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Abstract 
 
 
The rapid depletion of fossil fuel reserves and concurrent increase in global 

temperatures has resulted in global demand for the production of alternative 

environmentally friendly fuels. First-generation biofuels that utilise cash crops 

for the extraction of fermentable sugars currently exist, but are highly 

controversial due to socioeconomic and environmental reasons such as 

diverting food production or deforestation. Therefore, second-generation 

biofuels that utilise lignocellulosic waste materials are a more attractive 

prospect. In Europe, lignocellulosic biomass wastes such as wheat straw, 

display great potential for the production of alternative energy sources such as 

bioethanol for transportation. Conversion to this biofuel requires 

microorganisms that will effectively utilise the constituent sugars to produce a 

high yield of product. Saccharomyces cerevisiae (S. cerevisiae) strains possess 

the most desirable phenotypes for this objective. However, the components of 

wheat straw are difficult to break down, therefore pretreatment is required. 

Pretreatment methods vary but often utilise various chemicals that produce 

compounds that are inhibitory to yeast. This affects the efficiency of 

fermentations. The focus of this work is on formic acid and a synthetic media 

containing the main inhibitor compounds released during pre-treatment of 

steam exploded wheat straw. Six pair-wise F1 crosses between four distinct 

parental S. cerevisiae clean lineage populations have been generated previously 

by Cubillos et al., 2009. The 96 F1 progeny from each cross have been assayed 

for tolerance phenotypes in order to determine QTLs (Quantitative Trait Loci), 

which will enable us to map genes contributing to the multi-genic trait of 

inhibitor tolerance. Overall, three QTLs were identified for formic acid and 

five QTLs were identified from the synthetic inhibitor mix. Candidate genes 

were selected from the QTL analysis and were tested by performing reciprocal 

hemizygosity assays to determine which genes are responsible for inhibitor 

resistance to enable the development of yeast strains suitable for second-

generation biofuel production. 
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CHAPTER 1 
 

1.1 Introduction 

The rapid depletion of fossil fuel reserves and the concurrent increase in global 

temperatures has resulted in worldwide demand for the production of 

alternative ‘environmentally friendly’ carbon neutral fuels. The combustion of 

fossil fuels have been a net contributor to green house gas accounting for 

approximately 20% of global carbon dioxide emissions in the transportation 

sector (Luque et al., 2008). Considerable efforts and attention has been paid to 

the production of bioethanol from plant biomass as an alternative 

transportation fuel in order to reduce the consumption of petroleum and to 

reduce air pollution (Rubin, 2008; Chu, 2007).  

 

First-generation biofuels that utilise cash crops for the extraction of 

fermentable sugars currently exist, but are highly controversial due to 

socioeconomic and environmental reasons such as diverting food production 

away from local populations or deforestation (Stephanopoulos, 2007). 

Therefore, second-generation biofuels that utilise lignocellulosic waste 

materials are a more attractive prospect (Hill et al., 2006).   

 

In Europe, lignocellulosic biomass wastes such as wheat straw, display great 

potential for the production of alternative energy sources such as bioethanol for 

transportation (Matsushika et al., 2009; Rubin, 2008; Kim and Dale, 2004). 

Conversion to this biofuel requires microorganisms that will effectively utilise 

the constituent sugars to produce a high yield of product (Figure 1.1).  

 

Saccharomyces cerevisiae strains possess the most desirable phenotypes for 

this objective (Argueso, 2009; Matsushika et al., 2009). However, the 

components of wheat straw are difficult to break down, and therefore 

pretreatment is required (Hendriks and Zeeman, 2009; Talebnia et al., 2009). 

Pretreatment methods vary but often utilise various chemicals that produce 

compounds that are inhibitory to the growth of yeast. This affects the 

efficiency of fermentations (Liu, 2011).  

 



 

3 
 

 

 

Figure 1.1: Production of biofuels from lignocellulosic material for 

transportation. Pretreatment methods using chemicals and enzymes break 

down the components of lignocellulosic material for fuel producing organisms 

to access fermentable sugars in order to produce bioethanol (figure from 

Rubin, 2008). 

 

 

1.2 Production of Bioethanol 

Ethanol production today is split into two main types, fermentation ethanol and 

synthetic ethanol. Fermentation ethanol (bioethanol) accounts for more than 

90% of the worldwide production with the main uses of this split between the 

beverage industry and the biotechnology industry.  

 

1.2.1 Early Development of Bioethanol 

The current developments in biofuels can be dated back to the early nineteenth 

century when, in 1826, Samuel Morley developed an internal combustion 

engine that ran on ethanol and turpentine (Hart-Davis, 2012). After the initial 

developments in engine technology, it was Nicholas Otto who built a four-

cylinder engine, the basis of which all modern day engines are still based, and 

in 1860 designed it to run on ethanol alone (Ethanol History, 2011). Engine 

technology stayed dormant for a little while until Henry Ford was the next 

industrialist to harness the potential of ethanol fuel. The Quadri-cycle was 

Henry Ford’s first incarnation of an ethanol powered vehicle in 1896 but it was 
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not until twelve years later that ethanol powered vehicles were brought to the 

masses. The Ford Model T was released in 1908 and it was able to run on 

either gasoline or ethanol (Frontenac Motor Company, 2012). It was this 

breakthrough in technology that brought affordable motoring to the masses but 

more importantly, ethanol fuel technology to the forefront of the public’s mind. 

The Model T was in production until 1927 and sold 15 million vehicles, all 

with the ability to run on ethanol.  

 

Whilst the U.S was converting the masses from gasoline to ethanol via the 

motor vehicle, Brazil started to look into ethanol production - also as a result of 

the introduction of the motor vehicle to South America. It was in 1933 when 

the Instituto Do Assucar E Do Alcool was established to promote ethanol fuels 

and provide technical assistance (Martines-Filho et al., 2006). The Brazilian 

industry turned to the nation’s sugar manufacturing to produce ethanol from 

sugarcane rather than corn which is the production technique in the U.S. and 

both production methods are still being used today (Ameida, 2007). By 1937, 

ethanol production in Brazil had reached 7% of the nation’s fuel consumption. 

The use and production of ethanol as a fuel was creating a huge demand and by 

the end of World War 2, scientists had developed the technology to use biofuel 

to power early bipropellant rocket vehicles (liquid propelled vehicles). The 

Germans used this method to fuel their V-2 rocket and it was this technology 

that was adopted by the U.S during the years 1958-1964 to power their 

Redstone Rocket (Harney, 2013). Ethanol fuel at this stage was proving to be a 

very economical solution as an alternative to fossil fuels as it was cheaper to 

produce and it came from a sustainable source and supply chain, but after the 

conclusion of World War 2, oil prices decreased dramatically making gasoline 

readily available (Hill, 2011), causing the population to switch back to gasoline 

powered vehicles. This decimated the ethanol industry as standard gasoline 

powered vehicles were now cheaper to produce and run. 

 

1.2.2 New Ethanol Era  

It was during the 1970s when today’s ethanol industry really began. The 

American and Brazilian industries started to look at ethanol once again as lead 

was being phased out in gasoline. Oil prices had begun to rise and 



 

5 
 

environmental concerns were increasing over the nation’s increased 

dependency on imported oil – an urgency to develop a renewable fuel was 

paramount. Lead was also to be replaced by MTBE (Methyl Tert-Butyl Ether) 

in gasoline which was used until 2006 when it was banned due to groundwater 

contamination and health risks (Jeffrey and Goettemoeller, 2007; 

Environmental Information Administration, 2006). By this time, a suitable 

replacement had already been found in ethanol. Brazil once again turned to 

their sugarcane industry and after the oil crisis in 1973, the government began 

promoting bioethanol as a fuel and by 1975, they had launched the Program 

National Do Alcool (The National Alcohol Program) (Soccol et al., 2005). The 

design was to phase out fossil fuels such as gasoline and promote the use of 

ethanol fuel produced from local sugarcane. Brazil was at this point was the 

leading producer of ethanol as they were the only country left with an ethanol 

blending program. The United Kingdom was the only other country with an 

ethanol program in operation after World War 2, but this was bought out by 

British Petroleum in 1968 and ceased production as it was deemed 

uneconomical due to the falling prices of gasoline at the time (Kavarik, 2006). 

  

1.2.3 Ethanol in the U.S 

As ethanol production was back on the agenda in Brazil, farmers in the U.S 

looked to their past due to the rising prices in oil, realised that they held the key 

to an alternative fuel source to gasoline. Farmers started to pressurise Congress 

and The Department of Energy to invest in developing ethanol production from 

corn. This was met with strong resistance from the oil and automotive 

industries with General Motors being particularly vocal. All of the pressure 

paid off however when the Amoco Oil Company started ethanol blended fuels. 

This was soon followed by Texaco and other main oil brands (Centre for 

Energy, 2014). It was the Energy Tax Act of 1979 that initially created an 

upsurge in demand for ethanol fuel in the U.S by creating tax credits for using 

such fuel (MacDonald, 2004). The act was designed to ultimately reduce the 

dependency on imported oil, and with the tax credits, it created a huge demand 

for ethanol fuel which rose from 20 million U.S liquid gallons in 1979 to 750 

million U.S liquid gallons in 1986.  
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1.2.4 Ethanol in Brazil 

The Brazilian government was also instrumental in the promotion of their 

ethanol industry. They had three incentives to get the industry moving; 

guaranteed purchases of ethanol by the state owned oil company Petrobras; low 

interest loans for agro-industrial ethanol firms and fixed gasoline and ethanol 

prices – where hydrous ethanol (95% ethanol, 5% water) sold for 59% of the 

government set gasoline prices at the pump – this made ethanol production a 

financially viable solution again (Lovins, 2005). This led to the next 

breakthrough for modern day ethanol production when, in 1979 the Fiat 147 

was launched in Brazil. This was the first modern neat ethanol-powered car 

sold in the world (Navarro, 2008). A sharp rise in popularity ensued with the 

major backing from the Brazilian government meant that by 1985, 75% of 

Brazilian passenger vehicles were manufactured with ethanol engines. 

 

After reaching 4 million vehicles running on pure ethanol and the industry 

reaching heights never witnessed before came the next challenge to consumers. 

In the late 1980s ethanol production plummeted as the falling price of gasoline 

made it more appealing, coupled with a high demand for sugar in the world 

market caused sugar prices to rise rapidly (Sandalow, 2006). This made it more 

attractive and profitable to sell sugar to the world market than to produce 

ethanol. No export quotas were set however, causing a shortage of ethanol in 

Brazil. By 1997, confidence in ethanol fuel nationally was at an all-time low 

due to the inability to supply. The major motor manufacturers saw sales 

plummet and Fiat, Ford and General Motors all stopped producing ethanol-

powered vehicles due to the unreliability of the supply chain and the cheap cost 

of gasoline. It took six years for confidence in the marketplace to be restored 

and this was as a result of the introduction of the flex fuelled motor vehicle in 

2003 (Lemos, 2007). This new engine allowed vehicles to run on any blend of 

fuel from gasoline to 100% hydrous ethanol. This enabled vehicle owners to 

choose their preferred fuel, but also allowed them to switch between fuels if 

there was ever again a fuel shortage or uncompetitive pricing – be it ethanol or 

gasoline. As flex fuelled vehicles were becoming more popular, 2007 saw Sao 

Paulo testing the first ethanol powered vehicle. A bus was on trial for twelve 

months in the city and compared to their standard diesel fleet (Green Car 
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Congress, 2007). Whilst testing and analysis was underway, production of flex-

fuelled vehicles grew massively and in August 2009, they represented 94% of 

vehicle sales in the country with 66% of owners saying that they regularly used 

ethanol fuel. An order for 50 ethanol diesel powered busses was soon placed in 

2011 by the Brazilian government as the testing had proved conclusively in 

favour of ethanol diesel with the ultimate goal now in place to convert their 

entire fleet of 15,000 vehicles to run on renewable fuels by 2018 (Green Car 

Congress, 2010). 

 

However, since 2009, the industry has faced further challenges and setbacks. 

Financial stresses caused by the financial crisis of 2008 and poor harvests 

because of poor weather conditions have caused the world price of sugar to 

rise. This again meant the prospect of supplying sugar to the world market was 

much more lucrative than producing ethanol. Once again a decline in ethanol 

production caused a shortage nationally with the inability to supply their 

growing demand. This caused prices for it to increase rapidly meaning it was 

no longer viable to flex fuelled vehicle owners to favour ethanol over gasoline. 

In fact, by 2013, only 23% of flex fuelled vehicle owners used ethanol 

regularly – down from 66% in 2009 (Colitt and Nielsen, 2012). 

  

1.2.5 Environmental issues 

Ethanol production has its supporters and doubters with arguments for and 

against its production. One argument states that producing ethanol consumes 

more energy than it yields, also that demand for food crops turned into ethanol 

will cause a shortage of food supply raising the prices worldwide and creating 

more shortages. On the other hand, there is very little wastage from the 

production of ethanol with even the leftover pulp being utilised in power plants 

to produce electricity. With benefits reaching far beyond the price we pay at 

the pump for gasoline, the production of ethanol fuel has a bigger impact on 

today’s society. Cleaner air is created as oxygen is added to gasoline which in 

turn helps reduce air pollution and emissions levels from each vehicle. There is 

a 90% reduction in carbon dioxide emissions compared to gasoline and a lower 

global dependency on oil as ethanol has been proven to match the performance 

of gasoline without the harmful effects to the atmosphere, preserving the 
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environment for our future generations (U.S Department of Energy, 2013). The 

U.S and Brazil firmly believe that ethanol fuel is the future’s hope of a 

sustainable fuel source. The United states Government introduced The Energy 

Policy Act 2005 which mandated an annual consumption of 7.5 billion gallons 

of ethanol by 2012 raising to 15 billion gallons by 2015 (Schnepf and 

Yacobucci, 2013). Ethanol is the most widely used biofuel in production today 

with the U.S and Brazil accounting for 90% of all ethanol production in the 

world.  

  

1.2.6 Currently in the UK 

Ethanol production in the UK is still way behind the likes of the U.S and 

Brazil. In the U.K, bioethanol can be mixed with standard unleaded petrol up 

to 5% and used in any car on the road today. As a result of the growing 

demand for ethanol in the UK, three bioethanol production plants have now 

been opened. Between them, over 1 billion litres of bioethanol are produced 

per year. British Sugar also started an ethanol production scheme in 2007 using 

the same techniques as Brazil producing 70 million litres from sugar as 

opposed to the rest of the UK’s biotechnology industry using wheat straw 

(Colitt and Nielsen, 2012). The EU Renewable Energy Directive is pushing the 

UK ethanol industry forward as it requires 10% of transport fuel to come from 

renewable sources by 2020 (Colitt and Nielsen, 2012). The UK is also 

committed to reducing greenhouse gas emissions in line with the 

recommendations by the UK’s committee on Climate Change. 

 

 

1.3 Ethanol from lignocellulosic biomass. 

Wheat straw is available as agricultural waste and is an abundant source of 

lignocellulosic biomass in Europe due to it being the largest biomass feedstock 

and after rice straw, second largest worldwide (Matsushika et al., 2009; Rubin, 

2008; Kim and Dale, 2004). At present, approximately 21% of the world’s 

food is dependent on the wheat crop. Due to increase global demands of the 

crop for human consumption (Ortiz et al., 2008), wheat straw in the 21st 

Century would serve as a potential renewable source for the production of 

bioethanol (Talebnia et al., 2009). 
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In the UK, wheat is cultivated in many parts of the country including Yorkshire 

and the Humber region, East Midlands, Eastern Regions and South East 

Regions (Copeland and Turley, 2008, Dujon, 1996) (figure 1.2). It is estimated 

that the annual yield of wheat straw is between eight and ten million tonnes 

(Brander et al., 2009). Even though the market price of wheat straw has varied 

from £25 (approximately) per tonne in the year 2000 to £52 per tonne in 2013 

(Farming UK, 2014), the relatively low cost and availability of wheat straw in 

comparison to other lignocellulosic biomass still serves as a potentially 

attractive feed stock for fermentation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Production of wheat straw by region in England. Regions 

where wheat straw is cultivated include Yorkshire and the Humber region, East 

Midlands, East of England and the South East region (figure from Wikimedia 

Commons website). 
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1.3.1 Lignocellulose 

Lignocellulosic biomass comprises of three main structural components (figure 

1.3), cellulose being the most abundant constituent (range of 33-40% w/w) 

followed by hemicellulose (range of 20 – 25% w/w) and lignin (15 – 20% 

w/w) (Prasad et al., 2007), along with a small amount of soluble substrates, or 

extractives (Talebnia et al., 2009). Within lignocellulosic biomass, cellulose 

bundles serve as a protection barrier that prevents penetration of water or 

enzyme through the structure (Laureano-Prerez et al., 2005; Sun et al, 2004). 

Cellulose fibres and lignin are linked by hemicellulose, which provides extra 

strength to the cell wall. Lignin influences the digestibility of lignocellulosic 

material as a result of it being covalently linked to cellulose and a predominant 

hemicellulose carbohydrate polymer in wheat straw known as xylan 

(Laureano-Prerez et al, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Structure of Lignocellulose. Lignocellulose is composed of three 

main components including cellulose, hemicellulose and lignin. Cellulose has a 

crystalline structure and is composed of long chain of glucose molecules that is 
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linked by -1,4-glucosidic bonds. Hemicellulose is the second most abundant 

component, composed of a number of different 5- and 6-carbon sugars, mostly 

D-pentose sugars and a small amount of L-sugars. Lignin is made up of p-

coumaryl alcohol, coniferyl alcohol and sinapyl alcohol which are three major 

phenolic components. Structural stability of lignocellulose is obtained by the 

microfibrils formed between cellulose, hemicellulose and lignin which are 

further organised into macrofibrils (figure from Rubin, 2008). 

 

 

 

1.3.2 Cellulose 

Cellulose is the main structural component of the rigid plant cell wall. It is a 

long straight chain of glucose molecules; linked to one another by -1,4-

glucosidic bonds (Van Wyk, 2001), which upon enzymatic treatment or 

chemical treatment with concentrated acid and high temperatures, can be 

broken down into its glucose units. Due to the acetyl linkage being a beta-

linkage, this makes cellulose different from starch, in which the acetyl linkage 

is alpha. The properties of cellulose are dependent on the chain length or the 

number of glucose units in one cellulose molecule (the degree of 

polymerisation). The degree of polymerisation of cellulose is on average about 

10,000 (Rowell et al., 2005; Perrone et al., 2008). Microfibrils are formed with 

high tensile strength when multiple hydroxyl groups on the glucose of one 

chain form hydrogen bonds with the oxygen atoms on the same or neighboring 

chain. Due to the synchronised formation of the micro-fibrils into a 

polysaccharide matrix, this confers the tensile strength in cell walls. The rigid 

structure of cellulose imposes a restriction on its usability due to its crystalline 

structure that makes it resistant to degradation (Mathews et al., 2006). 

 

1.3.3 Hemicellulose 

Hemicellulose is the second most abundant constituent of lignocellulosic 

biomass. It is a polymer that is composed of a number of different 5- and 6-

carbon sugars, mostly pentose sugars such as mannose, glucose, galactose and 

xylose and small amounts of L-sugars such as L-rhamnose and L-arabinose. 
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Along with these regular sugars, the acidified form of these sugars can be 

present such as galacturonic acid that is oxidised from D-galactose, and 

glucuronic acid which is a carboxylic acid oxidised from glucose. In plants, 

hemicellulose provides support in the structural strength in the linking of 

cellulose fibres into microfibrils and cross-links with lignin to create a complex 

network of bonds (Van Wyk, 2001). The degree of polymerization of 

hemicellulose is at least 9,000 – 10,000 and can be up to 15, 000 subunits 

which can be highly branched (Rowell et al., 2005 ).  Hemicellulose can be 

easily hydrolysed by dilute acid or base as well as a vast array of hemicellulase 

enzymes due to the combination of sugars present and having an amorphous 

structure which makes hemicellulose more soluble in water which is easier to 

degrade when compared to cellulose (Da Silva and Chandel, 2012).  

 

1.3.4 Lignin 

Of the polymers that are found in plants, lignin is the only one that is not 

composed of sugar monomers. It is a three-dimensional polymer consisting of 

phenylpropane units. Lignin is composed of three monolignol monomers that 

are responsible for lignin biosynthesis, these are; p-coumaryl alcohol, coniferyl 

alcohol and sinapyl alcohol (Bonawitz and Chapple, 2010). In plants, lignin 

prevents the polysaccharides in the plant cell walls from absorbing water and 

allows for the transportation of water in the vascular tissues due to it being 

much less hydrophilic than cellulose and hemicellulose. Lignin is also 

considered as the cellular glue that provides compressive strength to the plant 

tissue and individual fibres and stiffness to the cell wall (Rubin, 2008).  

 

1.3.5 Extractives 

Due to the use of various solvents, extractives are a group of chemicals that can 

be extracted from lignocellulosic biomass. The extractives can be categorized 

as steroids, terpenoids, waxes, fats and phenolic constituents (Sjöström, 1993). 

The diverse roles of the extractives include being a precursor of certain 

chemicals and some are involved in the defense system of the plant. However, 

some roles of these extractives have not yet been established (Rowell et al., 

2005 ). 
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1.4 Pretreatment  

In lignocellulosic biomass, due to the high cellulose content this is seen to be a 

promising raw material for bioprocesses to produce bioethanol from wheat 

straw using an array of pretreatment methods followed by hydrolysis, 

fermentation and distillation (Alfani et al., 2000; Olsson et al., 2006; Talebnia 

et al., 2009; Adsul et al., 2011). The result of preparation of the lignocellulosic 

biomass through pretreatment methods and hydrolysis is termed biomass 

hydrolysate which is considered for use as 

 a fermentation media for microorganisms (Zha et al., 2012). Pretreatment of 

wheat straw is critical due to the nature of the main components and their close 

structural association that makes fermentable sugars harder to access in 

comparison to sugar cane and starch in grains. Therefore it is necessary that 

these chemical and physical association barriers between the components are 

broken down to allow enzyme accessibility and enhanced activity (figure 1.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Pretreatment of lignocellulosic biomass. A schematic of the 

structure of lignocellulosic biomass that consists of cellulose, hemicellulose 

and lignin. Pretreatment is required to break down the lignocellulosic biomass 

in order to disrupt the structural association allowing the fermentable sugars to 
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be accessed for subsequent processes (figure obtained from Chaturvedi and 

Verma, 2013). 

