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Abstract 

Global population growth requires intensification of agriculture, for which a 
sustainable supply of phosphorus (P) is essential.  Since natural P reserves are 
diminishing, recovering P from wastes and residues is an increasingly attractive 
prospect, particularly as technical and economic potential in the area is growing.  In 
addition to providing phosphorus for agricultural use, stripping P from waste residues 
and effluents lessens their nutrient loading prior to disposal. This paper critically 
reviews published methods for P recovery from waste streams (municipal, farm and 
industrial) with emphasis on struvite (MgNH4PO4 6H2O) crystallization, including pre-
treatments to maximize recovery. Based on compositional parameters of a range of 
wastes, a Feedstock Suitability Index (FSI) was developed as a guide to inform 
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researchers and operators of the relative potential for struivite production from each 
waste.  
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1. Introduction 
1.1. Phosphorus: Concerns and possibilities  

The global population is projected to rise by 40% from 7.2 billion individuals in 
the year 2013 to 9.6 billion by the year 2050 (UN, 2014) with food consumption 
increasing at a rate of 3.1% per year (Heffer and ). Requirements for 
food security necessitate the sustainable intensification of agricultural production 
towards supporting productivity gains and income generation (Zapata and Roy, 2004); 
to meet this demand agricultural productivity is expected to grow by 60% (FAO, 2013). 
Fertile soils are the key to sustainable production of crops for food, feed and fibre and 
essential for supporting rural livelihood needs, however few soils are fertile without the 
addition of plant-available nutrients from organic matter (manure) and commercial 
fertiliser (Dawson and Hilton, 2011). Commercial fertilisers depend upon the 
continuing availability of rock phosphate reserves (Heckenmüller et al., 2014); however 
it has been predicted that the global supply of phosphorus (P) will run out in under 70 
years. P is readily fixed by other chemical constituents (e.g. Ca, Fe, Al, Mg, K) making 
it a key limiting factor in soils globally (Shen et al., 2011), with consequences including 
reduced yields, delayed maturity and lowered disease resistance across 40% of the 
world's arable soils (Vance, 2001). Agro-ecosystems account for 80-
total P consumption (Childers et al., 2011) with 41.8Mt of P fertiliser consumed in 2013 
globally (Heffer and  Global P demand is forecast to grow at an 
annual rate of 1.9% over the period 2013 to 2018 (Heffer and ) with 



consumption stabilized in the developed countries, but demand increasing in the 
developing world (Heffer and  In this context, recovery of P 
through efficient and economically viable processes from non-conventional P-rich 
sources such as wastes and residues is clearly a priority for sustainable development.  

Understanding of the sedimentary biogeochemical cycle of P is helpful to 
identify the possible P sinks in nature for effective P management. During the cycling of 
P in the terrestrial and aquatic environment, significant amounts of P end up in P-rich 
waste from farms, municipal wastes and industrial processes, prompting recent calls for 
changes in waste management strategies to promote recycling of waste P. The most 
common method of P recovery is through production of mineral or salt precipitates from 
P-rich sources such as the mineral struvite  (magnesium ammonium phosphate; 
MAP/MgNH4PO4 6H2O) (de Bashan and Bashan, 2004). Struvite by mass is 44% 
crystal water, 39% phosphate, 10% magnesium, and 7% ammonium (Gell et al., 2011) 
and its precipitation requires the presence of three ionic species, magnesium (Mg2+), 
ammonium (NH4+) and orthophosphate (PO43-) in an alkaline solution with an optimum 
molar ratio of 1:1:1 (Rahaman et al., 2008).  The factors that govern the precipitation of 
struvite in P-rich sources include: pH, the ionic strength of solution (Nelson et al., 
2003), the presence of impurities or non-participating ions (Le Corre, 2007), the mixing 
energy (Wang et al., 2006), the residence time of suspension during crystallization 
(Kozik et al., 2013) and the nature of the reactor used for crystallization (Koralewska et 
al., 2009).   

Struvite is an ideal alternative fertilizer since it is a non-odorous, non-sludgy 
crystal which releases nutrients slowly (Bouropoulos and Koutsoukos, 2000) and has 
low solubility in water thus avoiding eutrophication problems that may arise from other 
P fertilizers (Zhang et al., 2012). Woods et al. (1999) demonstrated that P recovery from 



sewage sludge via formation of calcium phosphate granules resulted in reduced biosolid 
concentrations of 11-49% when a Crystalactor® fluidized bed reactor was used as a 
tertiary application following conventional biological treatment, compared to 
conventional treatment without the P recovery step. When sidestream Crystalactor 
technology was applied with enhanced biological nutrient removal (EBNR), reductions 
in biosolids ranged from 5-30% compared to EBNR only. Technologies that reduce the 
disposal volume of sludge are environmentally useful since the waste becomes suitable 
for environmental disposal (Gell et al., 2011). Integration of a nutrient recovery plan 
with a waste management system will result in cost efficient relocation of excess 
nutrients (Burns and Moody, 2002). 

While struvite recovery has been widely investigated as a waste water treatment 
method (Munch et al., 2001), it is only recently that its prospects as an alternative P-rich 
fertilizer source have been realised. Here we review the different approaches taken for 
struvite recovery, i.e. suitability of sources from farm, municipal and industrial origin, 
scales and method of pre-treatments and production to enhance struvite recovery. 
1.2. Spontaneous struvite precipitation and issues concerning prevention 

Spontaneous struvite precipitation in pipes and containers in wastewater 
treatment processes is often seen as a nuisance which can reduce system efficiency and 
increase operational cost (Jaffer, 2002). Struvite scale formation is found frequently in 
anaerobic digester units, digester liquor discharge line, heat exchangers and in 
centrifuge dewatering units downstream of the digester system of wastewater plants. 
Struvite occurs in regions of high turbulent flow (e.g. in valves, pipe joints and aeration 
assemblies) when concentrations of Mg2+, NH4+ and PO43- are favourable and the 
mixing energy is appropriate (Bhuiyan, 2007). In such zones, degassing of carbon 
dioxide results in localised increase in pH favouring struvite formation (Wu et al., 



2005). During anaerobic digestion of waste water sludges, mineralization of nutrients 
bound to organic matter occurs (Seadi et al., 2012) forming phosphate (also known as 
orthophosphate). NH4+ is becomes available from the degradation of nitrogenous 
material in organic wastes and this increases the potential of struvite formation 
(Bhuiyan et al., 2007). Sometimes recirculation of digested effluent from an advanced 
treatment unit to a previous treatment unit is carried out to obtain a lower concentration 
of total solids and biochemical oxygen demand, which subsequently causes nutrient 
looping (Evans, 2007; Fattah and Chowdhury, 2014). Returning of sludge dewatering 
liquors to previous treatment units has been reported to contribute 20% of the total 
nitrogen and phosphorus load of the effluent (Evans, 2007). This also creates suitable 
conditions for struvite formation. In a recent study by Maab et al. (2014), production of 
struvite in a wastewater treatment plant and its application as fertilizer, added value to 
the process for both operator and end users.  

