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AN ABSTRACT ANALYSIS OF1

OPTIMAL GOAL-ORIENTED ADAPTIVITY2

MICHAEL FEISCHL, DIRK PRAETORIUS, AND KRISTOFFER GEORGE VAN DER ZEE3

Abstract. We provide an abstract framework for optimal goal-oriented adaptivity for
finite element methods and boundary element methods in the spirit of [13]. We prove
that this framework covers standard discretizations of general second-order linear elliptic
PDEs and hence generalizes available results [7, 33] beyond the Poisson equation.

1. Introduction4

1.1. State of the art & contributions. Standard adaptivity aims to approximate5

some unknown exact solution u at optimal rate in the energy norm; see, e.g., [15, 20,6

37] for adaptive finite element methods (FEM), [18, 19, 21, 23] for adaptive boundary7

element methods (BEM), and [13] for an overview on available results. Instead, goal-8

oriented adaptivity aims to approximate, at optimal rate, only the functional value g(u)9

(also called quantity of interest in the literature). Goal-oriented adaptivity is usually10

more important in practice than standard adaptivity. It has therefore attracted much11

interest also in the mathematical literature; see, e.g., [6, 8, 9, 16, 24, 27, 35] for some12

prominent contributions. However, as far as convergence and quasi-optimality of goal-13

oriented adaptivity is concerned, earlier results are only [7, 33] which are concerned14

with FEM for the Poisson model problem, the work [25] which considers FEM for more15

general second-order linear elliptic PDEs, but is concerned with convergence only, and16

the work [17] which considers point errors in adaptive BEM computations. We note that17

the analytical arguments of [7, 33] are tailored to the Poisson equation and do not directly18

transfer to the more general setting of [25], and that [17] relies on the symmetry of the19

variational formulation, so that the quasi-optimality analysis for goal-oriented adaptivity20

has also been named as an important open problem in the recent work [12].21

This work considers the simultaneous adaptive control of two error estimators ηu,⋆ and22

ηz,⋆ which satisfy certain abstract axioms from Section 2.4, below. As in [7, 25, 33],23

the estimator product ηu,⋆ηz,⋆ is designed to control the error in goal-oriented adaptivity.24

This is discussed in Section 1.2 and demonstrated in Section 4–6 for various model prob-25

lems and FEM resp. BEM. We analyze two adaptive mesh-refining algorithms: While26

Algorithm A is a variant of the algorithms from [33, 25], Algorithm B has been proposed27

in [7]. Both algorithms are proved to be linearly convergent with optimal rates in the28

sense of certain nonlinear approximation classes. Overall, the contributions and advances29

of the present work can be summarized as follows:30
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• We give an abstract analysis for optimal goal-oriented adaptivity which applies to31

general (non-symmetric) second-order linear elliptic PDEs in the spirit of [20] which32

even extends the problem class of [25].33

• While linear convergence of Algorithm A–B holds for all marking parameters 0 < θ ≤34

1 (Theorem 12), optimal convergence rates are asymptotically guaranteed for 0 <35

θ < θopt (Algorithm A) resp. 0 < θ < θopt/2 (Algorithm B) for some a priori bound36

0 < θopt < 1 which depends on the given problem (Theorem 13, 16). Note that such37

restrictions also apply to the available results for standard adaptivitiy [13, 15, 20, 37].38

• The analysis avoids any (discrete) efficiency estimate and thus allows for simple39

newest vertex bisection, while [7, 33] follow [37] and require local bisec5-refinement.40

As firstly observed in [3] and later used in [20, 13], the convergence and quasi-41

optimality analysis relies essentially on reliability of the error estimator, while ef-42

ficiency is only used to characterize the estimator-based approximation classes in43

terms of the so-called total error, i.e., error plus data oscillations (Lemma 19). For44

the Poisson model problem, we thus obtain, in particular, the same result as [33], but45

under weaker requirements.46

• Unlike [7], our proofs avoid any assumption on the resolution of the given data as,47

e.g., a saturation assumption [7, eq. (4.4)]. In particular, we give the first general48

quasi-optimality proof for the algorithm from [7], even for the Poisson model problem.49

• Unlike [33, 7, 17], we do not require the symmetry of the weak formulation. Instead,50

we generalize the quasi-orthogonality property from [13]. In particular and unlike [25],51

our analysis does not enforce the condition that the initial triangulation is sufficiently52

fine, since we do not exploit the regularity of the dual solution.53

• Finally and inspired by [13], our approach is a priori independent of the model prob-54

lems and covers general linear second-order elliptic PDEs in the frame of the Lax-55

Milgram lemma, discretized by FEM resp. BEM with fixed order polynomials.56

Although we shall verify the mentioned estimator axioms only for standard FEM and57

BEM discretizations, we expect that they can also be verified for discretizations in the58

frame of isogeometric analysis; see, e.g., [30] for some goal-oriented adaptive IGAFEM.59

1.2. Goal-oriented adaptivity in the framework of the Lax-Milgram lemma.60

The following introduction covers the main application of the abstract theory, we have61

in mind. Let X be a Hilbert space with norm ‖ · ‖X , and let a(· , ·) : X × X → R be62

a continuous and elliptic bilinear form on X . For given continuous linear functionals63

f, g ∈ X ∗, we aim to approximate g(u), where u ∈ X is the unique solution of64

a(u , v) = f(v) for all v ∈ X .(1)65
66

Let X⋆ ⊂ X be a finite dimensional subspace associated with some triangulation T⋆ of67

the problem related domain Ω ⊂ Rd. Let U⋆ ∈ X⋆ be the unique Galerkin solution to68

a(U⋆ , V⋆) = f(V⋆) for all V⋆ ∈ X⋆.(2)69
70

Furthermore, let z ∈ X be the unique solution to the so-called dual problem71

a(v , z) = g(v) for all v ∈ X .(3)72
73

Let Z⋆ ∈ X⋆ be the corresponding Galerkin solution to74

a(V⋆ , Z⋆) = g(V⋆) for all V⋆ ∈ X⋆.(4)75
76

Then, it follows77

|g(u)− g(U⋆)| = |a(u− U⋆ , z)| = |a(u− U⋆ , z − Z⋆)| . ‖u− U⋆‖X ‖z − Z⋆‖X .(5)78
79
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Here and throughout, . abbreviates ≤ up to some generic multiplicative factor C > 080

which is clear from the context. Finally, suppose that the Galerkin errors on the right-81

hand side of (5) can be controlled by computable a posteriori error estimators, i.e.,82

‖u− U⋆‖X . ηu,⋆ and ‖z − Z⋆‖X . ηz,⋆.(6)83
84

Under these assumptions, we are altogether led to85

|g(u)− g(U⋆)| . ηu,⋆ ηz,⋆.(7)86
87

Overall, we thus aim for some adaptive algorithm which drives the computable upper88

bound on the right-hand side of (7) to zero with optimal rate.89

1.3. Outline. In Section 2, we propose two algorithms and outline the main result.90

Moreover, we provide the abstract framework in terms of four axioms for the estimators.91

Section 3 proves optimal convergence rates for each algorithm. In Section 4, we apply92

the abstract theory to conforming goal-oriented FEM for second-order elliptic PDEs.93

Section 5 covers goal-oriented FEM for the evaluation of some weighted boundary flux,94

whereas Section 6 considers goal-oriented adaptivity for BEM.95

2. Adaptive Algorithms for the Estimator Product96

We suppose that each admissible triangulation T⋆ (see Section 2.2 below) allows for the97

computation of the error estimators ηw,⋆, w ∈ {u, z}, with local contributions ηw,⋆(T ) ∈ R98

for all T ∈ T⋆. To abbreviate notation, we shall write99

ηw,⋆ := ηw,⋆(T⋆), ηw,⋆(U⋆) :=
( ∑

T∈U⋆

ηw,⋆(T )
2
)1/2

for w ∈ {u, z} and all U⋆ ⊆ T⋆.100

101

We consider two adaptive strategies (Algorithm A–B) which only differ on how elements102

are marked refinement in Step (II):103

Adaptive algorithm. Input: Initial triangulation T0, marking strategy (fixed below).104

Loop: For all ℓ = 0, 1, 2, 3, . . . do (I)–(III):105

(I) Compute refinement indicators ηu,ℓ(T ) and ηz,ℓ(T ) for all T ∈ Tℓ.106

(II) Determine a set Mℓ ⊆ Tℓ of marked elements.107

(III) Let Tℓ+1 := refine(Tℓ,Mℓ) be the coarsest refinement of Tℓ such that all marked108

elements T ∈ Mℓ have been refined.109

Output: Sequence of successively refined triangulations Tℓ and corresponding error110

estimators ηu,ℓ, ηz,ℓ for all ℓ ∈ N0. �111

Remark 1. In the frame of Section 1.2, the computation of ηu,ℓ and ηz,ℓ in Step (I)112

usually requires to solve the primal (2) and the dual problem (4) to obtain Uℓ resp. Zℓ.�113

The following marking strategies are designed to drive the estimator product ηu,⋆ηz,⋆ to114

zero with optimal rate. This includes, in particular, the problem class from Section 1.2,115

but also covers point errors in adaptive BEM computations; see the recent own work [17].116

