
Lacey, Jack H. and Leng, Melanie J. and Francke, 
Alexander and Sloane, Hilary J. and Milodowski, Antoni 
and Vogel, Hendrik and Baumgarten, Henrike and 
Zanchetta, Giovanni and Wagner, Bernd (2016) 
Northern Mediterranean climate since the Middle 
Pleistocene: a 637 ka stable isotope record from Lake 
Ohrid (Albania/Macedonia). Biogeosciences, 13 . pp. 
1801-1820. ISSN 1726-4170 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/32499/1/bg-13-1801-2016.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33576228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf


see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


Biogeosciences, 13, 1801–1820, 2016
www.biogeosciences.net/13/1801/2016/
doi:10.5194/bg-13-1801-2016
© Author(s) 2016. CC Attribution 3.0 License.

Northern Mediterranean climate since the Middle Pleistocene:
a 637 ka stable isotope record from Lake Ohrid
(Albania/Macedonia)
Jack H. Lacey1,2, Melanie J. Leng1,2, Alexander Francke3, Hilary J. Sloane2, Antoni Milodowski 4, Hendrik Vogel5,
Henrike Baumgarten6, Giovanni Zanchetta7, and Bernd Wagner3

1Centre for Environmental Geochemistry, School of Geography, University of Nottingham, Nottingham, NG7 2RD, UK
2NERC Isotope Geosciences Facilities, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
3Institute of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany
4British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
5Institute of Geological Sciences & Oeschger Centre for Climate Change Research, University of Bern,
3012 Bern, Switzerland
6Leibniz Institute for Applied Geophysics, 30655 Hanover, Germany
7Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy

Correspondence to: Jack H. Lacey (jackl@bgs.ac.uk)

Received: 28 July 2015 – Published in Biogeosciences Discuss.: 20 August 2015
Revised: 4 March 2016 – Accepted: 10 March 2016 – Published: 24 March 2016

Abstract. Lake Ohrid (Macedonia/Albania) is an ancient
lake with unique biodiversity and a site of global signifi-
cance for investigating the influence of climate, geological,
and tectonic events on the generation of endemic popula-
tions. Here, we present oxygen (δ18O) and carbon (δ13C)
isotope data from carbonate over the upper 243 m of a com-
posite core profile recovered as part of the Scientific Collab-
oration on Past Speciation Conditions in Lake Ohrid (SCOP-
SCO) project. The investigated sediment succession covers
the past ca. 637 ka. Previous studies on short cores from the
lake (up to 15 m, < 140 ka) have indicated the total inorganic
carbon (TIC) content of sediments to be highly sensitive to
climate change over the last glacial–interglacial cycle. Sed-
iments corresponding to warmer periods contain abundant
endogenic calcite; however, an overall low TIC content in
glacial sediments is punctuated by discrete bands of early
diagenetic authigenic siderite. Isotope measurements on en-
dogenic calcite (δ18Oc andδ13Cc) reveal variations both be-
tween and within interglacials that suggest the lake has been
subject to palaeoenvironmental change on orbital and millen-
nial timescales. We also measured isotope ratios from authi-
genic siderite (δ18Os andδ13Cs) and, with the oxygen iso-
tope composition of calcite and siderite, reconstructδ18O of
lake water (δ18Olw) over the last 637 ka. Interglacials have

higherδ18Olw values when compared to glacial periods most
likely due to changes in evaporation, summer temperature,
the proportion of winter precipitation (snowfall), and inflow
from adjacent Lake Prespa. The isotope stratigraphy suggests
Lake Ohrid experienced a period of general stability from
marine isotope stage (MIS) 15 to MIS 13, highlighting MIS
14 as a particularly warm glacial. Climate conditions became
progressively wetter during MIS 11 and MIS 9. Interglacial
periods after MIS 9 are characterised by increasingly evap-
orated and drier conditions through MIS 7, MIS 5, and the
Holocene. Our results provide new evidence for long-term
climate change in the northern Mediterranean region, which
will form the basis to better understand the influence of ma-
jor environmental events on biological evolution within Lake
Ohrid.

