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KEY POINTS 

1. The contribution of crayfish bioturbation to monthly and annual suspended sediment loads 

was measured 

2. Biotic entrainment was important at baseflow but floods dominated the annual yield 

3. Energy from life contributes to sediment fluxes and requires investigation 
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ABSTRACT 

Sediment transport is regarded as an abiotic process driven by geophysical energy, but 

zoogeomorphological activity indicates that biological energy can also fuel sediment movements. It 

is therefore prudent to measure the contribution that biota make to sediment transport, but 

comparisons of abiotic and biotic sediment flux are rare. For a stream in the UK, the contribution of 

crayfish bioturbation to suspended sediment flux was compared with the amount of sediment 

moved by hydraulic forcing. During baseflow periods, biotic fluxes can be isolated because 

nocturnal crayfish activity drives diel turbidity cycles, such that night-time increases above day-

time lows are attributable to sediment suspension by crayfish. On average, crayfish bioturbation 

contributed at least 36% (430 kg) to monthly baseflow suspended sediment loads; this biotic 

surcharge added between 4.7 and 13.54 t (0.19 to 0.55 t km-2 yr-1) to the annual sediment yield. As 

anticipated, most sediment was moved by hydraulic forcing during floods and the biotic 

contribution from baseflow periods represented between 0.43 and 1.24% of the annual load. 

Crayfish activity is nonetheless an important impact during baseflow periods and the measured 

annual contribution may be a conservative estimate because of unusually prolonged flooding during 

the measurement period. In addition to direct sediment entrainment by bioturbation, crayfish 

burrowing supplies sediment to the channel for mobilization during floods so that the total biotic 

effect of crayfish is potentially greater than documented in this study. These results suggest that in 

rivers, during baseflow periods, bioturbation can entrain significant quantities of fine sediment into 

suspension with implications for the aquatic ecosystem and baseflow sediment fluxes. Energy from 

life rather than from elevation can make significant contributions to sediment fluxes.  

 

Keywords: zoogeomorphology, ecogeomorphology, signal crayfish, diel bioturbation, suspended 

sediment 
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INTRODUCTION 

Animals play a significant role in geomorphological systems [Viles, 1988; Butler, 1995; Butler and 

Sawyer, 2012; Johnson and Rice, 2014; Holtmeier, 2015; Albertson and Allen, 2015] often via 

complex ecogeomorphological feedbacks [Naiman et al., 2000; Hall and Lamont, 2003; Wheaton et 

al., 2011; Beschta and Ripple, 2012] that have implications for the responsible organisms and the 

wider ecosystem [ecosystem engineering: Jones et al., 1994; Wright and Jones, 2006; Moore, 2006; 

Jones, 2012]. Despite increasing recognition of zoogeomorphological activity there is a pervasive 

but untested assumption that the impact of animals on sediment flux is minor relative to geophysical 

forcing. Sediment transport continues to be predominantly regarded as an abiotic process driven by 

the conversion of potential energy derived from relief to kinetic energy across elevation gradients. 

With only a few exceptions in fluvial geomorphology [Tashiro and Tsujimoto, 2006; Albertson et 

al., 2014] and rare occurrences in other domains [Borsje et al., 2008], sediment transport 

formulations do not recognize animal activity or the potential contributions of biological energy. In 

the absence of clear supporting evidence it is prudent to test this orthodoxy by investigating what 

relative contribution fauna make to the movement of sediment at the Earth’s surface. A recent 

report from the U.S. National Academy of Sciences [NRC, 2009] pointed out the need for such 

research, given that purely abiotic models are often insufficient to predict geophysical processes. 

Comparisons between biological and geophysical contributions to sediment transport can be made 

using the mass transfer rate or the energy expended to accomplish that transport. Phillips [2009] 

estimated the contribution of biological energy to landscape evolution at global and regional scales. 

Net primary production was compared with potential energy derived from elevation differences 

across terrestrial landscapes and showed that the contribution to geomorphological work  from 

biotic energy  almost certainly exceeds that from geophysical sources. However, this is the only 

study of its kind and the refined analysis that Phillips [2009] invited, which amongst other 

improvements would seek to establish the proportion of biological energy that is 
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geomorphologically relevant and the proportion of geophysical energy that accomplishes 

geomorphological change, has not yet been developed. Direct attempts to compare biotic and 

abiotic contributions to sediment transport are equally rare. Many studies have extrapolated local in-

situ measurements to make inferences about the magnitude of zoogeomorphic sediment transfers, 

including for earthworms [e.g. Darwin, 1881; Jouquet et al., 2010], marine macrozoobenthos [e.g. 

Davison, 1891; de Backer et al., 2011], beavers [e.g. Butler and Malanson, 2005; Visscher et al., 

2014], and fossorial mammals [e.g. Hall et al., 1999; Eriksson & Eldridge 2014]. Other studies 

have bench-marked biotic impacts on sediment flux, relative to abiotic controls, in ex-situ [e.g. 

Statzner et al., 1999; Pledger et al., 2014] and in situ field experiments [e.g. Moore et al., 2004]. 

However, very few studies have isolated and compared faunal and geophysical fluxes in the field at 

spatial and temporal scales sufficient to provide a robust perspective on their relative importance. 

The only example we are aware of is Hassan et al.’s [2008] comparison of the cumulative bed load 

transport accomplished by geophysical forcing (flood events) and biological activity  (salmonid 

spawning) in the interior of British Columbia, Canada, which found that bed material displacements 

caused by spawning can dominate bed load transport in small mountain catchments.  

In this paper we quantify the contribution of crayfish bioturbation to the suspended sediment load in 

a lowland river in the UK and compare this biotic flux with the amount of sediment moved by 

hydraulic forcing. Numerous studies have demonstrated that bioturbation by fish, crustaceans and 

macroinvertebrates affects the retention, hyporheic movement and interstitial storage of fine river 

bed sediments [Flecker, 1997; Power, 1990; Zanetell and Peckarsky, 1996; Statzner et al., 1996; 

Pringle and Hamazaki, 1998; Mermillod-Blondin, 2003; Usio and Townsend, 2004; Helms and 

Creed, 2005; Fortino, 2006; Cross et al., 2008; Statzner and Sanges, 2008; Nogaro et al., 2009]. 