Where struvite scaling is problematic, various (physical and chemical) strategies 
have been taken to minimize the risk of its formation. These include: (a) elimination of 
super-saturation by precipitating out one of the constituents of struvite by chemical 
dosing (Mamais et al., 1994); (2) removal of the phosphate by external addition of 
chloride and sulphate salts of iron (Fe) or aluminium (Al) forming Fe3(PO4)2.8H2O and 
Al2(PO4)3 respectively (Mamais et al., 1994); (3) phosphate fixation into the dewatered 
sludge cake by addition of magnesium hydroxide (Mg(OH)2) which increases the 
alkalinity of the sludge, favouring availability of P as  PO43- and (HPO)42- which  may 
be fixed by Mg2+ and calcium (Ca2+), thus decreasing P availability for struvite 
formation (Wu et al., 2005); (4) use of chemical inhibitors and chelating agents (nitrilo-
tri-acetic acid, acetyl acetone, ethylenediaminetetraacetic acid (EDTA) (Doyle et al., 
2003), which selectively bind the constituents of struvite and do not allow its formation; 



6) use of  ultrasonic technology, which prevents struvite scale formation by employing 
ultrasonic vibration to keep the pipelines continuously in motion. Ultrasonic technology 
is commercially in use in sewage treatment plants in Korea. 

The methods to control struvite scaling may be effective, but have drawbacks in 
terms of cost (labour, materials and time) which can make them impractical (Ohlinger et 
al., 1998); in addition they may have negative environmental impacts and only alleviate 
the problem rather than removing it completely.  For instance, chemical P removal by 
adding Fe andAl salts increases the total solid content of the sludge and further recovery 
of P from the resultant precipitates is difficult (Wu et al., 2005).  Agricultural 
application of the remaining sludge then becomes a matter of concern (Wu et al., 2005).  

Deposition of struvite scale is responsible for reductions in wastewater treatment 
efficiency. However, efficient and controlled production of struvite can be economically 
beneficial because of its potential fertilizer value. Therefore, in the absence of an 
affective struvite mitigation strategy, controlled and intentional precipitation has been 
aimed -rich struvite. Designed precipitation of 
struvite can alleviate the scaling problem and produce a high value fertilizer. 
2. Struvite recovery: Feedstock sources 

A range of feedstock sources has been reported for the precipitation and 
recovery of struvite (Table 1). These feedstocks can be categorized into three groups 
viz. farm waste, municipal waste and industrial waste depending upon their 
occurrence or origin. Abundance of a source and need for its treatment are two main 
deciding factors that make it suitable for struvite recovery. Some inexhaustible and 
easily accessible natural P sinks such as animal manure and urine represent potential 
sources for struvite production in addition to some industrial wastes with high P 
concentrations (for example, carmine dye industry, semiconductor industry, fertilizer 



industry, Cola beverage industry and wastewater. However, some sources need to 
undergo pre-treatment in order to release P into an available form to make the recovery 
process effective (Shen et al., 2011) due to the presence of limiting ions such as  Ca2+ 
and Fe3+ which minimize recovery (Le Corre et al., 2009). Further, for sources with 
lower availability of participating ions (NH4+ and PO43-), the struvite recovery process 
requires chemical supplementation. In this review, 23 potential sources for recovery of 
struvite are identified. Human urine and wastewater sludge are the only two sources 
where commercial scale recovery has been demonstrated. In a further 21 sources, 
feasibility of recovery has been reported only at laboratory scale. 
 (Table 1 Sources used for recovery of struvite and process conditions) 
2.1. Laboratory feasibility studies 

Several waste sources have been suggested as potentially feasible for struvite 
recovery at the laboratory scale (Table 1), but have yet to be up-scaled. In general, these 
feasibility studies all ensure the availability of P, Mg2+ and NH4+ in alkaline solution 
along with some form of energy for mixing, although specific compounds and reaction 
conditions vary. The pH range reported to be favourable for struvite precipitation varies 
from of 8-11 (Kabdasli et al., 2009). P recovery efficiency is generally high and often  
>90% (Table 1) with municipal wastewater averaging  95% (Pastor et al., 2010; Uysal 
et al.,  2010) and landfill leachate (Iaconi et al., 2010), human urine (Ganrot et al., 2007) 
and carmine dye industry (Chimenos et al., 2003) wastewater processes reporting 100% 
recovery. Struvite also captures NH4+with  recovery efficiency as high as 98% for 
municipal wastewater and semiconductor wastewater (Suschka and Poplawski, 2003; 
Kim et al., 2009).  

 

 



2.1.1. Farm wastes  

Improper management of farm wastes through unintended release into the 
environment can lead to a range of pollution problems (e.g. emissions, eutrophication) 
and struvite recovery could serve as an effective means of recycling the excess 
nutrients. Out of the 49 studies included here (Table 1), six reported use of farm waste 
as a struvite recovery source. Farm waste represents the most inexpensive and 
abundantly available stock for struvite recovery. Among farm wastes, successful 
struvite recovery has been reported in cattle manure (Demirer et al., 2005; Zhao et al., 
2010; Shen et al., 2011), swine manure (Burns et al., 2001, 2003; Nelson et al., 2003; 
Suzuki et al., 2007; Perera et al., 2007; Ryu and Lee, 2010; Liu et al., 2011; Huang et 
al., 2011; Zhang et al., 2012), poultry manure (Yetilmezsoy et al., 2009) and cattle urine 
(Prabhu and Mutnuri, 2014). In general manures are rich in P and NH4+, which is 
desirable for struvite recovery, however, composition varies depending upon animal 
species, rearing conditions (diet, dietary supplements and bedding), manure handling, 
storage and treatment method. Total P concentration varies in the range of 100-460 mg 
L-1 in dairy manure, 370-600 mg L-1 in poultry manure and 90-200 mg L-1 in swine 
manure (Table 1). Farm based wastes contain soluble nitrogen mainly in the form of 
NH4+ (200-1400 mg L-1l).  

The high P content of manure makes it a suitable source, however its available P 
fraction remains only in the range of 35% (poultry manure) to 63% (dairy manure) of 
total P (Barnett, 1994). P predominantly present in particulate form remains unavailable 
for recovery (Sharpley and Moyer, 2000; Chapuis-Lardy et al., 2003). Average P 
recovery efficiency achieved is 75% from dairy manure and 90% from swine waste. The 
higher recovery efficiency from swine waste might be due to its lower Ca content (~150 
mg L-1) compared to that of dairy manure (~1700 mg L-1) (Table 1).  



Due to the presence of particulate P, farmyard wastes need to undergo pre-
treatment prior to P recovery. Acid leaching (for dairy manure and poultry litter), use of 
chelating agents (dairy manure), microwave treatment (dairy manure), anaerobic 
digestion (dairy manure) are the key pre-treatment methods used for farm based waste 
(Szogi et al., 2008; Moody et al., 2009; Zhang et al., 2010; Qureshi et al., 2008).  