1 Introduction

Global climate models indicate the Mediterranean to be
a highly vulnerable area with respect to predicted future
changes in temperature and precipitation regimes (Giorgi,
2006; Giannakopoulos et al., 2009), and the associated stress
on water resources may have important socioeconomic im-
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pacts across the region (García-Ruiz et al., 2011). It is there-
fore vital to investigate the regional response to past climate
fluctuations and improve our understanding of global climate
dynamics as a prerequisite for establishing future scenar-
ios (Leng et al., 2010a). Stable isotope ratios preserved in
sedimentary lacustrine carbonates are a proxy for past cli-
mate and hydrological change (Leng and Marshall, 2004),
and combinations of lake records can be used to assess the
spatial coherence of isotope variations (Roberts et al., 2008).
Although there are numerous stable isotope records from
the Mediterranean, for example from marine sediment cores
(Piva et al., 2008; Maiorano et al., 2013; Regattieri et al.,
2014) and speleothems (Bar-Matthews et al., 2003; Antonioli
et al., 2004), those from lacustrine carbonate typically are
Late Glacial–Holocene in age (Dean et al., 2013; Francke et
al., 2013) and only a limited number of extend beyond the
Last Glacial (Frogley et al., 1999; Kwiecien et al., 2014; Gi-
accio et al., 2015; Regattieri et al., 2016).

Lake Ohrid, located on the Balkan Peninsula in south-
eastern Europe, is thought to be among the oldest extant
lakes on Earth with a limnological age in excess of 1.2
million years (Wagner et al., 2014; Lindhorst et al., 2015).
So-called ancient lakes are often associated with an out-
standing degree of natural biodiversity, and Ohrid is one of
only a few lakes worldwide to contain such a varied assem-
blage with over 300 endemic species (Albrecht and Wilke,
2008; Föller et al., 2015). Previous core sequences span the
past 140 000 years and proxies (e.g. geochemical, pollen, di-
atoms) indicate Lake Ohrid to be highly sensitive to both
long- and short-term environmental change (Wagner et al.,
2008, 2009, 2010; Vogel et al., 2010). Based on the potential
for extended palaeoenvironmental reconstructions, the Sci-
entific Collaboration on Past Speciation Conditions in Lake
Ohrid (SCOPSCO) project was established within the frame-
work of the International Continental scientific Drilling Pro-
gram (ICDP). The principle aims of the SCOPSCO project
are (1) to obtain precise information about the age and origin
of the lake, (2) to unravel the regional seismotectonic history,
(3) to obtain a continuous record containing information on
Quaternary climate change and volcanic activity in the cen-
tral northern Mediterranean region, and (4) to evaluate the
influence of major geological events on evolution and the
generation of the observed extraordinary degree of endemic
biodiversity (see Wagner et al., 2014).

Existing records from Lake Ohrid have been analysed for
the isotope composition of carbonate over the last glacial–
interglacial cycle, including fine-grained calcite (endogenic)
from bulk sediment (Leng et al., 2010a; Lacey et al., 2015)
and benthic ostracods (Belmecheri et al., 2010). However,
the current isotope data sets do not have the temporal range
necessary to meet the primary research aims of the SCOP-
SCO project (Wagner et al., 2014). Here, we present new sta-
ble isotope data from carbonates (endogenic calcite and au-
thigenic siderite) from SCOPSCO cores covering ca. 637 ka
(Baumgarten et al., 2015; Francke et al., 2016) and also

reconstruct the oxygen isotope composition of lake water
(δ18Olw). These data represent an extensive isotope stratig-
raphy covering multiple orbital cycles that provides valu-
able information on long-term palaeoenvironmental change
between interglacial and glacial periods and on millennial-
scale variability within interglacial stages. The isotope data
presented here will ultimately act as a reference record for
climate change in the Mediterranean and across the Northern
Hemisphere, provide a better understanding of the magnitude
and timing of Late Quaternary climate oscillations, and de-
liver a robust framework to investigate SCOPSCO aims (3)
and (4).

2 General setting

Lake Ohrid (Former Yugoslav Republic of
Macedonia/Republic of Albania) is situated at
693 m above sea level (a.s.l.) and formed in a tectonic
graben bounded by high mountain chains to the west and
east (Fig. 1). The lake has a maximum length of 30.8 km, a
maximum width of 14.8 km, an area of 358 km2, and a vol-
ume of 50.7 km3 (Stankovic, 1960; Popovska and Bonacci,
2007); the basin has a simple bath tub-shaped morphology
with a maximum and average water depth of 293 and 150 m
respectively (Lindhorst et al., 2015). There is a relatively
small catchment area of 2600 km2, even accounting for
input from neighbouring Lake Prespa, which delivers water
through a network of karst aquifers thought to correspond
to 53 % of total water input (Matzinger et al., 2006a). The
subterranean connection has been confirmed using tracer
experiments (Anovski et al., 1991; Amataj et al., 2007)
and feeds spring complexes mainly to the south-east of the
lake (Eftimi and Zoto, 1997; Matzinger et al., 2006a). The
remaining input comprises river inflow (24 %) and direct
precipitation on the lake’s surface (23 %). Water output is via
the river Crim Drim on the northern margin (66 %) and by
means of evaporation (34 %) (Matzinger et al., 2006b). Lake
Ohrid has a hydraulic residence time of around 70 years and
complete overturn is thought to occur approximately every
7 years (Hadzisce, 1966), which leads to de-stratification
of the water column during deep convective winter mixing
(Matzinger et al., 2006b).