However, there are no published measurements of the suspended sediment flux caused by 

bioturbation in rivers or any evaluation of the magnitude of this biotic effect relative to 

hydraulically-driven sediment entrainment. Herein, bioturbation refers to the direct entrainment of 

fine sediment into the water column by the expenditure of energy by crayfish. Relevant activities 
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include the construction and maintenance of burrows, foraging for food on the river bed and 

fighting with or maneuvering away from other crayfish during resource conflicts. In addition to 

directly entraining sediment, burrowing by crayfish also recruits new sediment to the river system 

because excavated bank materials are transferred to the river bed where they are available for 

subsequent transport. Where burrow densities are high, bank integrity may be lost, accelerating 

mass failure and the recruitment of more sediment. This paper does not consider these recruitment 

aspects of burrowing, which may be substantial, and is focused solely on bioturbation. 

Rice et al. [2014] used a four-week dataset from the Brampton Branch of the River Nene, UK to 

demonstrate how bioturbation fluxes might be isolated from those driven by hydraulics. Numerous 

studies in UK rivers have demonstrated that the invasive signal crayfish, Pacifasticus leniusculus 

(Dana) is predominantly nocturnal [Guan and Wiles, 1998; Bubb et al., 2002]; for example, on the 

River Bain, Lincolnshire, only 6% of crayfish movements between July and November 2009 

occurred during daylight hours [Johnson et al., 2014]. It is therefore reasonable to assume that any 

bioturbation impact on sediment flux would predominantly occur at night, with negligible daytime 

contributions. Monitoring on the Brampton Branch revealed increases in night-time turbidity and, in 

the absence of any hydraulic cause, it was argued that the most likely cause was bioturbation by the 

nocturnal activities of signal crayfish, which have infested this river. It was then possible to 

estimate the contribution of bioturbation to the total sediment load by comparing daytime with 

night-time sediment fluxes, which for the month in question amounted to 47% of the yield between 

floods and 20% of the yield when flood events were included. Rice et al.’s [2014] argument for a 

causal link between increased night-time bioturbation and nocturnal crayfish activity was based on 

several lines of evidence: (1) mesocosm experiments [Harvey et al., 2014] confirming an earlier 

suggestion [Harvey et al., 2011] that nocturnal burrowing by signal crayfish increases turbidity at 

night; (2) aquarium experiments showing that a variety of crayfish activities including walking, tail-

flipping and fighting increase turbidity [Rice et al., 2014]; and (3) the lack of a credible hydraulic 

explanation for the diel turbidity pattern. In addition, previous investigations of similar diel 
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turbidity in streams favour bioturbation as the most likely explanation [Gillain, 2005; Richardson et 

al., 2009; Loperfido et al., 2010] or, at least, a potential explanation [Williams et al., 2011]. While 

this set of arguments is robust, direct field evidence linking crayfish activity to increased turbidity 

was not collected. Moreover, the single month of sediment flux data cannot be assumed 

representative of the annual bioturbation effect because of anticipated seasonal variations in 

crayfish activity and flood forcing. 

Using data from a different location on the Brampton Branch, we advance the initial analysis of 

Rice et al. [2014] in two important ways. First, we examine field evidence linking daily variations 

in crayfish activity to diel turbidity cycles over a four-month period, which strengthens the 

argument that nocturnal increases in bioturbation drive diel turbidity. Second,  we use a sediment 

flux record extending over 12 months to quantitatively compare the suspended sediment mobilized 

by bioturbation with that mobilized by hydraulic forcing and establish the relative contribution of 

each to monthly and annual sediment loads. 

During floods, crayfish may be responsible for a proportion of the sediment that is mobilised via 

their sediment recruitment role, but we anticipate direct entrainment by bioturbation to be a factor 

that affects fine sediment fluxes predominantly during baseflow, rather than during floods. This is 

based on two arguments. First, in our pilot work [Rice et al., 2014] individual floods moved 

substantially larger quantities of sediment than the typical night-time increase in suspended 

sediment flux that we associated with crayfish activity. This was because floods sustained higher 

average suspended sediment concentrations (100s mg l-1 vs 10s mg l-1) for longer periods (days vs 

hours).  Second, crayfish activity generally declines as water depth increases [Johnson et al. 2014], 

so it is reasonable to assume that the potential for crayfish to cause sediment suspension is 

diminished during floods. Because floods are likely to dominate total sediment flux, we therefore 

expect that direct entrainment will have a relatively small impact on annual sediment flux, but  an 

important impact during baseflow periods. 
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2. METHODS 

2.1 Field Site 

The Brampton Branch is a headwater tributary of the River Nene, Northamptonshire, UK. It drains 

approximately 233 km2 of small, rolling hills and well-developed floodplains across a total relief of 

147 m. Dominant land uses according to the UK Land Cover Map 2000 [Fuller et al., 2002] are 

arable farming (54%) and grassland (28%), some of which supports sheep and cattle grazing. Close 

to the catchment outlet, mean flow is 1.15 m3 s-1, Q10 (90th percentile) flow is 2.35 m3 s-1 and Q1 is 

approximately 10 m3 s-1 (St Andrews gauging station, Ordnance Survey grid reference SP749613). 

Catchment geology is dominated by Jurassic mudstones and siltstones. Monitoring focused on a 

headwater reach approximately 100 m in length near the village of Hanging Houghton (SP742741; 

Figure 1) where catchment area is 24.5 km2. The land use in this part of the catchment is 

predominantly arable farming and mixed woodland and there were no grazing stock along the river, 

upstream of the study site. The channel has a pool-riffle structure, is between 2 and 4 m wide and 

has an average bed slope of 0.0023. The subsurface bed material (based on pooling eight individual 

McNeil samples [McNeil and Ahnell, 1964]) has a weakly bimodal grain size distribution with: D16 

= 0.5 mm, D50 = 6.5 mm, D84 = 32.3 mm and 32% by mass finer than 2 mm. Wolman sampling of 

the surface bed material [Wolman, 1954] yielded a log-normal grain size distribution with: D16 = 

6.6 mm, D50 = 20.1 mm, D84 = 41.8 mm and 14.9% by count finer than 4 mm. 

Invasive signal crayfish (P leniusculus) are the primary zoogeomorphic agent in the study river. 