2.1. Marking Stategies. First, we propose a modified version of the marking strategy117

from [33] which allows for more aggressive marking, i.e., less adaptive steps.118

Algorithm A. Parameters: 0 < θ ≤ 1, Cmark, C
′
mark ≥ 1.119

Marking: For all ℓ = 0, 1, 2, 3, . . . , Step (II) of the adaptive algorithm reads as follows:120

(i) Determine sets Mu,ℓ ⊆ Tℓ and Mz,ℓ ⊆ Tℓ of up to the multiplicative factor Cmark121

minimal cardinality such that122

θ η2u,ℓ ≤ ηu,ℓ(Mu,ℓ)
2 and θ η2z,ℓ ≤ ηz,ℓ(Mz,ℓ)

2.(8)123
124
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(ii) Choose M̃ℓ ∈ {Mu,ℓ,Mz,ℓ} to be the set of minimal cardinality and choose Mℓ ⊆125

Mu,ℓ ∪Mz,ℓ such that M̃ℓ ⊆ Mℓ and #Mℓ ≤ C ′
mark#M̃ℓ. �126

Remark 2. In our numerical experiments below, we choose Mℓ as follows: Having picked127

M̃ℓ to be the minimal set amongst Mu,ℓ and Mz,ℓ, we enlarge M̃ℓ by adding the largest128

#M̃ℓ elements of the other set, e.g., if #Mu,ℓ ≤ #Mz,ℓ, then Mℓ consists of Mu,ℓ plus129

the #Mu,ℓ largest contributions of Mz,ℓ. This yields C ′
mark = 2. �130

Remark 3. For C ′
mark = 1 and hence Mℓ = M̃ℓ, the marking strategy of Algorithm A131

coincides with that of [33]. In various numerical experiments, we observed, however, that132

the described variant with C ′
mark = 2 leads to improved results. �133

Remark 4. In [25], the authors consider Algorithm A, but define Mℓ := Mu,ℓ ∪ Mz,ℓ134

in step (ii). While this also leads to linear convergence in the sense of Theorem 12,135

[25] only proves suboptimal convergence rates min{s, t} instead of the optimal rate s + t136

in Theorem 13; see [25, Section 4]. We note that the strategy of [25] leads to linear137

convergence ηu,ℓ+n ≤ Cqnηu,ℓ and ηz,ℓ+n ≤ Cqnηz,ℓ for either estimator and all ℓ, n ∈ N0,138

where C > 0 and 0 < q < 1 are independent constants, while the optimal strategies139

considered in this work only enforce ηu,ℓ+nηz,ℓ+n ≤ Cqnηu,ℓηz,ℓ for the product. �140

Second, the following algorithm has been proposed in [7] for goal-oriented adaptive141

FEM for the Poisson problem. We note that [7] requires a saturation assumption for142

the related data oscillation terms in the case of non-polynomial volume forces (see [7,143

eq. (4.4)] and [7, Theorem 4.1]) which is proved unnecessary by our analysis.144

Algorithm B. Parameters: 0 < θ ≤ 1, Cmark ≥ 1.145

Marking: For all ℓ = 0, 1, 2, 3, . . . , Step (II) of the adaptive algorithm reads as follows:146

(i) Assemble refinement indicators ρℓ(T )
2 := ηu,ℓ(T )

2η2z,ℓ+ η2u,ℓηz,ℓ(T )
2 for all T ∈ Tℓ.147

(ii) Determine a set Mℓ ⊆ Tℓ of up to the multiplicative factor Cmark minimal cardi-148

nality such that149

θ ρ2ℓ ≤ ρℓ(Mℓ)
2.(9)150

151

152

�153

2.2. Mesh-refinement. We suppose that the mesh-refinement is a deterministic and154

fixed strategy, e.g., newest vertex bisection [38]. For each triangulation T and marked155

elements M ⊆ T , we let T ′ := refine(T ,M) be the coarsest triangulation, where all156

elements T ∈ M have been refined, i.e., M ⊆ T \T ′. We write T ′ ∈ refine(T ), if there157

exist finitely many triangulations T (0), . . . , T (n) and sets M(j) ⊆ T (j) such that T = T (0),158

T ′ = T (n) and T (j) = refine(T (j−1),M(j−1)) for all j = 1, . . . , n, where we formally allow159

n = 0, i.e., T = T (0) ∈ refine(T ). To abbreviate notation, let T := refine(T0), where T0160

is the given initial triangulation of Algorithms A–B.161

2.3. Main result. Let TN := {T ∈ T : #T − #T0 ≤ N} denote the (finite) set162

of all refinements of T0 which have at most N elements more than T0. For s > 0 and163

w ∈ {u, z}, we write w ∈ As if164

‖w‖As := sup
N∈N0

(
(N + 1)s min

T⋆∈TN

ηw,⋆

)
< ∞,165

166

where ηw,⋆ is the error estimator associated with the optimal triangulation T⋆ ∈ TN . In167

explicit terms, ‖w‖As < ∞ means that an algebraic convergence rate O(N−s) for the168

error estimator is possible, if the optimal triangulations are chosen.169

For either algorithm, our main result is twofold: First, we prove linear convergence170

(Section 3.1): For each 0 < q < 1, there exists some n such that for all ℓ ∈ N, it holds171
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ηu,ℓ+n ηz,ℓ+n ≤ q ηu,ℓ ηz,ℓ. Second, we prove optimal convergence behavior (Section 3.3):172

With respect to the number of elements N ≃ #Tℓ−#T0, the product ηu,ℓ ηz,ℓ decays with173

order O(N−(s+t)) for each possible algebraic rate s + t > 0, i.e., ‖u‖As + ‖z‖At < ∞.174

Remark 5. Since our analysis works with the estimator instead of the error, it avoids175

the use of any (discrete) efficiency bound. Unlike [7, 33], this allows to use simple newest176

vertex bisection. Moreover, Lemma 19 below states that for standard FEM our approxi-177

mation classes As coincide with those of [7, 15, 33] which are defined through the so-called178

total error (i.e., error plus data oscillations). �179

2.4. Axioms of Adaptivity. Recall the notation of Section 2.2. Let dlw(· , ·) : T×T →180

R≥0 denote a distance function on the set of admissible triangulations which satisfies181

C−1
distdlw(T , T ′′) ≤ dlw(T , T ′) + dlw(T ′ , T ′′) for all T , T ′, T ′′ ∈ T,182

dlw(T , T ′) ≤ Cdistdlw(T ′ , T ) for all T , T ′ ∈ T,183
184

with some uniform constant Cdist > 0; see also Remark 8 below.185

The convergence and optimality analysis of the adaptive algorithms requires the fol-186

lowing four axioms of adaptivity [13], where (A4) is relaxed when compared to [13]:187

(A1) Stability on non-refined elements : There exists Cstb > 0 such that for all T• ∈ T188

and all T⋆ ∈ refine(T•) the corresponding error estimators satisfy189

|ηw,⋆(T• ∩ T⋆)− ηw,•(T• ∩ T⋆)| ≤ Cstb dlw(T• , T⋆).190
191

(A2) Reduction on refined elements : There exist 0 < qred < 1 and Cred > 0 such that192

for all T• ∈ T and all T⋆ ∈ refine(T•) the corresponding error estimators satisfy193

ηw,⋆(T⋆\T•)
2 ≤ qred ηw,•(T•\T⋆)

2 + Cred dlw(T• , T⋆)
2.194

195

(A3) Discrete reliability : There exists Crel > 0 such that for all T• ∈ T and all T⋆ ∈196

refine(T•), there exists Rw(T•, T⋆) ⊆ T• with T•\T⋆ ⊆ Rw(T•, T⋆) such that197

dlw(T⋆ , T•) ≤ Crel ηw,ℓ(Rw(T•, T⋆)) and #Rw(T•, T⋆) ≤ Crel#(T•\T⋆).198
199

(A4) Quasi-orthogonality : Let Tℓn be the (possibly finite) subsequence of triangulations200

Tℓ generated by Algorithm A or B which satisfy201

θ η2w,ℓn ≤ ηw,ℓn(Tℓn\Tℓn+1)
2.(10)202

203

Then, for all ε > 0, there exists Corth(ε) > 0 such that for all n ≤ N , for which204

Tℓn, . . . , TℓN are well-defined, it holds205

N∑

j=n

(
dlw(Tℓj+1

, Tℓj )
2 − ε η2w,ℓj

)
≤ Corth(ε) η

2
w,ℓn.206

207

We recall some observations of [13].208

Lemma 6 (quasi-monotonicity of estimator [13, Lemma 3.5]). There exists Cmon > 0209

which depends only on (A1)–(A3), such that for all T• ∈ T and all T⋆ ∈ refine(T•), it210

holds η2w,⋆ ≤ Cmon η
2
w,•. �211

Lemma 7 (optimality of Dörfler marking [13, Proposition 4.12]). Suppose stability (A1)212

and discrete reliability (A3). For all 0 < θ < θopt := (1 + C2
stbC

2
rel)