Mediterranean climate is generally influenced by the sub-
tropical anticyclone in summer and mid-latitude westerlies
during winter, providing a complex and sensitive climatol-
ogy at a major transition zone between temperate and arid
domains (Lionello et al., 2012). This leads to precipitation
seasonality controlled by the southward migration of the In-
tertropical Convergence Zone during winter, allowing the
influence of westerlies to be established, and the develop-
ment of cyclogenesis across the Mediterranean (Harding et
al., 2009). Local orography produces climatic sub-zones with
variable distributions of precipitation and temperature across
the Mediterranean (Zanchetta et al., 2007), and the climate
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Figure 1. (a) Map of southern Europe and the northern Mediter-
ranean showing the location of(b). (b) Landsat map of Lake Ohrid
and Lake Prespa, showing Ohrid lake-floor morphology (Lindhorst
et al., 2015) and indicating the locations of coring sites(a) DEEP
5045-1 and(b) Lini Co1262 (Wagner et al., 2012; Lacey et al.,
2015).

of Lake Ohrid and its watershed is controlled by both sub-
Mediterranean and continental influences owing to its loca-
tion in a deep basin sheltered by mountains and its proximity
to the Adriatic Sea (Vogel et al., 2010; Panagiotopoulos et
al., 2013). Today, air temperatures range between a minimum
of −6◦C and a maximum of+32◦C and have an annual
average of around+10◦C (Fig. 2; Popovska and Bonacci,
2007). Lake Ohrid surface water temperature remains be-
tween+6 and+26◦C and bottom water temperature is con-
stant between+5 and+6◦C (Popovska and Bonacci, 2007).
The catchment receives an average annual rainfall of around
900 mm and the prevailing northerly–southerly winds trace
the Ohrid valley (Stankovic, 1960).
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Figure 2. Recent climate data from the town of Ohrid (WMO
station 135780: 41.1170◦ N, 20.8000◦ E; 761 m a.s.l.) showing
monthly averages over the period 2010–2014 for average temper-
ature (T ), precipitation (P ), and relative humidity (RH) (data avail-
able from WMO, 2015).

3 Material and methods

3.1 Core recovery

The ICDP SCOPSCO coring campaign of spring 2013 was
a resounding success with over 2100 m of sediment recov-
ered from four different sites; a full overview of coring lo-
cations, processes, and initial data is given by Wagner et
al. (2014). To summarise, drill sites were selected based
on hydro-acoustic and seismic surveys carried out between
2004 and 2008, which show the main target location to be in
the thick undisturbed sediments of the central basin with an
estimated continuous sedimentary fill of up to 680 m. Cor-
ing at the “DEEP” site (5045-1; 41◦02′57′′ N, 020◦42′54′′ E)
used the Deep Lake Drilling System (DLDS) operated by
Drilling, Observation and Sampling of Earths Continental
Crust (DOSECC) to reach a maximum sediment depth of
569 m below lake floor (m b.l.f.) and returned 1526 m of core
material from six drill holes (95 % composite recovery; 99 %
for the upper 430 m). The cores were subsequently processed
and correlated at the University of Cologne to provide a com-
posite profile for the DEEP site sequence, which currently
extends down to 247.8 m core depth (described by Francke
et al., 2016). Total inorganic carbon (TIC) data were mea-
sured by Francke et al. (2016) using a DIMATOC 100 carbon
analyser (Dimatec Corp., Germany).

3.2 Chronology

The age model for the upper 247.8 m of the DEEP site se-
quence was established by (1) using tephrostratigraphical in-
formation (first-order tie points) and (2) tuning total organic
carbon (TOC) and TOC/total nitrogen (TN) to trends in lo-
cal daily insolation patterns (26 June at 41◦ N; Laskar et al.,
2004) and the winter season length (second-order tie points;
cf. Francke et al., 2016). The tie points comprise 11 tephra
layers, correlated to well-known Italian volcanic eruptions by
geochemical fingerprint analysis (age and error is based on
recalibration of Ar/ Ar ages from the literature by Leicher et
al., 2015), and 30 tuning points. The tuning points are based