 

 

 

There are a number of pretreatment methods that are divided into physical, 

physico-chemical, chemical and biological processes (figure 1.5). Pretreatment 

methods aim to improve the production rate (Hendriks and Zeeman, 2009). The 

overall efficiency of the pretreatment depends on the relationship between high 

substrate digestibility and low formation of inhibitors being well balanced. 

Generally the applied methods use a combination of pretreatment processes 

such as mechanical, chemical and thermal to achieve low inhibitor production, 

high efficiencies in sugar release and low energy consumption (Talebnia et al., 

2009). 

 

 

 

 

Figure 1.5: The most common pretreatment methods of wheat straw 

(adapted from Talebnia et al., 2009). Pretreatment methods are required to 

facilitate the conversion of lignocellulosic biomass conversion to fermentable 

sugars.  
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1.4.1 Physical pretreatment  

Physical pretreatment involves milling, grinding or chipping to reduce the size 

of wheat straw to improve the efficiency of the downstream processing. Due to 

the energy consumption in the milling stage this may not be desirable as well 

as imposing negative effects on the next stages’ pretreatment. Variables which 

influence both energy consumption and the effectiveness of later processing 

stages are based on the initial and ultimate particle size, moisture content and 

material properties. In general, higher specific energy consumption is required 

for smaller particle size and higher moisture content of wheat straw (Sudhagar 

et al., 2004). In a study, the size reduction of substrate particles enhanced the 

susceptibility of untreated substrate to enzymatic hydrolysis. It was found that 

after 24 hours of hydrolysis from the smallest straw particles of 53 - 149 m 

the release of glucose and xylose increased from 39% and 20% of the 

theoretical maximal values when compared to the reference sample of 2 - 4 cm 

(Pedersen and Meyer, 2009).  

 

1.4.2 Physico-chemical pretreatment 

This category of pretreatment processes combines a physical and a chemical 

effect together such as steam pretreatment with that addition of a catalyst such 

as acid or alkaline. Physico-chemical processes include liquid hot water 

(LHW) hydrothermal pretreatment, steam explosion and ammonia fibre 

explosion. There are three elements that determine the solubilisation of 

lignocellulosic components, which include pH, moisture content and 

temperature. In lignocellulosic biomass of wheat straw, the most thermal-

chemically sensitive fraction is hemicellulose as these hemicellulose 

compounds and various other components begin to solubilise in water at 

temperatures of 150C and above which xylan can be extracted the most easily 

(Hendriks and Zeeman, 2009). LHW hydrothermal pretreatment is carried out 

in the temperature range of 170 - 230C and pressures above 5 MPa are 

commonly used (Sanchez and Cardona, 2008). From this pretreatment, it 

releases a high fraction of hemicellulosic sugars mainly in the form of 

oligomers contributing to the reduction of undesired degradation products 

(Hendriks and Zeeman, 2009; Mosier et al., 2005b; Mosier et al., 2005a). 
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Steam explosion is one of the most cost effective pretreatments and is widely 

used for wheat straw (Ballesteros et al., 2006; Alfani et al., 2000). This method 

involves rapidly heating the size-reduced biomass by high-pressure steam for 

several seconds to a few minutes and reducing the pressure suddenly, which 

results in the biomass undergoing an explosive decompression. Temperatures 

are normally in the range of 160 - 230C. The efficiency is affected by similar 

factors to those in LHW hydrothermal pretreatment such as temperature, 

particle size, moisture content and residence time. The addition of chemicals 

such as sulphuric acid and sulphur dioxide can lead to an enhanced yield of 

enzymatic hydrolysis at lower temperatures due to the improved rate and extent 

of hemicellulose removal (Jurado et al., 2009).  

 

Another pretreatment method whereby wheat straw is exposed to liquid 

ammonia at high temperatures is known as ammonia fibre explosion. This is an 

alkaline thermal pretreatment where high temperatures and pressure are 

required for a period of time followed by a rapid release in pressure. Small 

particle size is not required for the efficacy and this method does not produce 

inhibitors for the processes that follow later on (Mosier et al., 2005a; Sun and 

Cheng, 2002). However, this pretreatment is less efficient for biomass 

containing a higher content of lignin as well as solubilisation of a small 

fraction of solid material, in particular hemicellulose (Sun and Cheng, 2002).  

 

1.4.3 Chemical pretreatment  

Chemical pretreatment uses different chemicals such as acids (acid hydrolysis), 

alkalis (alkaline pretreatment) and oxidizing agents (peroxide and ozone) to 

break down the lignocellulosic biomass. Dilute acid pretreatment and sulphuric 

acid pretreatment are the most commonly used methods. Lignocellulose 

structural components are affected differently depending on the type of 

chemical pretreatment used. The more effective methods of removing lignin 

are alkaline pretreatment, peroxide, ozonolysis and wet oxidation; and for 

hemicellulose solubilisation, dilute acid pretreatment is more efficient 

(Sanchez and Cardona, 2008; Tomas-Pejo et al., 2008; Galbe and Zacchi, 

2002). Wet oxidation pretreatment uses water and high pressure oxygen 

ranging from 120 - 480 psi or air at high temperatures of above 120C 
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(Schmidt and Thomsen, 1998). This is an effective treatment for the 

fractionation of wheat straw into a cellulose-rich solid fraction and solubilised 

hemicellulose fraction where it is highly susceptible to enzymatic hydrolysis. 

Enzymatic hydrolysis and the rate of lignin oxidation is improved when wet 

oxidation is combined with alkaline pretreatment and also prevents the 

formation of inhibitors such as furfural and hydroxymethylfurfural (HMF) 

(Talebnia et al., 2009). Unfortunately, due to the solubilisation of 

hemicellulose components, acids such as hydroxyl methyl furfural (HMF) and 

furfural (belonging to the furaldehydes) and acetic acid, levulinic acid and 

formic acid (belonging to the weak acids) are formed during the initial reaction 

of wet oxidation. Lignin is decomposed to carbon dioxide, water and phenol-

like compounds that are extremely reactive under wet oxidation conditions 

(Klinke et al., 2001).  

 

1.4.4 Biological pretreatment 

Biological pretreatment of lignocellulosic biomass is considered to be an 

ecofriendly, efficient and cheaper alternative compared to conventional 

physicochemical methods for lignin degradation (Wan and Li, 2012). 

Biological pretreatment uses microorganisms for selective degradation of the 

lignocellulosic biomass. These microorganisms include white-, brown- and 

soft-rot fungi. Of all, it is reported that the white-rot fungi are the most 

effective for lignin and hemicellulose degradation. Lignin degradation occurs 

through the action of enzymes such as peroxidases and laccase (Okano et al., 

2005). There are factors to consider when choosing a suitable fungus for 

biological pretreatment such as having a higher affinity for lignin to degrade it 

at a faster rate compared to carbohydrate components. Using fungi is 

biologically safe, less energy is consumed and is environmentally friendly; 

however, the rate of hydrolysis is low and would not be considered 

commercially until improvements are made as the process could take up to 5 

weeks (Talebnia et al., 2009).  

 

1.4.5 Summary of pretreatment processes 

Pretreatment processes are vital in the breakdown of lignocellulosic biomass 

for subsequent stages of ethanol fuel production. The objectives in the 
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pretreatment processes are to increase the porosity and surface area of the 

substrate, to reduce the crystalline arrangement of cellulose by disrupting the 

structure of the cellulosic materials, to obtain a high recovery of fermentable 

sugars and to have no or very limited amounts of inhibitors (Galbe and Zacchi, 

2012). There are a number of pretreatment methods that have been explored 

and currently used but there is no pretreatment technology that currently offers 

a 100 % conversion of biomass into fermentable sugars. The final yield of 

ethanol will always be affected due to there always being a loss of biomass. 

Even though using certain pretreatments together have shown promising 

results, there is still a need to research this area extensively to improve current 

pretreatment methods or to create new efficient and effective pretreatment 

methods to give promising results (Chaturvedi and Verma, 2013). 

 

 

1.5 Hydrolysis 

Hydrolysis follows after the pretreatment processes, which is a very effective 

method to liberate simple sugars using the following three methods; 

concentrated-acid hydrolysis, dilute-acid hydrolysis and enzymatic hydrolysis. 

The objective of hydrolysis is to produce high yield of sugars in order for the 

fuel-producing microorganism of choice to be able to utilise these sugars 

effectively in fermentation.  

 

Concentrated-acid hydrolysis uses acid such as sulphuric acid to break down 

the hydrogen bonding between the cellulose chains using moderate 

temperatures which results in the cellulose being susceptible to hydrolysis. 

Rapid hydrolysis from cellulose to glucose is accelerated by the addition of 

water. The advantage in using concentrated acid hydrolysis is that the process 

can be performed at low temperatures resulting in very high yields of sugars 

(Binod et al., 2011). The disadvantage to this method is that the large amount 

of acid used must be recovered and reused to make it economically viable. 

Another factor to consider is the corrosion of the equipment (Galbe and Zacchi, 

2002).  
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Dilute-acid hydrolysis uses high temperatures and low concentrations of acid at 

approximately 0.5%. This method has a fast reaction rate and consumes acid at 

lower volume. This method has an array of disadvantages even though the rate 

of reaction is faster, including the requirement of high temperatures, the low 

sugar yield produced, the degradation of hemicellulose sugars and the 

production of inhibitors. A two-step hydrolysis may be applied to avoid the 

degradation of hemicellulose sugars by hydrolysing the hemicellulose fraction 

under mild conditions at around 170 – 190C to generate the sugars. In the 

second step, the conditions are much harsher where temperatures are between 

200 - 230C are applied to hydrolyse the cellulose fraction into glucose and 

from this, the two fractions can be pooled together before proceeding onto the 

fermentation step (Galbe and Zacchi, 2002).  

 

Enzymatic hydrolysis uses enzymes such as cellulase for hydrolysis (Tomas-

Pejo et al., 2008). Such enzymes can be produced from bacteria and/or fungi 

(Arai et al., 2006). Cellulases that are involved in lignocellulosic hydrolysis 

include endoglucanases which break down low-crystallinity regions of the 

cellulose fibre and generates free end-chains then exoglucanases remove the 

two-sugar segment (cellobiose) from the free end chains and -glucosidase 

hydrolyses cellobiose to glucose (Sun and Cheng, 2002). The advantage of 

using enzymatic hydrolysis is the production of high yields due to the specific 

cellulose conversion, the low formation of by-products and the use of moderate 

temperatures. The disadvantage of enzymatic hydrolysis is the decreased 

reaction rate of the enzymes and the high cost of the enzymes.  

 

 

1.6 Production of inhibitors 

Hydrolysis and pretreatment of lignocellulosic biomass leads to the formation 

of products that includes the pentose and hexose sugars and inhibitors. 

Inhibitory compounds are generated from high temperature treatment with the 

addition of a catalyst which often is acid to produce a bio-available substrate. 

Pure chemical hydrolysis (dilute-acid hydrolysis) aims to completely 
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depolymerise the hemicellulose and cellulose in lignocellulosic biomass 

(Almeida and Bertilsson, 2009). 

 

Inhibitors produced from these processes will affect microbial growth and 

fermentation. There are three main groups in which the inhibitors can be 

divided; these are the furaldehydes (hydroxy methyl furfural (HMF) and 

furfural), phenolic compounds such as vanillin and the weak acids, which 

comprise acetic acid, levulinic acid and formic acid.  

 

1.6.1 Furaldehydes 

Furaldehydes are produced from the degradation of hemicellulose and include 

furfural and HMF that are produced by the dehydration of pentose and hexose 

sugars respectively. A small proportion of these furaldehydes are degraded 

further to form organic acids such as formic acid from furfural and formic acid 

and levulinic acid from HMF (figure 1.6) (Almeida and Bertilsson, 2009). 

Ideally, sugar degradation product formation should be minimised to avoid 

sugar loss and reduce the inhibition of microbial activity during fermentation.  

 

 

 

 

 

Figure 1.6: Formation of HMF from the dehydration of liberated sugars. 

Further break down of HMF results in the organic acids, levulinic and formic 

acid to be produced (Almeida and Bertilsson, 2009). 
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1.6.2 Weak Acids 

Weak acids such as acetic acid, formic acid and levulinic acid are formed 

during the hydrolysis of hemicellulose. Acetic acid is produced by the 

hydrolysis of the acetyl groups while formic acid and levulinic acid are formed 

as further degradation from furfural and HMF (as mentioned previously, figure 

1.6). The content of weak acids vary greatly depending on the feedstock and 

the severity of pretreatment method used (Taherzadeh et al., 1997). The most 

inhibitory of these weak acids is formic acid followed by levulinic acid and 

acetic acid due to the smaller molecule size of formic acid is thought to 

increase its mass transport through the cell wall (Parawira and Tekere, 2011; 

Larsson et al., 1999; Maiorella et al., 1983).   

 

1.6.3 Phenolic compounds 

Phenolic compounds and other aromatics are produced from lignin degradation 

regardless of whether an acid catalyst is added to the treatment process (Martin 

et al., 2002). Common phenolic compounds found include vanillin, p-coumaric 

and coniferyl aldehyde. These phenolic compounds and other aromatics vary in 

the inhibition of both microbial growth and product yield and can be related to 

specific functional groups (Larsson et al., 2000).  

 

1.6.4 Summary  

Degradation of hemicellulose during pretreatment leads to the formation of 

products that include the pentose and hexose sugars, inhibitors which include 

the weak acids (acetic acid, formic acid and levulinic acid), and the 

furaldehydes (hydroxy methyl furfural (HMF) and furfural). After the 

hydrolysis of lignocellulose polysaccharides, a minor part of lignin is degraded 

to phenolics and other aromatic compounds (figure 1.7). The degradation of 

hemicellulose makes up a large amount of the total sugar yield that is desirable 

for the subsequent fermentation steps. Monosaccharides acquired from the 

hydrolysis process are then fermented by microbial catalysts to the desired 

product. The most common process is bioethanol conversion using the yeast 

species, Saccharomyces cerevisiae (S. cerevisiae). 
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Figure 1.7: Formation of inhibitors. Three main groups of inhibitors are 

produced during pretreatment and hydrolysis which includes the furaldehydes 

and weak acids that are generated from the degradation of hemicellulose and 

phenolic compounds are produced from lignin degradation (figure adapted 

from Jonsson et al., 2013).  

 

 

 

1.7 Solution to the inhibitor problem 

In order to avoid the problems of inhibitors during bioethanol production, 

possible courses of action could be taken such as reducing the inhibitors 

formed during the pretreatment and hydrolysis process. The hydrolysis and 

pretreatment processes determine the concentrations of sugars and inhibitors 

that are produced. If a high sugar content is present in the hydrolysate, this 

does not necessarily mean that a higher yield of ethanol can be produced 

compared to a hydrolysate with a lower sugar content as it can inhibit the 

fermenting microorganism. However, the attempt to achieve high sugar content 

without the formation of inhibitors is difficult especially if dilute acid 

hydrolysis is used. To avoid inhibition problems, it is not feasible to accept a 

poor sugar yield and consequently a poor overall ethanol yield. The negative 
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effects of inhibitors could be reduced by: considering a special design of the 

fermentation process that is cost effective and energy efficient, developing 

physical detoxification methods (such as activated carbon, organic solvent 

absorbing and the extraction of inhibitory compounds (Zhu et al., 2011, 

Mussatto and Roberto, 2004) and chemical detoxification methods (which 

includes over-liming, using a reducing agent and peroxide treatment (Alriksson 

et al., 2011; Jonsson et al., 1998) to detoxify the lignocellulose hydrolysate for 

subsequent fermentation, selecting highly resistant microorganisms to undergo 

fermentation or genetic engineering to improve strains and evolving strains to 

the selective inhibitory environment.  

 

 

1.8 The fuel alcohol producing microorganism, Saccharomyces cerevisiae 

Saccharomyces cerevisiae is commonly used in the baking and alcoholic 

fermentation (brewing and wine making) industry (van Zyl et al., 1989). In 

research it is one of the best-characterised unicellular eukaryotic organisms due 

to several inherent properties such as small genome size, short generation time 

and ease of genetic manipulation. Cultivation is simple and the introduction 

and deletion of genes by homologous recombination makes S. cerevisiae a 

good model organism (Landry et al, 2006). The budding yeast was the first 

eukaryotic organism to be sequenced (Dujon, 1996; Goffeau et al., 1996; 

Mewes et al, 1997) and is widely used in biochemistry, molecular biology, 

classical genetics and more recently in comparative genomics (Bergstrom et 

al., 2014; Cubillos et al., 2011; Landry et al., 2006; Liti and Louis, 2005). 

 

S. cerevisiae is well known for its hexose-fermenting activity. For industrial 

fermentations it is the organism of choice due to its high ethanol yield and 

specific productivity, high ethanol and low pH tolerance, tolerance to 

inhibitory compounds that are present in lignocellulosic hydrolysates 

(Aristidou, 2000; Wenger et al, 2010; Olsson and Nielsen, 2000).  However the 

drawback of S. cerevisiae is that it is unable to efficiently utilize the most 

common pentose sugar, xylose, that is found in hemicellulose that makes up a 

large fraction of the lignocellulosic hydrolysates (Hasunuma et al., 2011).It 

cannot efficiently use xylose as the sole carbon source and ferment to ethanol 
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despite having the xylose transport mechanism and subsequent enzymes 

needed for a full xylose metabolic pathway (Batt et al., 1986). A large amount 

of research effort has gone into yeast strain engineering, strain adaptation and 

strain metabolism to understand and improve the utilization of xylose (Wang et 

al., 2014; Haa et al., 2010; Byron and Lee, 2007; Jeffries, 2006).  

 

1.8.1 Cell Cycle of Yeast 

S. cerevisiae yeasts are single-celled eukaryotic organisms that vary in size 

measuring between 3-8 たM in diameter. Yeast cells can exist in two forms: 

haploid (1n) and diploid (2n). In the haploid state the mating types are 

expressed as a or  (alpha) and can only mate with the opposite mating type. 

The mating process results in the fusion of haploid cells that forms an a/ 

diploid which is no longer capable of mating. Mating type was discovered to 

be controlled by alleles of a single genetic locus that is referred to as MAT 

(mating type). Haploid strains can only possess either MATa or MAT allele 

while a/ diploids are heterozygous at this locus carrying both alleles. Both 

haploids and diploids can undergo mitosis where a/ diploids can also undergo 

meiosis to produce four haploid spores which can subsequently mate. It has 

been discovered that the rate at which the mitotic cell cycle progresses often 

differs substantially (Zörgö et al., 2013). Yeast cells can double their 

population every 90 -120 minutes depending on the temperature and growth 

conditions (Friedman, 2011; Herskowitz, 1988). 

 

1.8.2 Growth phases of Yeast 

The growth stages of aerobic yeast cultures can be divided into the four phases: 

lag, exponential fermentation (log), exponential respiration and stationary 

phase (figure1.8). During the lag phase, no cell growth will occur and the 

number of yeast cells will not change, as cells will take time to mature and 

acclimatise to the environment. Once cells come out of lag phase, the yeast will 

start to utilise glucose and rapidly grow and divide due to the excess nutrients 

that are available relative to the cell number and also ferment ethanol. During 

this exponential or log phase, cells will divide every 90 – 120 minutes, a period 

known as the doubling time. When yeasts start to exhaust the sugars available, 
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the cells enter the diauxic shift that is characterized by a decrease in the growth 

rate and switching metabolism from glycolysis to aerobic respiration 

(exponential growth – respiration) utilizing ethanol. 

Due to ethanol not being the most favoured carbon source compared to sugars 

such as glucose, the cells do continue to grow exponentially but the doubling 

time is much longer. This phase is referred to as the saturated or early 

stationary phase. When ethanol reserves are used up, cells will stop growing 

and enter into the stationary phase where no growth occurs due to the high 

concentration of waste products or the completion of substrate consumption 

(Friedman, 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: A typical aerobic yeast growth curve. There are four stages in 

which yeast grow. These begin with the lag phase where cells are preparing for 

growth and division. The exponential growth is where the fermentation of 

ethanol occurs as the available sugars are utilized. Once the sugars have been 

exhausted, the cells metabolise ethanol under aerobic conditions. This 

utilisation of a different carbon source from glucose is known as the diauxie 

shift; this is the exponential growth where respiration occurs. Eventually cells 

reach stationary phase when all ethanol reserves have been used and no cell 

growth or division will occur (image from Friedman, 2011). The X-axis shows 

the time in hours and the Y-axis shows the number of yeast on a log scale- this 

is typically measured by the optical density. 
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1.8.3 Yeast strains   

Even though there is a lot of biological information provided on S. cerevisiae 

after the completion of the genome sequence (Goffeau et al., 1996; Mewes et 

al., 1997), there is still little known about the ecological and geographic 

distributions and evolutionary processes on the genomic level in terms of 

genetic variation and its phenotypic consequences. In attempting to understand 

linkages in the adaptation of yeast populations to their environment along with 

their reproductive isolation and phenotypic differences, sequencing studies 

have been performed on many S. cerevisiae isolates from different populations 

and niches. Results revealed that within S. cerevisiae there are five ‘clean’ non-

mosaic lineages/populations (Liti et al, 2009), that is, these five lineages 

“exhibit the same phylogenetic relationship across their entire genomes” (Liti 

et al, 2009). The five lineages include strains from: Malaysia, North America, 

Wine/European, West Africa and Sake (figure 1.9). Even though strains were 

collected from different locations and corresponded to geographic origins, 

some strains that are from widely separated locations were closely related. 
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Figure 1.9: Phylogenetic relationship of the ‘clean’ non-mosaic lineages of 

S. cerevisiae (Liti et al, 2009). Clean lineages of S. cerevisiae strains are 

highlighted in grey; colour indicates the geographical origin (coloured dots) 

and source (name) of strains. The scale bar indicates the frequencies of base-

pair differences. 