−1, there exists some213

0 < κopt < 1 such that for all T• ∈ T and all T⋆ ∈ refine(T•), it holds214

η2w,⋆ ≤ κopt η
2
w,• =⇒ θ η2w,• ≤ ηw,•(Rw(T•, T⋆))

2,(11)215
216

where Rw(T•, T⋆) is the set of refined elements from (A3). �217
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Remark 8. (i) In the setting of Section 1.2, let w ∈ {u, z} with W⋆ ∈ {U⋆, Z⋆} being the218

corresponding Galerkin solution for T⋆ ∈ T. The abstract distance is then usually defined219

by dlw(T• , T⋆) := a(W⋆ −W•,W⋆ −W•)
1/2 ≃ ‖W⋆ −W•‖X ; see Section 4–6 below.220

(ii) Suppose that the bilinear form a(·, ·) is additionally symmetric, and let |||v||| :=221

a(v, v)1/2 denote the equivalent energy norm on X . Then, nestedness Xn ⊆ Xm ⊆ Xk of222

the discrete spaces for all k ≥ m ≥ n implies the Galerkin orthogonality223

|||Wk −Wm|||2 + |||Wm −Wn|||2 = |||Wk −Wn|||2 for all k ≥ m ≥ n.224
225

This and (A3) imply226

N∑

j=n

dlw(Tℓj+1
, Tℓj)

2 =

N∑

j=n

(
|||WℓjN+1

−Wℓj |||2 − |||WℓjN+1
−Wℓj+1

|||2
)

227

≤ |||WℓjN+1
−Wℓn |||2

(A3)

. η2w,ℓn.228

229

This shows the quasi-orthogonality (A4) with ε = 0 and Corth(ε) = C2
rel. �230

2.5. Generalized linear convergence. The following estimator reduction is first231

found in [15] for T⋆ = Tℓ+1 and, e.g., proved along the lines of [13, Lemma 4.7].232

Lemma 9 (generalized estimator reduction). Let 0 < θ ≤ 1. Let Tℓ ∈ T and Tℓ+1 ∈233

refine(Tℓ). Suppose that the refined elements satisfy the Dörfler marking234

θ η2w,ℓ ≤ ηw,ℓ(Tℓ\Tℓ+1)
2.(12)235

236

Then, there exist constants 0 < qest < 1 and Cest > 0 which depend only on (A1)–(A2)237

and θ, such that for all T⋆ ∈ refine(Tℓ+1), it holds238

η2w,⋆ ≤ qest η
2
w,ℓ + Cest dlw(T⋆ , Tℓ)

2.(13)239
240

�241

The following result generalizes [13, Proposition 4.10] to the present setting. We note242

that (A3) enters only through the quasi-monotonicity of the estimator (Lemma 6).243

Proposition 10 (generalized linear convergence). Let Tℓ be a sequence of successively244

refined triangulations, i.e., Tℓ ∈ refine(Tℓ−1) for all ℓ ∈ N. Let 0 < θ ≤ 1. Then, there245

exist 0 < qconv < 1 and Cconv > 0 which depend only on (A1)–(A4) and θ, such that246

the following holds: Let ℓ, n ∈ N0 and suppose that there are at least k ≤ n indices247

ℓ ≤ ℓ1 < ℓ2 < · · · < ℓk < ℓ+ n such that248

θ η2w,ℓj
≤ ηw,ℓj(Tℓj\Tℓj+1)

2 for all j = 1, . . . k.(14)249

250

Then, the error estimator satisfies251

η2w,ℓ+n ≤ Cconv q
k
conv η

2
w,ℓ.(15)252

253

Proof. To abbreviate notation, set ℓ0 := ℓ. Note that Tℓk+1
∈ refine(Tℓk+1). Therefore,254

the estimator reduction (13) shows for all ε > 0 and all 0 ≤ j ≤ k255

k∑

i=k−j

η2w,ℓi+1
≤

k∑

i=k−j

(
qestη

2
w,ℓi

+ Cestdlw(Tℓi+1
, Tℓi)

2
)

256

=

k∑

i=k−j

(
(qest + Cestε)η

2
w,ℓi

+ Cest

(
dlw(Tℓi+1

, Tℓi)
2 − εη2w,ℓi

))
.257

258
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Choose ε < (1− qest)C
−1
est so that κ := 1− (qest + Cestε) > 0. For 0 ≤ j ≤ k, (A4) shows259

κ

k∑

i=k−j

η2w,ℓi+1
≤ η2w,ℓk−j

+ Cest

k∑

i=k−j

(
dlw(Tℓi+1

, Tℓi)
2 − εη2w,ℓi

)

≤ (1 + CestCorth(ε))η
2
w,ℓk−j

.

(16)260

261

With C := (1 + CestCorth(ε))/κ > 1, mathematical induction below shows262

η2w,ℓk
≤ (1− C−1)j

k∑

i=k−j

η2w,ℓi
for all 0 ≤ j ≤ k.(17)263

264

To see (17), note that the case j = 0 holds with equality. Suppose that (17) holds for265

j < k. This induction hypothesis and (16) show266

η2w,ℓk
≤ (1− C−1)j

j∑

i=k−j

η2w,ℓi
= (1− C−1)j

(
(

k∑

i=k−(j+1)

η2w,ℓi
)− η2w,ℓk−(j+1)

)
267

(16)

≤ (1− C−1)j+1
k∑

i=k−(j+1)

η2w,ℓi
,268

269

which proves the validity of the induction step. Hence, the assertion (17) holds for all270

j ≤ k. By use of Lemma 6, (17) for j = k − 1, and (16) for j = k, we obtain271

C−1
monη

2
w,ℓ+n ≤ η2w,ℓk

(17)

≤ (1− C−1)k−1
k∑

i=1

η2w,ℓi
≤ (1− C−1)k−1

k∑

i=0

η2w,ℓi+1
272

(16)

≤ (1− C−1)k−1C η2w,ℓ0
= (1− C−1)kC/(1− C−1) η2w,ℓ.273

274

This concludes the proof with Cconv = CCmon/(1− C−1) and qconv = (1− C−1). �275

3. Optimal Convergence of Adaptive Algorithms276

Throughout this section, we suppose that the error estimators ηu,ℓ and ηz,ℓ satisfy the277

respective assumptions (A1)–(A4) of Section 2.4. Without loss of generality, we suppose278

that ηu,ℓ and ηz,ℓ satisfy the axioms (A1)–(A4) with the same constants.279

Remark 11. The axioms (A1)–(A4) are designed for weighted-residual error estimators280

in the frame of FEM and BEM. For optimal adaptivity for the energy error, it is sufficient281

that for w ∈ {u, z} the error estimator ηw,ℓ used in the adaptive algorithm is locally282

equivalent to some error estimator η̃w,ℓ which satisfies (A1)–(A4), i.e.,283

ηℓ,w(T ) . η̃ℓ,w(ωℓ(T )) and η̃ℓ,w(T ) . ηℓ,w(ωℓ(T )) for all T ∈ Tℓ,284
285

where ωℓ(T ) denotes a patch of T ; see [13, Section 8]. Then, the convergence (Theorem 12)286

as well as optimality results (Theorem 13 and 16) remain valid. We leave the details to287

the reader, but note that this covers averaging-based error estimators, hierarchical error288

estimators, as well as estimators based on equilibrated fluxes; see [13, 29]. �289

3.1. Linear convergence. The following result is independent of Cmark, and we may290

formally also choose Cmark = ∞ = C ′
mark. Discrete reliability (A3) only enters through the291

quasi-monotonicity of the estimator (Lemma 6). In the frame of the Lax-Milgram lemma292

from Section 1.2, the quasi-monotonicity already follows from classical reliability (6);293

see [13, Lemma 3.6].294
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Theorem 12. For all 0 < θ ≤ 1, there exist 0 < qlin < 1 and Clin > 0 which depend only295

on (A1)–(A4) and θ, such that Algorithms A–B are linearly convergent in the sense of296

ηu,ℓ+nηz,ℓ+n ≤ Clinq
n
linηu,ℓηz,ℓ for all ℓ, n ∈ N0.(18)297

298

Proof for Algorithm A. In each step of Algorithm A, the set M̃j satisfies either the Dörfler299

marking (8) for ηu,j or for ηz,j. With M̃j ⊆ Mj ⊆ Tj\Tj+1, this implies for n successive300

meshes Tj , j = ℓ, . . . , ℓ + n, that Tj\Tj+1 satisfies k-times the Dörfler marking (14) for301

ηu,j and (n− k)-times the Dörfler marking for ηz,j. Proposition 10 thus shows302

η2u,ℓ+n ≤ Cconv q
k
conv η

2
u,ℓ as well as η2z,ℓ+n ≤ Cconv q

n−k
conv η

2
z,ℓ.303

304

Altogether, this proves305

η2u,ℓ+n η
2
z,ℓ+n ≤ C2

conv q
k
conv η

2
u,ℓ η

2
z,ℓ.306

307

This concludes (18) with qlin = q
1/2
conv and Clin = Cconv. �308

Proof for Algorithm B. Note that ρ2ℓ = 2 η2u,ℓη
2
z,ℓ. Therefore, (9) becomes309

2θ η2u,ℓη
2
z,ℓ ≤ ηu,ℓ(Mℓ)