2.1.2. Municipal waste  

The spontaneous precipitation of struvite in municipal sewage systems led to the 
concept of controlled struvite recovery using other wastes. Effluent generated in the 
anaerobic sludge digestion process of municipal wastewater (Uysal et al., 2010; Pastor 
et al., 2010; Latifian et al., 2012) (Table 1) is the most widely investigated struvite 
source. Municipal wastewater has PO43- concentrations of 21-270 mg L-1 and 168-1400 
mg L-1 NH4+ For struvite precipitation, chemical supplements in terms of P salts 
(H3PO4, KH2PO4) are required when orthophosphate concentrations are low             
(<55 mg L-1) (Turker and Celen, 1997; Uysal et al., 2010; Latifian et al., 2012),  
however, no NH4+ supplementation has been reported. Fixation of P in wastewater 
sludge particles requires use of some pre-treatment methods (acidic, basic, microwave, 
enhanced biological phosphorus removal) to enhance struvite formation (Stark, 2005; 
Pan et al., 2006; Pastor et al., 2008).  

Landfill leachate (average 2430 mg L-1 NH4+) (Li and Zhao, 2003; Kim et al., 
2006; Iaconi et al., 2010) and human urine (average 3000 mg L-1 NH4+) (Ganrot et al., 
2007; Morales et al., 2013, Hug and Udert, 2013) (Table 1) are two other sources of 
municipal origin, where struvite recovery has been recommended as a treatment method 
to reduce its high NH4+content. However, because of low orthophosphate concentrations 
in landfill leachate (~ 11 mg L-1) (Kim et al., 2006) supplementation of P salts is 



required for struvite precipitation (Li and Zhao, 2003; Iaconi et al., 2010). Urine can be 
used without any pre-treatment prior to P recovery. Further, urine-derived struvite is 
free of heavy metals and its inherent alkaline nature requires no addition of an external 
base (Hug and Udert, 2013; Morales et al., 2013).  

Apart from liquid waste, ash from municipal sewage sludge generated by 
incineration is P-rich and has potential for struvite recovery (P constitutes 13-25% of 
the total mass) (Hong et al., 2005; Xu et al., 2012). However, it requires mechanical, 
thermal (incineration) or chemical (acid/base leach) pre-treatments to allow for P 
recovery because of its strong retention with other elements like Ca, Mg, Al and Fe 
(Hong et al., 2005). 

 
2.1.3. Industrial wastes  

Industrial wastewater effluent commonly contains nutrients that need to be 
reduced before it is released into the environment. Struvite recovery is an alternative 
consideration in stripping both P and NH4+ from industrial effluents to meet set 
environmental standards.. Out of the 49 studies (Table 1), 20 used effluent of industrial 
origin to recover struvite.  

Successful struvite recovery has been reported from wastewater from the 
following industries: Tannery (Tunay et al., 1997), textile (Kabdasli et al., 2000, Huang 
et al., 2012), carmine dye (Chimenos et al., 2003), semiconductor (Kim et al., 2009), 
slaughterhouse and meat packing  (Kabdasli et al., 2009), food processing (potato 
processing and molasses based) (Moerman et al., 2009; Turker and Celen, 2010), rare-
earth (Huang et al., in 2011), coking (Zhang et al., 2009; Kumar et al., 2013), 7-amino 
cephalosporanic acid (Li et al., 2012) and yeast production (Uysal et al.,2013). For these 
sources, struvite recovery simultaneously reduces high NH4+contents. However, the 



orthophosphate concentrations in several of these industrial wastes (Abattoir 
wastewater, Yeast industry wastewater, Textile wastewater, Rare-earth wastewater etc.) 
are relatively low (Table 1) P and supplementation is required for effective struvite 
crystallization. For sources with limiting  NH4+, such as the Cola beverage and fertilizer 
industry wastewater, NH4+ is added as NH4Cl or NH4OH (Xu et al., 2012; Hutnik et al., 
2012; Folleto et al., 2013). Unlike farm waste, no pre-treatment requirements have been 
reported for industrial waste prior to struvite recovery. 

2.2. Pilot and commercial scale recovery of P 
Recovery of struvite from urine has been demonstrated at the pilot scale in 

Nepal (Ronteltap et al., 2007; Gell et al., 2011; Grau et al., 2012) without the need for 
any pre-treatments.. Human urine contains156-460 mg L-1 of P and is low in heavy 
metals (Ganrot et al., 2007; Morales et al., 2013). Struvite can easily be precipitated 
from urine urea by addition of Mg, since it is naturally deficient in Mg. Commercial 
struvite recovery units handling municipal wastewater sludge are in operation in 
countries like Japan, Canada, England, USA, Australia, Germany, The Netherlands and 
Italy (Britton et al., 2009; Gantenbein and Khadka, 2009). Descriptions of some 
commercially available struvite recovery technologies viz. Phosnix (Japan), Pearl Ostara 
(North America, UK), Phospaq, (Netherlands), Seaborne (Germany), AirPrex 
(Germany, Netherlands) and Multiform (America) are given below.  

Pearl® Technology (North America, UK):  The US patented Pearl® Technology 
was developed by the University of British Columbia, Canada. The technology was first 
implemented at a pilot scale at the Gold Bar Wastewater Treatment Plant in 2007 in 
North America. Durham Advanced Wastewater Treatment Facility of Clean Water 
Services, Portland, Oregon (USA) installed the first commercial full-scale plant in 2009. 
The technology is suitable as a side-stream treatment for effluent containing high 



phosphorus and ammonium concentrations and recovers struvite in a fluidized-bed 
reactor. Process performance of the technology was further modified through 
incorporation of additional process (WASSTRIP®), where, in an anaerobic zone before 
digestion, phosphate is stripped from activated sludge and added to the reject water. The 
process has an average recovery efficiency of 80% for phosphate and 10-15% for 
nitrogen with an average per year production of 600 ton which is marketed under the 
commercial name Crystal Green. Full details of the technology can be found at 
http://www.ostara.com/.  

Phospaq , (The Netherlands):  Phospaq  technology was developed by 
Paques (The Netherlands) and is in commercial use in The Netherlands at Lomm (for 
processing potato factory effluent), at Olburgen (for processing sewage sludge effluent 
following dewatering, combined with potato factory effluent) and in the UK at Severn 

 Process; 
Durose and Jeffcoat, 2014, Stoke Bardolph STW Centrate Scheme; both reports 
available at www.WaterProjectsOnline.com). Crystallized struvite is harvested from the 
bottom of an aerated reactor amended with MgO. Aeration strips CO2 from the effluent 
and increases the pH which encourages struvite precipitation and simultaneous 
reduction of COD (Schultz, 2009). The process recovers up to 80% of the PO4-P 
(Schultz, 2009; Remy, 2013). To increase retention of precipitating struvite particles 
within the reactor and minimize flushing of fine particles, the reactor is equipped with a 
patented internal separator (Remy, 2013). The process is further enhanced by another 
step which converts ammonium into nitrogen gas via nitrification and the action of 
anammox bacteria (Driessen et al., 2009). This Anammox® process results in 90% NH4-
N recovery and Phospaq and Anammox reactors are in use in The Netherlands 
(Olburgen) and the UK (Stoke Bardolph). 