 

 

 

1.9 Biological effects of inhibitors on yeast 

Inhibitors that are produced during pretreatment and hydrolysis affect 

eukaryotic cells with many biological consequences such as DNA mutations, 
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DNA damage, protein mis-folds and fragmentation, apoptosis and membrane 

damage which all affect the fermentation process in the production of ethanol. 

 

1.9.1 Furaldehydes  

Furaldehydes such as furfural and HMF are produced by the dehydration of 

pentose and hexose sugars respectively from the degradation of hemicellulose. 

Furaldehydes comprise a heteroaromatic furan ring and an aldehyde functional 

group. Aldehydes have a range of biological effects on the cells of eukaryotic 

organisms. Cellular-reactive aldehydes cause oxidative damage in cells and 

lead to apoptosis (Tanel and Averill-Bates, 2007). In humans, an increase in 

aldehyde-induced oxidative damage contributes to the causes of diseases such 

as cardiovascular disease (Uchida, 2000) and  Alzheimer’s (Ohta and Ohsawa, 

2006). Both these cases state that an elevation of reactive oxygen species 

(ROS) in the mitochondria is caused by reactive aldehyde groups. The 

oxidizing consequences of ROS are known to cause DNA mutations, 

membrane damage, protein misfolding and fragmentation, and apoptosis 

(Almeida and Bertilsson; 2009, Perrone et al., 2008). HMF does have a 

cytotoxic effect but little is known about the mutagenic effects (Janzowski et 

al., 2000; Lee et al., 1995).  

 

DNA damage caused by furfural has been known as early as 1978 and has been 

known to cause DNA mutations in organisms such as Escherichia. coli (Khan 

and Hadi 1993) and Drosophila melanogaster (Rodriguez-Arnaiz et al, 1992). 

Liver tumors (Reynolds et al, 1987) and lung tissue damage (Gupta et al, 1991) 

have been found in mice that have been exposed to furfural. Furfural causes 

elevation and accumulation of reactive oxygen species (ROS) in the 

mitochondria where it is most commonly generated.  

 

In other studies, during industrial processes with the presence of furfural, 

oxidative damage caused to yeast cells suggest that there is a correlation 

between ROS and furfural. ROS that is induced by furfural subsequently 

resulted in the aggregation of tubular mitochondria, fragmentation of large 

vacuoles, loss of actin cable structures and the diffusion of nuclear chromatin 

(Gorsich et al., 2006b).   
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In S. cerevisiae furfural and HMF causes the fermentation rate to reduce and 

cells to stop growing and enter an extended lag phase (Almeida et al., 2007). 

Viability is also reduced (Brandberg et al, 2004; Heer and Sauer, 2008).  

During lag phase, S. cerevisiae, under anaerobic conditions will convert 

furfural to furfuryl alcohol and resume growth (Almeida et al., 2007) (figure 

1.10).  The observed lag phase is suggested to be a result of enzyme inhibition 

 

 

 

 

Figure 1.10: S. cerevisiae converting furfural to its reduced derivative, 

furfuryl alcohol.  With the addition of furfural there is an induction of ROS 

accumulation that results in an extended lag phase and associated cell damage. 

Once the yeast cells undergo cellular repair, growth is resumed upon furfural 

conversion (image from Almeida and Bertilsson, 2009).  

 

 
 
of central enzymes in glycolysis such as phosphofructokinase, hexokinase and 

glucose-6-phosphate dehydrogenase (Banerjee et al., 1981) and in addition 

enzymes involved in the citric acid cycle and ethanol formation such as alcohol 
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dehydrogenase, pyruvate dehydrogenase and aldehyde dehydrogenase 

(Taherzadeh et al., 2000) which reduces the available cellular energy (Modig et 

al, 2002). Other studies suggest that the pentose phosphate pathway (PPP) 

could be affected by furfural. A functional PPP is essential for furfural 

tolerance and is suggested that it is advantageous for yeast to resume growth 

once furfural is completely detoxified (Almeida et al., 2009).   

 

Cellular strategies are in place in order to protect the yeast cells against 

furaldehyde toxicity which is done by minimizing its effects. Cellular strategies 

consist of furfural being able to be converted to its less reactive derivative, 

furfuryl alcohol (Boyer et al., 1992) and being able to repair any damage that 

may be caused by furfural (Almeida et al., 2009). Providing that the 

concentrations of the HMF and furfural are not too high (4 g/L for furfural 

(Petersson et al., 2006; Taherzadeh et al., 2000) and 1.5 g/L for HMF 

(Petersson et al., 2006) in S. cerevisiae), it appears that microorganisms seem 

to have the ability to convert both these inhibitory compounds to ones that are 

less inhibitory which gradually reduces the inhibitory effects (Boyer et al., 

1992). 

 
 
1.9.2 Weak acids  

Weak acids are formed during hydrolysis of hemicellulose. The three most 

common aliphatic acids found in lignocellulosic biomass are acetic acid, 

formic acid and levulinic acid. The undissociated form of the weak acids from 

the fermentation medium may enter the cell through diffusion across the cell 

membrane and disassociate due to the higher intracellular pH which decreases 

the cytosolic pH (Pampulha and Loureiro-Dias, 1989). Due to the decrease in 

the cellular pH, this results in a lower biomass formation as plasma membrane 

ATPase compensates for the decreased cellular pH by pumping protons out of 

the cell at the expense of ATP hydrolysis (Verduyn et al., 1992).  

 

Small amounts of weak acids can however increase the yield of ethanol by 

affecting the metabolism of cells (Larsson et al., 1999; Palmqvist et al., 1999). 

It is believed that the production of ATP can be simulated by the presence of 
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the weak acids at low concentrations under anaerobic conditions by ethanol 

fermentation. However, if the weak acids were present at higher concentrations 

this would result in the ethanol yield reducing due to the demand of ATP 

which would be so high that cells cannot prevent the acidification of the 

cytosol (Larsson et al., 1999). Formic acid is said to be the most toxic followed 

by levulinic acid and acetic acid. Due to the smaller molecule size this 

contributes to the increased toxicity of formic acid which is facilitated through 

diffusion through the plasma membrane of the cell which results in a higher 

anion toxicity. The toxicity of levulinic acid is higher compared to acetic acid. 

This may be related to the increased hydrophobicity of levulinic acid which 

may penetrate into the cell membrane more easily (Larsson et al., 1999).  

 

1.9.3 Phenolic Compounds 

The inhibitory effect of phenolic compounds such as vanillin and p-coumaric 

acid decreases the biomass yield, growth rate and the productivity of ethanol. 

Phenolic compounds that have a low molecular-weight are found to be more 

inhibitory to S. cerevisiae compared to high molecular-weight phenolics 

(Klinke et al., 2004). The toxicity of the compounds is influenced by the 

substituent position, para, ortho, meta (Larsson et al., 2000). The toxicity of 

vanillins are increased in the ortho position (Palmqvist et al., 1999) whilst the 

methoxyl and hydroxyl substituents in meta and para positions do not 

influence the toxicity (Larsson et al., 2000). The reduced volume of ethanol 

production was correlated with the phenolic hydrophobicity in S. cerevisiae for 

a series of separate functional groups of phenol aldehydes, ketones and acids 

(Klinke et al., 2003). In general, acids are weaker inhibitors in comparison to 

aldehydes and ketones but are more inhibitory than alcohol for both S. 

cerevisiae (Klinke et al., 2003) and E. coli (Zaldivar et al., 2000; Zaldivar and 

Ingram, 1999; Zaldivar et al.). The toxicity mechanisms of phenolics have not 

yet been elucidated. It has been suggested that phenolic compounds may affect 

the biological membranes to serve as selective barriers and enzyme matrices 

due to the loss of structural integrity (Heipieper et al., 1994).  
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1.9.4 Summary of Biological effects of inhibitors on yeast 

It is important to understand the biological effects of the inhibitor compounds 

that are produced during the hydrolysis and pretreatment process and how they 

affect the fermenting microorganism during ethanol fermentation. 

Understanding these effects will aid in the studies to find methods of 

overcoming these inhibitory effects in order to adapt the yeast strains or 

employ strain engineering in order to produce a high yield of the desired 

bioethanol product during fermentation. 

 

1.10 Quantitative Trait Loci (QTL) analysis 

QTL analysis is a statistical method that links the phenotypic and genotypic 

data in an attempt to determine the causal genetic variation underlying complex 

traits (Kearsey, 1998). A quantitative trait is where the degree of variation in 

phenotypes is continuous rather than categorical. A quantitative trait locus is a 

portion of the genome where there is segregating variation that is associated 

with a quantitative trait and may contain several genes, only one or a few of 

which underlie the quantitative trait. QTL analysis involves multi locus 

genotyping and aims to identify the genetic architecture of quantitative traits by 

providing information on the copy number, the interaction of these alleles, 

action and precise location of these regions (Zeng et al., 1999). 

 

In order to carry out QTL analysis, two or more parental strains that differ 

genetically and phenotypically for a trait are required. These parental strains 

are crossed to produce F1 hybrids which can be self crossed to produce an F1 

population of segregants. Each of these crosses can produce individual 

segregants and through recombination, these segregants contain parts of the 

genome from each parent. Genotypes for each of these individual segregants 

are assessed using markers that are unlikely to affect that trait of interest. The 

phenotype is assessed for each segregant and non-random associations of the 

markers with the phenotype values are the basis of QTL analysis.  There are a 

range of genetic markers that can be used and these include transposable 

element positions, microsatellites or restriction fragment length polymorphisms 

(Gupta and Rustgi, 2004) and SNP markers that have been obtained from 

complete genome sequences have been used in a study by Cubillos et al, 2011. 
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Populations of interest are scored for markers that are linked to a QTL that 

influences the specific trait. These markers will segregate more frequently with 

values corresponding to the trait and unlinked markers will show no significant 

association with the phenotype (Zeng et al., 1999; Miles and Wayne, 2008)  

(Figure 1.11). The results are presented as a graph of chromosome map 

position (in recombination units, cM) against test statistics (likelihood ratio). 

The triangles at the base of the graph are position of the markers. Peaks which 

are above the horizontal line signify the strength of a QTL being present 

(Mackay, 2011).  

 

 

 

                                 

 

Figure 1.11: Schematic of QTL mapping. Two parents with a trait that 

differs genetically are crossed to produce a population of F1 hybrids and are 

inbred to produce an F1 population of segregants. Dependent on the population 

of interest, these can be scored for individuals that contain the trait of interest 
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and put through the analysis software. Peaks demonstrate that there are genes 

that underlie the trait of interest (from (Mackay, 2011).  

 

 

 

QTL analysis can determine whether phenotypic differences are primarily due 

to a few loci with relatively large effects or many loci with each having small 

effects. In published studies, the vast majority of findings have found that a 

substantial portion of the phenotypic variation in many quantitative traits are 

due to a few loci having large effects and the remainder due to larger number 

of loci with small effects (Roff, 2007; Mackay, 2004). An example of this is 

the study of the flowering time in the domesticated rice, Oryza sativa where six 

QTLs were identified and 84% of the variation in this particular trait is defined 

by the effects of the top five QTLs that were found (Yamamoto et al., 1999). 

Once QTL analysis is performed and QTLs have been identified, molecular 

techniques can be employed to narrow down the identified QTLs to candidate 

genes. Once candidate genes have been identified, further experiments can be 

carried out to determine the function and effects of the gene such as gene 

expression studies. Overall, QTL analysis has been extensively used in 

research on many different organisms such as Drosophila to determine wing 

size and shape variation (Matta and Bitner-Mathé, 2010), in mice to determine 

gene expression (Cheng et al., 2013) and the model plant, Arabidopsis thaliana 

to determine QTLs which affect seed morphology (Moore et al., 2013).These 

studies along with QTL analysis have served as an important tool in identifying 

genes that are responsible for traits being studied.  

 

 

1.11 Phenotypic MicroArray 

Phenotypic MicroArrays (PMs) are an approach for phenotyping cells using a 

rapid micro-titer plate assay. It is a breakthrough platform technology that 

allows the study of drug target validation, optimisation, toxicology and gene 

function. PMs monitor the cellular response to the environmental stresses in 

micro-titer plates. The platform is an integrated system of cellular assays, 
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instrumentation and bioinformatics software that allows for the testing of 

thousands of phenotypes in a single run. The data is typically recorded as either 

end-point measurements or as respiration kinetics that are similar to growth 

curves.  

 

The PMs can be carried out using an OmniLog Reader (Biolog, Hayward, CA, 

USA) and uses the patented redox chemistry employing cell respiration as a 

universal reporter. When they grow cells respire actively in the well of the 96-

well plate and a tetrazolium dye is reduced forming a strong colour. If the 

respiration is slow or stopped the dye will not be or less reduced resulting in 

less colour or no colour formed at all. The redox assay can be used to provide 

information on both growth and precise quantification of phenotypes. 

Incubation and recording of the phenotypic data is carried out in the Omnilog 

Reader (Biolog, Hayward, CA, USA) and captures a digital image of the 

MicroArray at set intervals over a period of time. The digital image records 

and stores the quantitative colour change into computer files. These files can be 

displayed in the form of kinetic graphs. Using the OmniLog (Biolog, Hayward, 

CA, USA) thousands of phenotypes can be monitored simultaneously and up to 

450,000 data points that can be generated in one 24-hour run. Using the Biolog 

bioinformatics computer software, the phenotypes of different cell lines can be 

analysed by overlaying the kinetic graphs to detect differences between them. 

Areas that overlap show up in yellow, which indicates that at that particular 

time point, there are no changes that have been detected. Detected differences 

in the kinetic graphs are highlighted as patches of either red or green (figure 

1.12). A typical figure that is worked out by the software is indicated in figure 

1.13. 
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Figure 1.12: Phenotypic MicroArray display of kinetic data from PM 

panels recorded by the OmniLog PM system. This phenotypic MicroArray 

single panel display shows the comparison display of cellular responses for 96 

kinetic assays (figure from Biolog, Hayward, CA, USA).  

 

 

 

 

 

Figure 1.13: Analysis of the metabolism of two cell lines using the Biolog 

computer software. Differences in metabolism of two cell lines (experiment 

and reference) can be combined to show the differences (comparison marked in 

yellow) in their metabolism (figure from Biolog, Hayward, CA, USA). 
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PMs can be used to monitor most aspects of cell function either directly or 

indirectly. The range of phenotypes includes: stress and repair functions, 

cellular properties, synthesis and function of macromolecules and cellular 

machinery, cell surface and transport functions, biosynthesis of small 

molecules, catabolism of carbon, nitrogen, phosphorous and cellular machinery 

(Biolog, Hayward, CA, USA). 
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1.2 Aim 

 

The focus of this study is on the inhibitors that are present in the 

lignocellulosic biomass hydrolysate that is produced during pretreatment. In 

particular, the study aims to understand how individual inhibitors such as 

formic acid affect the growth of yeast S. cerevisiae, as well as an entire 

cocktail mix of the inhibitors that are typically present during a fermentation 

process. Through the generation of six pair-wise F1 crosses between four 

distinct parental S. cerevisiae clean lineage populations that have been 

generated previously by Cubillos et al., 2009, the study aims to determine the 

phenotypic variation between these four parental strains and how the 96 F1 

progeny from each cross compare to their parents and as a population. Using 

phenotypic microarray assays the parental strains and the F1 progeny from 

each cross will be assayed for tolerant phenotypes in order to determine QTLs 

(Quantitative Trait Loci), which will enable us to map genes contributing to the 

multi-genic trait of inhibitor tolerance. Candidate genes identified from the 

QTLs analysis will be tested by performing reciprocal hemizygosity assays to 

determine which genes are responsible for inhibitor resistance to enable the 

development of yeast strains suitable for second-generation biofuel production. 
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CHAPTER 2 
 
2.1 Strains 

Strains used in this study consisted of four Saccharomyces cerevisiae clean 

non-mosaic lineage strains, Wine/European (WE): DBVPG6765, West African 

(WA): DBVPG6044, North American (NA): YPS128, Sake (SA): Y12. Further 

information regarding the origin of the strains can be found in Liti et al., 

2009a. 

 

Stable haploid versions (ho::HygMX, ura3::KanMX-Barcode) of both mating 

types (MatA and Matg) were derived from the original wild type homothallic 

strains where the HO gene was deleted using the hygromycin resistance gene 

as a marker and the ura3 gene was disrupted by the integration of the KanMX 

barcode (a unique 6 bp sequence, recognised by a specific restriction enzyme). 

Haploid MatA and Matg mating types were crossed to produce diploid hybrids 

(Cubillos et al., 2009). These haploid derivatives were crossed to produce six 

pair-wise combinations and sporulated to generate 96 segregants from each 

combination that are readily available from an existing stock collection. All 

segregants are available at the National Collection of Yeast Cultures 

(http:://www.ncyc.co.uk/index.html).  

 

 

2.2 Media and growth conditions 

Clean lineage Saccharomyces cerevisiae yeast strains were taken out of the -

80°C freezer and streaked onto YPEG (yeast extract peptone ethanol glyverol 

with 1 % yeast extract (Oxoid); 2 % (w/v) Bacto-peptone (Oxoid); 2 % (w/v); 

2 % ethanol and 2 % glycerol) agar plates in order to ensure that there were no 

respiratory-deficient (petite) mutants (Goldring et al., 1971), then incubated at 

30°C for three days. After 3 days, yeast strains were streaked onto YPD (Yeast 

extract peptone dextrose with 1 % yeast extract (Oxoid); 2 % (w/v) Bacto-

peptone (Oxoid); dextrose (D-glucose); 2 % (w/v) with the addition of adenine 

to give a final adenine concentration of 0.5%) agar plates to obtain single 

colonies and incubated at 30°C for a further three days. 
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For each cross, F1 segregants were grown in a 96 well plate with each well 

containing 100 たL YPD liquid medium. Plates were incubated stationary at 

30°C for three days. 

 

 

2.3 Assay Media preparation 

2.3.1 For phenotypic microarray analysis 

For growth assay analysis and phenotypic microarray analysis, the media was 

made using 0.67 % (w/v) YNB (yeast nitrogen base) supplemented with 6 % 

(w/v) glucose, 2.6 µl of yeast nutrient supplement mixture (NS×48- 24 mM 

adenine-HCl, 4.8 mM L-histidine HCl monohydrate, 48 mM L-leucine, 24 mM 

L-lysine-HCl, 12 mM L-methionine, 12 mM L-tryptophan and 14.4 mM 

uracil), 0.2 たl; of dye D (Biolog, Hayward, CA, USA) was added. The final 

volume of the medium was made up to 30 µl using sterile distilled water, 

inhibitory compounds were added as appropriate and water was removed to 

maintain the 30 µL final volume. The medium was made in bulk corresponding 

to the number of wells for that particular experiment and 30 µl was aliquoted 

per well as appropriate. 

 

An inhibitor mix solution (5X stock concentration) was prepared (with 

reference to Tomas-Pejo et al., 2008) with 7 g/L furfural, 0.5 g/L HMF, 25.5 

g/L acetic acid, 6.5 g/L formic acid, 0.05 g/L coumaric acid, 0.5 g/L ferulic 

acid and was made up to 1 litre by adding sterile distilled water. From the 5X 

stock solution, adjustments were made to produce a 1 in 6, 1 in 5 and 1 in 4 

final concentration in the well. Stock solutions (1M) of the aliphatic weak 

acids, formic acid, acetic acid and levulinic acid were prepared using reverse 

osmosis (RO) sterilised water; of the aromatic compounds, furfural, HMF and 

vanillin were prepared in 100% ethanol to make 1M stock solutions. Sorbitol 

was made to a stock solution of 80% and adjusted to produce 10 % and 15 % 

(w/v) concentrations in a final volume of 120 たl. Ethanol stress was induced by 

preparing ethanol at 10 % (v/v) and 15 % (v/v). Temperature was adjusted to 

either 30°C, 35°C or 40°C in media without inhibitors. Data readings were 

taken over a 96 hour period with 15 minute intervals at temperatures of 30°C 

and 35°C, for 40°C data was recorded for 24 hours. There was a limitation with 
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assays at 40°C in terms of the time due to the effect of evaporation if measured 

for a longer period of time. 

 

2.3.2 For growth assays using the plate reader 

The media mentioned above without the 0.2 たl of dye D (Biolog, Hayward, 

CA, USA)  was adjusted for a volume of 95 µl of media each well of the 96-

well plate with the addition of 5 たl of cells making a final volume of 100 たl in 

each well.  

 

 

2.4 Growth assays using the Plate Reader 

Strains for the growth assays were prepared as follows:- for both cells on agar 

plates and cells in liquid YPD, (a colony was suspended into 1 ml of sterile 

distilled water) 5 µl of cells were inoculated into a 96-well plate containing 95 

µl of YNB (yeast nitrogen base) supplemented with 6 % (w/v) glucose, 2.6 µl 

of yeast nutrient supplement mixture (as mentioned above) and grown for three 

days. 5 µl of cells from the 96-well plate was inoculated into a prepared 96-

well plate containing the 95 µl of the inhibitor media which per well has a final 

volume of 100 µl. Plates were sealed, incubated accordingly and analysed after 

three days. 

 

Growth assays were conducted using a Plate reader (Model: ELx808, Biotek, 

Canada). For the inhibitor mix assays, the prepared 96-well plate was 

monitored over a 74-hour period without agitation. Optical density (OD) 

readings were recorded every 2 hours using the 600 nm filter. For the 

individual inhibitory compound assays, an initial reading of the plate with the 5 

µl cells in 95 µl of inhibitor media was recorded and an end point reading after 

three days of incubation at 30°C was taken. This was to determine the number 

of cells to begin with in each well when the initial reading is subtracted from 

the final reading. 

 

Data was exported from the Plate Reader software and analysed using 

Microsoft® Excel. Experiments were carried out in triplicate. The mean value 

and the standard deviation of the OD readings have been calculated for the 
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inhibitor mix growth assay and the individual inhibitory compound assays. The 

mean value of the OD is presented as milli -OD/min, which is a measurement 

of the rate of optical density change per minute for the inhibitor mix assays. 