2 η2z,ℓ + η2u,ℓ ηz,ℓ(Mℓ)
2.310

311

In particular, this shows that312

θ η2u,ℓ ≤ ηu,ℓ(Mℓ)
2 or θ η2z,ℓ ≤ ηz,ℓ(Mℓ)

2.313
314

Arguing as for Algorithm A, we conclude the proof. �315

3.2. Fine properties of mesh-refinement. Unlike linear convergence, the proof of316

optimal convergence rates is more strongly tailored to the mesh-refinement used. First,317

we suppose that each refined element has at least two sons, i.e.,318

#(T \T ′) + #T ≤ #T ′ for all T ∈ T and all T ′ ∈ refine(T ).(19)319
320

Second, we require the mesh-closure estimate321

#Tℓ −#T0 ≤ Cmesh

ℓ−1∑

j=0

#Mj for all ℓ ∈ N,(20)322

323

where Cmesh > 0 depends only on T0. This has first been proved for 2D newest vertex324

bisection in [10] and has later been generalized to arbitrary dimension d ≥ 2 in [38].325

While both works require an additional admissibility assumption on T0, this has at least326

been proved unnecessary for 2D in [28]. Finally, it has been proved in [15, 37] that newest327

vertex bisection ensures the overlay estimate, i.e., for all triangulations T , T ′ ∈ T there328

exists a common refinement T ⊕ T ′ ∈ refine(T ) ∩ refine(T ′) which satisfies329

#(T ⊕ T ′) ≤ #T +#T ′ −#T0.(21)330
331

We note that for newest vertex bisection, the triangulation T ⊕T ′ is, in fact, the overlay of332

T and T ′. For 1D bisection (e.g., for 2D BEM computations in Section 6), the algorithm333

from [2] satisfies (19)–(21) and guarantees that the local mesh-ratio is uniformly bounded.334

For meshes with first-order hanging nodes, (19)–(21) are analyzed in [11], while T-spline335

meshes for isogeometric analysis are considered in [34].336

3.3. Optimal convergence rates. Our proofs of the following theorems (Theo-337

rem 13, 16) follow the ideas of [33] as worked out in [17]. We include it here for the sake338

of completeness and a self-contained presentation.339
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Theorem 13. Suppose that the mesh-refinement satisfies (19)–(21). Let 0 < θ < θopt :=340

(1 + C2
stbC

2
rel)

−1. Then, Algorithm A implies the existence of Copt > 0 which depends341

only on θ, Cmesh, Cmark, C
′
mark, and (A1)–(A4), such that for all s, t > 0 the assumption342

(u, z) ∈ As × At implies for all ℓ ∈ N0343

ηu,ℓηz,ℓ ≤
C1+s+t

opt

(1− q
1/(s+t)
lin )s+t

‖u‖As‖z‖At (#Tℓ −#T0)
−(s+t)(22)344

345

i.e., Algorithm A guarantees that the estimator product decays asymptotically with any346

possible algebraic rate.347

Corollary 14. Assume that the estimators both have finite optimal convergence rate, i.e.,348

smax := sup{s > 0 : ‖u‖As < ∞} < ∞ and tmax := sup{t > 0 : ‖z‖At < ∞} < ∞.349
350

Then, for any 0 < s < smax and 0 < t < tmax, there exist subsequences such that351

ηu,ℓk . (#Tℓk −#T0)
−s for all k ∈ N as well as ηz,ℓj . (#Tℓj −#T0)

−t for all j ∈ N,352
353

where the hidden constants additionally depend on smax − s > 0 resp. tmax − t > 0.354

Proof. Let 0 < s̃ < smax. Choose ε > 0 with s := s̃ + 2ε < smax and t := tmax − ε > 0.
By choice of tmax, it holds ηz,ℓ 6. (#Tℓ −#T0)

−(tmax+ε); see [13, Theorem 4.1(ii)]. Hence,

∀C > 0 ∀ℓ ∈ N ∃k ≥ ℓ ηz,k > C (#Tk −#T0)
−(tmax+ε).

Consequently, there exists a subsequence with ηz,ℓk ≥ (#Tℓk −#T0)
−(tmax+ε). With The-355

orem 13, the same subsequence satisfies356

ηu,ℓk ≤ ηu,ℓkηz,ℓk (#Tℓk −#T0)
tmax+ε

(22)

. (#Tℓk −#T0)
−(s+t)+(tmax+ε) = (#Tℓk −#T0)

−s̃.357
358

The same argument applies to an appropriate subsequence of ηz,ℓ. �359

The heart of the proof of Theorem 13 is the following lemma.360

Lemma 15. For any 0 < θ < θopt := (1 + C2
stbC

2
rel)

−1 and ℓ ∈ N0, there exist C1, C2 > 0361

and some T⋆ ∈ refine(Tℓ) such that the sets Ru(Tℓ, T⋆) and Rz(Tℓ, T⋆) from the discrete362

reliability (A3) satisfy for all s, t > 0 with (u, z) ∈ As × At363

max{#Ru(Tℓ, T⋆) , #Rz(Tℓ, T⋆)} ≤ C1 (C2‖u‖As‖z‖At)
1/(s+t) (ηu,ℓηz,ℓ)

−1/(s+t).(23)364
365

Moreover, Ru(Tℓ, T⋆) or Rz(Tℓ, T⋆) satisfies the Dörfler marking, i.e., it holds366

θη2u,ℓ ≤ ηu,ℓ
(
Ru(Tℓ, T⋆)

)2
or θη2z,ℓ ≤ ηz,ℓ

(
Rz(Tℓ, T⋆)

)2
.(24)367

368

The constants C1, C2 depend only on θ and (A1)–(A3).369

Proof. Adopt the notation of Lemma 7. For ε := C−1
monκopt ηu,ℓηz,ℓ, the quasi-monotonicity370

of the estimators (Lemma 6) yields ε ≤ κopt ηu,0ηz,0 < ‖u‖As‖z‖At < ∞. Choose the371

minimal N ∈ N0 such that ‖u‖As‖z‖At ≤ ε (N + 1)s+t. Choose Tε1 , Tε2 ∈ TN with372

ηu,ε1 = minT⋆∈TN
ηu,⋆ and ηz,ε2 = minT⋆∈TN

ηz,⋆. Define Tε := Tε1 ⊕ Tε2 and T⋆ := Tε ⊕ Tℓ.373

Then, Lemma 6, the definition of the approximation classes, and the choice of N give374

ηu,⋆ηz,⋆ ≤ Cmonηu,ε1ηz,ε2 ≤ Cmon(N + 1)−(s+t)‖u‖As‖z‖At ≤ Cmonε = κopt ηu,ℓηz,ℓ.375
376

This implies η2u,⋆ ≤ κopt η
2
u,ℓ or η

2
z,⋆ ≤ κopt η

2
z,ℓ, and Lemma 7 hence proves (24). It remains377

to derive (23). First, note that378

max{#Ru(Tℓ, T⋆) , #Rz(Tℓ, T⋆)}
(A3)

≤ Crel#(Tℓ\T⋆)
(19)

≤ Crel(#T⋆ −#Tℓ).(25)379
380

9



Second, minimality of N yields381

N < (‖u‖As‖z‖At)
1/(s+t)ε−1/(s+t) = C (ηu,ℓηz,ℓ)

−1/(s+t)
382
383

with C := (‖u‖As‖z‖At)
1/(s+t)(C−1

monκopt)
−1/(s+t) = (Cmonκ

−1
opt ‖u‖As‖z‖At)

1/(s+t). Accord-384

ing to the choice of T⋆, the overlay estimate (21) yields385

#T⋆ −#Tℓ

(21)

≤ #Tε −#T0

(21)

≤ #Tε1 +#Tε2 − 2#T0 ≤ 2N < 2C (ηu,ℓηz,ℓ)
−1/(s+t).(26)386

387

Combining (25)–(26), we conclude (23) with C1 = 2Crel and C2 = Cmon/κopt. �388

Proof of Theorem 13. According to (24) of Lemma 15 and the marking strategy in389

Algorithm A, for all j ∈ N0, there hold the implications390

M̃j = Mu,j =⇒ #Mu,j ≤ Cmark#Ru(Tj , T⋆),391

M̃j = Mz,j =⇒ #Mz,j ≤ Cmark #Rz(Tj , T⋆).392
393

This yields394

1

C ′
mark

#Mj ≤ #M̃j = min{#Mu,j , #Mz,j}

≤ Cmark max{#Ru(Tj, T⋆) , #Rz(Tj , T⋆)}.
(27)395

396

With the mesh-closure estimate (20) and estimate (23) of Lemma 15, we obtain397

#Tℓ −#T0

(20)

≤ Cmesh

ℓ−1∑

j=0

#Mj398

(23)

≤ CmeshCmarkC
′
markC1 (C2‖u‖As‖z‖At)

1/(s+t)