Phosnix (Japan): The Phosnix process was developed by Unitika Ltd. 
(Katsuura, 1998) and has been in operation in Japan since 1987 (Münch and Barr, 
2001). Despite its relative longevity, little information is available in the literature about 
the process. The reactor consists of an aerated column into which returned water from 
sewage sludge treatment is fed, magnesium hydroxide is supplied and the pH adjusted 
to 8.5-8.8 using NaOH. Aeration ensures that struvite crystals are fluidized allowing 
them to act as seed material to encourage adherence of new particles and crystal 
formation. Struvite is removed from the bottom of the column (Nawa, 2009). First full 
scale implementation was done in 1998 in lake Shinji Eastern Clarification Center of 
Shimane Prefecture of Japan (Nawa, 2009). The technology allows for transfer of the 
effluent back to the initial wastewater treatment step thereby reducing the requirement 
for chemical supplementation (Ueno and Fuji 2001; Nawa, 2009). The system has a 
treatment capacity of 1000 m3 d-1 and a PO4-P recovery rate of 80-90%.    

Seaborne (Germany): The Seaborne process was developed by the Seaborne 
Environmental Research Laboratory, Germany  in 2000 to recover nutrients from slurry. 
Most available information describes the first large scale installation at the Gifhorn 
wastewater treatment plant in 2007 which used a modification of the original Seaborne 
process (Müller et al., 2007). This combined treatment technology with multiple unit 
operations uses anaerobic digestion, following which sludge is acidified by sulphuric 
acid to extract nutrients and heavy metals from the solid phase, followed by heavy metal 
precipitation as metal sulphide using anaerobic digester biogas rich in hydrogen 
sulphide gas (Müller et al., 2007) after increasing the pH to pH 5.6 using NaOH. After 
that, struvite is precipitated by addition of magnesium hydroxide and NaOH (to increase 
the pH to pH 9) in a continuous stirred tank reactor. Finally, ammonia is recovered as 
ammonium sulphate from the still ammonium-rich reject water (Bayerle, 2010). A 



problem with separating the metals was reported by Müller et al. (2007) because of the 
colloidal size of the heavy metal sulphides. Whilst the average concentration of heavy 
metals in samples of thickened sludge was below German legal requirements during 
tests (Günther et al., 2008), this may not be the case in other scenarios, either in terms of 
location or treated waste. The Gifhorn site produces 270 kg struvite per day but is 
capable of producing more (P-Rex, Gifhorn Technical Factsheet, 2015, www.p-rex.eu).        

AirPrex  (Germany, Netherlands): The AirPrex  technology was developed by 
Berliner Wasserbetriebe as a solution to struvite incrustations in wastewater treatment 
plants in Germany and was implemented at the Wassmannsdorf wastewater treatment 
plant (Heinzmann and Engel, 2006). The technology precipitates and collects struvite 
from digested sludge before it is dewatered. The process utilizes magnesium chloride 
which may be added to the sludge storage tank after digestion; the tank is aerated from 
the bottom to remove CO2 and increase the pH to around pH 8 which results in struvite 
precipitation (Heinzmann and Engel, 2006) with a percentage recovery of 90-95% 
(Forstner, 2015). Process installation after anaerobic digestion and prior to dewatering 
enhances sludge dewatering and prevents downstream struvite precipitation. The 
process is restricted to wastewater treatment plants with enhanced biological P removal 
with two operating in Germany and one in the Netherlands (P-Rex, AirPrex Technical 
Factsheet, 2015, www.p-rex.eu).  

Multiform (America): The patented Multiform technology was developed by 
Multiform Harvest Inc. and in 2012 two were established at wastewater treatment plants 
in Boise, Idaho and the City of Yakima, Washington. The technology is also suitable for 
food processing and swine farm waste; trials are being undertaken at two dairies in the 
USA. The process occurs after the anaerobic digestion and dewatering stage and the 
Multiform Harvest cone is designed to run the wastewater through only once with a 



retention time of 15 minutes or less for the wastewater and two to three days for the 
struvite. Struvite is harvested from the bottom of the cone shaped fluidized bed reactor 
resulting in an 80% and a 20% reduction in phosphate and nitrogen from wastewater 
respectively. There is little published information about Multiform Harvest cones apart 
from that on the company website (www.multiformharvest.com) although research 
carried out on laboratory scale cones resulted in the development of the commercial 
process (e.g. Bowers and Westerman, 2005).     
2.3. Effects of non-participating ions on crystallization 

For precipitation of struvite, the three main components, Mg2+, NH4+, and PO43- 
must be available in solution (Burns and Moody, 2002; Zhang et al., 2010). Most waste 
sources comprise a heterogeneous mix of nutrients and ions and certain non-
participating ions can limit the struvite precipitation process. In typical wastes P can 
exist in particulate or suspended form and in soluble and insoluble form, often in 
association with other components (Le Corre et al., 2005; Marti et al., 2008). Inorganic 
particulate P attached to mineral particles can be converted to dissolved P during 
physico-chemical changes associated with changes of pH; however, particulate P which 
is bound with Ca, Fe and Al ions is more resistant to solubilisation. There are various 
impurities including aluminium ions, alkali metal ions (potassium, sodium), alkali 
earths (calcium), transition metals (iron, copper, zinc), anions (sulphates, chlorides, 
nitrates, fluorides, carbonates) and organic impurities (lactic acid) which impact on 
crystal growth kinetics (Table 2). Most of the metals ions form their respective 
phosphate or hydroxide salts in the alkaline environment necessary for struvite 
formation (see section 3 below). In this way metal ions compete for phosphate ions and 
co-precipitation of their salts along with struvite can reduce product purity (de Bashan, 
2004). Further, the increase in growth of crystals is inhibited because of blockage of 



active growth sites through adsorption of impurity ions onto the surface of struvite 
crystals (Jones, 2002; Kabdasli et al., 2006). In the presence of calcium, iron and 
nitrates (NO32-), crystal size decreases by up to 46% (Hutnik et al., 2011). There is also 
an increase in induction time when non-participating cations are present, because of 
cationic accumulation around the anionic species of struvite (Kabdasli et al., 2006). 
However, the increase in induction time is insignificant in the presence of carbonate 
(CO32-), sodium and sulphates (SO42-) (Kabdasli et al., 2006). Table 2 summarizes the 
effect of different impurities on struvite precipitation along with the concentration at 
which the effect was studied. 