This species is a large (10-15 cm long) and aggressive decapod crustacean that is now widespread 

and abundant following successful colonization of streams and rivers across the UK and 26 other 

European territories [Souty-Grosset et al., 2006; Holdich et al., 2014; James et al., 2014]. The role 

of these animals as agents of sediment recruitment [Guan, 1994; Harvey et al., 2014], bed 

destabilization [Johnson et al. 2011] and bioturbation [e.g. Usio and Townsend, 2004; Creed and 

Reed, 2004] is reviewed in Harvey et al., [2011]. Benthic macroinvertebrate sampling at four sites 

on the Brampton Branch has been completed twice each year since 1985 by the Environment 
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Agency of England. P. leniusculus were first recorded in these surveys in1995 at the site closest to 

the field site. A small population of indigenous white-clawed crayfish, Austropotamobius pallipes 

(Lereboulle, 1858) were present until the early 1990s but  they were expunged following signal 

invasion. Signal crayfish are difficult to detect using routine sampling protocols [Hiley, 2003; Peay, 

2003] so their presence in these samples indicates an abundant and well-established population, 

almost certainly at a density exceeding 1.0 m-2. Because of the sampling difficulties, density is often 

represented by catch per unit effort (CPUE) metrics, which are useful for defining relative 

abundances and have been shown to correlate well with other measures [Dorn et al., 2005]. 

Trapping estimates along the Brampton Branch in 2013 and 2014 revealed abundances of 3.3 to 9.6 

adults per trap day.  

2.2 Crayfish activity and turbidity 

Crayfish activity levels were monitored and related to local variations in turbidity over a four month 

period from 1 June to 30 September 2013. Activity was monitored by tracking individual animals 

using Passive Integrated Transponder (PIT) tags (12 mm long, 2 mm wide) that were attached to the 

cephalothorax of locally-trapped adults using Cyanoacrylate.  In April 2013, along a 20 m section 

of the study reach, 16 circular antennae (0.25 m diameter) were buried equidistantly, just beneath 

the bed surface close to a bank with abundant crayfish burrows. Antennae were connected to a 

multi-point decoder that logged the time whenever a tagged crayfish moved over or within 20 mm 

of an antenna. By late May, after several mobile bed events, we judged that the bed had recovered 

from installation and the number of tagged crayfish was maintained at approximately 7 until the end 

of September. Because crayfish periodically left the reach, we replenished numbers of tagged 

crayfish every month, tagging a total of 50 individuals over the monitoring period. Activity was 

measured as the total number of movements recorded by all antennae in each hour. This does not 

represent all crayfish journeys in the study section because crayfish could pass between the 

antennae without triggering a record and because it was only feasible to tag a fraction of the 
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resident population. However, there is no reason to assume any temporal bias in these unrecorded 

movements, so the time series provides a consistent measure of crayfish activity. In the center of the 

antennae array a YSI sensor, located approximately 0.15 m from the bed, recorded turbidity at 30-

minute intervals. These measurements were averaged over the same one-hour periods as those used 

to quantify crayfish movements. 

Eight consecutive days in September when turbidity measurements were affected by debris build-up 

were removed from the time series. The resulting set of hourly measurements were analyzed in two 

ways. First, time series were examined to identify dominant periodicities by calculating the 

periodograms of the movement and turbidity data. A periodogram is a graphical representation of 

the discrete Fourier transform that estimates the relative importance (power) of all possible 

frequencies, thereby identifying dominant periodicities in a complex time series. Second, for the 24 

hourly measurements in each calendar day, rank correlation analysis was used to examine the 

association between local turbidity and crayfish activity.   

2.3 Sediment flux estimation 

Suspended sediment flux Qs (mg s-1) was estimated as the product of suspended sediment 

concentration C (mg l-1) and discharge Q (l s-1) at the downstream end of the study reach for each 5-

minute period between 19 July 2013 and 18 July 2014. C was estimated from a high-resolution time 

series of turbidity (T, NTU) measurements, using an empirical rating between the sediment 

concentration in collected water samples and concurrent turbidity measurements. T was measured 

along with water depth Y (m) at five-minute intervals using a Measurement Specialities, Eureka 2 

Manta sonde fitted with a self-wiping turbidity sensor (ISO 7027; 0 to 3000 NTU, quoted error 

±1 %) and a vented pressure transducer (0-10 m, quoted error ±0.03 %). The sonde was mounted 

horizontally, 0.1 m above the bed with the sensors 0.3 m from the left bank. During the 365-day 

study period, measurement or data recording problems were rare, and affected only 6.7 days (1.8%).  
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The performance of the turbidity sensor was tested to ensure that its measurements were not 

adversely affected by local environmental conditions. In particular, it was important to demonstrate 

that any daily fluctuations in stream turbidity were not associated with daily variations in incident 

radiation and temperature. Incident light is a specific concern because the ISO 7027 standard is 

based on measuring the scatter of an emitted light pulse, in this case at an infrared wavelength, and 

measurements can be corrupted by incident infrared in shallow water. In August 2014, a second, 

identical sonde was installed immediately adjacent to the main sensor, but was placed inside a 

rectangular Perspex container (internal dimensions 0.13m wide x 0.75m long x 0.40m high) fixed to 

the river bed, watertight at the base and around the sides, but without an upper surface. This sonde 

experienced the same daily fluctuations in temperature and light, but was filled with clean tap water. 

In the absence of any temperature or incident light effect, it was anticipated that the boxed 

instrument would record constant low turbidity in contrast to a varying signal from the stream.   

Water samples for the determination of sediment concentration were obtained using an ISCO 3700 

automated water sampler fitted with a stage-activated trigger that drew water from an inlet hose 

located immediately adjacent to the turbidity sensor. A total of 174, 700ml samples were collected 

during six storm events and by periodic sampling over 12 days on several occasions. To extend the 

range of this calibration data an additional 16 samples were obtained while the bed 5-10m upstream 

of the intake was artificially disturbed. This was achieved by lightly scuffing the bed surface with a 

booted foot.  Disturbance generated clouds of suspended sediment that had mixed through the water 

depth upon reaching the intake, at which point a water sample was collected and turbidity 

measurements made. The single point measurements of T and C were assumed representative of the 

average cross-section values based on the small size of the stream and our visual observations of 

excellent mixing across a range of flows. Samples were filtered using Whatman 0.7 µm glass 

microfiber filters and loss on ignition was used to determine total organic and mineral mass. Bilotta 

and Brazier [2008], amongst others, have highlighted the need to be cautious when using 

continuous turbidity measurements as a surrogate of suspended sediment concentration because 
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turbidity measurements are sensitive to the characteristics of suspended mineral grains and the 

presence of other suspended materials, including organic detritus. The average organic component 

in our samples was 18.6% (standard deviation = 4.4%) so the majority of the suspended material 

affecting measured turbidity was mineral and C was calculated using only the mineral mass.  A site-

specific calibration was constructed using a LOESS model that best described the non-linear 

relation between T and C (Figure 2). This model was used to estimate C for all values of T in the 

annual time series. 