ℓ−1∑

j=0

(ηu,jηz,j)
−1/(s+t).399

400

Linear convergence (18) implies401

ηu,ℓηz,ℓ ≤ Clin q
ℓ−j
lin ηu,jηz,j for all 0 ≤ j ≤ ℓ402

403

and hence404

(ηu,jηz,j)
−1/(s+t) ≤ C

1/(s+t)
lin q

(ℓ−j)/(s+t)
lin (ηu,ℓηz,ℓ)

−1/(s+t).405
406

With 0 < q := q
1/(s+t)
lin < 1, the geometric series applies and yields407

ℓ−1∑

j=0

(ηu,jηz,j)
−1/(s+t) ≤ C

1/(s+t)
lin (ηu,ℓηz,ℓ)

−1/(s+t)

ℓ−1∑

j=0

qℓ−j ≤ C
1/(s+t)
lin

1− q
1/(s+t)
lin

(ηu,ℓηz,ℓ)
−1/(s+t).408

409

Combining this with the first estimate, we obtain410

#Tℓ −#T0 ≤
CmeshCmarkC

′
markC1

1− q
1/(s+t)
lin

(ClinC2 ‖u‖As‖z‖At)
1/(s+t) (ηu,ℓηz,ℓ)

−1/(s+t).411

412

Altogether, we conclude (22) with Copt = max{ClinC2, CmeshCmarkC
′
markC1}. �413

Theorem 16. Let θopt := (1 + CstbCrel)
−1. For any 0 < θ < θopt/2, Algorithm B guar-414

antees optimal algebraic convergence rates in the sense of Theorem 13 and Corollary 14.415
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Proof. Arguing as for Algorithm A, we only need to show that (27) remains valid. Note416

that 0 < 2θ < θopt. Therefore, estimate (24) of Lemma 15 yields417

2θ η2u,j ≤ ηu,j
(
Ru(Tj, T⋆)

)2
or 2θ η2z,j ≤ ηz,j

(
Rz(Tj, T⋆)

)2
.418

419

Either for Rj := Ru(Tj , T⋆) or for Rj := Rz(Tj , T⋆) this implies420

θ ρ2j = 2θ η2u,jη
2
z,j ≤ ηu,j(Rj)

2 η2z,j + η2u,j ηz,j(Rj)
2 = ρj(Rj)

2.421
422

According to the marking strategy in Algorithm B, we obtain423

#Mj ≤ Cmark#Rj ≤ Cmark max{#Ru(Tj , T⋆) , #Rz(Tj, T⋆)}424
425

which is (27). Therefore, the claim follows with Copt = max{ClinC2, CmeshCmarkC1}. �426

Remark 17. Our numerical experiments below do not show that Algorithm B leads to427

suboptimal convergence rates for large θ, where Algorithm A still is optimal. However,428

this has been observed in [17] for the point evaluation in adaptive BEM computations. �429

4. Goal-Oriented Adaptive FEM for Second-Order Linear Elliptic PDEs430

In this section, we prove that our analysis implies convergence and optimality of goal-431

oriented AFEM for general second-order linear elliptic PDEs. 4.1. Model problem.432

Let Ω ⊂ Rd be a bounded Lipschitz domain with polygonal boundary. For given f1, g1 ∈433

L2(Ω) and f 2, g2 ∈ L2(Ω;Rd), define434

f(v) :=

∫

Ω

f1v − f2 · ∇v dx and g(v) :=

∫

Ω

g1v − g2 · ∇v dx.435

436

We aim to compute g(u), where u ∈ H1
0 (Ω) solves the weak formulation437

a(u, v) :=

∫

Ω

(
A∇u · ∇v + b · ∇uv + cuv

)
dx = f(v) for all v ∈ X := H1

0 (Ω),(28)438

439

where A ∈ W 1,∞(Ω;Rd×d
sym), b ∈ W 1,∞(Ω;Rd), and c ∈ L∞(Ω). We suppose that a(·, ·) is440

elliptic on H1
0 (Ω) so that the problem fits in the framework of Section 1.2. To formulate441

the residual error estimators in (31)–(32) below, we additionally require that div f2, div g2442

exist in L2(Ω) elementwise on the initial mesh T0 and that the edge jumps satisfy [f 2 ·443

n], [g2 ·n] ∈ L2(∂T ) for all T ∈ T0. (For instance, this is satisfied if f 2, g2 are T0-piecewise444

constant.) Note that the corresponding differential operator L is non-symmetric as445

Lw := −div(A∇w) + b · ∇w + cw 6= −div(A∇w)− b · ∇w + (c− divb)w =: L⊤w.(29)446
447

Remark 18. For the ease of presentation, we focus on (homogeneous) Dirichlet condi-448

tions. We note that the extension to mixed Dirichlet-Neumann-Robin boundary conditions449

is easily possible; see [3, 13, 22] in the frame of standard AFEM. However, our analysis450

currently requires that the Dirichlet data belong to the coarsest trace space S1(T0|Γ), so451

that u−Uℓ resp. z−Zℓ are admissible test functions. The latter fails for general inhomoge-452

neous Dirichlet conditions. We believe that the rigorous analysis of this problem is beyond453

the current work and requires further ideas beyond those of standard AFEM [3, 13, 22].�454

4.2. Discretization. For a regular triangulation T⋆ of Ω and p ∈ N, define Pp(T⋆) :=455

{V ∈ L2(Ω) : V |T is polynomial of degree ≤ p for all T ∈ T⋆}. Let U⋆, Z⋆ ∈ X⋆ :=456

Sp
0 (T⋆) := Pp(T⋆) ∩H1

0 (Ω) be the unique FEM solutions of (2) resp. (4), i.e.,457

U⋆ ∈ Sp
0 (T⋆) such that a(U⋆, V⋆) = f(V⋆) for all V⋆ ∈ Sp

0 (T⋆),(30a)458

Z⋆ ∈ Sp
0 (T⋆) such that a(V⋆, Z⋆) = g(V⋆) for all V⋆ ∈ Sp

0 (T⋆).(30b)459
460
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4.3. Residual error estimator. For T ∈ T⋆, let hT := |T |1/d and L|T (resp. L⊤|T )461

be the natural restriction of L (resp. L⊤) to T . Then, the residual error estimators read462

ηu,⋆(T )
2 := h2

T‖L|TU⋆ − f1 − div f 2‖2L2(T ) + hT ‖[(A∇U⋆ + f 2) · n]‖2L2(∂T∩Ω),(31)463

ηz,⋆(T )
2 := h2

T‖L⊤|TZ⋆ − g1 − div g2‖2L2(T ) + hT‖[(A∇Z⋆ + g2) · n]‖2L2(∂T∩Ω).(32)464
465

There holds reliability (6); see, e.g., [1, 39]. Therefore, Section 1.2 yields466

|g(u)− g(U⋆)| . ηu,⋆ηz,⋆.(33)467
468

Moreover, efficiency and the Céa lemma prove that As from Section 2.3 coincides with469

the approximation class based on the total error (see [7, 15, 33]). The following result is470

proved in [20, Lemma 5.1] for f2 = 0 = g2, but holds verbatim in the present case.471

Lemma 19. Let w ∈ {u, z}. Then, there holds w ∈ As if and only if472

sup
N∈N0

(
(N + 1)s min

T⋆∈TN

(
min
V⋆∈X⋆

‖w − V⋆‖X + oscw,⋆(V⋆)
))

< ∞,473

474

where oscw,⋆(V⋆)
2 =

∑
T∈T⋆

oscw,⋆(T, V⋆)
2 and475

osc2u,⋆(T, V⋆) := h2
T‖(1−Π2p−2

T )(L|TV⋆ − f1 − div f 2)‖2L2(T )476

+ hT‖(1− Π2p−1
∂T )[(A∇V⋆ + f2) · n]‖2L2(∂T∩Ω),477

osc2z,⋆(T, V⋆) := h2
T‖(1−Π2p−2

T )(L⊤|TV⋆ − g1 − div g2)‖2L2(T )478

+ hT ‖(1− Π2p−1
∂T )[(A∇V⋆ + g2) · n]‖2L2(∂T∩Ω).479

480

Here, Πq
T : L2(T ) → Pq(T ) denotes the L2-orthogonal projection onto polynomials of481

degree q and Πq
∂T : L2(∂T ) → Pq(S∂T ) denotes the L2-orthogonal projection onto (dis-482

continuous) piecewise polynomials of degree q on the faces of T . �483

4.4. Verification of axioms. For newest vertex bisection [38], the assumptions of484

Section 3.2 are satisfied. It remains to verify the axioms (A1)–(A4), where dlw(Tℓ , T⋆) :=485

a(Wℓ−W⋆,Wℓ−W⋆)
1/2 ≃ ‖Wℓ−W⋆‖H1(Ω) and Wℓ resp. W⋆ are the corresponding FEM486

approximations of w ∈ {u, z}.487

Theorem 20. The conforming discretization (30) of the model problem of Section 4.1488

with the residual error estimators (31)–(32) satisfies (A1)–(A4) for both w ∈ {u, z} with489

qred = 2−1/d and Rw(Tℓ, T⋆) = Tℓ\T⋆. Therefore, Algorithm A–B are linearly convergent490

with optimal rates in the sense of Theorem 12, 13, and 16 for the upper bound in (33).491