For these assays OD corresponds to the yeast cell density. For individual 

inhibitory compound assays, the highest concentration at which cell growth 

was detected is recorded for each stress condition. Cell growth was determined 

by OD readings at 0.1 and above and readings that are below 0.099 OD 

indicated no cell growth. For both the inhibitor mix assay and the individual 

inhibitory compound assays, the percentage of growth was also calculated 

where stressed cells were compared to the value obtained under non-stressed 

control conditions. 

 

 

2.5 Phenotypic Microarray analysis 

Strains were prepared for phenotypic microarray assays as follows:- for both 

cells on agar plates and cells in liquid YPD, cells were inoculated into 20x100 

mm test tubes containing sterile water and adjusted to a transmittance of 62 % 

(~5x106 cells.mL-1) using sterile water and a turbidometer. 125 µl of these cells 

were transferred to 2.5 ml of IFY bufferTM (Biolog, USA) and using RO sterile 

distilled water the final volume was adjusted to 3 ml. 90 µl of this mix was 

inoculated into a Biolog 96-well plate. For anaerobic conditions, plates were 

placed individually into phenotypic micro-array gas-bags (Biolog, Hayward, 

CA, USA) and vacuum-packed using an Audion VMS43 vacuum chamber 

(Audion Elektro BV, Netherlands).  

 

An OmniLog reader (Biolog, Hayward, CA, USA) was used to measure dye 

conversion of each well of the plates at 15-minute intervals. The pixel intensity 

was then converted to an OmniLog® signal value that reflects cell metabolic 

output. After completion of each run, the signal data was exported from the 

Biolog software and analysed using Microsoft® Excel. Experiments were 

carried out in triplicate and the mean value of signal intensity is shown. 

Percentage signal intensity values obtained from each stress condition at 48 

hours was used to calculate the percentage redox signal intensity. This data was 

then normalised by dividing this value by the value obtained under non-
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stressed control conditions at the same time point. An exception is for thermal 

stress at 40°C where the redox signal intensity value was analysed at the 24 

hour time point for both the control and stressed conditions. 

 

 

2.6 R statistical computing environment. 

Linkage analysis was performed on the normalised data obtained from the 48 

hour time point using J/qtl (http://churchill.jax.org/software/jqtl.shtml), a Java 

graphic user interface for R/qtl, a popular QTL data analysis software (R 

Development Core Team, 2008). Data files had to be converted to comma 

delimited (csv) files and ran on an R workspace. R statistical analysis package 

software can be downloaded at http://cran.r project.org/bin/window/base/. This 

package was used to determine and compare sugar utilisation of F1 haploid 

yeast strains. 

 

 

2.7 Linkage analysis 

Linkage analysis was performed using the J/qtl software (Churchill group).  

QTLs were determined by using the non-parametric model and LOD 

(logarithm of the odds) score calculation. The significance of a QTL was 

determined from permutations. For each trait and cross, we permuted the 

phenotype values within tetrads 1000 times, recording the maximum LOD 

score each time. We called a QTL significant if its LOD score was greater than 

the 0.05 tail of the 1000 permuted LOD scores. 

 

 

2.8 Saccharomyces Genome Database 

The Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is 

a community resource that provides comprehensive biological information for 

Saccharomyces cerevisiae. The database provides information about the yeast 

genome, its genes, proteins and other encoded features as well as providing 

search and analysis tools to research information of interest. This database was 

used to locate genes of interest for each QTL peak by entering the chromosome 

http://churchill.jax.org/software/jqtl.shtml
http://cran.r-project.org/bin/window/base/
http://www.yeastgenome.org/
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and region (50 kb either side of the QTL peak) of interest in the analysis tools 

that were available. 

 

 

2.9 Plasmid Preparation 

Plasmid preparation was performed using the GenEluteTM Plasmid Miniprep 

Kit (Sigma-Aldrich, US). E.coli Bacteria containing plasmid P30110 (pAG36) 

bacterial strain was taken from the -80°C freezer and grown over night in Luria 

Broth (LB) media (10 g/L trptone, 5 g/L yeast extract, 10 g/L sodium chloride 

and made up to 1 litre by adding sterile distilled water) with the addition of 

0.1% ampicillin as the plasmid carried an ampicillin resistance selectable 

marker, then placed into a 37°C shaking incubator overnight. 5 ml of the 

overnight culture was harvested by centrifugation at 12,000 rpm for 1 minute 

and the supernatant was discarded. Cells were completely resuspended with 

200 µl of Resuspension Solution (RNase A, Sigma-Aldrich, US) and vortexed 

thoroughly. Cells were lysed with the addition of 200 µl of Lysis Solution and 

mixed immediately by gentle inversion until the mixture became viscous and 

clear. Cell debris were precipitated with the addition of 350 µl of 

Neutralisation/Binding Solution and inverted gently, then centrifuged for 10 

minutes at maximum speed. A GenElute Miniprep Binding Column was 

inserted into a microcentrifuge tube and 500 µl of the Column Preparation 

Solution was added to the miniprep column and centrifuged at 12,000 rpm for 

30 seconds. The flow-through was discarded. The lysate was added to the 

prepared column and centrifuged at 12,000 rpm for 3 minutes. The flow-

through was discarded. 750 µl of the diluted Wash Solution (prepared from 

concentrate with the addition of 100% ethanol) was added to the column and 

centrifuged at 12,000 rpm for 30 seconds to 1 minute for the removal of 

residual salt and other contaminants introduced during the column load. The 

flow through was discarded and centrifuged again at maximum speed for 1 to 2 

minutes to remove any excess ethanol. The column was transferred to a fresh 

collection tube and 100 µl of Elution Solution was added to the column and 

centrifuged at 12,000 rpm for 1 minute. DNA was collected and either used or 

stored at -20°C. 
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2.10 PCR (polymerase chain reaction) 

PCR reactions consisted of 10 µl MyTaqTM Red Mix (ready-to-use mix) 

(Bioline, UK), 1 µl of forward and reverse primer at 10 µM (final 

concentration from 100 µM stock), 1 µl DNA template (10ng) and double 

distilled water was added to make a final volume of 20 µl. Reactions were 

made up in bulk corresponding to the number of reactions required for that 

particular experiment with 20 µl aliquoted per reaction as appropriate. 

 

2.10.1 Colony PCR 

Colony PCR was used for screening transformants. Cells were resuspended in 

20 µl of double sterile distilled water and was placed on a hot-block at 100°C 

for 5 minutes then briefly centrifuged. 1 µl of the supernatant was used in each 

PCR reaction mix. 

 

 

2.11 Amplification of Gene Deletion Cassettes 

PCR was used for amplification of the Nat MX Cassette from plasmid P30110 

(pAG36) and the amplification of cassettes from the Gene Deletion Collection 

with the content stated above in section 2.10 per reaction. PCR cycling 

conditions were as follows; initial denaturation step of 96°C for 10 minutes, 

then 30 cycles of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 

seconds and extension at 68°C for 5 minutes and 30 seconds, and a final 

extension step at 68°C for 10 minutes with a final hold of 15°C. Primer 

sequences used for Nat cassette and deletion cassette amplification are listed in 

table 2.1. The sequence of the plasmid and where the primers bind are given in 

figure 2.1 and the schematic of where the A1 and A4 primers bind are given in 

figure 2.2. 
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Table 2.1: primers used for cassette amplifications. Nat Cassette was 

amplified for the use of transforming the Matg S. cerevisiae parent strains. A1 

Experiment Oligo name Sequence (5’ – 3’) 

Nat Cassette CN2169 CAGCTGAAGCTTCGTACGC 

 
CN2171 GCATAGGCCACTAGTGGATCTG 

   
Inhibitor mix (A1)ScFLR1-240C TTAGGTAAGGAGCAATAACAGTGC 

 
(A4)ScFLR1+2087W TGTGCTAGAACGTATGGCTAATCC 

 
(A1)ScPDR1-246C TCTTGTTCAAGACCTAATGAGTGG 

 
(A4)ScPDR1+3670W CATTGTTGAATGATAGCTACGG 

 
(A1)ScPDR3-351W CTTCCACTCATTCTCAGCTATTCC 

 
(A4)ScPDR3+3179C AATATCTACTGAACAGCTGCATTCC 

 
(A1)ScPDR11-368C TTCCTACAACTTCCACTCTATCG 

 
(A4)ScPDR11+4528W GACGAAGGTCGTCTAATCACG 

 
(A1)ScVMA21-336W TGTTATACAGTAGCGGAGGATTACC 

 
(A4)ScVMA21+446C GATATCACATATGGTGCGTTGG 

 
(A1)ScVMA13-246W CGACGCTGTGTTGTATATTGC 

 
(A4)ScVMA13+1892C ATTGATCACGCAGATGACTAACC 

 
(A1)ScATH1-422C GGAACATTCATCTTGATTCTAGCC 

 
(A4)ScATH1+4112W GATGGAATCAGAATCGTCTAGTAGG 

 
(A1)ScHAL1-342C ATATGGCGTATGACGGTATGG 

 
(A4)ScHAL1+1026W CTGGACTTGTAGAACGATAGAACG 

 
(A1)ScVPS16-692W TAATATGCTGCAACATCACACC 

 
(A4)ScVPS16+2865C TATTCGTGTCCTTAACAACTACCG 

   
Formic acid (A1)ScTSA1-424W GAGAAGCTGGATGATATTGTTGC 

 
(A4)ScTSA1+1017C GTTGGACATACAGTTGCAGAAGC 

 
(A1)ScERG6-435C TCTTCGTATATGGTACCTCGTTCC 

 
(A4)ScERG6+1596W GGATCGTATCTGACCTGAGTAACC 

 
(A1)ScYAP1-585W AGTGTACCATTGAGACGAAGTGG 

 
(A4)ScYAP1+2450C GTTCCATCAATGCTATGAGTGC 

 
(A1)ScERG5-395C TTAAGTCTGCGAAGTCTCGTACC 

 
(A4)ScERG5+2037W GATTGAACATAACGTCTTCATCTCC 
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and A4 deletion cassettes were amplified for reciprocal hemizygosity assays. 

 

 

 

 

Figure 2.1: Illustration of primers relative to NAT MX cassette. The figure 

shows part of the P30110 (pAG36) plasmid where the NAT MX cassette 

(underlined) is located with the forward primer CN2169 (sequence marked in 

red) and reverse primer CN2171 (marked in blue). 

 

 
 
 
 
 
 
 

CTATTACGCCAGCTGGCGAAGGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCA 

GGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTA 

     CN2169 primer 
TAGGGCGAATTGGAGCTCCACCGCGGTGGCGGCCGCATAGGCCACTAGTGGATCTGATAT 

CATCGATGAATTCGAGCTCGTTTTCGACACTGGATGGCGGCGTTAGTATCGAATCGACAG 

CAGTATAGCGACCAGCATTCACATACGATTGACGCATGATATTACTTTCTGCGCACTTAA 

CTTCGCATCTGGGCAGATGATGTCGAGGCGAAAAAAAATATAAATCACGCTAACATTTGA 

TTAAAATAGAACAACTACAATATAAAAAAACTATACAAATGACAAGTTCTTGAAAACAAG 

     NAT MX Cassette 
AATCTTTTTATTGTCAGTACTGATTAGGGGCAGGGCATGCTCATGTAGAGCGCCTGCTCG 

CCGTCCGAGGCGGTGCCGTCGTACAGGGCGGTGTCCAGGCCGCAGAGGGTGAACCCCATC 

CGCCGGTACGCGTGGATCGCCGGTGCGTTGACGTTGGTGACCTCCAGCCAGAGGTGCCCG 

GCGCCCCGCTCGCGGGCGAACTCCGTCGCGAGCCCCATCAACGCGCGCCCGACCCCGTGC 

CCCCGGTGCTCCGGGGCGACCTCGATGTCCTCGACGGTCAGCCGGCGGTTCCAGCCGGAG 

TACGAGACGACCACGAAGCCCGCCAGGTCGCCGTCGTCCCCGTACGCGACGAACGTCCGG 

GAGTCCGGGTCGCCGTCCTCCCCGTCGTCCGATTCGTCGTCCGATTCGTCGTCGGGGAAC 

ACCTTGGTCAGGGGCGGGTCCACCGGCACCTCCCGCAGGGTGAAGCCGTCCCCGGTGGCG 

GTGACGCGGAAGACGGTGTCGGTGGTGAAGGACCCATCCAGTGCCTCGATGGCCTCGGCG 

TCCCCCGGGACACTGGTGCGGTACCGGTAAGCCGTGTCGTCAAGAGTGGTACCCATGGTT 

GTTTATGTTCGGATGTGATGTGAGAACTGTATCCTAGCAAGATTTTAAAAGGAAGTATAT 

GAAAGAAGAACCTCAGTGGCAAATCCTAACCTTTTATATTTCTCTACAGGGGCGCGGCGT 

GGGGACAATTCAACGCGTCTGTGAGGGGAGCGTTTCCCTGCTCGCAGGTCTGCAGCGAGG 

AGCCGTAATTTTTGCTTCGCGCCGTGCGGCCATCAAAATGTATGGATGCAAATGATTATA 

CATGGGGATGTATGGGCTAAATGTACGGGCGACAGTCACATCATGCCCCTGAGCTGCGCA 

CGTCAAGACTGTCAAGGAGGGTATTCTGGGCCTCCATGTCGCTGGCCGGGTGACCCGGCG 

GGGACAAGGCAAGCTAAACAGATCTGGCGCGCCTTAATTAACCCGGGGATCCGTCGACCT 

GCAGCGTACGAAGCTTCAGCTGGCGGCCGCTCTAGCCAGCTTTTGTTCCCTTTAGTGAGG 

        CN2171 primer 
GTTAATTCCGAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCC 

GCTCACAATTCCACACAACATAGGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTA 
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Figure 

2.2:  

 

Schematic of the primers used in this study. Primers A1 and A4 (marked in 

red) are used to amplify the gene deletion cassettes. Start denotes the start 

codon of the gene of interest from the open reading frame (ORF) and stop 

denotes the stop codon of the gene of interest. 

 
 
 
2.12 Agarose Gel Electrophoresis 

For most applications a 1% agarose gel was used, but for more specific 

requirements the concentration of agarose was adjusted and stated. Gels were 

made using 1 x TBE (0.09 M Trizma base, 0.09 M boric acid and 0.03 M 

EDTA) and 1.5 µl of RedsafeTM in a gel volume of 40 ml. Nucleic Acid 

Staining Solution (Chembio) to stain the DNA. The gel was run in 1 x TBE at 

100 volts using BioRad gel tanks, power supplies and accessories. 

 

 

2.13 Yeast Genomic DNA Extraction 

Extraction of genomic DNA was performed on strains obtained from the gene 

deletion collection (Saccharomyces Genome Deletion Project, 2007). Cells 

were grown overnight in 5 mL of YPD and placed into a rotatory shaking 

incubator at 30°C. 1.5 mL of the culture was transferred to a micro centrifuge 

tube and centrifuged at 13.000 rpm for 30 seconds. The supernatant was 

removed and cells were resuspended in 250 µl of 500 mM sorbitol in TE 

buffer. 2 µl Ribonuclease A (10 mg/ ml) and 5 µl zymolyase (10 mg/ml) were 

added and mixed by pipetting then incubated at 37°C for 1 hour. 25 µl 10% 

sodium dodecyl sulfate (SDS) was added, mixed and incubated for 65°C for 20 
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minutes. 200 µl 5M potassium acetate was added, mixed and incubated on ice 

for 10 minutes then centrifuged at 13,000 rpm for 10 minutes. 450 µl of the 

resulting supernatant was added to 450 µl propanol-2-ol and placed on ice for 5 

minutes. Samples were centrifuged at 13,000 rpm for 10 minutes and the 

supernatant was removed and discarded. 200 µl of 70 % ethanol was added to 

the pellet and the sample was centrifuged at 13,000 rpm for 5 minutes. The 

supernatant was removed and the tubes were left with the lid open to air dry for 

5 minutes. The genomic DNA was resuspended in 100 µl TE and incubated at 

65° C for minutes in order for the DNA pellet to be dissolved. Once dissolved, 

the DNA is ready to use or stored in −20° C. 

 

 

2.14 Strain mating 

Strain mating was carried out using stable haploid MATa, (ho::hphMX, 

ura3〉::natMX) and the transformed MATg strain (MATg ho:hygMX, 

ura3:natMX)  where KanMX-Barcode has been replaced with Nat MX 

cassette. Isolates from both MATa and MATg strains were placed into 5 ml of 

YPD and grown overnight in a rotatory shaking incubator at 30°C. Strains 

were streaked onto agar YPD plates and incubated at 30°C for 2 – 3 days and 

selected isolates. Isolates were confirmed by PCR in order to determine 

whether the mating test was successful. 

 

 

2.15 Mating Test PCR 

Mating test PCR was carried out to determine whether mating of stable haploid 

MATa, (ho::hphMX, ura3〉::natMX) with the transformed MATg strain (MATg 

ho:hygMX, ura3:natMX) was successful. Reactions followed the content stated 

above in section 2.10 and three primers were used where CA377 matches the 

mating type locus and CA378 and CA379 match the sequences of MATa or 

MATg respectively. Primer sequences can be found in table 2.2. Reactions 

were run under the following conditions; initial denaturation step of 95°C for 4 

minutes, then 30 cycles of denaturation at 95°C for 30 seconds, annealing at 

52°C for 30 seconds and extension at 72°C for 1 minute and 30 seconds, and a 
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final extension step at 72°C for 5 minutes followed by final hold of 15°C (1 

min/kb). 

 

 

 

 

Table 2.2: Mating test primers. These primers are used to determine the 

mating success of the MATa and MATg Saccharomyces cerevisiae parent 

strains. 

 

 
 
2.16 Transformation 

Yeast transformation was carried out on S. cerevisiae yeast strains using the 

lithium acetate protocol (Gietz & Schiestl, 2007). The transformation protocol 

was carried out on MATg (ho:hygMX, ura3:KanMX-barcode) clean lineage 

strains where the KanMX-barcode was to be replaced with Nat MX cassette  

and deletion cassettes amplified from the gene deletion collection was 

transformed into the newly created hybrids. 

 

Briefly, cells were grown overnight in 5ml of liquid YPD and placed into a 

rotary shaker at 200rpm at 30°C. After 12-16 hours the titre of yeast culture 

was determined by using a spectrophotometer and diluted to an OD of 0.2 and 

Oligo 

Name Description Sequence (5’ - 3’) 

CA377 primer flanking the mating type 

 locus, use with CA378 or 

CA379 

AGTCACATCAAGATCGTTTATGG 

CA378 MAT. alpha specific primer for 

checking mating type, use with 

CA377 

GCACGGAATATGGGACTACTTCG 

CA379 MAT. a specific primer for 

 hecking mating type, use with 

CA377 

ACTCCACTTCAAGTAAGAGTTTG 
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placed into 50 ml of pre-warmed liquid YPD (yeast peptone dextrose) and 

placed into a 30°C shaking incubator at 200rpm for 4 hours where the final 

titre would have an OD between 0.6 – 0.8. Cells were harvested by 

centrifugation at 3,000 rpm for 5 minutes and the pellet resuspended in 25 ml 

of sterile distilled water and centrifuged again for 5 minutes at 20°C. This step 

was repeated by resuspending the cells with another 25 ml of sterile water and 

centrifuged. Cells were then resuspended in 1 ml of sterile water and 

transferred to a 1.5 ml micro-centrifuge tube and span at 13,000 rpm for 30 

seconds. Cells were resuspended in 1 ml of sterile water and 100 µl of each 

sample was transferred into a clean micro-centrifuge. The sample was 

centrifuged at 13,000 rpm for 30 seconds and the supernatant was removed. 

For each experiment, 360 µl of the following transformation mix was added; 

240 µl PEG (50% w/v), 36 µl LiAc (1M), 50 µl Salmon sperm carrier DNA 

(10 mg/ml, Invitrogen), 15 µl of transforming DNA and 19 µl of sterile 

distilled water making a total volume of 460 µl in each tube. The tubes were 

placed into a water bath at 42°C and incubated for 40 minutes then centrifuged 

at 13,000 rpm for 30 seconds and the supernatant was removed. 1 ml of sterile 

distilled water was added to the tube then vortexed to resuspend the pellet and 

incubated for 2-3 hours at 30°C then plated on appropriate media and 

incubated at 30°C for 3-4 days where transformants were isolated. 

 

 

2.17 Reciprocal Hemizygosity Assay 

The reciprocal hemizygosity assay was carried out as described following 

Steinmetz et al, 2002. The method was carried out on the isogenic diploid 

strains that have been created in section 2.14 which then were transformed 

using the transformation protocol in section 2.17 with the gene deletion 

cassettes (containing the KAN-MX barcode) that were created in section 2.11. 

 

 

2.18 Strain genotype screening 

Parental strains were genotyped by replica plating to confirm the correct strains 

were used. Genotype screening was also used to determine the success of gene 

deletion cassette transformations into the newly created hybrid, through replica 
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plating. Primary plates with strain growth were replica plated onto different 

selective growth media to screen for growth in the presence of antibiotics. For 

this study, the following plates were used; hygromycin (hyg) agar plate (with 

yeast extract peptone with 1 % (w/v) yeast extract (Oxoid); 2 % (w/v) Bacto-

peptone (Oxoid); 2 % (w/v) dextrose (D-glucose); 0.6 % liquid hygromycin 

(50mg/mL); 1 % (w/v) with the addition of adenine to give a final adenine 

concentration of 0.5%); G418/400 agar plate (with 1 % (w/v) yeast extract 

(Oxoid); 2 % (w/v) Bacto-peptone (Oxoid); 2 % (w/v) dextrose (D-glucose); 

0.04% (w/v) G418- sulphate; 1 % (w/v) with the addition of adenine to give a 

final adenine concentration of 0.5%); Nourseothricin (Nat) agar plate (with 1 

% (w/v) yeast extract (Oxoid); 2 % (w/v) Bacto-peptone (Oxoid); 2 % (w/v) 

dextrose (D-glucose); 0.4% nourseothricin (20% stock); 1 % (w/v) with the 

addition of adenine to give a final adenine concentration of 0.5%). 

 

 

2.19 Confirmation PCR for correct integration of gene deletion cassettes 

The integration of the gene deletion cassettes was determined by colony PCR. 