Discharge was measured using the velocity-area method [Herschy, 1993] on seven occasions at a 

cross section two metres upstream of the sonde. Velocity measurements were made with a Valeport 

electromagnetic current meter. The correlation between Q and water depth, Y is significant (p < 

0.001) and a power model with R2 = 0.93 was fitted using least squares linear regression: Q = 0.78 

Y 1.17. This model was then used to estimate discharge for the time series of Y. Discharge measured 

at an Environment Agency gauge located at Brixworth approximately 3.9 km downstream of the 

monitoring site (SP737708) provides a means of evaluating the quality of the derived time series 

from Hanging Houghton. The time series are closely matched and cross-correlation yields a peak 

value of 0.97 at a lag of 1.5 hours, which is consistent with the distance and average water velocity 

between the two sites. Moreover, at this lag, the discharge measured at the gauge is, on average, 2.4 

times larger than at Hanging Houghton, which is consistent with a 2.4 times increase in drainage 

area between the two sites. We conclude that the estimated discharges are reliable and they were 

used with the corresponding estimates of C to calculate sediment fluxes Qst (mg s-1) for each five-

minute interval. For a desired time period, suspended sediment load G (kg) was calculated as: 

𝐺𝐺 = 106 ∙ (∑ ∆ ∙ 𝑄𝑄𝑄𝑄𝑡𝑡𝑛𝑛
𝑡𝑡=0 )      [1] 

where ∆ is measurement interval = 300 s and n is the number of intervals in the period of interest. 

2.4 Isolation of abiotic and biotic components of sediment load 
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For the purposes of analysis, it is useful to consider 

𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐺𝐺𝑏𝑏𝑏𝑏 + 𝐺𝐺𝑏𝑏𝑡𝑡      [2] 

in which the subscripts refer to the total, baseflow and flood sediment yields, respectively. Flood 

and baseflow periods were identified from stage data; baseflow as periods of steady, low, customary 

discharge and flood flows by unsteady, higher, discharges with clear rising and falling limbs 

associated with storm-flow runoff. Separate calculations of Gbf and Gfl were completed using 

equation 1.  

During baseflow periods there is a strong potential for crayfish impact and Gbf was decomposed 

into abiotic (GbfA) and biotic (GbfB) components: 

𝐺𝐺𝑏𝑏𝑏𝑏 = 𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏     [3] 

The two components were isolated by assuming that, in the absence of crayfish bioturbation, 

turbidity would reach a maximum abiotic value TA (NTU), which was lower than the bioturbation-

enhanced daily average. Time series of TA were constructed according to the criteria described 

below and used in the LOESS model to derive QsA and thus sediment load in the absence of 

bioturbation, GbfA. The estimated biotic component, GbfB was calculated as the difference Gbf - GbfA. 

The key uncertainty in this method is the value of TA and two values that bracket a reasonable range 

of likely values were therefore used to provide maximum and minimum estimates of GbfB: (a) Tmin 

equal to the minimum measured value of T on each day; and (b) T0 = 0 NTU, equivalent to clear-

water flows. Tmin represents an empirical estimate of the turbidity in the absence of bioturbation; 

that is ambient baseflow sediment suspension. However, these values may be elevated by the 

residual effects of the previous night’s bioturbation, in which case Tmin yields a liberal estimate of 

the abiotic effect and a minimum estimate of the biotic load GbfB. In the absence of bioturbation, it 

is feasible that turbidity would approach zero, the limiting case, such that (b) represents a minimum 

estimate of the abiotic effect and provides a maximum theoretical estimate of GbfB. 
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In contrast to the treatment of baseflow periods, no attempt was made to partition total flood load 

Gfl into biotic and abiotic components because, as explained above, we do not anticipate a 

substantial crayfish impact on direct entrainment during flood events and assume it is negligible. 

 

3. RESULTS AND INTERPRETATION 

3.1 Turbidity sensor performance  

Turbidity measurements were not affected by incident light or ambient temperature cycles. As 

expected, the turbidity time series from the sensor in clean water inside the Perspex box did not 

show any fluctuations in turbidity, whereas the sensor located in the stream recorded the anticipated 

diel pattern (Figure 3). Because they were co-located, they experienced the same light conditions 

between day and night and the same degree of shading during daylight hours. Water temperature 

measurements inside and outside the box confirmed that water temperature fluctuations were the 

same. This result demonstrated that the stream sensors recorded real, unadulterated turbidity 

variations. 

3.2 Crayfish activity and local turbidity 

Periodograms for time-series of turbidity and crayfish movement both exhibit peaks in power at a 

period of 1 day (Figure 4a, b). Thirteen flood days were removed from these analyses because their 

random temporal distribution added uninteresting low-frequency noise to the turbidity plot. There is 

a strong temporal association between the two series, with night-time turbidity peaks coincident 

with nocturnal increases in crayfish activity (Figure 4c).  

Spearman rank correlation coefficients for hourly turbidity and crayfish movements were calculated 

for each 24-hour period during baseflow conditions (90 days in total). Thirteen flood days were 

removed to exclude hydraulic forcing as a confounding factor. The coefficients are predominantly 

positive (Figure 4d) and 46 of 48 significant correlations (p < 0.10) are positive, indicating that 
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increased activity was typically associated with increased turbidity. Individual insignificant, 

coefficients (p > 0.10) indicate that sampling chance cannot reasonably be ignored as a possible 

explanation, but the preponderance of positive values is collectively instructive, because in the 

absence of any association between activity and turbidity one would anticipate an even distribution 

of insignificant values about zero, which is not the case here. There is a general weakening of the 

relation between increased activity and increased turbidity between late August and mid-September, 

corresponding with the crayfish mating season, when activity levels increased and became less 

strongly nocturnal.  

These are the first concurrent field measurements of crayfish activity and turbidity. The strong 

temporal association between the two time series provides new evidence, to add to that reviewed in 

the introduction, which supports the argument that crayfish can drive diel turbidity in infested 

streams [Rice et al., 2014; Harvey et al., 2014]. The correlation analysis (Figure 4d) adds further 

weight to this conclusion, because it yields evidence of a generally positive association between 

activity and turbidity on an hourly basis. However, the presence of numerous days when the 

correlation was insignificant and the fact that the magnitude (rather than timing) of peaks in the 

time series are not strongly associated, indicates that this relation is not straightforward. We think 

this reflects, at least in part, imperfections in our measurements of both turbidity and activity: the 

former because a single turbidity sensor was monitoring a 20m channel length and may easily have 

missed some crayfish-related entrainment events; and the latter because not all active crayfish were 

tagged.  