www.biogeosciences.net/13/1801/2016/ Biogeosciences, 13, 1801–1820, 2016
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on TOC and TOC/ TN minima, which are observed to be
coincident with inflection points in summer insolation and
winter season length. For each TOC tuning point, an error
of ±2000 years was included in the age–depth calculation
to account for inaccuracies in the tuning process (Francke et
al., 2016). Finally, the age model for the sediment cores was
cross-evaluated with the age model of the borehole logging
data (Baumgarten et al., 2015). The latter is based on tuning
K concentration from downhole spectral gamma ray to LR04
and cyclostratigraphic analysis on gamma ray data. Chrono-
logical information and tie points are presented and discussed
in detail in Francke et al. (2016); Leicher et al. (2015) and
Baumgarten et al. (2015). The age model implies that the up-
per 247.8 m of the DEEP site composite profile represents
the last ca. 637 ka, which broadly corresponds to marine iso-
tope stage (MIS) 16 to MIS 1 (Lisiecki and Raymo, 2005;
Railsback et al., 2015).

3.3 Analytical work

The DEEP site composite profile was sampled for oxygen
and carbon isotope ratios (δ18O and δ13C) on carbonate
at 16 cm intervals from the surface to 242.98 m through-
out zones with a high carbonate content (up to 10 % TIC;
thought to represent interglacials). A previous record (Lini
core Co1262; Lacey et al., 2015) provides the most exten-
sive Holocene sequence recovered from Lake Ohrid to date,
and so it is utilised in place of the uppermost sediments of
the composite profile. The carbonate found within zones of
high TIC predominantly consists of calcite. Idiomorphic cal-
cite crystals and crystal clusters between 20 and 100 µm have
been reported from previous scanning electron microscopy
investigations, which show the crystals to be dominantly
CaCO3 (Wagner et al., 2008; Matter et al., 2010). The size
and shape of the crystals are typical of endogenic precipita-
tion (Leng et al., 2010b; Lézine et al., 2010), and although
CaCO3 crystals recovered from sediment traps are generally
pristine (Matter et al., 2010), those from core material are
typically characterised by partial dissolution (Wagner et al.,
2009).

Within zones of overall low TIC, intermittent spikes to
higher TIC were also sampled and the constituent carbon-
ate species investigated using X-ray diffraction (XRD), as
X-ray fluorescence (XRF) showed the spikes were high in
Fe and Mn (Francke et al., 2016). XRD was conducted on a
PANalytical X’Pert Pro powder diffractometer, with Cobalt
Kα1 radiation over the scan range 4.5–85◦2θ and a step size
of 2.06◦2θ min−1. Phase identification was conducted using
PANalytical HighScore Plus version 4.0 analytical software
interfaced with the latest version of the International Cen-
tre for Diffraction Data (ICDD) database. The XRD analysis
showed the carbonate in the samples to consist of siderite,
which was confirmed using energy-dispersive X-ray spec-
troscopy (EDX) on epoxy resin-embedded thin sections.

Relative concentration changes of the carbonate phases
(calcite and siderite) were determined at 32 cm intervals
from the surface to a correlated depth of 247.8 m using
Fourier transform infrared spectroscopy (FTIR). For FTIR
analysis, 0.011± 0.0001g of each sample was mixed with
0.5± 0.0001g of oven-dried spectroscopic-grade potassium
bromide (KBr) (Uvasol®, Merck Corp.) and subsequently
homogenised using a mortar and pestle. A Bruker Vertex
70 equipped with an MCT (mercury–cadmium–telluride) de-
tector, a KBr beam splitter, and an HTS-XT accessory unit
(multi-sampler) was used for the measurement. Each sam-
ple was scanned 64 times at a resolution of 4 cm−1 (recip-
rocal centimetres) for the wave number range from 3750 to
520 cm−1 in diffuse reflectance mode. FTIR analysis was
performed at the Institute of Geological Sciences, Univer-
sity of Bern, Switzerland. Linear baseline correction was ap-
plied to normalise the recorded FTIR spectra and to remove
baseline shifts and tilts by setting two points of the recorded
spectrum to 0 (3750 and 2210–2200 cm−1). Peak areas diag-
nostic for bending vibrations of the carbonate ion in calcite
(707–719 cm−1) and siderite (854–867 cm−1) and represen-
tative for their relative abundance (White, 1974; Chukanov,
2014) were integrated using the OPUS (Bruker Corp.) soft-
ware package.