Proof of Theorem 20, (A1)–(A3). The work [15] considers some symmetric model problem492

with b = 0 and c ≥ 0 as well as f 2 = 0 = g2. Stability (A1) and reduction (A2) are493

essentially part of the proof of [15, Corollary 3.4]. The discrete reliability (A3) is found494

in [15, Lemma 3.6]. Both proofs transfer verbatim to the present situation. �495

Lemma 21. In the setting of Theorem 20, there holds convergence496

lim
ℓ→∞

‖U∞ − Uℓ‖H1(Ω) = 0 = lim
ℓ→∞

‖Z∞ − Zℓ‖H1(Ω),(34)497

498

for certain U∞, Z∞ ∈ H1
0 (Ω). Moreover, there holds at least U∞ = u or Z∞ = z.499

Proof. Adaptive mesh-refinement guarantees nestedness Xℓ ⊆ X⋆ for all Tℓ ∈ T and500

T⋆ ∈ refine(Tℓ). As in [13, Section 3.6] or [5, Lemma 6.1], the Céa lemma thus implies501

a priori convergence, i.e., there exist U∞, Z∞ ∈ X∞ :=
⋃

ℓ∈N0
Xℓ ⊆ H1

0 (Ω) such that502

lim
ℓ→∞

‖U∞ − Uℓ‖H1(Ω) = 0 = lim
ℓ→∞

‖Z∞ − Zℓ‖H1(Ω).503

504
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This proves (34). For w ∈ {u, z}, let ℓw,n denote the subsequences which satisfy505

θη2w,ℓw,n
≤ ηw,ℓw,n(Mw,ℓw,n)

2 for all n ∈ N.506
507

There holds #{ℓw,n : n ∈ N} = ∞ for at least one w ∈ {u, z}. While this is obvious for508

Algorithm A, it follows for Algorithm B from the proof of Theorem 12. For this particular509

w, (34) implies dlw(Tℓw,n+1 , Tℓw,n)
2 → 0 as n → ∞. Moreover, Lemma 9 states510

η2w,ℓw,n+1
≤ qestη

2
w,ℓw,n

+ Cestdlw(Tℓw,n+1 , Tℓw,n)
2 for all n ∈ N.511

512

These observations and elementary calculus yield ηw,ℓw,n → 0; see, e.g., [4, Lemma 2.3].513

Reliability (6) of ηw,ℓ concludes limn→∞ ‖w −Wℓw,n‖H1(Ω) = 0, i.e., w = W∞. �514

Proof of Theorem 20, (A4). With Lemma 21, the proof of [20, Lemma 3.5] shows the515

weak convergence in H1
0 (Ω) for W∞ ∈ {U∞, Z∞}516

W∞ −Wℓn

‖W∞ −Wℓn‖H1(Ω)

⇀ 0 and
Wℓn+1 −Wℓn

‖Wℓn+1 −Wℓn‖H1(Ω)

⇀ 0 as ℓ → ∞.517

518

Define dlw(T∞ , ·) := a(W∞− (·),W∞− (·))1/2. With this, [20, Proposition 3.6] applies for519

the primal as well as the dual problem and shows that given any 0 < δ < 1, there exists520

jδ ∈ N such that all j ≥ jδ satisfy521

dlw(Tℓj+1
, Tℓj)

2 ≤ 1

1− δ
dlw(T∞ , Tℓj )

2 − dlw(T∞ , Tℓj+1
)2.(35)522

523

The discrete reliability (A3) and the convergence (34) yield524

dlw(T∞ , Tℓj) = lim
k→∞

dlw(Tℓk , Tℓj) ≤ Crelηw,ℓj .(36)525

526

With (35)–(36), the quasi-monotonicity from Lemma 6 (since (A1)–(A3) have already527

been verified) implies for δ = 1− 1/(1 + εC−2
rel ) and hence 1/(1− δ) = 1 + εC−2

rel that528

N∑

j=n

(
dlw(Tℓj+1

, Tℓj )
2 − εC−2

rel dlw(T∞ , Tℓj)
2
)

529

(35)

≤
N∑

j=jδ

(
(

1

1− δ
− εC−2

rel )dlw(T∞ , Tℓj )
2 − dlw(T∞ , Tℓj+1

)2
)
+

jδ−1∑

j=n

dlw(Tℓj+1
, Tℓj )

2

≤ dlw(T∞ , Tℓjδ
)2 + C2

rel

jδ−1∑

j=n

η2w,ℓj

(36)

≤ (1 + jδ)C
2
relCmonη

2
w,ℓn.

(37)530

531

Another application of the reliability (36) shows532

N∑

j=n

(
dlw(Tℓj+1

, Tℓj)
2 − εη2w,ℓj

) (36)

≤
N∑

j=n

(
dlw(Tℓj+1

, Tℓj)
2 − εC−2

rel dlw(T∞ , Tℓj )
2
)

533

(37)

≤ (1 + jδ)C
2
relCmonη

2
w,ℓn.534

535

This proves (A4) with Corth(ε) := (1 + jδ)C
2
relCmon. �536

4.5. Numerical experiment I: Goal oriented FEM for the Poisson equation.537

As proposed in [33, Example 7.3], we consider the Poisson model problem (i.e., A = I, b =538

0, and c = 0) on the unit cube Ω = (0, 1)2 ⊂ R
2, while a nonsymmetric second-order ellip-539

tic operator is considered in Section 5.5. Figure 1 (left) shows the initial mesh T0 together540

with the triangles Tf := conv{(0, 0), (1
2
, 0), (0, 1

2
)} and Tg := conv{(1, 1), (1

2
, 1), (1, 1

2
)}.541
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Figure 1. Example from Section 4.5: The initial mesh T0 (left) and the
triangles Tf (bottom left) and Tg (top right) indicated in gray. An approxi-
mation to the primal (middle) and dual solution (right) on a uniform mesh
with 256 elements, where the singularities of both are clearly visible.
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Figure 2. Example from Section 4.5: Estimators ηu,ℓ and ηz,ℓ, estima-
tor product ηu,ℓηz,ℓ, as well as goal error |g(u) − g(Uℓ)| as output of
Algorithm A–B with θ = 0.5 (left) resp. estimator product for various
θ ∈ {0.1, . . . , 0.9} as well as for θ = 1.0, i.e., uniform mesh-refinement.

Choosing f1 = 0, f 2 = (χTf
, 0), g1 = 0, g2 = (χTg , 0), where χω for ω ⊂ R2 denotes the542

characteristic function, the right-hand sides of the primal (1) and dual problem (3) are543

f(v) = −
∫

Tf

∂v

∂x1
dx resp. g(u) = −

∫

Tg

∂u

∂x1
dx.544

545
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Algorithm [33] Algorithm A Algorithm B AFEM (primal) AFEM (dual)

#T38 = 1,022 #T20 = 1,146 #T20 = 1,094 #T22 = 1,010 #T22 = 1,010

Figure 3. Example from Section 4.5: Meshes generated by goal-oriented
algorithms as well as standard (non-goal-oriented) AFEM driven by the
primal error estimator resp. the dual error estimator for θ = 0.5.
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Figure 4. Example from Section 4.5: To compare the adaptive strategies,
we plot the cumulative number of elements Ncum :=

∑ℓ
j=0#Tj necessary to

reach a prescribed accuracy ηu,ℓηz,ℓ ≤ tol over θ ∈ {0.1, . . . , 0.9} for p = 3
and tol = 10−5 (left) resp. p = 2 and tol = 10−4 (right).

Figure 1 also shows some approximations of the primal and dual solution, where the546

singularities of u along conv{(1
2
, 0), (0, 1

2
)} resp. z along conv{(1

2
, 1), (1, 1

2
)} are clearly547

visible.548

We consider and compare five adaptive mesh-refining strategies:549

• the goal-oriented algorithm from [33], i.e., Algorithm A with C ′
mark = 1,550

• Algorithm A with C ′
mark = 2 as described in Remark 2,551

• Algorithm B originally proposed in [7],552

• standard adaptivity for the primal problem, i.e., Algorithm A with Mℓ := Mu,ℓ,553

• standard adaptivity for the dual problem, i.e., Algorithm A with Mℓ := Mz,ℓ.554

To compare these strategies, we compute the cumulative number of elements555

Ncum :=
ℓ∑

j=0

#Tj ,(38)556

557

which is necessary to reach a prescribed accuracy of ηu,ℓηz,ℓ ≤ tol. Since the overall558

runtime depends on the entire history of adaptively generated meshes, the definition of559