3.3 Analysis of turbidity time series 

Extended periods of high flow dominated the hydrograph between October 2013 and February 2014 

(Figure 5). Periods of baseflow, when crayfish bioturbation might be expected to have directly 

affected suspended sediment flux, mainly occurred in the spring and summer months and 

constituted 57% of the study period. Diel variations in turbidity, with higher night time values, are 

characteristic of these low-flow periods (Figure 5). 
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For 20 out of 23 low-flow turbidity time series that lasted more than two days, periodograms have a 

dominant peak at 1-day (Figure 6), confirming the prevalence of a diel pattern. The three time series 

that do not show this peak (one in October 2013 and two in May 2014) have a secondary peak at 1 

day. The strength of the diel variation weakened in the winter months when water temperatures 

were relatively low and flow depths were relatively high (Figure 7). Crayfish are generally less 

active during the winter and this decline in activity has previously been associated with lower water 

temperatures and higher flows [Bubb et al., 2004; Johnson et al., 2014]. Weakening of the diel 

variation during the winter months is therefore consistent with the argument that crayfish 

bioturbation is responsible for the diel cycle. 

In addition, there is no plausible hydraulic explanation for the observed diel patterns. Variations in 

water depth are small during the baseflow periods (on the order of 0.10 m) and diel turbidity is 

present even though the corresponding depth trace is flat or declining slowly, in which case the diel 

pattern may be superimposed on a declining flood-driven turbidity trend (Figure 5). For example, 

during the low flow period in March 2014, when water depth steadily declined at a rate of 

approximately 0.006 m day-1, a clear diel turbidity trend persisted without any significant decline 

over the same period (Figure 8a). Because stage change is a useful index of change in hydraulic 

parameters relevant to sediment entrainment (bed shear stress, shear velocity, turbulence intensity), 

the independence of diel turbidity suggests that hydraulic forcing was not responsible for the diel 

turbidity cycle.  

In ten baseflow periods during the summer months, from mid-June to mid-September, depth 

variations showed a weak daily fluctuation, with depth decreasing by between 0.005 and 0.010 m 

between mid-afternoon and midnight (e.g. Figure 8b). It is likely that these fluctuations reflect 

summertime variations in evapotranspiration during periods of soil moisture deficit [Burt, 1979; 

Bond et al., 2002, Gribovski et al., 2010]. Whatever their cause, there is no evidence linking them to 

the diel turbidity pattern. If depth variations were responsible for the turbidity signal, a positive 
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correlation would be expected between water depth and turbidity, but no associations were evident: 

taking the ten-day period in June 2014 (Figure 8b) as an example, there is no correlation at lag = 0 

for either the 5-minute data (Pearson correlation coefficient R = 0.03, p = 0.11, n = 2808) or for the 

time series of 1-hour averages (R = 0.07, p = 0.29, n = 234). A weak, but significant, correlation at a 

lag of approximately 13 hours in the smoothed time series (R = 0.23, p = 0.00065, n = 234) 

highlights the phase shift between the depth and turbidity signals, but there is no straightforward 

physical explanation for this shift, which is therefore interpreted as further evidence of the 

independence of the depth and turbidity. 

To summarize, during baseflow periods turbidity varied on a diel cycle and we believe this reflected 

nocturnal increases in crayfish bioturbation, because: (1) there is no adequate hydraulic explanation 

to account for the turbidity pattern (Figure 8, Figure 5); (2) PIT tag data reveal a strong temporal 

association between crayfish activity levels and turbidity (Figures 4 and 5); and (3) the strength of 

the diel turbidity signal weakens at those times of year when crayfish are expected to be less active 

(Figure 7).  It is therefore reasonable to apply the technique proposed above (equations 1 to 3) in 

order to establish biotic and abiotic components of the sediment flux.   

3.4 Biotic and abiotic contributions to suspended sediment load 

Biotic and abiotic contributions to baseflow suspended sediment load (Gbf) and total suspended 

sediment load (G) are illustrated in Figure 9. Results are presented for the 11 whole months during 

the study period and, in Table 1, for the annual total load (19 July 2013 to 18 July 2014) as well.  

Liberal estimates (using T0 to calculate GbfA) suggest that crayfish added as much as 13538.3 kg to 

the annual sediment flux during baseflow periods. Even conservative estimates (using Tmin in 

calculations of GbfA) found that biotic contributions were present during all baseflow periods and 

collectively contributed at least 34.4% (4650.7 kg) to the annual baseflow load Gbf. Minimum 

estimates of the monthly, baseflow bioturbation component GbfB (using Tmin in calculations of GbfA) 

ranged between 126.1 and 1142.7 kg with a mean of 430.3 kg; equivalent to percentage 
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contributions of 19.4 to 45.9% with a mean of 35.6% (standard error, SE = 2.6%; Figure 9a). 

Maximum estimates of GbfB (using T0 to calculate GbfA) ranged between 403.0 and 3101.6 kg with a 

mean of 1257.7 kg, equivalent to biotic contributions of 100%.  

Almost all (98.8%) of the total annual suspended sediment load (109.1 t), moved during floods. 

When flood flows are included in the component estimates, the annual bioturbation contribution 

shrinks to a minimum value of 0.43% (using Tmin in calculations of GbfA) and a maximum value of 

1.24% (using T0 to calculate GbfA). The monthly figures are highly variable, mainly as a function of 

the number of flood days per month (Figure 9b). Minimum estimates of the monthly biotic 

contribution range from 0 to 27% with a mean of 7.2 (SE = 3.1%) and maximum estimates range 

from 0 to 71.8%, with a mean of 17.9% (SE = 7.7%). In months when floods were rare and total 

sediment load was therefore low, the estimated bioturbation contribution was relatively high. For 

example, in April 2014, the bioturbation component is estimated to be between 25.9 and 71.8% of 

the monthly total, depending on the value used for GbfA. In contrast, in months where flooding 

dominated, as in January 2014 when there were no days of baseflow, the biotic contribution was 

estimated as 0%. 