For the isotope analysis, approximately 250 mg (calcite)
or 1000 mg (siderite) of sample was disaggregated in 5 %
sodium hypochlorite solution for 24 h to oxidise reactive or-
ganic material, then washed in deionised water to neutral
pH, dried at 40◦C and ground to a fine powder. To evolve
CO2 for isotope analysis, calcite-bearing samples were re-
acted overnight inside a vacuum with anhydrous phospho-
ric acid at a constant 25◦C, and siderite-bearing samples
were reacted with anhydrous phosphoric acid within a vac-
uum for 96 h at 100◦C. For both types of sample, CO2 was
cryogenically separated from water vapour under vacuum
and analysed using a VG Optima dual inlet mass spectrome-
ter. The mineral-gas fractionation factor used for calcite was
1.01025 and for siderite was 1.00881 (Rosenbaum and Shep-
pard, 1986). The oxygen and carbon isotope composition of
calcite (δ18Oc and δ13Cc) and siderite (δ18Os and δ13Cs)

are reported as per mille (‰) deviations of the isotope ra-
tios (18O/ 16O and13C/ 12C) calculated to the VPDB scale.
Within-run laboratory standards were utilised for which ana-
lytical reproducibility was < 0.1 ‰ forδ18O andδ13C.

4 Results

Isotope data from core 5045-1 are shown in Fig. 3. Calcite
is found in zones corresponding to interglacial/interstadial
periods characterised by high TIC (odd-numbered MIS) and
siderite is present in glacial/stadial periods (even-numbered
MIS; Francke et al., 2016). For calcite, over the whole record
δ18Oc = −5.3± 0.8 ‰ (1σ , n = 924) and δ13Cc + 0.4±

0.6 ‰ (1σ , n = 924). The sediments corresponding to MIS
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15 and 13 have consistentδ18Oc (mean= −5.5± 0.7 ‰; 1σ ,
n = 294) andδ13Cc (mean= +0.6± 0.5 ‰; 1σ , n = 294).
TIC remains relatively high through glacial MIS 14 and
δ18Oc is consistent with the bounding MIS values; however,
δ13Cc shows a trend to higher values. Minimumδ18Oc for
the whole record (−7.6 ‰) occurs at ca. 378 ka during MIS
11 (meanδ18Oc = −5.5± 0.9 ‰; 1σ , n = 75), andδ13Cc is
relatively low with stable values (meanδ13Cc = 0.2± 0.4 ‰;
1σ , n = 75). MIS 9 sediments have the lowest meanδ18Oc
of the record (−6.0± 0.8 ‰; 1σ , n = 87) and meanδ13Cc
(0.4± 0.6 ‰; 1σ , n = 87) is similar to previous warm
stages. Subsequently, the lowestδ13Cc of the record are ob-
served between ca. 219 and 216 ka in MIS 7 andδ18Oc
(−5.5± 0.6 ‰; 1σ , n = 73) is comparable to averageδ18Oc
through MIS 15–13. MIS 5 contains the highest meanδ18Oc
(−4.6± 0.8 ‰; 1σ , n = 104), similar toδ18Oc observed dur-
ing the Holocene (−4.9± 0.7 ‰, 1σ , n = 273; Lacey et
al., 2015), and shows highδ13Cc (mean= 0.6± 0.7 ‰; 1σ ,
n = 104). Siderite is found predominantly in areas of negli-
gible TIC (glacial/stadial periods), with an increasing abun-
dance in the upper core (after ca. 350 ka; Fig. 3). Overall,
meanδ18Os = −2.2± 0.8 ‰ (1σ , n = 22) and meanδ13Cs =

+12.3± 0.5 ‰ (1σ , n = 22). The sediments corresponding
to MIS 10 have the highestδ18Os values, and the lowest
δ18Os are observed during MIS 3 (however, given the low
resolution of the siderite isotope data, variability between
glacial stages cannot be thoroughly assessed at present).

5 Discussion

5.1 Modern isotope data

Understanding how the isotope composition of contempo-
rary lake water relates to the measured signal from a min-
eral precipitate is fundamental in resolving the past system-
atics of hydroclimate variation from lacustrine records (Leng
and Marshall, 2004). The isotope composition of lake wa-
ter (δ18Olw) from Ohrid and Prespa, as well as spring in-
flows, have been previously investigated (water samples col-
lected 1984–2011, summarised in Fig. 4; Eftimi and Zoto,
1997; Anovski et al., 2001; Matzinger et al., 2006a; Leng
et al., 2010a, 2013). Modern waters from Lake Ohrid fall
on a local evaporation line (LEL) away from the local me-
teoric water line (LMWL) inferring that they have under-
gone kinetic fractionation (averageδ18Olw = −3.5 ‰; Leng
and Marshall, 2004). Lake Prespa has a reduced surface area
to volume ratio in comparison to Ohrid and is highly sen-
sitive to seasonal variations in moisture balance (Popovska
and Bonacci, 2007; Leng et al., 2010a); hence its waters
fall higher on the LEL (averageδ18Olw = −1.5 ‰). The ini-
tial water composition at the LMWL–LEL intersect sug-
gests that both lakes are principally recharged from mete-
oric water, assumed to be similar to the mean annual isotope
composition of precipitation (δ18Op) across the catchment