Calcium is the most widely investigated non-participating element in struvite 
recovery. Calcium concentrations are relatively high in many wastewaters and animal 
manures where inorganic calcium phosphates (such as apatite) may be precipitated. The 
source of calcium in animal wastes may be variously attributed to animal feed and 
bedding materials (Gungor and Karthikeyan, 2008). This tends to lead to a very low 
concentration of soluble phosphates (PO43 ) in animal manure (Sharpley and Moyer, 
2000; Chapuis-Lardy et al., 2003; Gungor and Karthikeyan, 2005; Le Corre et al., 2005) 
and dairy manure (both undigested and anaerobically digested) typically displays less 
than 20% of total P remaining in solution (Barnett, 1994; Gungor and Karthikeyan, 
2008). Wastewater from municipal and industrial sources also contains relatively high 
concentrations of calcium and P may preferentially bind to the calcium fraction making 
struvite recovery a challenge (Wang et al., 2005; Marti et al., 2008).

 Interference from calcium can be minimized and the purity of recovered struvite 
can be increased in a calcium-rich source by either thermodynamically driven re-
dissolution of calcium phosphate or by removing it via chemical precipitation at 
elevated pH (Huichzermeier and Tao, 2012).  This will help to reduce effective 



Ca2+:PO43- and Ca2+:Mg2+ activity ratios to below 1 and 0.5 respectively, which have 
been suggested as optimum for struvite precipitation (Wang et al., 2005; 
Huichzermeierand and Tao, 2012).  

 Whilst magnesium is a constituent of struvite, an excess may limit precipitation 
because a high Mg: total P ratio increases the potential for Mg to complex with organic 
matter (Bowers and Westerman, 2005). 
(Table 2 Effect of non-participating ions on struvite precipitation)  
3. Feedstock Suitability 

Given the various requirements for successful precipitation and recovery of 
struvite, a Feedstock Suitability Index (FSI) was calculated to provide a measure of 
the suitability of a particular waste for struvite recovery based on its chemical 
composition specifically PO43-, NH4+, Ca and Fe . Data were obtained from published 
papers which demonstrated struvite precipitation and which provided compositional 
data for the waste studied (i.e. PO43-, NH4+, Ca and Fe concentrations, Tables 1 and 2). 
In some cases the number of papers fulfilling these criteria is limited, but nevertheless 
the FSI (Table 3) provides a novel means of compiling the data and evaluating the 
potential of a wide range of wastes and can be the basis for further study and 
development of the technologies. To determine the FSI, it was assumed that high 
concentrations of PO43- and NH4+ were beneficial for struvite recovery whilst low, rather 
than high, concentrations of Ca and Fe were favourable. Apart from Ca, the most 
influencing inhibiting ion in struvite precipitation, influence of Fe could be identified as 
inhibiting (Table 2) as it can limit P availability and therefore struvite formation. 
However, Fe concentrations were not generally specified in the selected papers and for 
the purposes of calculating the FSI, were taken from other published sources relevant to 
the named wastes.  The Mg concentrations were not taken into account in the FSI 



calculations since in all cases addition of Mg was routinely required for struvite 
recovery (Table 1). For wastes with variable composition, an FSI range was calculated 
(Table 3). Values for PO43-, Ca, NH4+ and Fe concentrations were normalized to a scale 
of 0-1 and the FSI calculated as the median of the normalized values was considered to 
rank the waste sources for their suitability as struvite source.    

Of the waste streams considered, rare-earth, fertilizer (phosphate fertilizer) 
carmine dye and nylon wastewater had the highest FSIs suggesting their suitability for 
struvite recovery, although since little data are available for these sources, caution 
should be exerted because the variability of the effluent chemistry and effect on P 
recovery is unknown. Further, abundance of such waste source is a matter of concern 
for commercial scale struvite recovery. In contrast, struvite recovery from human urine 
has been relatively well studied and maximum FSI of 0.322 for urine is indicative of the 
relative ease with which struvite is precipitated from this resource (Table 3). Presence of 
desirable ingredients PO43- (average 260 mg L-1) and NH4+ (average 4000 mg L-1) in 
relatively higher concentration, at the same time relatively lower concentration of 
inhibiting ions Ca (average 90 mg L-1) and Fe (average 0.07 mg L-1) make it a suitable 
consideration for struvite production. Considering its inexpensive and reliable stock, 
human urine holds potential as a favourable struvite source. Abattoir or slaughterhouse 
wastewater is the least suitable source with FSI index range of 0.006-0.014 due to low 
PO43- (5.5-10 mg L-1) and high Ca concentrations (53-71 mg L-1), although it also 
contains a complex of organic components which are likely to inhibit struvite 
crystallization.  

The FSI index is a potentially useful tool for identifying comparative suitability 
of different waste sources for struvite production, but for effective use, compositional 
status of a particular waste must be known.  



(Table 3 Feedstock suitability index of various waste sources) 

4. Pre-treatments for maximizing struvite precipitation 
P recovery from wastes may be limited because of fixation with other ions (e.g. 

Ca, Fe, Al) and it is necessary to understand P dynamics in terms of its speciation and 
distribution between soluble and particulate forms before recovery. From the liquid 
fraction of agricultural, municipal and industral wastes, only 40% recovery of total P is 
thought possible (Petzet and Cornel, 2011) and thus a major portion of P is lost if the 
solid fraction is not considered in the recovery process. Therefore, to achieve maximum 
P recovery, it is important to mobilize P into an available form by releasing it from the 
solid fraction by use of pre-treatments. Although the feasibility of pre-treatments has 
been established experimentally, there is scope to study economic aspects of the 
processes in order to optimize recovery. Pre-treatments aim to selectively reduce the 
impacts of non-participating ions and are discussed below. 

4.1. Anaerobic digestion 
The spontaneous deposition of struvite in anaerobically digested wastewater 

sludge led to the idea of using anaerobic digestion as a pre-treatment for struvite 
recovery. Compared to undigested manure, availability of N, P and Mg is enhanced in 
anaerobically digested pig, cattle and poultry manure (Wu et al., 2005; Masse et al., 
2007; Marti et al., 2008) due to hydrolysis and mineralization of organic nutrients 
(Seadi et al., 2012). Thus anaerobic digestion increases the potential for struvite 
formation as indicated by previous studies (Beal et al., 1999; Bhuiyan et al., 2007; 
Moody et al., 2009; Hidalgo et al., 2015).  

Struvite precipitation from untreated swine waste resulted in 92% phosphate 
recovery, a figure that rose to 98% following pre-treatment by anaerobic digestion (Beal 



et al., 1999). Moody et al. (2009) reported PO43- and Mg increases of 26% and 254% 
respectively in anaerobically digested swine wastewater compared to undigested waste. 
When these authors compared struvite precipitation from the digested and undigested 
swine waste, 61% less PO43- remained in the digested manure, the removal indicating 
greater struvite precipitation.   
4.2. Acid-base leaching 

Acidification (using hydrochloric or sulphuric acid) releases P into solution 
thereby enhancing P availability for subsequent struvite formation. Acidification causes 
protonation of phosphate ions from bound phosphates (Ca/Mg/Fe phosphate), which 
lowers their ionic product below their equilibrium solubility product. This results in 
higher dissolution of particulate phosphate into solution increasing its availability 
(Zhang et al., 2010).  