Reactions followed the recipe stated above in section 2.10.1. Primers used for 

the confirmation of each gene cassette are given in table 2.3 and the schematic 

of the primers relative to one another is shown in figure 2.3. K2 primers pairs 

with C1 (checking primer 1) and K3 primer pairs with C4 (checking primer 4). 

Cycling parameters were carried out as follows; initial denaturation step of 

95°C for 1 minute, then 32 cycles of denaturation at 95°C for 15 seconds, 

annealing at 52°C for 15 seconds and extension at 72°C for 30 seconds, and a 

final extension step at 72°C for 5 minutes followed by final hold of 15°C (1 

min/kb). 
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Table 2.3: Checking primers to ensure the correct integration of gene 

deletion cassettes. Gene sequences obtained from the haploid laboratory 

reference S. cerevisiae strain S288c were used to design primers for the 

deletion of the open reading frame (ORF) of the gene. Primers were designed 

using bases upstream and downstream of the ORF. 

 

 

 

Experiment Oligo name Sequence (5’-3’) 
KAN MX (K3)+389 CATCCTATGGAACTGCCTCGG 

specific (K2)+592 TTCAGAAACAACTCTGGCGCA 

   Inhibitor mix (C1)ScFLR1-631C TTAATATCTGAGAGCAGGAAGAGC 

 
(C4)ScFLR1+2338W ATCCTGAAGCATCAGAACATCG 

 
(C1)ScPDR1-843C ATACCGTTCTCCAAGACTAACTGG 

 
(C4)ScPDR1+3946W GTGACAATCTGTGTGATAAGTTGC 

 
(C1)ScPDR3-600W AGTGAATGGCCTACTTCATACTCC 

 
(C4)ScPDR3+3696C CACTTCAGCTTCCTCTAACTTCG 

 
(C1)ScPDR11-774C CCTATCTGACGATTCTCTCTCTGC 

 
(C4)ScPDR11+4986W AATTGCAGAGGTGTGTGTATGG 

 
(C1)ScVMA21-560W GTGCAAGATATTCCGTGTCATAGC 

 
(C4)ScVMA21+1030C TGTTATATCATCCGTTGACAGTGC 

 
(A1)ScVMA13-246W CGACGCTGTGTTGTATATTGC 

 
(A4)ScVMA13+1892C ATTGATCACGCAGATGACTAACC 

 
(C1)ScATH1-827C CCGTCATTCTATCAATATCTGTGC 

 
(C4)ScATH1+4277W ATTGGCGCTACATCAAGTTACC 

 
(C1)ScHAL1-726C GATATCATGACACACCAGCTATGG 

 
(C4)ScHAL1+1248W GTCACGTTCCTGAGGTTACTGG 

 
(C1)ScVPS16-790W ATACCTTGCATTCCGTTATGTGG 

 
(C4)ScVPS16+3167C TTAACTGGATCACGACAACTCC 

   Formic acid (C1)ScTSA1-820W GATATTGAGTACGACACCAACACC 

 
(C4)ScTSA1+1374C AACTCGTTCTTGGATTAGTGAAGC 

 
(C1)ScERG6-668C TATCTCTTAAGACCTTACGCATCC 

 
(C4)ScERG6+1745W GTAACGTCTGCGTATTCGATGG 

 
(C1)ScYAP1-925W CCAATATCATCACCATGTAACTCC 

 
(C4)ScYAP1+2581C GACACAACTGTCGAACTCTAATACG 

 
(C1)ScERG5-878C CTGTCAAGGAGTCAGAGTCATCC 

 
(C4)ScERG5+2254W AATCGAGTACGAAGCAAGAGTAGC 
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Figure 2.3: Primer schematic for checking the correct integration of gene 

deletion cassettes. Checking primer, C1 pairs with the kanamycin specific 

primer K2 and primer C4 pairs with K3. The region which C1 and K2 primers 

amplify is given in pink and region which the C4 and K3 primers amplify is 

given in green. This schematic is not to scale. 

 

 

 

2.20 Phenotypic microarray analysis of hemizygotes 

Phenotypic microarray analysis was performed on a number of successful 

transformants from the reciprocal hemizygosity assay to confirm the sensitivity 

in the respective media. The method followed was as stated in section 2.5. 

 

Phenotypic microarray analysis was carried out on the isogenic diploid strains 

and the hemizygous strains, which contained only one allelic copy of the gene 

of interest under either inhibitor or formic acid stress. Hemizygotes were 

phenotyped using different concentrations of inhibitor mix (0.1 X, 0.2 X and 

0.3 X concentration, then under more stringent conditions using 0.5 X 

concentration) and formic acid (5 mM, 10 mM and 20 mM concentration). The 

thresholds for sensitive and more tolerant strains were determined by the data 

obtained from the phenotypic microarray assays of the parental hybrids where 

the most tolerant and most sensitive parents were used. Hemizygotes that have 
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a lower percentage of redox signal intensity than the sensitive hybrid parent are 

classified as sensitive and any transformants having a percentage that exceeds 

the most tolerant parental strain are classified as a more tolerant strain. 

 

 

2.21 PCR purification for sequencing 

In order for the reciprocal hemizygosity analysis to be carried out, PCR 

samples were prepared in order to be sent off for sequencing. PCR product 

purification was carried out using the GenElute PCR Clean-up Kit. 

 

A GenElute plasmid mini spin column was placed into a collection tube. 500 たl 

of the Column Preparation Solution was added to the spin column and was 

centrifuged at 12,000 x g for 1 minute. 5 volumes of Binding Solution were 

added to every 1 volume of the PCR reaction and was transferred to the 

binding column. The sample was then centrifuged at 12,000 x g for 1 minute 

and the eluate was discarded from the collection tube. The binding column was 

placed back into the collection tube and 500たl of diluted Wash Solution was 

added and centrifuged at 13,000 x g for 1 minute. The eluate was discarded and 

the binding column was placed back into the same collection tube and was 

centrifuged again for a further 2 minutes at maximum speed. The column was 

then transferred to a fresh 2ml collection tube and 50たl of water was added to 

the center of the column and incubated at room temperature for 1 minute. The 

sample was centrifuged at maximum speed for 1 minute in order to elute the 

DNA where the purified PCR product was collected in the 2ml collection tube 

and can be ready to use or stored at -20°C. 

 

 

2.22 Gel Extraction 

The QIAquick® Gel Extraction Kit (Qiagen, Germany) was used to extract and 

purify PCR products from an agarose gel. A scalpel was used to cut the DNA 

fragment from the agarose gel and was placed into a micro-centrifuge tube. 

The gel slice was weighed and 3 volumes of Buffer QG were added to 1 

volume of gel weight. The sample was incubated at 50°C for 10 minutes and 

vortexed in between in order for the gel to dissolve. After the gel was 
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completely dissolved 1 volume of isopropanol was added to the sample. The 

sample was placed into a QIAquick spin column in a 2 ml collection tube and 

was centrifuged for 1 minute at 13,000 x g for 1 minute. The eluate collected in 

the collection tube was discarded and the spin column was attached back to the 

collection tube. Because the sample would be sent off for sequencing, 500たl of 

Buffer QG was added and centrifuged at 13,000 x g for 1 minute. The eluent 

was discarded and 750たl of Buffer PE was added to the column and incubated 

at room temperature for 5 minutes and centrifuged at 13,000 x g for 1 minute. 

The column was placed into a clean micro-centrifuge tube and 30たl of water 

was added to the center of the QIAquick membrane and incubated at room 

temperature for 4 minutes and centrifuged at 13,000 x g for 1 minute. The 

purified PCR product was collected in the collection tube and was stored. 

 

 

2.23 Allele discrimination for Hemizygotic Phenotype Analysis 

Sequencing was performed on the purified PCR amplified products obtained 

from the K3 and C4 primers (table 2.3) in order to determine which allele had 

been disrupted in the hybrids. TSA1 gene deletion hybrids were sent to Source 

BioScience to be sequenced. From the sequencing data, the hybrid would be 

identical to one of the two parents through the detection of SNPs. The parental 

strain sequences were obtained using the reference strain Saccharomyces 

cerevisiae, S288c as a query against the Wellcome Trust Sanger Institute 

Saccharomyces cerevisiae strain (SGRP) BLAST server 

(http://www.sanger.ac.uk/cgi-bin/blast/submitblast/s_cerevisiae_sgrp). Parental 

sequences were then locally aligned using the EMBL-EBI EMBOSS matcher 

(http://www.ebi.ac.uk/Tools/psa/emboss_matcher/nucleotide.html) and SNPs 

identified manually. 

 
 

http://www.sanger.ac.uk/cgi-bin/blast/submitblast/s_cerevisiae_sgrp
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CHAPTER 3 

 

3.1 Introduction 

Saccharomyces cerevisiae has been long associated with human activity such 

as brewing and baking. It was suggested that S. cerevisiae had been associated 

with the wine making industry since 3150 BC before their association with the 

baking and brewing industry (Cavalieri et al., 2003, Mortimer, 2000). The 

earliest evidence for S. cerevisiae producing wine dates back to 7000 BC 

(McGovern et al., 2004) with supporting evidence of the DNA from ancient 

wine containers consistent with the presence of S. cerevisiae budding yeast 

(Cavalieri et al., 2003). World wide, S. cerevisiae is the dominant species for 

the baking, fermenting and brewing industries (Mortimer, 2000). The genus 

Saccharomyces are yeasts that are specialized for their sugar utilisation for 

growth and the presence of high levels of sugar favors aerobic fermentation 

over respiration (Otterstedt et al., 2004).  

 

Numerous S. cerevisiae strains have been isolated since fermentation began 

with the discovery of yeast. The majority of isolated S. cerevisiae strains are 

associated with the production of alcoholic beverages (Naumova et al., 2003, 

Teresa et al., 2003, Mortimer and Polsinelli, 1999, A, 1993). S. cerevisiae 

strains  are frequently used in fermentation as they are tolerant to high 

concentrations of ethanol (Sipiczk et al., 2001) and can produce high yields of 

ethanol. In recent studies, S. cerevisiae strains have been studied for the 

fermentation of lignocellulosic biomass due to their advantages in 

fermentation, the most crucial being tolerance to the inhibitors that are within 

lignocellulosic biomass hydrolysates (Demeke et al., 2013, Landaetaa et al., 

2013, Hawkins and Doran-Peterson, 2011). 

 

Four S. cerevisiae strains will be used in this study to determine their growth 

and to response to various inhibitors that are found in lignocellulosic biomass 

hydrolysates. The strains used consists of the following clean lineage strains 

that exhibit the same phylogenetic relationship across their genomes: 

Wine/European (WE): DBVPG6765, West African (WA): DBVPG6044, North 
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American (NA): YPS128, Sake (SA): Y12. Further information regarding the 

origin of the strains can be found in Liti et al., 2009a. 
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3.2 Results 

3.2.1 Growth assays of parental strains in individual inhibitory compound 

media 

Four S. cerevisiae strains (Wine/European (WE): DBVPG6765, West African 

(WA): DBVPG6044, North American (NA): YPS128, Sake (SA): Y12) were 

phenotyped under different media containing one inhibitory compound with 

YNB (yeast nitrogen base) supplemented with 6 % (w/v) glucose and yeast 

nutrient supplement mixture. Different concentrations of each individual 

inhibitory compound media were used in order to determine the maximum 

concentration at which the yeast stains grow. Assays were carried out using a 

Plate reader (Model: ELx808, Biotek, Canada) where the readings were taken 

initially at the start of the assay where 5 µl of cells were inoculated into each 

well of the 96-well plate containing 95 µl of the individual inhibitory 

compound media. Plates were then incubated at 30°C and the final OD 

readings were taken after 72 hours.  

 

The growth of the strain was determined by the optical density (OD) readings 

where the OD reading is 0.1 and above. Tolerance of a strain is determined by 

its growth in the highest concentration of the tested inhibitor stress. 

Experiments were carried out in triplicate. The mean value and the standard 

deviation of the OD readings have been calculated for the individual inhibitory 

compound assays. From figure 3.1, for each individual inhibitor stress, the 

parental strains grew to a similar inhibitor concentration threshold. The 4 

strains have the highest tolerance to levulinic acid (figure 3.1F) with 

DBVPG6765 (WE), DBVPG6044 (WA) and YPS128 (NA) strains having a 

tolerance up to 100 mM concentration and 85 mM for Y12 (SA). The strains 

also show a high tolerance to acetic acid (figure 3.1A) with DBVPG6765 (WE) 

having cell growth up to 90 mM, followed by DBVPG6044 (WA) at 85 mM, 

Y12 (SA) at 75 mM and YPS128 (NA) at 60 mM inhibitor concentration. It 

was observed that the strains seem to have similar tolerance to p-Coumaric 

acid (figure 3.1G) at 4 mM, HMF at 20 mM, formic acid (figure 3.1B) at 15 

mM with the exception of YPS128 (NA) at 10 mM, furfural (figure 3.1C) with 

DBVPG6765 (WE) and DBVPG6044 (WA) 15mM and, YPS128 (NA) and 

Y12 (SA) at 10 mM. There was a slight variation of tolerance to vanillin where  
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Figure 3.1: Phenotypic variation in the four S. cerevisiae strains: 

Wine/European (WE): DBVPG6765, West African (WA): DBVPG6044, North 

American (NA): YPS128, Sake (SA): Y12 to individual inhibitor compound 

media. Data shown are analysed from a final OD reading after 72 hours with 

the standard deviation under the following conditions (A) acetic acid, (B) 

formic acid, (C) furfural, (D) HMF, (E) Vanillin, (F) levulinic acid and (G) p-
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Coumaric acid. The horizontal axis shows the four parental strains and the 

vertical axis shows the maximum inhibitor concentration at which the strains 

grow. 

 

 

 

surprisingly DBVPG6765 (WE) was the most sensitive strain at 15 mM, 

whereas in all the other stresses it was one of the strains that rarely out parental 

strains. The most tolerant strain to vanillin (3.1E) is YPS128 (NA) having a 

tolerance at 55 mM followed by DBVPG6044 (WA) at 50 mM and Y12 (SA) 

being the second most sensitive at inhibitor concentration of 35 mM. In 

general, strains show a higher tolerance to both levulinic acid and acetic acid in 

comparison to the other inhibitors that were tested with their tolerance being 

around a similar concentration but there was a slight variation in the tolerance 

to vanillin within the strains compared to all other inhibitor stress conditions 

observed. 

 
 
3.2.2 Kinetic growth assays of parental strains in the inhibitor mix cocktail 

Growth assays were conducted using the Plate reader (Model: ELx808, Biotek, 

Canada) where the strains were monitored in different concentrations of the 

inhibitor mix media over a 74-hour period. OD readings were recorded every 2 

hours in the absence of agitation. Strains were phenotyped in the following 

inhibitor mix concentrations, 1 X, ¾ X, ½ X, ¼ X, ᪠ X, ᪤ X, 1/7 X and 0 X 

(where cells were placed in a control media in the absence of inhibitors).  

 

Growth assays were carried out in triplicate and the data is presented as the 

mean of the triplicate results as milli-OD at 600 nm (y axis) which corresponds 

to cell density against time (x axis), with the standard deviation either side as 

shown in figure 3.2. At any given point in any graph, 0 X concentration 

(control without inhibitors) has a higher cell density and an increase in the rate 

of cell growth. All strains show sensitivity to 1 X, ¾ X and ½ X concentration 

where cell growth is very minimal resulting in a low cell density at the end of 

the assay. Data from the DBVPG6765 (WE) strain (Figure 3.2A) show that for 
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each increase in concentration of the inhibitor mix the cell density decreases. 

For each increased inhibitor mix concentration the cells enter each growth 

phase at a later time with an increase in the lag phase before entering the log 

phase where cells start to divide. For the strains: DBVPG6044 (WA) (figure 

3.2B), YPS128 (NA) (figure 3.2C) and Y12 (SA) (figure 3.2D), inhibitor mix 

concentration at ᪠ X, ᪤ X and 1/7 X show a very similar growth pattern where 

they all enter each growth phase at very similar times and have a very similar 

cell density when compared within the same inhibitor concentration. However 

when comparing the cell density at the end of the assay for inhibitor 

concentrations ᪠ X, ᪤ X and 1/7 X, YPS128 (NA) has the highest cell density 

for all these three inhibitor concentrations at around an OD of 1.5. This is 

followed by both DBVPG6044 (WA)  
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Figure 3.2: Kinetic growth profiles of four S. cerevisiae strains: (A) 

Wine/European (WE): DBVPG6765, (B) West African (WA): DBVPG6044, 

(C) North American (NA): (D) YPS128, Sake (SA): Y12. The OD is recorded 
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every 2 hours over a 74-hour period in order to monitor the growth of each 

strain and how they compare in terms of their performance and tolerance to the 

inhibitor mix media. The x-axis shows the time against the OD readings on the 

Y-axis. Data shown is the mean value with the standard deviations. 

 
 
 
and Y12 (SA) with the cell density measuring at an OD of around 0.8. In all 

the strains, the inhibitor mix concentration at ¼ X resulted in the longest lag 

phase compared to all other inhibitor concentrations. Y12 (SA) has the longest 

lag phase of 28 hours followed by YPS128 (NA) at 12 hours, DBVPG6765 

(WE) at 16 hours and with DBVPG6044 (WA) that has the shortest lag phase 

of 6 hours. Even though there is a prolonged lag phase for strains DBVPG6044 

(WA), DBVPG6765 (WE) and Y12 (SA) in the ¼ X concentration compared 

to ᪠ X, ᪤ X and 1/7 X concentration, it is observed that both the WA and SA 

strains end up with very similar cell densities at stationary phase. However, for 

the Y12 (SA) strain assay when compared to the concentrations of ᪠ X, ᪤ X 

and 1/7 X within the same experiment, Y12 (SA) has the highest cell density. 

For both the YPS128 (NA) and DBVPG6044 (WA) strains both have a cell 

density that is lower than cells in ᪠ X, ᪤ X and 1/7 X concentration but with 

DBVPG6044 (WA) having closer cell density to cells tested in ᪠ X, ᪤ X and 
1/7 X concentrations compared to YPS128 (NA). 

 

 

3.2.3 The effect of inhibition on cell growth in different inhibitor mix 

concentrations 

The percentage of inhibition of cell growth was calculated by comparing non-

stressed cells (control) in 0 X concentration inhibitor mix and cells under the 

following inhibitor stress concentrations of ¼ X, ᪠ X, ᪤ X and 1/7 X. Optical 

density values obtained from each inhibitor mix concentration at 48 hours was 

used to calculate the percentage inhibition of cell growth. As observed 

previously in section 3.2.2, the inhibitor mix at higher concentrations of ½ X, 

¾ X and 1 X inhibited the cell growth greatly resulting in very low cell 
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densities throughout the growth assay therefore these concentrations will not 

be analysed in this section.  

 

Experiments were carried out in triplicate and the percentage inhibition data is 

presented as the mean of the calculated percentage growth inhibition of each 

three wells at the 48-hour time point. The X-axis corresponds to the four 

parental strains against the Y-axis where the percentage of growth inhibition of 

each strain is presented (figure 3.3). Figure 3.3 presents three graphs for each 

of the different 
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Figure 3.3.Growth inhibition of yeast strains. For each part of the figure, the growth profile of unstressed cells (control at 0 X concentration) is 

presented with the growth profile of the inhibitor mix concentration with the growth inhibition graph taken from the 48- hour time point. For the 

growth profiles, the X-axis presents the time against the OD on the Y-axis. For the % growth inhibition profile the X-axis presents the strains 

against the percentage of growth inhibition on the Y-axis. For reference, the growth curve without inhibitor is repeated in each part. 
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concentrations: (A) ¼ X, (B) ᪠ X, (C) ᪤ X and (D) 1/7 X. inhibitor mix 

concentrations with the kinetic growth profile of all the four parental strains; 

DBVPG6765 (WE), DBVPG6044 (WA), YPS128 (NA), Y12 (SA). The 

kinetic growth profiles have been arranged for each of the inhibitor mix 

concentrations being analysed, where the growth profile with 0 X inhibitor 

concentration is presented as a comparison to the growth profiles for ¼ X, ᪠ 

X, ᪤ X and 1/7 X inhibitor mix concentration. 

 

For the ¼ X inhibitor mix concentration (figure 3.3A), it was observed that the 

strain DBVPG6765 (WE) was the most inhibited at 57.8 % for cell growth 

followed by Y12 (SA) at 48 %, DBVPG6044 (WA) at 42 % and YPS128 (NA) 

being the least inhibited in this inhibitor concentration mix at 26 %. The order 

of the strains being inhibited, from the most to the least inhibited strain is 

replicated in the inhibitor mix concentration at ᪠ X where DBVPG6765 (WE) 

is the most inhibited strain at 49.1 % followed by Y12 (SA) at 48 %, and 

DBVPG6765 (WA) at 42 % and YPS128 (NA) at 25%. When comparing the 

percentage of growth inhibition between each strain’s performance in both the 

¼ X and ᪠ X inhibitor mix concentration, it was observed that the difference in 

the percentage inhibition of DBVPG6765 (WE) differed in 8.7% from 57.8 % 

(in the ¼ X inhibitor mix concentration) to 49.1 % (in the ᪠ X inhibitor mix 

concentration).  

 

For the other three strains, the difference in the percentage growth inhibition 

between the two concentrations were smaller by 1 % difference for YPS128 

(NA) and no difference in the growth inhibition for DBVPG6044 (WA), where 

the growth inhibition for both concentrations were 42 % and there was also no 

difference for Y12 (SA) that remained to have a percentage inhibition of 48.1 

% for both inhibitor concentrations.  

 

It was identified that in the inhibitor mix concentration mix at ᪤ X, the strain 

at which cell growth was most inhibited compared to other strains in this 

concentration was Y12 (SA) followed by DBVPG6044 (WA) then 

DBVPG6765 (WE) and with YPS128 (NA) being the least inhibited. 
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Interestingly, this order of the growth inhibition for the strains are replicated in 

the 1/7 X inhibitor mix concentration. 