(δ18Op = −10.2 ‰; Anovski, 2001), which falls close to the
average value for precipitation-fed spring waters (−10.1 ‰).
The spring complexes are split between those with lower
δ18O (fed predominantly by isotopically depleted winter pre-
cipitation) and those with higherδ18O (having an evaporated
component). Mixing analysis at spring complexes primarily
to the south-east of Ohrid indicates they receive up to 53 %
of their incoming water budget from Prespa (Anovski et al.,
2001; Eftimi et al., 2001; Matzinger et al., 2006a). Springs
deliver around half of total inflow to Lake Ohrid, and there-
fore a large proportion of water input will be seasonally vari-
able as it is derived from Lake Prespa (lowerδ18Olw in winter
and higher during summer). Contemporary waters from Lake
Ohrid show uniformδ18Olw values over the ca. 30-year sam-
pling period, signifying that seasonal variations in the water
contribution from Lake Prespa have a negligible overall ef-
fect, most probably due to Ohrid’s large volume and long
lake water residence time (Leng et al., 2010a). This sug-
gests that, in combination with modern lake water that has
higherδ18O than local meteoric water, changes in the isotope
composition of lake water (δ18Olw) are principally driven by
regional water balance and most likely represent lower fre-
quency changes in climate.

5.2 Late Glacial to Holocene isotope data

A 10 m core (Co1262), recovered from the western mar-
gin of Lake Ohrid at the “Lini” drill site (Fig. 1), has been
analysed forδ18Oc and δ13Cc at high resolution over the
Late Glacial to Holocene (Lacey et al., 2015); the study
is utilised here as a recent comparison for the longer-term
reconstruction in combination with the modern water iso-
tope data. Lacey et al. (2015) highlighted the significance
of Lake Ohrid as a sensitive recorder of climate change and
confirmed that Ohrid responds to regional changes in water
balance over the Holocene. Core Co1262 hasδ18Oc rang-
ing between−6.5 and−2.1 ‰, being higher following the
Late Glacial to Holocene transition, reaching a minimum be-
tween approximately 9 and 7 ka, and subsequently undergo-
ing a step-wise increase to present-day values (Fig. 5). This
pattern ofδ18Oc variability is similar to other lake sediment
sequences from Greece (Lake Pamvotis; Frogley et al., 2001)
and Turkey (Lake Acıgöl; Roberts et al., 2001), as well as in
speleothem records from Israel (Soreq Cave; Bar-Matthews
et al., 1999). A period of sustained moisture availability
above that of present-day values is recorded between 8 and
6.5 ka from Lake Acıgöl (Roberts et al., 2001), which is like-
wise identified at Lake Pamvotis where higher lake levels are
inferred by a reduction in the quantity of shallow water ostra-
cod taxa (Frogley et al., 2001). The Soreq Cave speleothem
record indicates a greater annual number of heavy rainstorms
throughout the period 10 to 7 ka, with rainfall estimated to
have been up to twice that of present day (Bar-Matthews et
al., 1997), and similarly early Holocene rainfall is calculated
to have increased by around 20 % in central Anatolia (Jones
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Figure 3. Isotope results from calcite (δ18Oc, δ13Cc), siderite (δ18Os, δ13Cs), and calculated lake water (δ18Olw) from Lake Ohrid, also
showing TIC (Francke et al., 2016), the Holocene Co1262 calibration data set (δ18Oc, δ13Cc; Lacey et al., 2015), and MIS stratigra-
phy (Railsback et al., 2015). FTIR results are shown for calcite (grey bars; calcite area= 707–719 cm−1) and siderite (blue bars; siderite
area= 854–867 cm−1). Calcite data are given as raw (grey line) and lowess as smooth (span= 0.02; black line); siderite data are presented
as individual points (black dots). For calculation ofδ18Olw , +18◦C was assumed for calcite data (red shaded area= ±3◦C) and+6◦C for
siderite data (red shaded area= ±2◦C); see text for further detail.

et al., 2007). A wetter early Holocene is suggested by sev-
eral other central-eastern Mediterranean records, such as that
from Lake Pergusa (Zanchetta et al., 2007), Lake Van (Wick
et al., 2003), Lake Zeribar (Stevens et al., 2001), and Lake
Göhlisar (Eastwood et al., 2007). The transition to drier cli-
mate conditions in the late Holocene is reflected across these
records as a progressive shift to higherδ18Oc. Therefore, the
Holocene calibration data set confirms that Lake Ohridδ18Oc
is primarily driven by millennial-scale changes in regional
water balance.

