0 are fixed constants. The constant σρ(t) is fixed by

requiring (4.2e) leading to

σρ(t) =
σR

1− 2
p
2p0ρ(t) log(ρ(t)/R)

.

Finally, ρ(t) is determined by solving (numerically) the ODE that is obtained by

combining (4.2g) and (4.2d), with the initial condition (4.2a).

Figure 2 shows the evolution of ρ(t) for various settings of the parameters σR

and R. It can be seen that the growth is more pronounced for larger values of σR

and for smaller values of R.

Figure 3 shows for one particular set of parameters the evolution of the tumor,

as well as the corresponding axi-symmetric distribution of σ. Notice that at each
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Fig. 2. Test case I: Sharp-interface limit. The radius ρ(t) of a circular tumor which starts at
radius ρ0 = 1/4, and grows under the influence of a quasi-static nutrient evolution. Three param-

eters influence the growth: The left graph shows the evolution for parameter value R = 10 and

various σR, and the right graph for the parameter value σR = 2 and various R. The proliferation
parameter is fixed throughout: p0 = 1.
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Fig. 3. Test case I: Sharp-interface limit. The left graph shows the tumor at various time instances

for ρ0 = 1/4, p0 = 1, R = 10, and σR = 2. The right graph shows the corresponding axi-symmetric
nutrient distribution σ(r, t).

time σ contains two parts: a constant part within the tumor, and a nonconstant

part exterior to the tumor.
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Table 1. Test case I: Diffuse-interface model. Settings in the

numerical simulations.

Model IC / BC Discretization

ε = 0.15, 0.1, 0.05 ρ0 = 1/4 Ω = (−1, 1)⇥ (−1, 1)

W (u) = 1

4
(1− u2)2 σR = 2 T = 0.075

f(u) = −W 0(u) R = 10 τ = 0.001

p0 = 1 h = 0.003125
p(u): see Eq. (1.4) α1 = α2 = 2

β = 0

Fig. 4. Test case I: Diffuse-interface model solutions u at t = 0.075 for ε = 0.15, 0.1, and 0.05. The
black circle indicate the sharp-interface solution at t = 0.075.

4.2.2. Comparison with diffuse-interface model

We now compare the above exact solution with simulations of the diffuse-interface

model. System (4.1) (with β = 0) is considered on a square domain subject to nat-

ural boundary conditions on ∂Ω for u and µ, and the Dirichlet boundary condition

in (4.2f) for σ. The initial condition for u is given by:

u(r, 0) = − tanh
⇣r − ρ0

ε
p
2

⌘
.

Details of the choices of all functions and parameters in the numerical simulation

can be found in Table 1.a

In Figure 4, we show a comparison of the sharp- and diffuse-interface solutions

at the final time, T = 0.075, for various ε. The colors in these plots display the

value for u, while the black circle shows the sharp-interface model. It is clear from

the plots that for smaller ε the layers get thinner and converge to the black circle.

The convergence of the diffuse-interface model can be seen more clearly in Fig-

ure 4.2.2, which shows the (numerical) radius of the diffuse-interface model versus

aEven though the computational domain is a square, the BCs are such that the PDE solution is
axi-symmetric. Numerical approximations, however, are not exactly axi-symmetric, but we have

ensured that they are sufficiently accurate. For example, to compute the radius, we determined

the zero level set of the discrete phase field, and computed the average distance of the zero level
set to the origin. With the employed mesh, the deviation of the average was less than 0.001.
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Fig. 5. Test case I: Convergence of the radius of the diffuse-interface model to its identified limit.

time, for various ε. From this figure it can be concluded that the diffuse-interface

model converges indeed to our identified limit. While the comparison is, in principle,

valid for all times (since no singularity occurs at any time), it should be remarked

that for small ε the simulations are quite sensitive to discretization errors. Such

errors may grow at an exponential rate in time (see, e.g., Refs. 23, 38 for a dis-

cussion on this), which means that, in practice, comparisons can be made only at

(relatively) short time intervals.

4.3. Test case II: Merging tumors

In the second test case we consider two separately growing circular (in 2-D) and

spherical (in 3-D) tumors, that eventually merge into one. We assume β ! 1, so

that σ = σ0 = constant throughout the evolution.

Since σ is constant, the sharp-interface model for spherical tumors now reduces

essentially to (4.2d):

Vn = −
p
2p0σ0 . (4.3)

This is known simply as front propagation, which propagates the tumor boundary

at a constant velocity.

Let us remark that the presented theory on the sharp-interface limit holds only

for smoothly evolving interfaces, and, as such, does not include topological changes.