P availability is affected by the pH and composition of the material (Stark, 
2005). Lowering the pH of anaerobically digested dairy manure to pH 3.8 increased P 
availability by 500% (Zhang et al., 2010), whilst a lesser decrease to pH 4.5 resulted in 
43-100% of the total P present in dairy manure becoming available (Shen et al., 2011). 
Szogi et al. (2008) demonstrated that 60-80% of the total P in poultry manure was 
released from organically bound P following acid treatment. Treating with a base to 
increase alkalinity also enhances P availability as demonstrated by a 50-70% increase in 
available P in dried sewage sludge (Stark, 2005). However, acid treatment also releases 
metal ions which may result in contamination of the crystallized struvite if both metals 
and P are available in the waste effluent (Stark, 2005). 
4.3. Use of a chelating agent 

Chelating agents (e.g. ethylenediaminetetraacetic acid (EDTA) and oxalic acid) 
have been proposed as a pre-treatment method for minimizing the inhibitory effect of 



calcium on struvite precipitation (Zhang et al., 2010). In mechanically separated liquid 
dairy manure, EDTA sequesters calcium thereby suppressing formation of calcium 
phosphate compounds (Shen et al., 2011) resulting in higher concentrations of available 
P. The ligands react with Ca-PO4 to form Ca-EDTA complexes and PO43- is released 
(Zhang et al., 2010). In digested dairy manure, use of EDTA increased available P up to 
93% (Zhang et al., 2012). Addition of oxalic acid leads to formation of calcium oxalate, 
which is precipitated as white powder along with struvite. A combination of microwave 
treatment followed by oxalic acid amendment to dairy manure resulted in a 95% 
recovery of the total P as struvite, because 90% of the Ca was removed from solution 
whilst 90% of the Mg was not (Zhang et al., 2015).  

Use of EDTA to chelate Ca and consequently enhance struvite formation needs 
optimising. Excess EDTA might subsequently bind to Mg thereby limiting Mg 
availability which is a requirement for struvite formation (Zhang et al., 2010). The 
optimum concentration of EDTA is that which results in maximum EDTA-Ca complex 
formation without also complexing Mg (Shen et al., 2011). Since calcium 
concentrations are high in many farm wastes, use of chelating agents is particularly 
attractive, although concerns relating to environmental toxicity and expense will limit 
the sustainability of this approach. 

4.4. Microwave heating 
Microwave irradiation has been suggested as a pre-treatment method to release 

particulate P for enhanced struvite recovery (Liao et al., 2005; Pan et al., 2006; Chan et 
al., 2007; Qureshi et al., 2008; Lo et al., 2011) and the extent of P release depends upon 
the forms of P present in the source materials (Pan et al., 2006). The degree of P 
solubilisation depends upon microwave operating temperature and duration of heating 
(Liao et al., 2005) with 120o C considered to be the optimum temperature for releasing 



both NH4+ and P in sewage sludge (Chan et al., 2007). Pan et al. (2006) showed an 80% 
release of P following microwave treatment (170oC) of liquid dairy manure. The 
advantages of microwave treatment over conventional heating include uniform heating 
throughout the material, precise control over process temperature and no direct contact 
between heating source and materials (Lo et al., 2011). 

Pre-treatment with microwave heating has been further modified by 
incorporation of chemically assisted microwave digestion (Pan et al., 2006; Chan et al., 
2007; Qiao et al., 2008; Qureshi et al., 2008). The common chemicals used are oxidants, 
acids and bases. Combined microwave-chemical treatment is more effective at releasing 
P than microwaving only (Qureshi et al., 2008; Lo et al., 2011). The 80% release of P 
demonstrated by Pan et al. (2006) after microwaving dairy slurry was increased to 85% 
when H2O2 treatment was incorporated. From microwave treated P enhanced dairy 
manure, up to 90% of orthophosphate recovery as struvite is possible (Qureshi et al., 
2008). Use of H2O2 reduces the required temperature for optimum P release and 
hydroxyl radicals react with organic particulate P to release P into solution (Lo et al., 
2011). Xiao et al. (2015) more recently showed that microwaving activated sludge as a 
pre-treatment prior to anaerobic stirring for 1 h maximized phosphate release with a 
recovery efficiency of 95% in the form of amorphous calcium phosphate and struvite. 
4.5. Enhanced biological phosphorus removal (EBPR) 

Enhanced biological phosphorus removal (EBPR) in wastewater plants is based 
on the ability of the microbial biomass to sequester P from the surrounding medium. 
EBPR is an increasingly utilized technology where alternating anaerobic and aerobic 
steps result in sludge bacteria respectively releasing and uptaking large quantities of 
PO43- as a means of increasing P removal from effluents (Batista and Jeong, 2006). The 
P concentration in EBPR sludge can be up to 12% whilst in conventional sludge its 

.5. Enhanced biological phosphorus removal (EBPR)



concentration is 2 - 3% (Liao et al., 2005) which allows for more efficient struvite 
recovery (Britton et al., 2005; Pastor et al., 2008; Shen, 2010). The enhanced PO43- 
concentrations in sewage sludge and the ease with which it is released from the 
microbial biomass increases the risk of struvite scale formation in the  
pipelines. Intentional struvite precipitation is therefore recommended as a means of 
limiting these operational problems (Marti et al., 2008). 

It has been reported that 58-94% P recovery is possible through formation of 
struvite from EBPR in wastewater treatment plants (Munch and Barr, 2001; Britton et 
al., 2005; Marti et al., 2008). However, the recovery efficiency varies depending upon 
sludge characteristics (Pastor et al., 2008). Recovery is less efficient from wastes with 
higher calcium contents, as calcium limits P availability (Pastor et al., 2008) and 
therefore this process would not be suitable for many farm wastes.  

5. Methods of struvite recovery 
Chemical precipitation methods are the most widely utilized methods of struvite 
recovery. However, alternative techniques using established principles of 
electrochemistry, ion exchange separation and biomineralization (Figs 1-4), have been 
tested, but these require sophisticated and dedicated facilities. Although the basic 
mechanism of struvite crystallization remains the same, there are differences in cost and 
energy demand between methods and here we provide a comparative assessment of the 
performance, advantages and limitations of each approach (Table 4). 
(Table 4 Recovery methods of struvite) 
 
5.1. Chemical precipitation methods in agitated reactor  

The approach aims to precipitate struvite from a waste source following addition 
of external Mg in a mechanically agitated reactor (Fig. 1). A narrow range of process 



conditions in terms of type of Mg salt, pH and pH adjustment method have been 
reported (Table 1). pH may be adjusted to create the alkaline conditions required for 
struvite precipitation (Bouropoulos and Koutsoukos, 2000) using NaOH (most 
commonly used), MgO, KOH, NH3 or by CO2 stripping (Chimenos et al., 2003; Suzuki 
et al., 2007; Zhao et al., 2010). Limitations of these approaches include the fact that 
MgO and KOH have limited solubility, the CO2 stripping method is energy intensive 
and loss of ammonia may occur from aeration (Cusick et al., 2014). MgCl2, MgSO4 and 
MgO are commonly used magnesium amendments, although alternative and renewable 
Mg sources are under investigation such as bittern, sea water, wood ash, magnesite and 
struvite pyrolysate which would be more cost effective (Suzuki et al., 2007; Huang et 
al., 2011; Sakthivel et al., 2011; Yu et al., 2012). 