Ncum reflects the total amount of work in the adaptive process.560

Overall, we find that the goal-oriented adaptive algorithms lead to optimal convergence561

behavior ηu,ℓηz,ℓ = O(N−3) for p = 3 (see Figure 2), while standard adaptivity for the562

primal or dual problem only leads to ηu,ℓηz,ℓ = O(N−2) for p = 3 (not displayed). This is563

also reflected in Figure 4, where we plot Ncum over the marking paraemter 0.1 ≤ θ ≤ 0.9:564
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For tol = 10−5 and p = 3, Ncum is smallest for Algorithm A–B and θ = 0.8. For tol = 10−4
565

and p = 2, Ncum is smallest for Algorithm A and θ = 0.6.566

5. Goal-Oriented Adaptive FEM for Flux Evaluation567

5.1. Model problem. Let Ω ⊂ Rd be a bounded Lipschitz domain with polygonal568

boundary Γ := ∂Ω. Given f1 ∈ L2(Ω) and f2 = 0, let u ∈ H1
0 (Ω) be the solution to (28).569

For Λ ∈ H1/2(Γ), we aim to evaluate the weighted boundary flux570

g(u) :=

∫

Γ

(A∇u) · nΛ ds.(39a)571

572

For smooth u, g(u) can be rewritten as573

g(u) =

∫

Ω

div(A∇u)z dx+

∫

Ω

A∇u · ∇z = a(u, z)− f(z) =: Nz(u)(39b)574

575

for all z ∈ H1(Ω) with z|Γ = Λ. Since the right-hand side is well-defined for u ∈ H1
0 (Ω),576

this is a valid generalization of the flux [24, Section 7]. Let z be the unique solution of577

the following inhomogeneous Dirichlet problem:578

z ∈ H1(Ω) with z|Γ = Λ such that a(v, z) = 0 for all v ∈ H1
0 (Ω).579

580

Then, it holds Nz(u) = −f(z).581

5.2. Discretization. With the notation of Section 4.2, consider Sp(T⋆) := Pp(T⋆) ∩582

H1(Ω) and Sp
0 (T⋆) := Pp(T⋆) ∩H1

0 (Ω). Let U⋆ be the unique FEM solution of583

U⋆ ∈ Sp
0 (T⋆) such that a(U⋆, V⋆) = f(V⋆) for all V⋆ ∈ Sp

0 (T⋆).(40a)584
585

Suppose that Λ ∈ Sp(T0|Γ) := {V0|Γ : V0 ∈ Sp(T0)} belongs to the discrete trace space586

with respect to the initial mesh T0. Let Z⋆ be the unique FEM solution of587

Z⋆ ∈ Sp(T⋆) with Z⋆|Γ = Λ such that a(V⋆, Z⋆) = 0 for all V⋆ ∈ Sp
0 (T⋆).(40b)588

589

To approximate Nz(u) from (39), define590

Nz,⋆(U⋆) = −f(Z⋆).(41)591
592

Lemma 22. There holds593

|Nz(u)−Nz,⋆(U⋆)| ≤ Cflux‖u− U⋆‖H1(Ω)‖z − Z⋆‖H1(Ω),594
595

where Cflux > 0 depends only on a(·, ·).596

Proof. Since z − Z⋆ ∈ H1
0 (Ω), there holds597

|Nz(u)−Nz,⋆(U⋆)| = |f(z)− f(Z⋆)| = |f(z − Z⋆)| = |a(u, z − Z⋆)|598

= |a(u− U⋆, z − Z⋆)| . ‖u− U⋆‖H1(Ω)‖z − Z⋆‖H1(Ω),599
600

where we used the definition of z and Z⋆. �601

5.3. Residual error estimator. With Λ ∈ Sp(T0|Γ), the residual error estimators602

remain the same as in (31)–(32) with g1 = 0 and f2 = 0 = g2, i.e.,603

ηu,⋆(T )
2 := h2

T‖L|TU⋆ − f1‖2L2(T ) + hT‖[A∇U⋆ · n]‖2L2(∂T∩Ω),(42)604

ηz,⋆(T )
2 := h2

T‖L⊤|TZ⋆‖2L2(T ) + hT‖[A∇Z⋆ · n]‖2L2(∂T∩Ω).(43)605
606

Lemma 22 together with the reliability of ηw,⋆ for w ∈ {u, z} (see, e.g., [3, Proposition 3]607

for the inhomogeneous Dirichlet problem for z) implies608

|Nz(u)−Nz,⋆(U⋆)| . ηu,⋆ηz,⋆.(44)609
610
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Figure 5. Example from Section 5.5 for p = 1 and ν = 10−3: Estima-
tor product as output of Algorithm A for various θ ∈ {0.1, . . . , 0.9} as
well as for θ = 1.0, i.e., uniform refinement (left) and cumulative num-

ber of elements Ncum :=
∑ℓ

j=0#Tj necessary to reach a prescribed accu-

racy ηu,ℓηz,ℓ ≤ 10−4 over θ ∈ {0.1, . . . , 0.9}.

5.4. Verification of axioms. For newest vertex bisection, the assumptions of Sec-611

tion 3.2 are satisfied. It remains to verify the axioms (A1)–(A4), where dlw(Tℓ , T⋆) :=612

a(Wℓ −W⋆,Wℓ −W⋆)
1/2 ≃ ‖Wℓ −W⋆‖H1(Ω).613

Theorem 23. The conforming discretization (40) of the model problem of Section 5.1614

with the residual error estimators (42)–(43) satisfies (A1)–(A4) for both w ∈ {u, z} with615

qred = 2−1/d and Rw(Tℓ, T⋆) = Tℓ\T⋆. Therefore, Algorithm A–B are linearly convergent616

with optimal rates in the sense of Theorem 12, 13, and 16 for the upper bound in (44).617

Proof. For the primal problem, (A1)–(A4) follow from Theorem 20. For the dual prob-618

lem, (A1)–(A2) follow from Theorem 20, since the estimator did not change. The discrete619

reliability (A3) is proved in [3] for general Λ ∈ H1(Γ). For Λ ∈ Sp(T0|Γ), the proof sim-620

plifies vastly and shows Rz(Tℓ, T⋆) = Tℓ\T⋆. To see the quasi-orthogonality (A4), choose621

a discrete extension Λ̂ ∈ S1(T0) with Λ̂|Γ = Λ. Consider the solution Z0
⋆ ∈ Sp

0 (T⋆) of622

a(V⋆, Z
0
⋆) = −a(V⋆, Λ̂) for all V⋆ ∈ Sp

0 (T⋆).623
624

Then, there holds Z⋆ = Z0
⋆ + Λ̂ and consequently dlz(Tℓj+1

, Tℓj) ≃ ‖Zℓj+1
− Zℓj‖H1(Ω) =625

‖Z0
ℓj+1

− Z0
ℓj
‖H1(Ω). Since Z0

⋆ is the solution to a homogeneous Dirichlet problem, the626

proof of (A4) follows analogously to that of Theorem 20. �627

5.5. Numerical experiment II: Flux-oriented adaptive FEM for convection–628

diffusion. We consider a numerical experiment similar to [32, Section 5.3] for some629

convection-diffusion problem in 2D. Throughout, we use lowest-order FEM, i.e., p = 1.630

Let Ω = (0, 1)2 ⊂ R2. Set A = νI, with ν > 0 the diffusion coefficient, b = (y, 1
2
− x),631

which is a rotating convective field around (1
2
, 0), and c = 0. With div b = 0, it holds632

L = −ν∆+ b · ∇ and L⊤= −ν∆− b · ∇ .633
634
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Figure 6. Example from Section 5.5: To study the robustness of the goal-
oriented algorithm with respect to the diffusion coefficient ν = 10−3 (top)
and ν = 10−5 (bottom), we plot ηu,ℓ, ηz,ℓ, and ηu,ℓηz,ℓ, as well as the goal
error |Nz(u) − Nz,ℓ(Uℓ)| as output of Algorithm A with θ = 0.6 over the
numbers of elements #Tℓ (left). We show some related discrete meshes
with > 20,000 elements (right).

We set f(v) = 0 and consider non-homogeneous Dirichlet data on ∂Ω for the primal635

problem, a pulse, defined by the continuous piecewise linear function636

uDir(x, y) =





6(x− 1
6
), if 1

6
≤ x < 1

3
, y = 0,

6(1
2
− x), if 1

3
≤ x < 1

2
, y = 0,

0, otherwise .

637

638

Note that uDir trivially extends to some discrete function uDir ∈ S1(T0) if T0 is cho-639

sen appropriately. Therefore, we can rewrite the problem into a homogeneous Dirichlet640

problem. To that end, write u = u0 + uDir with u0 ∈ H1
0 (Ω) and solve641

a(u0, v) = f(v)− a(uDir, v) for all v ∈ H1
0 (Ω).642

643

Note that the additional term on the right-hand side is of the form divλ + λ for some644

T0-element wise constant λ and some λ ∈ L2(Ω). A direct computation shows that645

the weighted-residual error estimator with respect to u0 coincides with ηu,ℓ. Arguing as646

in the proof of Theorem 23, we see that the estimator satisfies the axioms (A1)–(A4).647

Altogether, the problem thus fits in the frame of our analysis.648
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The primal solution corresponds to the clockwise convection–diffusion of this pulse.649

We choose the boundary weight function Λ : ∂Ω → R as the shifted pulse650

Λ(x, y) =





6(x− 2
3
), if 2

3
≤ x < 5

6
, y = 0,

6(1− x), if 5
6
≤ x < 1 , y = 0,

0, otherwise .