5.3 SCOPSCO DEEP site isotope data

5.3.1 Oxygen isotope composition of calcite

δ18Oc is dependent onδ18Olw and the temperature of lake
water at the time of mineral precipitation, assuming equilib-
rium conditions (Leng and Marshall, 2004). Sediment trap
data from Lake Ohrid show that calcite precipitation is sea-
sonally induced, with up to 3 times more TIC formed during
summer months in comparison to winter months (Matzinger
et al., 2007). The precipitation of calcite is thought to be
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Figure 4. Modern isotope composition (δ18O andδD) of waters
from lakes Ohrid and Prespa, springs, and local rainfall (Anovski
et al., 1980, 1991, 2001; Eftimi and Zoto, 1997; Matzinger et al.,
2006a; Jordanoska et al., 2010; Leng et al., 2010a). The Global Me-
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lated local evaporation line (LEL) are given. The annual distribution
of δ18O was calculated using the Online Isotopes in Precipitation
Calculator (OIPC; Bowen et al., 2005; Bowen, 2015).

associated with increased temperatures and the photosyn-
thetic removal of CO2 within the epilimnion, providing
there is sufficient supply of calcium (Ca2+) and bicarbon-
ate (HCO−

3 ) ions, which are mainly sourced from spring
inflows (Matzinger et al., 2006a). The production of phy-
toplankton in the lake reaches a maximum between June
and August, during which the temperature of the main pro-
ductivity zone ranges between approximately 12 and 22◦C
(Stankovic, 1960). If the average temperature of the photic
zone during summer months is approximately 18◦C, and we
take the average modernδ18Olw of −3.5 ‰ (Fig. 4), the cal-
culatedδ18Oc of contemporary calcite precipitation should
be approximately−4.0 ‰, using the equation of O’Neil et al.
(1969), or –4.4 ‰, using the Leng and Marshall (2004) ex-
pression of Kim and O’Neil (1997). This is similar to the av-
erageδ18Oc through the Holocene (−4.9 ‰) and to the most
recent measurement ofδ18Oc (−4.5 ‰) from core Co1262
(Lacey et al., 2015), suggesting thatδ18Oc most likely corre-
sponds to summer lake water conditions.

Calcite may comprise up to 80 % of the total sediment
composition (assuming TIC mainly represents CaCO3; Wag-
ner et al., 2008), with only a minor biogenic component
(< 0.1 %) and limited terrigenous contribution (Lézine et al.,
2010). As Lake Ohrid is located within a karst catchment, a
proportion of the carbonate could be of detrital origin, which
commonly has a different isotope composition to the endo-
genic fraction (Leng et al., 2010b). The catchment geology
has variableδ18O (−9.7 to−2.6 ‰; Leng et al., 2010a); how-
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Figure 5.Comparison between the high-resolution Holoceneδ18Oc
calibration data set from Lake Ohrid Lini core Co1262 (Lacey
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Lake Pamvotis, Greece (Frogley et al., 2001), Lake Acıgöl, Turkey
(Roberts et al., 2001), and Soreq Cave, Israel (Bar-Matthews et al.,
1999).

ever, previous investigations on sediment trap and core mate-
rial have shown that the calcite crystals have morphological
characteristics (for example size and shape) typical of an en-
dogenic origin (Lézine et al., 2010; Matter et al., 2010).

The modern isotope data from Lake Ohrid indicate a
clear evaporative disparity between the isotope composi-
tion of lake water and that from meteoric and groundwa-
ter sources (Fig. 4). The calcite precipitated from a hy-
pothetical, exclusively meteoric, water source would have
δ18Oc = −10.6 ‰ (using the mean summer lake water tem-
perature of+18◦C and inflowδ18O of −10.1 ‰). Similarly
low δ18Oc is not observed in any isotope data from Lake
Ohrid to date, including core catcher data covering the en-
tire 1.2 Ma sediment sequence (Wagner et al., 2014), which
indicates that lake water has always been subject to a vary-
ing extent of evaporative fractionation. This suggests that
δ18Olw is primarily influenced by long-term changes in the
precipitation/evaporation ratio (P /E). Although tempera-
ture changes will influenceδ18Olw values, the effect is re-
ported to be roughly+0.2 ‰◦C−1 for the central Mediter-
ranean region (Bard et al., 2002), which is quantitatively
compensated for by the equilibrium isotope fractionation be-
tween carbonate and water (−0.2 ‰◦C−1; Leng and Mar-
shall, 2004).