4. DISCUSSION 

On average, crayfish bioturbation directly added a minimum of 430 kg month-1 and a maximum of 

1258 kg month-1 to the baseflow sediment flux at Hanging Houghton. The minimum estimate is 

equivalent to 36% of monthly baseflow sediment yield, which means that during baseflow periods 

crayfish directly mobilized at least 56% more suspended sediment than would have moved in their 

absence. The largest monthly contribution occurred in March 2014 (minimum estimate 1143 kg and 

maximum estimate 3103 kg) and the annual cumulative surcharge was between at least 4.7 t and 

may have been as high as 13.5 t. These data demonstrate that during baseflow periods, bioturbation 

entrains significant quantities of sediment into suspension.  
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Between July 2013 and July 2014, the direct contribution of crayfish bioturbation to the total annual 

sediment flux was small (0.43 to 1.24%), which reflects the dominant effect of flood flows in 

transporting fine sediment. This might be interpreted as indicating that the biotic contribution to 

total sediment flux is geomorphologically inconsequential, but two arguments suggest that such a 

conclusion would be premature. First, during the winter of 2013-14 large areas of the UK, including 

the Nene catchment, experienced exceptionally high rainfall, groundwater levels and runoff, with 

sustained, above-average discharge from December to February [Huntingford et al., 2014] and the 

most sever storminess for 143 years [Matthews et al., 2014]. It is possible that unusually high flows 

during the measurement period elevated the 2013-14 abiotic contribution and depressed estimates of 

the baseflow bioturbation effect relative to the long term average. UK Met Office data for the 

Midlands Region show that 2013-2014 winter rainfall was second highest on record (since 1910) 

and that spring 2014 rainfall was in the upper quartile. Data from the St Andrews gauge reveal that 

between 1 August 2013 and 31 July 2014, cumulative water yield was the eleventh highest in the 

68-year record. There is no reliable means of evaluating whether these wet conditions depressed 

biotic effects, but a first-order proxy for the biotic contribution is the number of non-flood days. 

Using peaks over threshold (POT = 9.95 m3 s-1) at the St Andrews gauge as an index of total flood 

days, it is clear that nine POT events in 2013-14 was unusual: only three August to July periods in 

73 years recorded more than this and the average was 3.7 events yr-1. It therefore is reasonable to 

hypothesize that the biotic contribution measured in 2013-14 sits at the lower end of the likely range 

of annual values. 

Second, in addition to their mobilization of fine bed sediments via bioturbation, signal crayfish have 

another impact on fluvial fine sediment dynamics that has not been considered here: the recruitment 

of large quantities of mobile fine sediment into the river system as a result of burrow construction 

[Harvey et al., 2011, Harvey et al., 2014]. While burrowing activities lead to the direct entrainment 

of some fines, burrowing also contributes to the mass of available sediment that is stored on or in 

the river bed and that is subsequently available for transport during high flows. Recent 
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measurements by us at 13 sites on six rivers in Central England demonstrate that burrow 

construction contributes 0.25 to 0.50 t km-1 a-1 to infested rivers. In addition, because burrows can 

reach very high densities (up to 14 m-1; Holdich et al., 2014], can extend more than 1 metre into the 

bank and often become interconnected, river banks can be undermined, reducing their integrity and 

leading to collapse [Guan 1994; Arce and Dieguez-Uribeondo, 2015]. This accelerated bank erosion 

contributes further sediment to the river system. It is reasonable to propose that crayfish activity on 

the Brampton Branch is responsible for a large proportion of the total sediment yield not accounted 

for by bioturbation; that is, it is likely that a substantial proportion of the sediment that was moved 

by the main floods (approximately 847 t between December 2013 and February 2014) was available 

for transport because of long term crayfish infestation. Confirmation of this hypothesis requires 

measurements of the volume of sediment displaced by crayfish burrowing and longer-term 

estimates of associated bank failure volumes. 

It is appropriate to consider the representativeness and broader relevance of the estimates we have 

made of biotic contributions to fluvial sediment flux. Many locations across Great Britain have 

established populations of signal crayfish [James et al., 2014] and show evidence of physical 

impacts (e.g. burrowing), but the measurements made at Hanging Houghton have not yet been 

repeated at other invaded sites. Recalling that estimates for the Brampton Branch are between 3.3 to 

9.6 adults per trap day, equivalent figures for other UK rivers are between 4.0 and 8.5 adults per 

trap day [Peay et al., 2009; Moorhouse et al., 2011], with one additional UK river study finding 9 to 

28 adults per trap day [Guan, 2000]. Elsewhere in Europe, where signals have invaded rivers, 

typical CPUE ranges are 4 to 6 adults per trap day [e.g. Hudina et al., 2009; Wutz et al., 2013]. 

Therefore, the density of crayfish and burrows at Hanging Houghton is not exceptional, and it is 

reasonable to suggest that this site provides a first estimate of crayfish impact that is unlikely to be 

either excessively high or excessively low in comparison with other locations. The spatial extent 

and magnitude of crayfish impacts, probably depend upon a combination of biotic (e.g. population 

density) and abiotic factors (substrate types, in-stream habitat, bank materials and lithology). 
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Investigations of crayfish zoogeomorphology across gradients of these factors would provide a 

fuller picture of their cumulative impact at landscape scales. Similarly, there is a need for longer 

term monitoring to better understand and model the temporal variability of geomorphological 

crayfish impacts [cf. Johnson et al., 2011, their Figure 8b], which in this case is probably controlled 

by variations in the number of active individuals, the intensity of their activity and the duration of 

baseflow periods, which in turn will be influenced by variations in water temperature, seasonal 

demographics and seasonal changes in behavior, for example associated with mating. 

More generally, river bioturbation has received substantially less attention [Mermillod-Blondin, 

2011] than marine bioturbation [e.g. Meadows et al., 2012], and most work has been motivated by 

ecological questions concerning the microbiological, biogeochemical and trophic effects of 

bioturbation at the water-substrate interface [e.g. Chatarpaul, 1980; Stief and de Beer, 2002; 

Nogaro et al., 2008, 2009; Creed et al., 2010; Navel et al., 2011] not by geomorphological 

questions. Consequently, the broad impact of fluvial bioturbation on fluvial sediment transport is 

simply unknown, although the results presented here and other studies highlight the potential for 

substantive cumulative impacts [e.g. Pledger et al., 2014]. 