651

652

The dual solution corresponds to the counter-clockwise convection–diffusion of this pulse.653

For small ν, the (primal and dual) pulses are transported from ∂Ω into Ω and eventually654

back to ∂Ω where a boundary layer develops. The uniform initial triangulation T0 ensures655

that the (primal and dual) Dirichlet data belong to the discrete trace space S1(T0|Γ).656

For ν = 10−3 and a large range of values of θ ∈ {0.1, . . . , 0.9}, Figure 5 (left) shows657

that Algorithm A yields the optimal convergence rate O(N−1) for the flux quantity of658

interest and lowest-order elements p = 1, while uniform mesh-refinement appears to be659

slightly suboptimal. Algorithm B leads to similar results (not displayed).660

To compare the overall performance of the different algorithms, Figure 5 (right) visu-661

alizes the cumulative number of elements Ncum (see (38)) which is necessary to reach a662

prescribed accuracy of ηu,ℓηz,ℓ ≤ 10−4. We observe that Ncum is smallest for relatively663

large values θ ≥ 0.5, with Algorithm [33] being less efficient than Algorithm A and B.664

Overall, Algorithm A with θ = 0.6 seems to be the best choice.665

Figure 6 illustrates the effect of varying ν ∈ {10−3, 10−5}. Because ν is relatively666

small, both the primal and the dual solution have significant boundary layers. The667

optimal convergence rate of the estimator product is observed for the indicated values668

of ν, however, the pre-asymptotic regime is longer for smaller values of ν. This is to669

be expected, as the hidden constant in (44) depends on the reliability constants for the670

estimators, which in turn depend on ν.671

6. Goal oriented BEM672

In this section, we extend ideas from [21] and prove that our abstract frame of convergence673

and optimality of goal-oriented adaptivity applies also to the BEM.674

6.1. Model problem. Let Γ ⊆ ∂Ω denote some relatively open boundary part of the675

Lipschitz domain Ω ⊂ Rd, d = 2, 3. Given F,Λ ∈ H1(Γ), we aim to compute676

g(u) :=

∫

Γ

Λu ds,(45)677

678

where u solves the weakly-singular integral equation679

Vu(x) :=
∫

Γ

G(x, y)u(y) dy = F (x) almost everywhere on Γ.(46)680

681

Here, G : R2 \ {0} → R denotes the Newton kernel682

G(x, y) :=

{
− 1

2π
log |x− y| for d = 2,

1
4π|x−y|

for d = 3.
683

684

The single-layer operator extends to a linear and continuous operator V : H̃−1/2(Γ) →685

H1/2(Γ), where H1/2(Γ) := {v̂|Γ : v̂ ∈ H1(Ω)} is the trace space of H1(Ω) and H̃−1/2(Γ)686

denotes its dual space; see, e.g., [31, 26, 36] for the functional analytic setting. For d = 3687

as well as supposed that diam(Ω) < 1 for d = 2, the induced bilinear form688

a(u, v) := 〈Vu , v〉 :=
∫

Γ

(Vu)(x)v(x) dx for u, v ∈ X := H̃−1/2(Γ)689

690
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is continuous, symmetric, and H̃−1/2(Γ)-elliptic. In particular, |||v|||2 := a(v, v) defines691

an equivalent norm on H̃−1/2(Γ). The problem fits in the frame of Section 1.2. More692

precisely and according to the Hahn-Banach theorem, (46) is equivalent to (1), where the693

right-hand side of (1) reads f(v) :=
∫
Γ
Fv dx. Moreover, the goal functional from (45)694

satisfies g ∈ H̃−1/2(Γ)∗ = H1/2(Γ), where the integral is understood as the duality pairing695

between H̃−1/2(Γ) and its dual H1/2(Γ).696

6.2. Discretization. Let T⋆ be a regular triangulation of Γ into affine line segments697

for d = 2 resp. flat surface triangles for d = 3. For each element T ∈ T⋆, let γT : Tref → T698

be an affine bijection, where the reference element is Tref = [0, 1] for d = 2 resp. Tref =699

conv{(0, 0), (0, 1), (1, 0)} for d = 3. For some polynomial degree p ≥ 1, define700

X⋆ := Pp(T⋆) := {V⋆ : Γ → R : V⋆ ◦ γT ∈ Pp(Tref) for all T ∈ T⋆},701
702

where Pp(Tref) := {q ∈ L2(Tref) : q is polynomial of degree ≤ p on Tref}. Let U⋆, Z⋆ be703

the unique BEM solutions of (2) resp. (4), i.e.,704

U⋆ ∈ Pp(T⋆) such that a(U⋆, V⋆) = f(V⋆) for all V⋆ ∈ Pp(T⋆),(47a)705

Z⋆ ∈ Pp(T⋆) such that a(V⋆, Z⋆) = g(V⋆) for all V⋆ ∈ Pp(T⋆).(47b)706
707

6.3. Residual error estimator. The residual error estimators from [14] for the708

discrete primal problem (2) and the discrete dual problem (4) read709

ηu,⋆(T )
2 := hT‖∇(VU⋆ − F )‖2L2(T ) and ηz,⋆(T )

2 := hT‖∇(VZ⋆ − Λ)‖2L2(T ).(48)710
711

The error estimators satisfy reliability (6); see, e.g., [14]. The abstract analysis of Sec-712

tion 1.2 thus results in713

|g(u)− g(U⋆)| . ηu,⋆ηz,⋆.(49)714
715

6.4. Verification of axioms. With 2D newest vertex bisection [38] for d = 3 resp.716

the extended 1D bisection from [2] for d = 2, the assumptions of Section 3.2 are satisfied.717

It remains to verify (A1)–(A4), where dlw(Tℓ , T⋆) := |||Wℓ −W⋆||| ≃ ‖Wℓ −W⋆‖H̃−1/2(Γ).718

Theorem 24. The conforming discretization (47) of the model problem of Section 6.1719

with the residual error estimators (48) satisfies (A1)–(A4) for both w ∈ {u, z} with qred =720

2−1/(d−1) and Rw(Tℓ, T⋆) = {T ∈ Tℓ : ∃T ′ ∈ Tℓ\T⋆ T ∩ T ′ 6= ∅}, i.e., refined elements721

plus one additional layer of elements. Therefore, Algorithm A–B are linearly convergent722

with optimal rates in the sense of Theorem 12, 13, and 16 for the upper bound in (49).723

Proof. The assumptions (A1)–(A2) and (A3) are proved in [21, Proposition 4.2, Propo-724

sition 5.3] for the lowest-order case. The general case is proved in [18]. The quasi-725

orthogonality (A4) follows from symmetry of a(·, ·) and (A3); see Remark 8. �726

6.5. Numerical experiment with conforming weight function. Let Ω ⊂ R2 with727

diam(Ω) = 1/
√
2 be the L-shaped domain from Figure 7. On the boundary Γ := ∂Ω,728

consider φ(x) := r2/3 cos(2α/3) for polar coordinates r(x), α(x) with origin (0, 0). Let729

K : H1/2+s(Γ) → H1/2+s(Γ), for all −1/2 ≤ s ≤ 1/2, be the double-layer potential which730

is formally defined as (ny denotes the outer unit normal on Γ at y)731

Kφ(x) := − 1

2π

∫

Γ

(x− y) · ny

|x− y|2 φ(y) dy.732

733

Consider the model problem (46) with734

F := (K + 1/2)φ.735
736
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Figure 7. Example from Section 6.5: Domain Ω with initial triangulation
T0 (left) and primal and dual solution plotted over the arc-length (right),
where s = 1 (resp. s = 0.25) corresponds to the reentrant corner (resp. z0).
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Figure 8. Example from Section 6.5: Estimators and goal error |g(u)−
g(Uℓ)| as output of Algorithm A for θ = 0.5 (left) resp. estimator product
ηu,ℓηz,ℓ for various θ ∈ {0.1, . . . , 0.9} as well as for θ = 1.0, i.e., uniform
refinement (right).

It is known [26, 31, 36] that (46) is equivalent to the Laplace-Dirichlet problem737

∆P = 0 in Ω subject to Dirichlet boundary conditions P = φ on Γ,738
739

and the exact solution of (46) is the normal derivative u = ∂nP of P . The initial mesh740

T0 is shown in Figure 7. As weight function Λ ∈ S1(T0), we consider the hat function741

defined by Λ(z0) = 1 and Λ(z) = 0 for all other nodes z of T0 (the node z0 is indicated in742

Figure 7).743

For the lowest-order case p = 0 and θ = 0.5 in Algorithm A, Figure 8 shows the744

convergence rates of the error estimators ηu, ηz, their product ηuηz, and the error in745

the goal functional |g(u) − g(Uℓ)|. Moreover, we compare the convergence rate of the746

estimator product for different values of θ ∈ {0.1, . . . , 0.9}. For either choice of θ, we747

observe the optimal convergence rate (#Tℓ)
−3/2 for the respective error estimators as well748

as (#Tℓ)
−3 for the error in the goal functional.749
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