 

Over all, it is observed that the YPS128 (NA) strain growth is less inhibited 

compared to all the strains in all the different concentrations analysed. The 

strain that shows a clear sensitivity is DBVPG6765 (WE), as it has the largest 

percentage difference in growth inhibition between all the concentrations 

tested. Strains Y12 (SA) and DBVPG6044 (WA) both have very similar 

growth inhibition through all the concentrations that have been analysed. It was 

observed that the higher the concentration of the inhibitor mix, the more cell 

growth was inhibited.  
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3.3 Discussion 

In the pretreatment processes of lignocellulosic material such as wheat straw 

and during the hydrolysis process, a number of inhibitors are produced and 

affect the fermentation processes (Almeida, 2009) and the fermenting 

microorganisms.  There is a range of inhibitors that are produced and each of 

these will have their own inhibitory effects on the fermentation processes and 

the fermenting microorganism. In this study using a range of inhibitors and an 

inhibitor cocktail mix, the four S. cerevisiae strains demonstrated that there 

was variation in their response to the inhibitors. Using growth assays to 

determine at what thresholds the yeast strains would grow to, it was observed 

that there was a lower tolerance to formic acid at 10 mM and higher tolerance 

threshold to acetic acid and levulinic acid. In the literature, it has been 

identified that formic acid was much more toxic than levulinic acid followed 

by acetic acid being the least toxic (Larsson et al., 1999).  In lower 

concentrations of weak acids below 100 mM there were higher ethanol yields 

than the fermentations with out the weak acids included (Larsson et al., 1999). 

It is believed that low concentrations of weak acids stimulate the production of 

ATP that is achieved under anaerobic conditions by ethanol production 

(Larsson et al., 1999) which suggests that yeast has the mechanism to utilise 

these weak acids in their metabolism therefore it is able to confer resistance to 

higher concentrations of weak acids present compared to other inhibitors. 

Yeast strains showed a variation in resistance to the phenolic compounds. For 

vanillin, the strains showed a varied difference amongst each strain rather than 

having a similar tolerance like most of the inhibitors analysed. p-coumaric acid 

was the most inhibitory compared to vanillin and is also the most inhibitory 

when compared to all the other inhibitors that were tested. Phenolic 

compounds that have a lower molecular weight are found to be more toxic 

compared to those having a higher molecular weight. The molecular weight of 

vanillin is 152.15 g/mol and p-coumaric acid has a molecular weight of 164.16 

g/mol but from the results obtained it was found that p-coumaric acid was more 

inhibitory. It has been found that vanillin can be assimilated and converted by 

S. cerevisiae to vanillyl alcohol (Vanbeneden et al., 2008; Clausen et al., 1994; 

Huang et al., 1993) which could be a suggestion as to why there is a variation 

within the strain response to vanillin and also higher resistance to vanillin 
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compared to p-coumaric acid. For the furaldehydes, the results show that cells 

grow in a higher concentration of HMF than furfural. In the literature, furfural 

is more toxic when compared to HMF in eqimolar concentration (Heer and 

Sauer, 2008, Larsson et al., 1999). The conversion of furfural to less toxic 

compounds happens more rapidly than for HMF in fermentation. Therefore, 

this inhibition effect of HMF on microorganisms is longer than furfural but not 

as toxic compared to furfural. (Almeida et al., 2008; Taherzadeh et al., 2000). 

 

Kinetic growth assays were performed in order to see how the yeast strains 

respond to the inhibitor mix at different concentrations. The results show that 

the inhibitor mix concentrations at 1 X, ¾ X and ½ X, were too high and 

inhibited the yeast cell growth greatly for all four strains. For the inhibitor mix 

concentrations ¼ X, ᪠ X, ᪤ X and 1/7 X we could see that there were 

similarities in the cell growth for the strains DBVPG6044 (WA), Y12 (SA) and 

YPS128 (NA) where the cell densities were very similar as stationary phase 

was reached. For concentrations, ᪠ X, ᪤ X and 1/7 X the growth curves were 

very similar for the cell growth for these three strains and a consistent longer 

lag phase was observed with the ¼ X concentration for these strains. It has 

been suggested that furaldehydes such as HMF, furfural, and the phenolic 

compound vanillin could cause an increase in lag phase (Lin et al., 2007). For 

the DBVPG6765 (WE) strain, with the inhibitor mix at ¼ X, ᪠ X, ᪤ X and 1/7 

X there were clear differences in the growth curves in that the curves did not 

cluster together like the ᪠ X, ᪤ X and 1/7 X inhibitor mix concentrations in the 

other strains as previously described. The different concentrations of the 

inhibitor mix seemed to affect the growth of cells with a gradual decrease in 

cell density as the inhibitor concentration increased. It was also noticed for the 

DBVPG6765 (WE) strain, for inhibitor mix concentrations at ᪠ X, ᪤ X and 1/7 

X, that it seemed like the cell growth could still increase after the 74 hour 

assay. A similar but subtle observation could be applied to the YPS128 (NA) 

strain where for the same concentrations where the cell density seemed to have 

not completely settled to a constant in comparison to the SA and NA strain 

where they seem to clearly reach a stable stationary phase with the cell density.  
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For the growth assays the percentage inhibition was analysed. The percentage 

of growth inhibition increased as the concentration of the inhibitor mix 

concentration increased for all yeast strains. The growth inhibition of each 

strain is compared by looking at the difference between the 1/7 X inhibitor mix 

concentration and the ¼ X concentration mix. The strain that was inhibited the 

most was strain DBVPG6765 (WE) where the percentage of growth inhibition 

was inhibited from 22.6 % in 1/7 X inhibitor mix concentration to 57.8 % in the 

¼ X inhibitor mix concentration. The least inhibited strain for all the analysed 

inhibitor concentrations was strain YPS128 (NA) where the percentage of 

growth inhibition was between 21.6 % and 26 % where this strain was affect 

by a difference of around 1.5 % between each of the inhibitor mix 

concentrations. The DBVPG6044 (WA) and Y12 (SA) strain was also not 

affected greatly as the inhibitor mix concentration increased. For DBVPG6044 

(WA) the difference from the 1/7 X and ¼ concentration was 1.8 % and for the 

Y12 (SA) strain the difference was 3%.  

 

 

3.4 Conclusion 

The growth assays have revealed that there is phenotypic variation within the 

parental strains for the individual inhibitors and the inhibitor mix cocktail. The 

studies performed give an idea of the strain response to different individual 

inhibitors where results did correspond with the literature in that the strains 

were found to grow in higher concentrations of weak acids compared to the 

phenolic compounds and furaldehydes. There was variation between the 

phenolics where the strains all differed in their tolerance to vanillin compared 

to p-coumaric acid where the strains did not grow past 4 mM. For the 

furaldehydes it was observed that variation occurred between furfural and 

HMF where strains were more sensitive to furfural compared to HMF.  

 

Growth assays have demonstrated the effect of the different concentrations of 

the inhibitor mix and how it affects the growth and cell densities of the four 

parental strains. It is concluded that the most inhibited strain for the inhibitor 

mix is the DBVPG6564 (WE) strain and the least inhibited strain is YPS128 

(NA). The strains that have had the least percentage of growth inhibition for 
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the inhibitor concentrations analysed were DBVPG6044 (WA), YPS128 (NA) 

and Y12 (SA). 

 

For second-generation bioethanol production this shows that the identification 

of a strain that is tolerant to all these inhibitors during fermentation will require 

a lot of attention and research in order to produce bioethanol at high yields.  
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CHAPTER 4 

 

4.1 Introduction 

The four clean lineage S. cerevisiae yeast strains (DBVPG6765 (WE), 

DBVPG6044 (WA), YPS128 (NA) AND Y12 (SA)) have been engineered to 

enable genetic tractability (Cubillos et al., 2009). When two of these parental 

strains are crossed, this produces an F1 diploid which is then sporulated to 

generate an F1 population (figure 4.1).  

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 4.1: Crosses between clean lineage S. 

cerevisiae parental strains. A schematic of a cross and generation of 

segregants. 

 

 

 

The F1 progeny display a wide range of phenotypes including transgressive 

variation (Cubillos et al., 2011). From the six pair-wise crosses (produced from 

the four parental strains) that have been generated, these segregants have been  

Haploid Parent 1  Haploid Parent 2 

Diploid F1 Hybrid 

F1 Segregants 

 Sporulation 
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extensively genotyped and phenotyped for growth in many environmental 

conditions of ecological relevance (Liti et al., 2009). These clean lineages have 

served as powerful tools and models to determine multi-genic traits using 

quantitative trait loci (QTL) analysis.  

In this study the objective is to determine how the F1 segregants compare to 

their parents under the different stresses that are encountered during 

fermentation of lignocellulosic biomass. Phenotypic microarray analysis of 

metabolic output in the presence of these fermentation stresses will be 

analysed. QTL analysis will be performed to determine QTLs that govern 

complex traits that are important for the fermentation of bioethanol.  
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4.2 Results 

4.2.1 Phenotypic response of haploid F1 segregants 

Six pair-wise F1 crosses between four distinct parental Saccharomyces 

cerevisiae clean lineage populations were generated by Cubillos et al., 2009, 

and 96 haploid F1 segregants from each cross were assayed for tolerant 

phenotypes using a phenotypic microarray assay (Biolog, Hayward, US). The 

stress responses of each segregant under different stress conditions were 

determined by comparing the data between stressed cells and non-stressed 

control cells (defined here as the redox signal intensity relative to that of a 

control) at the 48-hour time point (except for thermal stress at 40°C which data 

was taken at the 24 hour time point). Figure 4.2 represents typical results of the 

96 haploid segregants from one of the crosses under different stress conditions; 

also included are the parents of that cross. There was phenotypic variation 

between the segregants within each cross for all stresses assayed for and the 

phenotypic response of the F1 haploid segregants did not correlate with either 

parental strain. This was observed in all the F1 crosses to all different stresses 

assayed and this pattern of continuous variation amongst the segregants 

together with no large step changes is consistent with the phenotypes being 

polygenic. 
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Figure 4.2: Phenotypic microarray analysis of F1 haploid segregants from 

the cross between Y12 (SA) and DBVPG6044 (WA) clean linage yeast 

strains. Data shown are taken from the 48 hour time point where conditions 

are as follows (A) 25 mM acetic acid, (B) 10 mM formic acid, (C) 5 mM 
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furfural, (D) 5 mM HMF, (E) 10% sorbitol, (F) 5 mM vanillin, (G) temperature 

(35°C), (H) 10% ethanol, (I) 1 in 4 dilution inhibitor mix. Parental strain data 

is shown in coloured symbols. The horizontal axis shows the 96 individual 

haploid segregants. The vertical axis shows the % of RSI (redox signal 

intensity) where cells in various stress conditions were compared to cells in 

unstressed conditions. The values shown are an average of triplicate 

experiments including standard deviations. 

 

 

 

4.2.2 Transgressive variation of segregant population compared to 

parental strains 

The phenotypic responses of the F1 segregant populations were tested under 

different stress conditions and their performance was compared to the relevant 

parental strains (figure 4.3). From the data obtained from the phenotypic 

assays, the number of segregants that were more sensitive than the less tolerant 

parental strain and the number of segregants that outperformed the more 

tolerant parental strain were recorded for each individual stress and compared 

to other crosses. There was clear improvement in the segregants’ performance 

compared to their parents when under acetic acid and HMF stress (figure 4.3A 

and figure 4.3D). It was observed that in formic acid, temperature and sorbitol 

stress that the result was dependent on the population that was screened. For 

formic acid stress, the cross DBVPG6765 (WE) x YPS128 (NA) had the 

highest number of segregants that out-performed either parent, but crosses of 

other populations (e.g., DBVPG6765 (WE) x Y12 (SA) to formic acid stress) 

had more segregants sensitive to the stress when compared with the phenotypic 

response of either parent (figure 4.3B). It was observed that there was a 

reduction in tolerance in population responses compared to the parental strains 

to furfural, vanillin and ethanol stress (figure 4.3.E and figure 4.3F). It was 

observed that across all the stress conditions that were tested, even though 

there were a higher number of sensitive segregants there would always be 

individuals that would outperform both parents. 
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Figure 4.3: Assessment of phenotypic variation of yeast populations. F1 

haploid segregants from six-pair wise crosses of four parental S. cerevisiae 

strains were tested for (A) acetic acid, (B) formic acid, (C) Furfural, (D) HMF,  

(E) Vanillin,  (F) Ethanol (10%) (G) Temperature 35°C, (H) Sorbitol (10%) 
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and (I) Inhibitor mix (1 in 4) stress. Each population exhibited phenotypes 

which outperformed both parental strains. 

 

 

 

4.2.3 Stress response in populations can be linked to tolerance in other 

stresses 

It was possible to identify shared phenotypes of individual segregant profiles 

and their responses to other stress condition by ranking the F1 segregants 

according to their responses. The software compares the segregant population 

response to an inhibitor stress and how it compares to other stresses. The 

software uses Pearson product-moment correlation coefficient where the R-

value is given between 0 and 1 (1 is the total positive correlation and 0 is no 

correlation) to measure the correlation between the responses of segregants 

under two different inhibitor stresses. This approach highlighted that the 

haploid segregants population responded in a similar manner to acetic acid and 

formic acid (figures 4.4A - 4.4F). There was a common phenotypic response in 

segregants shared with HMF, furfural and vanillin stress (Figures 4.4A - 4.4F). 

The population derived from Y12 (SA) x YPS128 (NA), showed an exception 

to this finding as there was little correlation in the response to furfural and 

vanillin (figure 4.3A); the same finding was observed in the cross DBVPG6044 

(WA) x DBVPG6765 (WE) to HMF and vanillin stress (figure 4.4C). In some 

F1 segregant populations such as DBVPG6765 (WE) x (Y12) SA (figure 3E) 

there was a correlation in the response to sorbitol and ethanol stress but other 

crosses such as DBVPG6765 (WE) x DBVPG6044 (WA) did not show any 

association. In general the data from temperature stressed F1 segregant 

populations correlated well (figure 4.4A, 4.4C, 4.4D and 4.4E). However, there 

were some populations that did not show this correlation (figures 4.4B and 

4.4F).  
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Figure 4.4 - Statistical analysis of F1 populations using R. The correlation 

of two stresses are presented as a scatter graph and a frequency distribution of 

the individual stress indicating the spread of the data. A  number (R= 0-1) is 

the correlation between the populations under stress with 1 indicating two 

identical populations . Six F1 crosses; (A) Y12 (SA) x YPS128 (NA), (B) 

YPS128 (NA) x DBVPG6765 (WE), (C) DBVPG6044 WA) x DBVPG6765 

(WE), (D) Y12 (SA) x DBVPG6044 (WA), (E) DBVPG6765 (WE) x Y12 

(SA) and (F) YPS128 (NA) X DBVPG6044 (WA) were analysed to determine 

the significance of stress response to acetic acid, formic acid, fufural, HMF, 

vanillin, sorbitol, ethanol, and temperature (35°C and 40°C).  

 
 

 

4.2.4 Identification of QTLs 

Using the data generated from each F1 haploid segregant populations response 

to stress, quantitative trait loci (QTL) analysis was performed, and a number of 

QTLs were identified. The peak of each QTL was determined and the region 

50 kb either side was chosen as the region that contributes to the tolerance of 

various stress conditions. An example of a QTL plot from the J/QTL 

(Churchill) software is shown in figure 4.5 for the data derived from the 

Y1PS128 (NA) and Y12 (SA) cross under the inhibitor mix stress condition, in 

which QTL peaks were identified on chromosomes IV and XIII in loci 985 and 

255 respectively. Table 4.1 illustrates the data obtained from all other crosses 

where QTLs were detected. Details of the stress conditions with the associated 

chromosome and QTL peak are given. 
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Figure 4.5: A QTL plot for the cross YPS128 (NA) x Y12 (SA) for 

inhibitor mix stress at 1 in 4 dilution. The QTL plot is obtained from the 

J/QTL software (Churchill) where there are QTL peaks found on chromosome 

II (position 204 kb), III (position 159 kb, VII (position 516 kb), XIII (position 

357 kb), XIV (position 97 kb) and XVI (position 630 kb). On the horizontal 

axis is the chromosome number. The vertical axis is the logarithm of the odds 

(LOD) score threshold where the threshold is determined by the dotted lines, 

where any peak above the top line is a significant hit at the p>0.05 threshold 

level. 
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Stress 

condition 

Aerobic/ 

Anaerobic 
Cross Concentration Chromosome 

Peak location 

(kb) 

50kb either side of 

peak (kb) 

Inhibitor mix Aerobic WE x SA 1 in 6 X 188 138-238 

Inhibitor mix Aerobic WE x SA 1 in 5 X 164 114-214 

Inhibitor mix Aerobic NA x SA 1 in 6 II 308 258-358 

    
XVI 630 580-680 

Inhibitor mix Aerobic NA x SA 1 in 5 II 204 154-254 

    
VII 516 466-566 

    
XVI 630 580-680 

Inhibitor mix Aerobic NA x SA 1 in 4 II 204 154-254 

    
III 159 109-209 

    
VII 516 466-566 

    
XIII 357 307-407 

    
XIV 97 47-147 

    
XVI 630 580-680 

       Formic acid Anaerobic WA x WE 5 mM XI 57 107-157 

    
XIII 731 681-781 

Formic acid Aerobic SA X WA 10 mM IV 985 935-1035 

    
XIII 255 205-305 

       Acetic acid Anaerobic WA x WE 25 mM XIII 851 801-901 

Acetic acid Anaerobic SA x WA 25 mM IV 975 925-1025 

    
XIII 354 304-405 
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Table 4.1- QTL analysis data for F1 segregants. QTL data analysis for F1 segregants. QTLs have been identified for various crosses under 

different stress conditions where the peak of the QTL has been determined and the region of 50 kb either side of the peak is given where genes 

that may confer tolerance will be identified. 

 

 

Acetic acid 

 

Aerobic 

 

SA x WA 

 

25 mM 

 

IV 

 

971 

 

921-1021 

    
XIII 401 351-451 

       Sorbitol Anaerobic NA x SA 10% XII 439 389-489 

Sorbitol Anaerobic NA x WE 15% III 101 51-151 

       Sorbitol Aerobic NA x WE 15% XII 649 599-699 
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QTLs obtained for the inhibitor mix from the F1 haploid segregants derived 

from the YPS128 (NA) x Y12 (SA) cross revealed a consistent QTL on 

chromosome XVI at position 630 kb. This QTL was identified using data from 

three inhibitory test conditions (1 in 4, 1 in 5 and 1 in 6 dilutions). A QTL from 

this cross was also identified on chromosome II at position 204 kb from 

different inhibitory concentrations (dilution 1 in 4 and 1 in 5 respectively), but 

the QTL identified using a 1 in 6 dilution was at position 308. This cross also 

generated a QTL on chromosome VII using two inhibitory concentrations 

(dilution 1 in 4 and 1 in 5 at position 516 kb) and QTLs on chromosome III and 

XIII from data generated using a 1 in 4 dilution. A QTL was identified on 

chromosome X from the DBVPG6765 (WE) x Y12 (SA) cross using data 

generated from two inhibitory concentrations (1 in 5 and 1 in 6 dilutions).  

 

Analysing data from the YS128 (NA) and DBVPG6765 (WE) for formic acid 

(anaerobic) stress and Y12 (SA) x DBVPG6044 (WA) for acetic acid stress 

(both anaerobic and aerobic conditions), there were three QTLs which 

overlapped on chromosome IV at position 985 kb (regions 935 kb – 1035 kb 

for NA x WE), 975 kb (regions 925 kb – 1025 kb for SA x WA) and 971 kb 

(regions 921 kb – 1021 kb for SA x WA).  

 

QTLs were identified on chromosome XIII for both formic and acetic acid 

stress from crosses DBVPG6044 (WA) x DBVPG6765 (WE) (anaerobic 

formic acid stress condition) and YPS128 (NA) x DBVPG6765 (WE) 

(anaerobic formic acid stress condition), and cross Y12 (SA) x DBVPG6044 

(WA)  (anaerobic and aerobic acetic acid stress condition). The QTLs from the 

cross Y12 (SA) x DBVPG6044 (WA) for acetic acid stress overlapped (regions 

304 kb – 405 kb and 401 kb and 351 kb – 451 kb). Data generated using the 

WA x WE cross revealed another QTL on chromosome XI at position 57 kb 

when under formic acid stress. 

 

Using data generated from sorbitol stress in the (YPS128) NA x DBVPG6765 

(WE) cross were identified two QTL peaks, one on chromosome III at position 

101 kb and one on chromosome XII at position 649 kb; this chromosome also 
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generated a QTL peak from data generated from the cross YPS128 (NA) x Y12 

(SA) at position 439 kb. 

 

 

4.2.5 The correlation between the inhibitor mix and different 

concentrations.  

R statistical analysis was performed on the findings obtained from the QTL 

analysis for the cross DBVPG6765 (WE) x Y12 (SA) (1 in 5 and 1 in 6 

dilutions) (figure 4.6A) and YPS128 (NA) x Y12 (SA) (1 in 4, 1 in 5 and 1 in 6 

dilutions) (figure 4.6B) that were derived from the inhibitor mix stress. This 

analysis was carried out in this part of the study on the QTL analysis that 

harvested a QTL peak for the inhibitor mix stress. The R statistical analysis 

shows that the cross DBVPG6765 (WE) x Y12 (SA) with the inhibitor mix at 1 

in 5 and 1 in 6 dilutions there was correlation between these concentrations. 

The cross YPS128 (NA) x Y12 (SA) shows that there is a correlation between 

the 1 in 4, 1 in 5 and 1 in 6 dilutions that were tested. For the 1 in 6 and 1 in 5 

dilution, the correlation is not as strong as that between 1 in 6 and 1 in 4 

dilution and for the 1 in 5 and 1 in 4 dilution, which had the strongest 

correlation.  
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Figure 4.6: Statistical analysis of F1 population using R for QTLs 

identified for inhibitor mix stress. The correlation of inhibitor mix stress 

concentration is given for (A) DBVPG6765 (WE) x Y12 (SA) and (B) YPS128 

(NA) x Y12 (SA).  
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4.2.6 Identification of potential candidate genes 

Genes of interest were restricted to within a 100 kb region that flanked the 

QTL peak using the Saccharomyces Genome Database (figure 4.7). Each QTL 

region contained between 40 to 60 genes (table 4.2) and therefore we focused 

on selected genes from selected QTL regions. Table 4.3 illustrates the genes 

chosen from various stress conditions and their co-ordinate position on the 

chromosome that corresponds to the area identified on the QTL.  