To provide adequate mixing energy, stirred batch reactors are most frequently 
used, particularly in small-scale laboratory investigations as they are simple to operate 
and install (Table 3) (Kabdasli et al., 2000; Kim et al., 2006; Xu et al., 2012; Folleto et 
al., 2013). At a larger scale, fluidized bed reactors are commonly used as these provide 
solution turbulence and a greater reactive surface area (Seckler et al., 1996) thereby 
reducing crystallization induction time (Bhuiyan, 2008). 

The main advantage of chemical precipitation methods is their operational 
simplicity. However, precipitation often results in the production of non-recoverable, 
fine struvite particles because of the high mixing energy commonly found in stirred 
reactors (Adnan et al., 2003).  To reduce this problem, recycling of struvite fines back to 
the precipitating reactor to act as seeding agents for new crystal growth is recommended 
(Ueno and Fuji, 2001; Le Corre et al., 2009). In a fluidized bed reactor, this problem is 
not as marked, as the fluidized struvite particles found in suspension act as seed for 
further crystal growth. Moreover, when multi-component heterogeneous sources such as 



manure and wastewater sludge are used, this technique often results in co-precipitation 
of other salts (such as calcium phosphate) which result from the presence of non-
participating ions (Capdevielle et al., 2013).  

Other issues include the need to use chemicals for pH adjustment, magnesium 
salts and sometimes NH4+ or P salts, depending on waste type, to supplement the 
deficient component in order to achieve struvite precipitation. These inputs can account 
for a large share of the total production cost and can outweigh the revenue value of the 
struvite to a producer (Barak and Stafford, 2006). For example, Dockhorn (2009) 
estimated the cost of struvite production using chemical precipitation to be around 
$3500 tonne-1 of P which was significantly higher than the market value of P at the time 
($765 tonne-1).  
5.2. Electrochemical methods  

In this approach struvite precipitation is induced by an electrochemical reaction. 
An electrochemical cell is used with an anode formed of inert material such as platinum, 
graphite or carbon-felt discs and a cathode of nickel, a platinum-carbon catalyst, or a steel 
plate. Deposition of struvite takes place on the cathode from an analyte solution 
containing Mg, PO43- and NH4+ ions (Fig. 2).  During the process, electrochemical 
reduction of water or oxygen takes place at the cathode forming hydroxide ions 
(O2+2H2O+4e ), while hydrogen gas (H2) is released (H2O+e 2 H2+OH ) 
(Moussa et al., 2006; Wang et al., 2010). This reaction elevates the pH in the vicinity of 
the cathode into the alkaline range and results in rapid precipitation of struvite (Wang et 
al., 2010).  

This method has the advantage that chemicals are not required for pH 
adjustment purposes (Wang et al., 2010). The concurrent production of hydrogen during 
the electrolytic reduction of water at the cathode is another advantage since hydrogen 



recovery for other uses could offset the operational costs involved in the process 
(Cusick and Logan, 2012). A disadvantage is that the electrochemical precipitation of 
struvite needs energy to develop the required potential (~1.23V) for the reduction of 
water. While some anaerobic digester effluents have been studied (Fischer et al., 2011; 
Cusick et al., 2014) for struvite recovery using this method, a range of farm, municipal 
and industrial wastes remains currently untested. 

To reduce process costs further, struvite precipitation in a microbial 
electrochemical cell was investigated; a fuel cell converts chemical energy to electrical 
energy by the catalytic activity of microbes under anaerobic conditions. The electric 
current required for splitting water is supplied by the microbes which produce electrical 
energy using organic matter as fuel and convert it to inorganic matter through oxidation 
at the anode. The electrons are transferred to an external circuit and at the cathode the 
electrons and protons combine by reducing oxygen to water or by producing hydrogen 
gas (Wang et al., 2010). Struvite recovery from sewage sludge treated in microbial fuel 
cells is higher than from the starting feedstock (Fischer et al., 2011) because inorganic 
phosphates (e.g. FePO4 , Al(PO4)3) are reduced resulting in increased P availability (up 
to 48% of the total P). An advantage of this method is that, unwanted heavy metals are 
retained in the sludge matrix in immobilized forms (Fischer et al., 2011). 

In the case of a small, decentralized reactor requiring a high automated dose of 
Mg, it is possible that the Mg itself can be used as the sacrificial anode (Hug and Udert, 
2013; Kruk et al., 2014) which is thought to be of comparable outlay from the use of 
MgCl2 and MgSO4 salts (Hug and Udert, 2013). Here electrochemical dissolution of Mg 
into solution from the Mg electrode takes place through oxidation (Hug and Udert, 2013) 
and Mg ions released into solution react with the P and N to form struvite.  Effective 



anode potential for Mg electrode to release Mg is more than the pitting potential of Mg 
i.e. the potential enough to create irregular corrosion pit at Mg anode surface. 

Struvite obtained through electrochemical deposition can have a high purity (97%) 
with P recovery efficiencies of up to 96% (Wang et al., 2010). Limitations include the use 
of precious metals like platinum, issues with performance of the cathode which 
deteriorates when struvite particles accumulate on its surface and formation of microbial 
biofilms which block active sites and inhibit mass transfer, thus limiting struvite 
precipitation and necessitating addition of cleaning and scrubbing stages to the process 
(Hirooka and Ichihashi, 2013; Cusick et al., 2014). 
5.3. Ion exchange methods  

These methods are based on the principle that nutrients from wastewaters are 
selectively exchanged in ion exchangers and struvite is precipitated after addition of 
Mg2+ at controlled pH (Liberti et al., 1986, 2001; Mijangos et al., 2004, 2013; Ortueta et 
al., 2014). Sodium chloride is used as a regenerating solution in ion exchange columns; 
NH4+ is commonly exchanged for Na+ ions in a cationic exchanger (zeolite based) and 
PO43- ions are exchanged for Cl- ions in an anionic exchanger (sulphonic/carboxylic 
based) (Liberti et al., 1986) (Equations 1 and 2). Regenerates from the ion exchangers 
are then allowed to react with externally added MgCl2 in a stoichiometric ratio of 
Mg:NH4+:PO43-= 1:1:1 resulting in struvite precipitation (Fig. 3). 