Looking beyond bioturbation, several recent reviews suggest that other fluvial zoogeomorphic 

processes, including those that alter bed material stability between entrainment events [e.g. Johnson 

et al., 2011], are widespread with potentially significant cumulative impacts on large-scale sediment 

transfer [Rice et al., 2012; Statzner, 2012; Albertson and Allen, 2015]. Considering several 

demonstrations that small, but prolific animals can have a significant impact on Earth surface 

processes [Darwin, 1881 et seq.] it certainly seems reasonable to recommend continued 

investigation of the contribution that fauna make to the movement of sediment across Earth’s 

surface, including in rivers. Such an argument is further supported by Phillips’ [2009] 

demonstration that the biosphere provides an energy subsidy that fuels geomorphological work, by 

growing acceptance that seamless coupling of biotic and abiotic systems properly explains Earth 
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history [Corenblit et al., 2007, 2008; Davies and Gibling, 2010; Steiger & Corenblit, 2012] and by 

the underperformance of many purely geophysical models of Earth surface mass transfer [NRC, 

2009]. 

Finally, and briefly, it is useful to consider the ecological relevance of the impact of signal crayfish 

on fine sediment suspension. During baseflow periods, turbidity typically increased by between 10 

and 20 NTU, from 10 to 20 NTU during the day up to 20 to 40 NTU at night. Even such small 

changes in turbidity, can have a detrimental effect on some ecological processes [Henley et al., 

2000; Bilotta and Brazier, 2008] including reductions in primary productivity [Lloyd et al., 1987] 

changes in the behavior of visually-orientated fish [e.g. Van Landeghem et al., 2011] and increased 

macroinvertebrate drift [e.g. Doeg and Milledge, 1991]. Of specific interest in the context of signal 

crayfish invasion, is the potential impact of fine sediment suspension by P. leniusculus on the 

indigenous white-clawed crayfish, A. pallipes, which has experienced a substantial population 

decline and is now considered to be endangered [Füreder, et al. 2010; Almeida et al., 2014]. The 

competitive advantage of the larger more aggressive P. leniusculus and their resistance to the fungal 

crayfish plague (Aphanomyces astaci) are generally regarded as key reasons for their success at the 

expense of A. pallipes [Dunn, 2009].  However, alterations to suspended sediment concentrations as 

demonstrated here, may facilitate further advantages over native species because Rosewarne et al. 

[2014] have shown that A. pallipes are significantly less tolerant of suspended sediment than signals, 

suffering greater gill fouling, gill damage and reduced aerobic scope across a range of sediment 

concentrations. Therefore, the ecosystem engineering activities of P. leniusculus may have 

contributed to their invasive success.  

 

5. CONCLUSION 

In this paper, a direct comparison of the biotic and abiotic contributions to fluvial suspended 

sediment flux during baseflow periods and to the total annual load was made for a single, small 
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catchment. To our knowledge, this is the first published assessment of bioturbation’s contribution to 

fluvial sediment transport in a field setting and adds to a single previous comparison of biotic and 

abiotic sediment movement of bed material load in rivers affected by salmonid spawning [Hassan et 

al., 2008]. Nocturnal crayfish bioturbation accounted for at least 36% of monthly suspended 

sediment load during baseflow periods or an average surcharge of 430 kg per month (based on data 

from 11 complete calendar months). When flood loads are included, these figures represent an 

average contribution to total monthly loads of at least 7%. Depending on the use of conservative or 

liberal estimates of crayfish impacts on daytime fluxes, crayfish bioturbation contributed between 

4651 and 13538 kg (0.19 to 0.55 t km-2 yr-1) to the annual suspended sediment load. These data 

demonstrate that, at least at some places, at some times, bioturbation effects are not trivial: energy 

from life rather than energy from landscape position can make a significant contribution to sediment 

flux.  

As anticipated, the dominant effect of hydraulic forcing during flood events means that the 

proportionate contribution of crayfish bioturbation to the annual suspended load at Hanging 

Houghton was relatively small in 2013-14 (between 0.43 and 1.24%). However, this range should 

be regarded as a conservative estimate, because it is likely that unusually high flows during the 

study period depressed estimates of the bioturbation effect relative to the norm. Moreover, although 

bioturbation provides a convenient means of evaluating the relative importance of zoogeomorphic 

effects, because it involves a direct link between faunal energy expenditure and sediment flux, 

bioturbation does not capture the complete effect of zoogeomorphic activity. Animals also affect 

fluvial sediment transport indirectly, for example by enhancing or retarding bed mobility [Stazner, 

2012; Rice et al., 2012], which alters entrainment probability under geophysical forcing and, as in 

the case of the crayfish studied here, by augmenting recruitment of new sediment from the 

landscape via burrow construction and bank erosion.  
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Because this work has considered one process (bioturbation) associated with a single species 

(Pacifasticus leniusculus), it assesses the geomorphological impact of only a tiny fraction of biotic 

energy expenditure across the catchment. We have not investigated the role of other plants, animals 

and microorganisms in driving (or retarding) sediment movement in this catchment and the total 

biological contribution to sediment flux, here and more widely, is almost certainly greater. The 

importance of the estimates herein is that they give a clear indication that in an unremarkable stream, 

biotic energy is significant geomorphologically, which suggests that it is prudent to investigate 

other cases and endeavor to establish models for estimating biotic impacts on sediment flux. 
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Table 1. Estimates of biotic and abiotic contributions to base flow and total suspended sediment load 

 

 Baseflow load, Gbf (kg)  Baseflow and flood flow load, G (kg) 
 Biotic load, GbfB 

(kg) 
Abiotic load, GbfA 

(kg) 
Biotic contribution 

(%) 
 Abiotic load, Gfl + GbfA 

(kg) 
Biotic contribution (%) 

     min. max.       min. max.     min. max.  min. max.      min. max. 
July 13 (partial) 130.4 336.3 0.0 205.9 38.8 100.0  6522.6 6728.5 1.9 4.9 
Aug 13 376.9 880.9 0.0 504.0 42.8 100.0  1937.0 2441.0 13.4 31.3 
Sept 13 229.9 638.3 0.0 408.4 36.0 100.0  250.9 659.2 25.9 71.8 
Oct 13 191.1 662.8 0.0 471.7 28.8 100.0  83260.1 83731.9 0.2 0.8 
Nov 13 220.7 483.3 0.0 262.6 45.7 100.0  6262.6 6525.2 3.3 7.2 
Dec 13 126.1 403.0 0.0 276.9 31.3 100.0  232355.4 232632.3 0.1 0.2 
Jan 14        330921.2 330921.2 0.0 0.0 
Feb 14 475.3 2449.4 0.0 1974.0 19.4 100.0  280746.5 282720.6 0.2 0.9 
March 14 1142.7 3101.6 0.0 1959.0 36.8 100.0  76548.9 78507.8 1.4 3.9 
April 14 619.4 1349.5 0.0 730.1 45.9 100.0  947.2 1677.3 27.0 58.8 
May 14 224.7 690.4 0.0 465.7 32.5 100.0  49836.4 50302.1 0.4 1.4 
June 14 696.3 1917.4 0.0 1221.1 36.3 100.0  7169.3 8390.4 7.7 21.1 
July 14 (partial) 217.3 625.4 0.0 408.2 34.7 100.0  977.4 1385.5 13.6 39.0 
            