 

 

 

 

 

Figure 4.7: Schematic diagram of the QTL region of interest. The region 

shown is on chromosome XVI at position 630 kb (region 580 kb – 680 kb) 

for the cross YPS128 (NA) x Y12 (SA) obtained from Saccharomyces Genome 

Database (SGD, http://www.yeastgenome.org) for the cross YPS128 (NA) x 

Y12 (SA) for inhibitor mix stress. The online search and analysis tools 

provides information on the region of interest with the overview of the 

chromosome and the region significant to the QTL and the number of genes 

(indicated with red arrows where different directions show whether genes are 

sense or antisense) that are within the region of interest.  

  

http://www.yeastgenome.org/
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Gene  
(Systematic 

Name) 

Gene  
(Standard 

Name) 
Gene   

(Name) 
Gene  

 (Alias) 

YPR011C 
   YPR013C CMR3 Changed Mutation Rate 

 YPR015C 
   

YPR016C TIF6 Translation Initiation Factor 
CDC95 translation initiation 

factor 6 

YPR017C DSS4 Dominant Suppressor of Sec4 
Guanine nucleotide exchange 

factor DSS4 

YPR018W RLF2 
Rap1 protein Localization 

Factor CAC1 

YPR019W MCM4 
MiniChromosome 
Maintenance 

MCM DNA helicase 
complex subunit MCM4 

CDC54 HCD21 

YPR020W ATP20 ATP synthase F1F0 ATP synthase subunit g 

YPR021C AGC1 Aspartate-Glutamate Carrier 
 YPR022C 

   YPR023C EAF3 Esa1p-Associated Factor 
 

YPR024W YME1 Yeast Mitochondrial Escape 
OSD1 i-AAA protease 

YME1 YTA11 

YPR025C CCL1 
 

TFIIH complex kinase 
subunit CCL1 

YPR026W ATH1 Acid TreHalase Alpha,alpha-trehalase ATH1 

YPR027C 
   YPR028W YOP1 YIP One Partner YIP2 

YPR029C APL4 
clathrin Adaptor Protein 

complex  Large chain 

YPR030W CSR2 Chs5 Spa2 Rescue ART8 MRG19 

YPR031W NTO1 NuA Three Orf 
 YPR032W SRO7 Suppressor of rho3 SNI1 SOP1 

YPR033C HTS1 Histidine-Trna Synthetase 
TSM4572 histidine--tRNA 

ligase TS4572 

YPR034W ARP7 Actin-Related Protein RSC11 SWP61 

YPR035W GLN1 GLutamiNe metabolism Glutamate--ammonia ligase 

YPR036W VMA13 
 

CLS11 H(+)-transporting V1 
sector ATPase subunit H 

YPR037C ERV2 
Essential for Respiration and 

Viability  

YPR040W TIP41 Tap42 Interacting Protein 
 

YPR041W TIF5 Translation Initiation Factor 
Translation initiation factor 

eIF5 SUI5 

YPR042C PUF2 
PUmilio-homology domain 

Family  

YPR043W RPL43A 
Ribosomal Protein of the 

Large subunit 
L43e ribosomal 60S subunit 

protein L43A L43A 

YPR045C THP3 THO-related Protein MNI2 

YPR046W MCM16 
MiniChromosome 
Maintenance 

 

YPR047W MSF1 

Mitochondrial aminoacyl-
tRNA Synthetase, Phenylalanine 

(F) Phenylalanine--tRNA ligase 

YPR048W TAH18 
Top1T722A mutant 
Hypersensitive  
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Table 4.2: Genes list generated from SGD database. The genes are 

identified from chromosome XVI in the region 580 kb - 680 kb for the cross 

YPS128 (NA) x Y12 (SA) for inhibitor mix stress. The systematic gene name 

is given however, not all yet, have been assigned with a function therefore 

some data is currently missing from the database. 

  

YPR049C ATG11 AuTophaGy related 
CVT3 autophagy protein 

ATG11 CVT9 

YPR051W MAK3 MAintenance of Killer NAA30 

YPR052C NHP6A Non-Histone Protein 
 

YPR054W SMK1 
 

Mitogen-activated protein 
kinase SMK1 

YPR055W SEC8 SECretory 
 

YPR056W TFB4 
Transcription Factor B subunit 

4 
TFIIH/NER complex subunit 

TFB4 

YPR057W BRR1 Bad Response to Refrigeration 
 YPR058W YMC1 Yeast Mitochondrial Carrier 
 

YPR060C ARO7 
AROmatic amino acid 

requiring 
TYR7 chorismate mutase 
ARO7 HGS1 OSM2 

YPR061C JID1 
DnaJ protein Involved in ER-

associated Degradation  

YPR062W FCY1 FluoroCYtosine resistance yCD cytosine deaminase 

YPR063C 
   tF(GAA)P2 
   tK(CUU)P 
   YPR036W-

A SPO24 SPOrulation 
 YPR010C-

A 
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Table 4.3: Genes identified for each QTL peak using Saccharomyces 

Genome Database.  

  

Stress 

condition Cross Chromosome Genes 

Gene 

coordinates 

Inhibitor mix NA x SA II FLR1 254209 to 252563 

  

II PDR3 217470 to 220400 

  

VII ERG4 472855-474276 

  

VII ERG26 495453-496502 

  

VII PDR1 472298 to 469092 

  

VII PMA1 479910-482666 

  

XVI VMA13 643836 to 645272 

  

XVI ATH1 615379 to 619014 

     

     

     Formic acid SA x WA IV FMN1 935236-935892 

  

XIII TSA1 220138-220728 

  

XIII ERG6 251839-252990 

  

XIII YAP1 253848-255800 

  

XIII ERG5 300869-302485 

 

WA x WE XI STE6 42423-4629 

     

     Acetic acid SA x WA IV COX20 926293-926910 

  

IV GCN2 1025070-1030049 

  

XIII ADH3 434788-435915 

  

XIII MSN2 344403-346517 

  

XIII CCS1 347511-348260 

  

XIII AAC1 387315-388244 

     

     Sorbitol NA x SA III PDI1 48653-50221 

  

III SAT4 128470-130281 

  

III RVS161 130745-131542 

 

NA x WE XII RCK2 634252-636084 

  

XII GSY2 660716-662833 

  

XII HSP60 663284-665002 
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Data from the inhibitor mix experiments revealed a QTL for chromosome II at 

position 308 kb for dilution 1 in 6, but for dilution 1 in 5 and 1 in 4, there was a 

consistent QTL at position 204 kb where it was decided that candidate genes 

were to be selected from this region. Genes chosen were based on drug 

transporters, proton pumps and genes involved in ergosterol synthesis. 

 

The genes that were selected as being potentially interesting for formic acid 

stressed yeast cells came from chromosomes XIII, IV and XI. For acetic acid 

tolerance, the genes were selected from chromosomes IV and XIII and for 

osmotic stress genes were selected from chromosomes XII and III. Genes 

selected for formic acid, acetic acid and sorbitol stress consisted of genes that 

are involved in oxidative stress, ergosterol biosynthesis and coding for drug 

transporters.  
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4.3 Discussion 

A strain that is robust and resistant to inhibitors in lignocellulosic biomass 

fermentation is yet to be identified. In this study, using divergent S. cerevisiae 

clean lineage strains, linkage analysis was performed to map bioethanol 

relevant QTLs. F1 haploid segregants were analysed for their response to 

stresses that are present in bioethanol fermentation using phenotypic 

microarray. It was observed that haploid F1 segregants that were derived from 

six-pair wise crosses of clean lineage S. cerevisiae strains were phenotypically 

distinct from either parent. The transgressive observation agrees with studies 

that phenotypic variation can be displayed from F1 hybrid progeny when 

compared with the parental strains. Transgressive variation in haploid yeast 

strains for oenological and thermotolerant phenotypes have been previously 

described but not for fermentation stress (Francisco et al., 2011; Steinmetzm et 

al., 2002).  

There were large numbers of segregants that displayed transgressive 

phenotypes for most of the phenotypic microarray assays performed apart from 

some stresses such as ethanol, furfural and vanillin stress where there were 

lower numbers of segregants that displayed transgressive phenotypes compared 

to their parents. R-script analysis shows that there were some correlation with 

the segregants performance between certain inhibitors. It could be that 

segregants metabolise certain correlated stresses similarly such as acetic acid 

and formic acid. It was observed that there was a similar correlation in the 

segregant response between HMF, furfural and vanillin. It could be suggested 

that due to the similar inhibition mechanisms of these inhibitors they are 

metabolised similarly. Another alternative suggestion is that some inhibitors 

have a synergistic effect where inhibition of fermentation by a certain 

compound can be enhanced by other compounds. The combination of certain 

compounds combined in fermentation could inhibit the yeast more significantly 

or produce a better yield of ethanol than just the one inhibitor alone (Fu et al., 

2014).  

Mapping QTLs to a phenotype in yeast has been successful for the desired trait 

such as the performance of yeast in fermentation (Hu et al., 2006), alcoholic 
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fermentation of grape juice (Zimmer et al., 2014), sensitivity to heavy metals 

or pesticides and ethanol tolerance (Pais et al., 2013). However, currently there 

has not been literature published for bioethanol fermentations. In this study 

genes have been identified as possible candidate genes responsible for the 

bioethanol resistant traits for acetic acid stress, sorbitol osmotic stress, formic 

acid stress and inhibitor mix stress.  

 
 
4.4 Conclusions 

It has been revealed that there is a phenotypic variation between F1 segregants. 

It was observed that there were transgressive phenotypes, where segregants 

would perform better than both the parental strains, in all the F1 populations 

that were screened in different inhibitor stress conditions. R script analysis 

showed that there were correlations with the response of the segregants to an 

inhibitor stress that correlated with another inhibitor stress condition. Through 

linkage analysis, QTLs were discovered for the following stress conditions; 

acetic acid, formic acid, osmotic (sorbitol) stress and inhibitor mix stress. From 

each of these QTLs, potential candidate genes have been identified that 

correspond to the stresses mentioned. Chapter 5 validates these potential 

candidate genes that may confer resistance to the stresses that have been tested. 
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CHAPTER 5 

 

5.1 Introduction 

From the QTL linkage analysis, potential candidate genes which have been 

identified for the stresses are involved in ergosterol biosynthesis, oxidative 

stress and genes coding for drug transporters such as efflux and proton pumps. 

Efflux pumps are a class of membrane transporters that are responsible for the 

export of toxins from the cell using the proton motive force (Nikaido and 

Takatsuka, 2009; Putman et al., 2000). The eukaryotic plasma membrane is a 

complex structure consisting of thousands of different lipids with numerous 

embedded membrane proteins such as proton pumps that are important in the 

transport of protons across the membrane that influences the electrochemical 

gradient in the plasma membrane.  

 

In yeast, the plasma membrane is enriched in ergosterol, sphingolipids and a 

variety of specific membrane proteins (Bagnat et al., 2000). In yeast, ergosterol 

plays many essential roles in bulk membrane function, affecting membrane 

fluidity, rigidity and permeability (Parks and Casey, 1995). It has been 

discovered that interfering with sterol biosynthesis or function has led to the 

success of antifungal agents in medical and agrochemical related findings 

(Porollo et al., 2012), and pharmaceutical development would use this 

knowledge to investigate drug permeability of the plasma membrane. It has 

been confirmed that changes in the sterol composition caused by ergosterol 

(erg) mutants confer pleiotropic hypersensitivity to a broad range of 

compounds such as lithium chloride, sodium chloride, dactinomycin, 

cycloheximide, anthracyclines, brefeldin A and ethanol (Juan et al., 2012; Juan 

M. Vanegas, 2012; Martel et al., 2012; Vanegas et al., 2012; Welihinda et al., 

1994). Studies which involved the ergosterol mutant analysis determined that 

the lipid bilayer of the erg6 deletion mutant is permeable to small molecules 

and sterol alteration in the erg6 deletion mutant deceases the activity of a multi 

efflux pump, PDR5, which resulted in the accumulation of cycloheximide in 

the erg6 deletion mutant cells (Emter et al., 2002; Kuar and Bachhawat, 1999). 

These studies determined that specific structural ergosterol motifs are required 

for special cellular processes.  



 

 
 

107 

In this study, the objective is to determine whether the chosen genes (based on 

their functions and their involvement in the cell), are responsible for the 

bioethanol stress-related QTLs. Reciprocal hemizygosity analysis (figure 5.1) 

will be performed in order to determine which allele remains and how this 

affected the phenotype of the yeast strains. The reciprocal hemizygosity 

approach consists of the deletion of both allelic variants in a diploid hybrid 

between two haplotypes with diverged phenotypes, which are then 

phenotypically compared (Steinmetz et al. 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Schematic of reciprocal hemizygosity analysis. Each allele is 

deleted from the diploid hybrid in order to determine the differences of these 

alleles when compared phenotypically. (Image by Kay Leung).  

Diploid Hybrid 

  Deletion  
  of allele 
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5.2 Results 

5.2.1 Identification of candidate genes correlating with a resistant 

phenotype  

In this study, the focus is on two stress conditions, which were the inhibitor 

cocktail mix and formic acid. Candidate genes present in the QTLs identified 

in chapter 4 for these stress conditions were selected for further analysis via 

phenotypic microarray assays and reciprocal hemizygosity experiments. Some 

candidate genes that were identified could not be used due to being essential 

genes (such as ERG26 and PMA1 for the inhibitor mix stress and FMN1 for 

formic acid stress) and some gene deletion cassettes were not available from 

the gene deletion collection (such as VMA13 from the inhibitor mix stress and, 

STE6 and ERG4 identified from formic acid stress). The candidate genes that 

were focused on in this part of the study are presented in table 5.1 
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Stress condition Cross Chromosome Genes Description Summary 
Inhibitor mix NA x SA II  FLR1 

FLuconazole Resistance 
Drug transporter 

 
Plasma membrane multidrug transporter 
of the major facilitator superfamily 
 

  II  PDR3 
Pleiotropic Drug Resistance 

Drug transporter Transcriptional activator of the pleiotropic 
drug resistance network 
 

  VII PDR1 
Pleiotropic Drug Resistance 

Drug transporter A master regulator involved in recruiting other 
zinc cluster proteins to pleiotropic drug response 
elements 
 

  XVI ATH1 
Acid TreHalase 

Acid trehalase Acid trehalase required for utilisation of 
extracellular trehalose 
 

     
 Formic acid SA x WA XIII TSA1 

Thiol-Specific Antioxidant 
Antioxidant Thioredoxin peroxidase, acts as both a ribosome- 

associated and free cytoplasmic antioxidant 
 

  XIII ERG6 
ERGosterol biosynthesis 

Ergosterol 
biosynthesis 

ERG6 encodes delta(24)-sterol C-
methyltransferase which converts zymosterol to 
fecosterol by methylation 
 

  XIII YAP1 
Yeast AP-1 

Transcription factor Basic leucine zipper (bZIP) transcription factor 
required for oxidative stress tolerance 
 

  XIII ERG5 
ERGosterol biosynthesis 

Ergosterol 
biosynthesis 

A cytochrome P-450 enzyme that catalyzes the 
formation of the C-22 (23) double bond in the 
sterol side chain 
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Table 5.1: Identified genes chosen for inhibitor mix stress and formic acid stress. Genes identified will undergo further 

phenotypic microarray assays and reciprocal hemizygosity analysis. 
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5.2.2: The amplification of the NAT-MX cassette and gene deletion 

cassettes 

In order to create the hybrid combinations in the later stages to perform further 

experiments, both MATa and MATg S. cerevisiae strains are required to have 

the same genotype. The NAT MX cassette amplified from plasmid P30110 

(pAG36) was transformed into a MATg (ho:hygMX, ura3:KAN MX-barcode) 

S. cerevisiae strain, the KAN MX barcode was to be deleted and replaced with 

the NAT MX cassette. The NAT MX cassette was amplified from the plasmid 

P30110 (pAG36) by PCR and samples were run on a 1 % agarose gel with 

HyperLadderTM1 kb (Bioline). The expected PCR product size for the NAT 

MX cassette is 1,308 bp (figure5.2), with the Nat Cassette being 543 bp and the 

primers binding 319 bp upstream of the start codon and 446 bp downstream of 

the stop codon.  

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Amplification of NAT MX Cassette from the plasmid P30110 

(pAG36). Lanes 1 and 2 shows the NAT MX cassette with the product size of 

1,308 bp, M is the Marker Hyper LadderTM 1 kb. 

 
 
 
Gene deletion cassette strains were obtained from the gene deletion collection 

and grown on agar YPD. Genomic DNA extraction was performed on the 

deletion cassettes prior to amplification by PCR and ran on a 1% agarose gel 

with HyperLadderTM1 kb (Bioline). Samples of the PCR product was ran on a 

1 % agarose gel. An example is given below for the band size of the gene 

 

M   1    2 

1000 bp 

600 bp 
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deletion cassette PDR1, a gene identified from the inhibitor mix stress. The 

product size of PDR1 gene deletion cassette is given by the A4 primer (3670 

bp) minus the gene size of PDR1 (1357 bp) to find the size of the region 

flanking the gene of where the A4 primer binds (3670 bp – 1357 bp = 463 bp) 

and then adding the region that flanks the gene from the A1 primer (246 bp) 

and the size of the KAN MX cassette (1357 bp) which gives a PCR product 

size of 2066 bp.  The product size of other gene deletion cassettes are given in 

table 5.2. 

 

 

 

Table 5.2: Gene deletion cassettes with the expected product sizes. Gene 

deletion cassette band sizes have been determined in order to clarify that we 

have the correct PCR products to proceed with reciprocal hemizygosity assay. 

 
 
 
5.2.3 Strain phenotype screening of MATa and MATg Saccharomyces 

cerevisiae strains 

The phenotype of both MATa and MATg parental Saccharomyces cerevisiae 

(Y12 (SA), DBVPG6044 (WA) and YPS128 (NA)) strains were confirmed by 

replica plating the strains onto different agar media. The phenotype of the 

haploid MatA Saccharomyces cerevisiae strains is given by ho::hphMX, 

Experiment 

Gene deletion 

cassette Band Size 

Inhibitor Mix FLR1 2037 

 
PDR1 2066 

 
PDR3 1956 

 
VMA21 1905 

 
VMA13 2348 

 
ATH1 2255 

   Formic Acid TSA1 2207 

 
ERG6 2236 

 
YAP1 2349 

 
ERG5 2172 
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ura3〉::NAT-MX where the HO gene was deleted using the hygromycin 

resistance gene as a marker and the ura3 gene was disrupted by the integration 

of the NAT MX barcode. When the primary YPD plate containing MATa 

isolates were replica plated onto hygromycin (HYG) agar plate, G418/400 agar 

plate and Nourseothricin (NAT) agar plate, growth was detected on both HYG 

and NAT agar plates and no growth on G418/400 agar plate. With the MATg S. 

cerevisiae strains (ho:hygMX, ura3:Kan-MX-barcode) the strain phenotype is 

identical to the MATa stain but the URA3 gene was disrupted by the integration 

of the KAN-MX barcode instead of a NAT-MX barcode. When the primary 

plates of the MATa strains were replica plated onto three different agar media, 

growth was detected on HYG and G418/400 agar plates and no growth was 

detected on the NAT agar plate. This confirms the phenotypes of the MATa 

and Matg strains were correct.  

 

 

5.2.4 MATg Strain phenotype after NAT-MX cassette transformations 

The NAT-Cassette was transformed into the parental MATg Saccharomyces 

cerevisiae strains Y12 (SA), DBVPG6044 (WA) and YPS128 (NA) in order to 

mate MATa and MATg strains to obtain the combinations, Y12 (SA) x YPS128 

(NA) (for inhibitor stress assays) and SA x WA (for formic acid stress assays) 

containing only the NAT-MX Cassette in the hybrid combinations. After the 

NAT-MX cassette transformation into the Matg parental yeast strains, growth 

was detected on both HYG and NAT agar plates and no growth on G418/400 

agar plate. This confirms that the NAT-MX cassette was successfully 

transformed into the Matg strains replacing the KAN-MX cassette.  

 

 

5.2.5 Mating Test 

Mating test was carried out using colony PCR with primers CA377 (that flanks 

the mating type locus), CA378 (MATg specific) and CA379 (MATa specific) to 

determine whether mating of the stable haploid MATa, (ho::hphMX, 

ura3〉::NAT- MX) with the transformed MATg strain (MATg ho:hygMX, 

ura3:NatMX) was successful by choosing 100 colonies where 62 colonies were 

obtained from Y12 (SA) x YPS128 (NA) and 38 colonies were from Y12 (SA) 
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x DBVPG6044 (WA). The presence of double bands on the 1.5% agarose gel 

indicates that the mating was successful and isogenic diploid hybrids had been 

obtained. In figure 5.3 the agarose gel image obtained from gel electrophoresis 

shows the hybrids for both the Y12 (SA) x DBVPG6044 (WA) and Y12 (SA) 

x YPS128 (NA) combinations. A genomic DNA extraction was done on the 23 

samples that showed the presence of 2 bands and was amplified using PCR. In 

total, 3 isogenic diploid hybrids have been obtained for Y12 (SA) x 

DBVPG6044 (WA) and 8 isogenic diploid hybrids have been obtained for Y12 

(SA) x YPS128 (NA).  

 

 

 

 
 
 

 

 

 

 

 

Figure 5.3: Colony PCR to determine the success of mating test. MATa and 

MATg strains were mated in order to obtain isogenic diploid hybrid strains. 

Strains were subject to mating type test by PCR. Lanes 8 – 10 are the isogenic 

diploids, M is the Marker HyperLadderTM 100 bp. 