Nevertheless, the sharp interface model of front propagation does allow for an ex-

tension beyond topological changes (using viscosity solutions); see, e.g., Ref. 37. We

have simply taken the velocity at kinks (when two interfaces touch) as the average

of the velocities at both sides. In this manner, it is possible to compare the sharp-

and diffuse-interface solution beyond topological changes. The aim of this test case
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Table 2. Test case II: Diffuse-interface model. Settings in the numerical simulations

in 2-D and 3-D (N = 2 and N = 3, respectively).

Model IC / BC Discretization

ε = 0.2, 0.1, 0.05 (N = 2), ε = 0.1 (N = 3) σ0 = 2 Ω = (−1, 1)N

W (u) = 1

4
(1− u2)2 R1 = 1/6 T = 0.075

f(u) = −W 0(u) R2 = 1/4 τ = 0.00025
p0 = 1 d = 1/5 h = 0.025 (N = 2)

p(u): see Eq. (1.4) h = 0.05 (N = 3)

β ! 1 α1 = α2 = 2

is to demonstrate that both evolutions are very similar, even beyond singularities,

which are not covered by the presented theory.

We assume that the two tumors initially have a radius R1 and R2, and have a

gap d between them. The initial condition for u in the diffuse-interface model in

2-D is set as:

u0(x1, x2) = 1− tanh

q(
x1 − 1

2

p
2(R1 +

d
2 )
)2

+
(
x2 +

1
2

p
2(R1 +

d
2 )
)2 −R1

ε
p
2

− tanh

q(
x1 +

1
2

p
2(R2 +

d
2 )
)2

+
(
x2 − 1

2

p
2(R2 +

d
2 )
)2 −R2

ε
p
2

,

while in 3-D it is set as:

u0(x1, x2, x3) =

1− tanh

q(
x1 − 1

2

p
2(R1 +

d
2 )
)2

+
(
x2 +

1
2

p
2(R1 +

d
2 )
)2

+ x2
3 −R1

ε
p
2

− tanh

q(
x1 +

1
2

p
2(R2 +

d
2 )
)2

+
(
x2 − 1

2

p
2(R2 +

d
2 )
)2

+ x2
3 −R2

ε
p
2

. (4.4)

The numerical settings are given in Table 2.

Figure 6 displays the solutions obtained with the diffuse-interface model, for

various ε, and by front propagation (see (4.3)). From this figure, one can see that the

diffuse-interface model seems to converge towards its identified limit, even beyond

the topological change.

Figure 7 shows a 3-D diffuse-interface simulation which is the 3-D analogue of

the previous 2-D simulation at ε = 0.1 (middle row in Figure 6). The 3-D evolution

by front-propagation is also visible in Figure 7 (bottom row). In general, compared

to the sharp-interface model, one may observe a blending/smoothing of the two

spheres in the diffuse-interface model which seems to decrease with ε.
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Fig. 6. Test case II: Two merging tumors in 2-D simulated with the diffuse-interface model with
ε = 0.2 (top row), ε = 0.1 (middle row), and ε = 0.05 (bottom row). The columns represent

subsequent time instances t = 0, 0.025, 0.05 and 0.075. The black curves are obtained from the

sharp-interface model described by front-propagation.

5. Conclusions

As a conclusion, we have presented a formal asymptotic method for deriving the

sharp-interface limit of a diffuse-interface tumor growth model. This limit depends

on the precise scaling which we have considered, and we have chosen the scaling

corresponding to the case where the mean curvature of the tumor boundary explic-

itly appears in the limit problem. Moreover, in the limit, the reactive terms of the

model collapse to the interface, which is different than in other models where the

reactive terms remain as bulk contributions.

Whereas the tumor growth model has the form of a generalized Cahn–Hilliard

equation, we have first embedded it into a phase-field model (α > 0) for which

we found it more intuitive to derive the corresponding limit problem. Setting the

parameter α to zero in the corresponding result then yields the limit of the original

Cahn-Hilliard type system. Even if it is not vital for results presented in this paper,

it is nevertheless interesting to note that the introduction of the phase-field model

gives the model a parabolic structure with respect to µ which can be useful for the

analysis of such systems.16
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Fig. 7. Test case II: Two merging tumors in 3-D simulated with the diffuse-interface model with
ε = 0.1. The columns represent subsequent time instances t = 0, 0.025, 0.05 and 0.075. The top

row displays a cut-away view of the phase-field u, the middle row shows the zero-level set {u = 0},

and the bottom row displays the sharp-interface model described by front-propagation (see (4.3)).
This simulation is a three-dimensional analogue of the one depicted in the middle row of Fig. 6.

A validation of the identified limit model was carried out by comparing its

solutions in simplified settings with numerical computations of the diffuse interface

model for decreasing values of ε. With this work, we have provided a unification

of modeling frameworks for tumor growth by connecting mixture-based diffuse-

interface models to those with evolving sharp boundaries. We hope that this helps

researchers in mathematical oncology in understanding and applying models, and

developing better algorithms.
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