Whole month avg 430.3 1257.7 0.0 827.4 35.6 100.0  97294.2 98046.3 7.2 17.9 
Whole month SD 315.3 930.7 0.0 659.9 8.1 0.0  123919.3 123951.9 10.4 25.6 
Whole month SE 99.7 294.3 0.0 208.7 2.6 0.0  37363.1 37372.9 3.1 7.7 
Annual total 4650.7 13538.3 0.0 8887.6 34.4 100.0  1077735.6 1086623.2 0.43 1.24 

 

Notes. Whole month averages refer to the 11 months from August 2013 to June 2014. Annual totals in the final row include additional days (to a total 
of 365) in July 2013 and July 2014. Minimum estimates are based on calculating sediment load in the absence of bioturbation GbfA, using either 
conservative (TA = Tmin) or liberal (TA = T0) values for turbidity in the absence of crayfish. 
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FIGURES 

Figure 1. Location of the study site on the Brampton Branch of the River Nene, Northamptonshire, 
UK. 
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Figure 2. LOESS calibration model (smoothing parameter, α = 0.30) based on 190 concurrent 
measurements of turbidity and suspended sediment concentration at the main site, Hanging 
Houghton. 
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Figure 3. The effect of ambient light and water temperature on sensor performance. The solid black 
line is for the main sensor located in the open stream and the blue dashed line is for the instrument 
located adjacent to it, but inside a Perspex box filled with clean water. The initial drop in turbidity 
inside the box represents settlement of foreign material inadvertently included during field 
deployment A flood event on August 26th overtopped the box, filling it with stream water. 
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Figure 4. Periodograms of (a) turbidity and (b) crayfish movements for baseflow periods between 1 
June and 30 September 2013. The peaks in movements and turbidity at 0.5 day are harmonics 
reflecting the non-sinusoidal nature of the daily variation. (c) Temporal association between 
crayfish activity (solid red bars) and turbidity (continuous black line) in July 2013. Gaps correspond 
to high-flow periods and vertical grey lines mark midnight. The two blue bars correspond to two 
flood events. (d) Spearman rank correlation coefficients for the association between hourly 
averaged turbidity and crayfish movements per hour during each 24-hour period, 1 June to 30 
September 2013. Solid circles are significant correlations (α = 0.10). Open circles are insignificant 
correlations. Positive correlations indicate that on a particular day increases in crayfish activity were 
associated with increases in turbidity. Data from flood days and days when the sensor was clogged 
by floating debris are excluded. 
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Figure 5. Turbidity and water depth at the main monitoring site at Hanging Houghton between 1 
August 2013 and 18 July 2014. The first few days of the record (late July 2013) are not shown. Tick 
marks are at midnight, seven days apart. The light grey line is 5-minute turbidity data, the red line is 
1-hr average turbidity and the blue line is 1-hr average water depth. 

 

 

  

0.0

0.4

0.8

1.2

1.6

2.0

1

10

100

1000

10000

01/08/2013 15/08/2013 29/08/2013 12/09/2013 26/09/2013 10/10/2013 24/10/2013 07/11/2013 21/11/2013

W
at

er
 d

ep
th

 (m
)

Tu
rb

id
ity

 (N
TU

)

August - November 2013

0.0

0.4

0.8

1.2

1.6

2.0

1

10

100

1000

10000

01/12/2013 15/12/2013 29/12/2013 12/01/2014 26/01/2014 09/02/2014 23/02/2014 09/03/2014 23/03/2014

W
at

er
 d

ep
th

 (m
)

Tu
rb

id
ity

 (N
TU

)

December 2013 - March 2014

0.0

0.4

0.8

1.2

1.6

2.0

1

10

100

1000

10000

01/04/2014 15/04/2014 29/04/2014 13/05/2014 27/05/2014 10/06/2014 24/06/2014 08/07/2014 22/07/2014

W
at

er
 d

ep
th

 (m
)

Tu
rb

id
ity

 (N
TU

)

April - July 2014



43 
 

Figure 6. Periodograms of turbidity time series during 23 low-flow periods July 2013 to July 2014. 
Data that were more than one standard deviation from the mean were replaced with a local average 
and second order polynomial models were used to remove trends. Power is normalized by the 
maximum value for the respective time series. The main peaks are significant (p<0.01) in all cases. 
The different line styles on individual plots are periodograms for different low-flow periods in the 
labelled month. 
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Figure 7. Differences between night time and day time turbidity during 23 low-flow periods at 
Hanging Houghton, July 2013 to July 2014 (solid black circles). Average night time and day time 
turbidity was calculated for 23:00 to 03:00 and 11:00 to 15:00, respectively, with the offset around 
midnight and noon reflecting asymmetry in observed daily patterns. The two four-hour blocks are 
designed to capture the core periods of crayfish activity and inactivity throughout the study period, 
irrespective of seasonal changes in daylight hours. Positive values indicate higher night time 
averages. Error bars are one standard error. Average water depth (blue triangles) and average stream 
temperature (red, open circles) are also shown for each period. Data points are plotted at the 
approximate midpoint of each period. 
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Figure 8. Examples of depth and turbidity signals for ten-day, low-flow periods in (a) March 2014 
and (b) June 2014. Tick marks and vertical grey lines are at midnight. The light grey line is 5-
minute turbidity data, the red line is 1-hr average turbidity and the blue line is 1-hr average water 
depth. 5-minute depth data is not plotted because variations about the average are too small to 
resolve. 
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Figure 9. Variations in the contribution of crayfish bioturbation to monthly suspended sediment 
loads: (a) baseflow load and (b) total load, incorporating flood contributions. Grey bars are 
minimum estimates and white bars are maximum estimates. (b) also includes the percentage of 
flood days (solid black line and black dots) in each month, accounting for any hours of missing data. 
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