 

 

 

5.2.6 Phenotypic variation in hybrid parents 

The stress responses of the isogenic diploid hybrid strains carrying gene 

deletions were determined under inhibitor mix stress at 0.1 X, 0.2 X and 0.3 X 

concentration and formic acid stress at 5 mM, 10 mM and 20 mM 

concentration respectively using phenotypic microarray assays. The response 
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of each isogenic hybrid strain was determined by comparing the data between 

stressed and non-stressed controlled cells (defined as redox signal intensity 

(RSI) to that of a control) at the 24-hour time point. Phenotypic microarray 

assays demonstrated that there was phenotypic variation between the isogenic 

hybrid strains from the same combination of parents within both inhibitor mix 

stress and formic acid stress. Y12 (SA) x YPS128 (NA) isogenic hybrid strains 

shows that amongst all 8 strains in 0.1 X concentration inhibitor mix there is a 

huge variation in the sensitivity ranging from a % RSI of 45.04 % to 98.80% 

with most strains having a % RSI around 70 %. Interestingly at 0.2 x 

concentration of the inhibitor mix, all strains (except H3) that were observed to 

have a higher sensitivity in 0.1 X concentration had decreased in sensitivity. 

Assays using 0.3 X inhibitor mix were characterized by an increase in 

sensitivity when compared with assays using 0.1 X or 0.2 X inhibitor mix, 

although strains H3 and H8 were less sensitive to 0.3 X inhibitor mix when 

compared with other strains. For formic acid stress there were 3 isogenic 

hybrid strains from the parents Y12 (SA) x DBVPG6044 (WA) that were 

tested in 5 mM, 10 mM and 20 mM formic acid. With formic acid at 5 mM the 

strains were the least sensitive and showed an increased sensitivity as the 

concentration of formic acid increased. This is shown in table 5.3 
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Table 5.3: Phenotypic variation of crosses for inhibitor mix and formic 

acid stress. The phenotypic variation is shown between the Y12 (SA) x 

YPS128 (NA) isogenic hybrid strains for inhibitor mix stress and Y12 (SA) x 

BDVPG6044 (WA) hybrid strains for formic acid stress. For inhibitor mix 

stress, isogenic hybrids show a variation between strains of the same 

concentration as well as when compared to other concentrations where 

interestingly in some strains the higher the inhibitor mix concentration the less 

sensitive the strain becomes. For formic acid stress, there is variation in the 

Y12 (SA) x BDVPG6044 (WA) hybrid strains in the same concentration of 

formic acid but as the concentration of formic acid increases there is in 

increase in sensitivity.  

 
 
 
5.2.7 Phenotypic variation in hemizygote strains 

The phenotypic responses of the gene deletion transformants (hemizygotes) 

that originated from the isogenic hybrids H6 (Y12 (SA) x YPS128 (NA)) for 

inhibitor mix stress and H9 (Y12 (SA) x DBVPG6044 (WA)) for formic acid 

stress, were tested under different concentrations of inhibitor mix stress and 

Cross Stress Strain 

% RSI 
control 
0.1 X 

% RSI 
control 
0.2 X 

% RSI 
control 
0.3 X 

SA x NA Inhibitor mix H1 45.04 87.67 19.30 

  
H2 65.52 88.79 29.31 

  
H3 98.80 90.36 92.77 

  
H4 66.67 80.16 50.00 

  
H5 75.45 91.82 74.55 

  
H6 72.03 88.14 66.10 

  
H7 73.28 84.48 59.48 

  
H8 84.68 92.79 97.30 

      

Cross Stress Strain 

% RSI 
control 
5 mM 

%RSI 
control 
10 mM 

% RSI 
control 
20 mM 

SA x WA Formic Acid H9 73.61 50.00 2.08 

  
H10 88.24 49.02 8.82 

  H11 90.00 68.18 17.27 
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formic acid stress conditions in order to identify their sensitivity within each 

stress condition. The graphs in figure 5.4 show the performance of the 

hemizygotes in each stress condition and how their sensitivity compares in 

different concentrations against other hemizygotes tested under the same stress. 

Overall, the hemizygotes for each gene deletion show that there is an increased 

sensitivity to the stress conditions as the concentrations increase.  
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Figure 5.4: Phenotypic microarray analysis of hemizygotes. Hemizygotes 

that originated from the isogenic hybrid strain H6 (Y12 (SA) x YPS128 (NA)) 

for the inhibitor mix stress is shown for the following gene deletions (A) 

FLR1, (B) ATH1, (C) PDR1, (D) PDR3. For hemizygotes that originated from 

the isogenic strain H9 (Y12 (SA) x DBVPG6044 (WA)) for formic acid stress 

is shown for the following gene deletions (E) ERG5, (F) TSA1, (G) ERG6. 

Controls, without any stress were designated as 100 % RSI.  

 

 

It is observed that as there is an increase in stress concentration there is an 

increase in sensitivity. Data shown are taken from the 24 hour time point where 

the gene deletions under the inhibitor mix conditions are as follows (A) FLR1 

(B) ATH1 (C) PDR1 (D) PDR3 and for formic acid conditions are as follows 

(E) ERG5 (F) TSA1 (G) ERG6. The horizontal axis shows the transformants of 

various gene deletions that are arranged in ascending order for each stress 

concentration. The vertical axis shows the % of RSI (redox signal intensity) 

where cells in various stress conditions are compared to cells in unstressed 

conditions. The values shown are an average of triplicate experiments 

including standard deviations.  

 

 

Hemizygotes were screened in 0.1 X, 0.2 X and 0.3 X concentrations of the 

inhibitor mix and 5 mM, 10 mM and 20 mM formic acid. In general, for both 

inhibitor mix stress and formic acid stress, each population of the hemizygotes 

exhibited a range of sensitive and tolerant phenotypes, with some hemizygotes 

exhibiting tolerance above that of either parental strain  (isogenic hybrid parent 

data in table 5.3). In order to determine the threshold for sensitivity, any % RSI 

value lower than 45.04 % is considered sensitive and for any % RSI value that 

is above 98.80 % is considered to be tolerant. These thresholds were 

determined by the isogenic hybrid parents, H1 and H3 respectively for the 

inhibitor mix stress at 0.1 X. For the formic acid stress, the same principle is 

applied when defining sensitivity and tolerance. The threshold value for 

sensitivity is determined at the % RSI value of 73.61 % and the tolerant 
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threshold is determined at a value of 90.00 %. These % RSI values were 

obtained from the isogenic parents H9 and H11 respectively, for formic acid 

stress at 5 mM concentration. 

 

For the inhibitor mix and formic acid stress, 10 (5 sensitive and 5 tolerant) 

isogenic strain samples with the deleted genes were phenotyped again using 

phenotypic microarray analysis in 0.3 X inhibitor mix and 5 mM formic acid. 

For the inhibitor mix, there were no tolerant phenotypes that were displayed 

and the hemizygotes with the gene deletion for ERG5 and ERG6 also failed to 

produce any tolerant phenotypes that exceeded the initial threshold. 

Interestingly, for hemizygotes with the TSA1 gene deletion there were two 

distinct populations of sensitive (5 strain samples) and tolerant (4 strain 

samples as 1 failed) phenotypes (figure 5.5). For the tolerant strains all the % 

RSI values exceeded the % RSI of 100 %. Sensitive strains had a % RSI value 

between 77 % and 88 % and the tolerant strains had a % RSI value between 

102 % and 108 %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: TSA1 gene deletion.  Hemizygote strains with the TSA1 gene 

deletion shows 2 distinct populations of sensitive and tolerant phenotypes for 

formic acid stress at 5 mM concentration. The horizontal axis shows the TSA1 

transformants and the vertical axis shows the % of RSI of the control. The 
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values shown are an average of triplicate experiments including standard 

deviations.  

 

 

 

5.2.8 TSA1 sample purification 

In order for reciprocal hemizygosity analysis to be carried out, hemizygote 

strains were prepared for sequencing to determine which allele was present and 

which was deleted. PCR purification had to be carried out using the GenElute 

PCR Clean-up Kit and was run on a 1.5% gel (figure 5.6A) before Gel 

Extraction was to take place using the QIAquick® Gel Extraction Kit. Purified 

DNA was analysed on a 1.5% gel in order to determine the concentration of the 

samples to be sequenced (figure 5.6B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: (A) PCR purification of hemyizygote with the TSA1 gene 

deletion in preparation for Gel Extraction. (B) Hemizygotes with TSA1 

gene deletion samples after Gel Extraction. Concentrations of the TSA1 

gene deletion samples were determined by gel electrophoresis on a 1.5 % gel. 

A 

    1500/1517 bp 
       1000 bp 

 800 bp 
     600 bp 

   M     1    2     3     4    5 6     7 8  

B 

    600 bp 

   800 bp 

        1000 bp 

     1500/1517 bp 

 M  1   2  3  4   5 6   7  8  
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For both images: Lanes 1-8 are the hemizygotes with the TSA1 gene deletion, 

M is the Marker HyperLadderTM 1 kb. 

 

 

5.2.9 Reciprocal Hemizygosity analysis 

In order to distinguish which allele had been disrupted in the TSA1 

transformed hybrids, the strains were sequenced to detect SNPs that 

corresponded to the parental strains. The 2 parental strains differed in their 

sequence at a TATA repeated region between the C4 and A4 primers at 

position 110 and 111 where in the Y12 (SA) parent strain there was a 2 base 

pair deletion at this position whilst DBVPG6044 (WA) parent strain has the 

TA repeat present (figure 5.7A). When the TSA1 gene deletion sequences were 

aligned against the parental strains, all the sequences from the 9 samples were 

all identical to Y12 (SA) which indicates that the same allele has been deleted 

in all the strains therefore the functional allele that remains belongs to the 

DBVPG6044 (WA) parent strain. An example of the sequence analysis is 

given in figure 5.7B and 5.7C. 

 

 

 

 

Figure 5.7: (A) Y12 (SA) and DBVPG6044 (WA) Saccharomyces 

cerevisiae parental strain sequence differences. At position 110 bp and 111 

bp the sequences differ in a 2 bp deletion in the Y12 (SA) strain compared to 

the DBVPG6044 (WA) parental strain. 
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Figure 5.7: (B) TSA1 gene deletion of sample 8 with Saccharomyces 

cerevisiae parental strain DBVPG6044 (WA). The alignment shows TSA1 

(sample 8) hemizygote sequence against the DBVPG6044 (WA) parent 

sequence. At position 110 bp and 111 bp the sequences are not identical which 

indicates that the Y12. 
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Figure 5.7: (C) TSA1 gene deletion sample 8 with Saccharomyces 

cerevisiae parental strain Y12 (SA). The alignment shows the TSA1 (sample 

8) hemizygote sequence against the Y12 (SA) parent sequence. At position 110 

bp and 111 bp the sequences are identical which indicates that the Y12 (SA) 

allele has been disrupted. Therefore the functioning allele is from the 

DBVPG6044 (WE) parent. 
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5.3 Discussion 

Reciprocal hemizygosity was performed on isogenic hybrid strains that were 

crossed from the clean lineage S. cerevisiae parental strains that corresponded 

to the cross in which the QTL was identified. Reciprocal hemizygosity for the 

gene deletions corresponding to that particular hybrid cross was carried out on 

one isogenic hybrid that was obtained from the inhibitor mix and formic acid 

stress. Phenotypic microarray analysis was done on the isogenic hybrid parents 

and the heterozyotes with the gene deletions. The results showed that there was 

variation in the isogenic hybrids which should have not occurred (table 5.3), as 

these isogenic strains should all be genetically identical. However, when the 

heterozygotes were compared to the isogenic strain in which reciprocal 

hemizygosity was performed, variation was observed between all the 

hemizygotes. In some assays such as the ATH1 gene deletion with the 

hemizygotes for the inhibitor mix concentration at 0.3 X and 0.2 X (figure 

5.4B), it is observed that there are three distinct populations. A different 

approach could be taken from the initial experiment whereby, instead of 

choosing the extremes of sensitive and tolerant phenotypes (which sensitive 

and tolerant thresholds were set by choosing the isogenic parental strains that 

gave variation in their % RSI), heterozygote individuals within the three 

populations observed could be phenotyped to determine their differences. 

Other graphs from figure 5.4 that show a similar distinct population split is the 

PDR3 gene deletion (figure 5.4D) for 0.3 X inhibitor mix, which seems like 2 

populations.  

 

It was interesting to find that hemizygotes with the gene deletion TSA1 (for 

formic acid stress) out of the chosen sensitive strains and the tolerant chosen 

strains showed two distinct populations (figure 5.5). The tolerant strains 

exceeded 100 % RSI which out performed its isogenic parental strain as well as 

exceeding the % RSI of the tolerant threshold setting isogenic strain at 90 %. 

From this set of results allele discrimination analysis was performed to 

determine which had been deleted. Unfortunately when the sequences of the 

hemizygotes were aligned with the parental strains all the strains (both tolerant 

and sensitive strains) had the identical allele deleted. From this, there are 

questions as to why the same allele deletion harbors such variation within the 
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heterozygotes. One answer is, looking back at the phenotypic microarray 

assays performed on the herterozygotes (figure 5.4) with the some assays 

displaying almost distinct populations such as the ATH1 gene deletion assay 

(figure 5.4B), it could be suggested that there are three different phenotypes 

which may be a result from the isogenic strains having a variation in their % 

RSI.  

 

From this study, there is the acknowledgment that not all genes with all loci 

were examined by reciprocal hemizygosity analysis and that additional genes 

within these loci may also contribute to resistance of fermentation inhibitors of 

S. cerevisiae strains. In this study, the work was carried out using the F1 

segregant populations with limited crossing-over events, which in the QTLs 

that were identified harbour between 40 and 60 genes due to large blocks of 

linked single nucleotide polymorphisms (SNPs). 

 

 

5.4 Conclusions 

Candidate genes that were identified for the inhibitor cocktail mix and formic 

acid stress to undergo reciprocal hemizygosity did not generate deletions of 

two different alleles but only from one. Phenotypic microarray assays for the 

isogenic hybrid parents showed a phenotypic variation when the phenotypes 

are expected to be consistent across all the isogenic hybrids. Variation within 

the hemizygote strains with gene deletions was observed which demonstrates 

that each strain harbored a different phenotype.  

 

This study has highlighted the phenotypic variation for any population of yeast 

to stresses that are present in bioethanol fermentations, using this approach 

chromosomal regions, that are responsible for the genetic basis of natural 

variation in bioethanol traits could be identified.  
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CHAPTER 6 

 

6.1 General discussion 

It has become increasingly important that our attention is focused on biofuels 

such as bioethanol that is produced from an abundant and renewable source 

such as lignocellulosic feedstock due to the global concerns for the depletion of 

fossil fuels and growing social concerns regarding the environment and food 

security. A practical solution is to produce bioethanol fuel from lignocellulosic 

biomass such as wheat straw using the yeast strain S. cerevisiae. The properties 

necessary for a lignocellulosic ethanol-producing strain includes a high 

metabolism capacity and ethanol yield as well as the ability to tackle the 

challenges associated with lignocellulosic bioethanol fermentations. These 

challenges include the inhibitors that are formed from lignocellulose 

pretreatment that are present during bioethanol fermentation. A robust yeast 

strain that is tolerant to all inhibitory conditions and pre-treatment inhibitors 

that are exposed during bioethanol fermentation has yet to be identified. In this 

study, clean lineage S. cerevisiae strains and the six pair-wise F1 crosses have 

been studied to determine their tolerance to inhibitor stresses that are found in 

lignocellulosic bioethanol fermentation. A methods approach has been used 

where strains were phenotyped using growth and phenotypic microarray assays 

to determine their response to the individual inhibitors and inhibitor cocktail 

mix. Linkage analysis was used to determine the QTLs that were responsible 

for inhibitor tolerance. Reciprocal hemizygosity analysis enabled one allelic 

copy of the gene to be deleted in order to determine the validity of the 

candidate gene chosen for tolerance to inhibitor stress. A methods approach 

has been set up where the study allows for many strains in a single experiment 

to be assayed using the methods in this study which can be replicated for 

different trait studies such as thermo-tolerance and oenological traits.  

 

The practical significance of this study for second-generation bioethanol strain 

development enables the understanding of genes that are involved in inhibitor 

resistance to lignocellulosic bioethanol fermentation. In literature QTL 

mapping has been successful for the following phenotypes; ethanol tolerance 

(Swinnen et al., 2012), sensitivity to heavy metals or pesticides (Ehrenreich et 
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al., 2012) and the performance of yeast in wine fermentation (Ambroset et al., 

2011) however, no QTLs that are desirable for bioethanol fermentation has 

been previously published. From this study genes were selected from the QTL 

analysis for the inhibitor mix and formic acid stress. Identifying and selecting 

the correct gene which confers resistance to each stress condition is not an easy 

task due to the large amount of genes that are present under each QTL peak. It 

was unfortunate that the genes that were chosen did not convey resistance 

when the phenotypic assays were performed for all the inhibitor mix genes and 

the formic acid stress apart from one gene, TSA1. When reciprocal 

hemizygosity analysis was performed the 9 samples of TSA1 hemizygote 

sequences all showed the same allelic deletion from the Y12 parent, which did 

not allow for a comparison between the two allelic variations from each parent. 

The significance of this study adds to the large number of studies that have 

been carried out on strain analysis and development to over come the 

challenges that S. cerevisiae faces when the substrate is lignocellulose instead 

of starch in lignocellulosic bioethanol fermentations. These studies include 

comparative genomics of natural isolates (Wohlbach et al., 2014) to understand 

the underlying mechanisms which confer tolerance in some strains over others; 

the improvement of microbial stress tolerance via artificial, laboratory strain 

evolution, through many generations of selective growth conditions (Dragosits 

and Mattanovich, 2013) and strain engineering (Sanda et al., 2011).   

 

 

6.2 Limitations of work 

This study helped in the identification of tolerant phenotypes to bioethanol 

related stresses. However there were limitations involved listed below. 

 

The phenotypic microarray analysis using the OmniLog reader (Biolog, 

Hayward, CA, USA) enabled a large number of strains to be analysed by 

measuring cell metabolism.  Using a micro-plate reader to carry out kinetic 

growth assays enabled the measurement of the cell density over a period of 3 

days. Unfortunately, due to the large number of strains involved in the study, 

using a micro-plate reader limited the analysis to only one 96-well plate at a 

time, therefore only an initial and final OD reading of cell density could be 
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used for a much larger number of strains therefore a high throughput method is 

required to sample a larger number of strains over a period of three days. 

 

There were limitations with the QTL analysis such as the requirements for 

large sample size and can only map differences inherent in the parental strains 

(Miles and Wayne, 2008) so QTLs for these traits maybe present in other 

haploid yeast populations as the sample size was too small and the linkage 

disequilibrium (LD) was too big as it is only a one generation cross. Sampling 

a larger number of segregants or sampling a generation cross that has been 

crossed several times would bring the LD closer, therefore it could be possible 

to identify QTLs that would harbor fewer genes due to more cross over events 

that have taken place in the generation crosses. 

 

If time permitted, phenotyping the isogenic parental hybrid strains for both 

inhibitor mix and formic acid stress would rectify the origin of the variation 

that is shown in section 5.2.6. Due to this variation this may have an effect on 

the results that were produced in the experiments following section 5.2.6 even 

though only one isogenic hybrid, H6 (Y12 (SA) x YPS128 (NA)) for inhibitor 

miss stress and H9 (Y12 (SA) x DBVPG6044 (WA)) for formic acid stress was 

taken forward for the consecutive experiments. 

 

 

6.3 Findings from this study 

From this study the following were achieved: 

 

 QTLs were identified for the bioethanol traits that have not previously 

been published in the literature.  

 

 A high-throughput approach has been devised where this method 

enables a large number of strains to be phenotyped in a single 

experiment using the OmniLog reader (Biolog, Hayward, CA, USA).  
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 Genes for sorbitol stress and acetic acid stress have been discovered 

using this method (please refer to the published paper in the appendix 

(chapter 8).  

 

 

6.4 Future studies  

Based on this study, future experiments can be conducted for the following: 

 

Future work could involve studies using the generation 12 (F12) segregants 

(these segregants have been crossed over and over to produce a 12th generation 

of segregants) where the crossing-over events would have been more frequent 

and resulted in smaller blocks of linked SNPs where the identification of single 

genes that are responsible for inhibitor tolerance could possibly identified.  

 

Once genes have been identified that are responsible for inhibitor stress 

tolerance, using this strain in a fermentation would allow for a comparison of 

the strain’s performance in a laboratory experiment and in fermentation 

conditions using the lignocellulosic hydrolysate. 

 

The genes involved in resistance to bioethanol fermentation stresses could be 

determined in terms of their function and how they are involved in biological 

pathways and networks interacting with other genes (systems biology 

approach). 

Through this understanding, it could be possible to identify other genes that 

maybe involved in resistance to bioethanol fermentation stress. 

 

A possible alternative for tolerant strain selection is using an experimental 

evolution approach whereby strains would be selected under continuous 

fermentation assays where the concentration of the inhibitors would continue 

to increase for each subsequent fermentation (the use of chemostats). Strains 

that are tolerant to the higher concentrations of the fermentation inhibitors 

would be isolated and genes conferring resistance to the fermentation assays 

would be studied. An example of this experiment is found in Guimarase et al., 
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2008 where it is an adaptive evolution experiment of S. cerevisiae in lactose 

fermentations.  

 

 

6.5 Concluding Remarks 

Even though there are a large number of on going studies concentrating on 

bioethanol, there are increasing studies that are focusing on the potential of S. 

cerevisiae to produce other types of biofuels such as n-biobutanol and 

isobutanol (Steen et al., 2008). These biofuels can be produced by genetically 

modified (GM) S, cerevisiae that express solventogenic Clostridium spp. 

Genes (Gevo Inc, 2015; Butalco, 2013). The C4 alcohol, butanol exhibits 

several advantages over ethanol as a fuel which includes better combustibility, 

amenability to storage and transportation and miscibility with diesel (Walker, 

2011). In industry, there are several companies that are focusing to 

commercialise ethanol and/ or butanol production that are specifically derived 

from cellulosic feed stocks (Qureshi et al., 2010). This study has highlighted 

the importance of several methods that have been used to identify the 

phenotypic variation for any population of yeast to stresses inherent to bio-

ethanol fermentations. Using this approach, chromosomal regions responsible 

for the genetic and molecular basis for natural variation in bioethanol traits can 

be identified and allows for allelic variation and changes in gene expression 

levels under different stress conditions to be identified.  
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