    CationicNa + NH4+    == CationicNH4 + Na+      (1) 
     AnionicCl + HPO42- == Anionic2HPO4 + 2Cl-                                            (2)        

In the case of waste with imbalanced N and P concentrations, spontaneous 
precipitation does not effectively occur and stoichiometric chemical additions are 
necessary (Table 1). For example, to overcome this issue in wastes containing high 
NH4+ concentrations (e.g. sewage sludge liquors) the process was modified to allow 



exchange of all PO43- present in the waste and only its equimolar amount of NH4+, thus 
leaving excess NH4+ in the source (Liberti et al., 2001). The modification involves 
regulating the flow through the cation exchanger to achieve a desired level of NH4+ 

exchange, while for PO43-, the whole stream is processed for selective anion exchange 
(Liberti et al., 2001). Availability of specific anion exchangers for PO43- sorption is the 
main limitation of this process (Petruzzeli et al., 2004). Moreover, the high suspended 
solid content of regenerated effluent may cause fouling of the exchange columns 
(Gonder et al., 2006). 

Conventional ion exchange has been further modified by the use of ion exchange 
isothermal supersaturation (Mijangos et al., 2004; Ortueta, 2014). The principle is to 
facilitate concentration of the precipitating solution beyond its solubility level at a given 
temperature and enabling spontaneous crystallization of struvite. The important factors 
influencing the process are the eluent concentration and selection of ion exchange resin, 
in particular, resin functional groups and the ion exchanger matrix (Mijangos et al., 
2013; Ortueta et al., 2014). At higher concentrations of the precipitating ions, degree of 
super-saturation increases and formation of intermatrix crystalline deposits are likely to 
block resin surfaces.  
5.4. Biomineralization methods 

Biomineralization is the natural process of deposition of minerals by 
microorganisms for hardening their structural tissue which leads to microbial 
production of struvite (Da Silva et al., 2000). Certain bacterial strains (e.g. Myxococcus 
xanthus, Staphylococcus aureus) can precipitate struvite in a medium containing PO43- 
and Mg (Table 4). NH4+ required for precipitation is produced from microbial 
metabolism of the nitrogenous compounds present in the medium or precipitating 
solution (Omar et al., 1998). Release of NH4+ from nitrogen metabolism results in 



increased pH which favours precipitation of struvite (Gonzalez-Munoz et al., 1996; 
Omar et al., 1998) (Fig. 4). 

Apart from living microbial cells, dead cells, disrupted cells and isolated 
bacterial structures (e.g. cell membranes) can also induce struvite crystallization by 
acting as substrates for heterogeneous nucleation for crystallization (Gonzalez-Munoz et 
al.,1996; Omar et al.,1998). The organic matrix of disrupted bacterial cells is rich in 
negatively charged multi-molecular complexes (proteolipids, phospholipids, 
glycoprotein, proteoglycan) and attracts positive ions like Mg, resulting in struvite 
precipitation (Gonzalez-Munoz et al., 1996; Omar et al., 1998). 

In living microorganisms, precipitation of struvite is initiated at the exponential 
growth phase and a peak is reached at the start of the stationary phase (Da Silva et al., 
2000). There is a link between struvite morphologies, microbial species and specific 
physicochemical conditions of the culture medium (Lopez et al., 2007). The presence of 
Ca in culture media inhibits struvite formation (Beavon and Heatley, 1962). Table 5 
summarizes the findings of different struvite recovery studies using microorganisms. 

(Table 5 Microbial species reported in struvite precipitation)  
6. Conclusions 

Here we analysed waste sources, methods and pre-treatments used during 
struvite recovery processes and developed a Feedstock Suitability Index to rank 
potential sources. Feasibility of recovery has been established at the laboratory scale for 
a range of wastes with relatively high P recovery efficiencies (~85-99%). However, full-
scale installations are limited and focus dominantly on the municipal wastewater 
industry. Development of a targeted and cost-effective recovery method is still a 
challenge due to the inherent heterogeneous nature of waste sources. The overall 



impacts of such technological successes would be profound and the benefits for global 
food security in terms of alternative and sustainable fertilizers are enormous. 
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Highlights:  
 Development of a feedstock suitability index to rank P recovery potential of range of 

wastes 
 Comprehensive review of struvite recovery methodologies 
 Pre-treatments for maximizing struvite recovery reviewed 

*Highlights



Fig.1. Schematic diagram of chemical precipitation of struvite. 

        

           
 

Figure1



Fig. 2. Schematic diagram of electrochemical precipitation of struvite. 

Figure2



Fig. 3. Schematic diagram of ion exchange method of struvite precipitation. 

Figure3



Fig. 4. Schematic diagram of struvite precipitation through biomineralization.. 

Figure4
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Table 5 
Microbial species reported in struvite precipitation 

 Microbial sp. Key findings Reference 
1 Staphylococcus aureus Increase Mg concentration in culture mediumincreases 

crystal formation; Ca addition prevents it. 
BeavenandHeatley, 
1962 

2 Ureaplasmaurealyticum  Inoculation with U. urealyticum in urine causes 
alkalinisation andcrystallization.  

Grenaboet al., 
1984 

3 Trypanosomacruzi It excretes NH4+ into growth medium and when contain 
Mg2+ and PO43-struvite is precipitated. 

AdroherandOsuna, 
1987  

4  Arthrobacterand 
Pseudomonas sp. 

Morphology of crystals formed under agitation differs 
from those formed when cultures not agitated.  

Perez et al., 1990 

5 Bacillus pumilus Precipitation of struvite after 6-20 days of bacterial growth 
in medium containing Mg2+and PO43-.  

Strubleet al., 1991

6 Myxococcuscoralloides  Extra-cellular production of struvite (1st report on struvite 
production by Myxococcussp.) 

Gonzalez-Munoz 
et al., 1993 

7 Myxococcusxanthus Dead cells or cell debris can act as seed for crystal growth. Omar et al., 1995
8 Myxoccocuscoralloides 

and M.xanthus 
Intact bacterial cells did not act as sites for crystal 
formation. Changes in environmental conditions or 
autolysis create debris and exudates rich in proteolipids 
and phospholipids that attract Mg2+promoting 
crystallization.  

Omar et al.,1998

 
 
 
9 

 
 
 
Myxococcusxanthus 

Culture medium chemistry influences struvite formation, 
with maximum crystallization occurring at the beginning 
of the stationary growth phase. 

Da Silva et 
al.,2000 

Precipitation efficiency depends upon culture age. Culture 
physico-chemical condition and crystal morphology are 
linked. 
Autolyzed bacterial debrisacted as heterogeneous nuclei. 

Lopez et al., 2007

10 Brevibacteriumantiquum 90% of P uptake from medium, accumulated P was mostly 
in orthophosphate form. 

Smirnov et al., 
2005 

11 Idiomarinaspp. Produce extra-cellular polymeric substances that provide 
reactive sites to bind dissolved ions for struvite 
precipitation.  

Gonzalez-Munoz 
et al., 2008 

12 Proteus mirabilies Extracellular proteins interact with Mg2+and induce 
nucleation and growth of struvite crystals. 

Sun et al., 2012 

Table 5