The δ18Oc data from calcite in Lake Ohrid are largely
restricted to the interglacial (or interstadial) periods. Inter-
glacial sediments are characterised by concomitant increases
in both TIC and TOC (Francke et al., 2016), suggested to
be the result of enhanced primary productivity associated
with a warmer climate (Wagner et al., 2010). Calcite pre-
cipitation is favoured by elevated temperatures during inter-
glacials, which drives higher evaporation rates, thereby con-
centrating Ca2+ and HCO−

3 ions. Further, elevated catchment
soil activity and temperature will enhance the dissolution of
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Figure 6. Backscatter scanning electron microscopy images of
glacial sediment thin sections, showing(a) areas of high (brighter)
and low (darker) siderite concentration in “burrow-like” structure,
(b) areas of high siderite concentration (white euhedral crystals)
in an open-packed matrix (note: central diatom appears split by
siderite crystal),(c) individual siderite crystals amalgamating to
form a larger siderite crystal cluster, and(d) siderite overgrowth
fringing a rare detrital dolomite grain.

carbonate rocks leading to a greater concentration of dis-
solved ions in karst spring water. Warmer surface waters also
lower the calcite saturation threshold (Lézine et al., 2010).
Conversely, glacial sediments typically have low TIC and
TOC that are inversely correlated with K and Ti concentra-
tions, indicating low productivity and increased clastic input
(Vogel et al., 2010). Lower temperatures during glacial peri-
ods would lead to a more oxygenated water column through
increased vertical mixing and more frequent complete deep
convective overturn. Enhanced levels of mixing breaks down
water column stratification and associated oxygenation of
the water column increases the rate of aerobic decomposi-
tion of organic matter, releasing CO2 that reduces pH levels
and increases calcite dissolution (Vogel et al., 2010). Follow-
ing extensive organic matter degradation the C/ N ratio of
sediments may be significantly reduced, as observed in the
DEEP site cores (Francke et al., 2016) and in previous cores
from Lake Ohrid where during the Last Glacial C/ N val-
ues were typically very low (4–5) compared to higher val-
ues (8–12) in both the Holocene and MIS 5 (Wagner et al.,
2009; Leng et al., 2010a). Catchment permafrost may have
also been prevalent in glacial periods, limiting the supply of
Ca2+ and HCO−

3 ions to the lake by reducing the volume
of karstic spring inflow (Belmecheri et al., 2009), which is
supported by pollen-inferred mean annual temperatures dur-
ing the last glacial period of between−3 and+1◦C (Bordon
et al., 2009). Although there is no (or limited) calcite in the
glacials, previous work on Lake Ohrid has shown spikes in
TIC during MIS 2–3 (Wagner et al., 2010), and similar in-

creases in glacial TIC are observed throughout the 5045-1
composite profile (Francke et al., 2016). These TIC spikes
are most likely analogous to those found in Lake Prespa
glacial sediments during MIS 4–2, which comprise siderite
(Leng et al., 2013).

5.3.2 Oxygen isotope composition of siderite

Thin sections from discrete higher-TIC glacial intervals re-
veal individual siderite crystals (< 5 µm) and siderite crystal
clusters (50–100 µm) nucleating within an uncompacted clay
matrix (Fig. 6). The distribution of siderite within each thin
section is variable; a higher concentration of siderite crys-
tals is contained within burrow-like structures that impart a
mottled texture to the sediment. Occasional dolomite grains,
large (> 20 µm) and distinct from the fine clay matrix, are
fringed by 5 µm grains of siderite. The dolomite crystals are
thought to be detrital as they are larger than the individual
siderite grains and have irregular margins. Siderite comprises
the principal carbonate component in these horizons, and
apart from the occasional dolomite crystals, no other type of
carbonate was observed. Individual siderite crystals appear to
predominantly form within the open framework of the clay
matrix, which suggests they precipitated in situ within the
available pore space. The siderite is therefore most likely to
be early diagenetic and formed before compaction within the
sediment. Discrete horizons enriched in Fe have been pre-
viously observed in Lake Ohrid (Vogel et al., 2010), neigh-
bouring Lake Prespa (Wagner et al., 2010; Leng et al., 2013),
and in other ancient lakes, such as Lake Baikal (Granina et
al., 2004), where the formation of Fe-enriched layers up to
approximately 25 cm below the sediment–water interface is
thought to be related to bottom water redox conditions and
significant changes in sedimentation regime. Assuming the
siderite is formed in superficial sediments during the initial
stages of diagenesis, like calcite, its isotope composition can
be used as an indicator of depositional environment (Mozley
and Wersin, 1992).

5.3.3 Comparison of the oxygen isotope composition of
calcite and siderite

To enable comparison betweenδ18Oc andδ18Os, we convert
both toδ18Olw using specific mineral fractionation equations
and different estimates of temperature. For calcite data we
use the equation of O’Neil et al. (1969) and a precipitation
temperature of+18◦C (±3◦C) to represent average sum-
mer conditions within the photic zone during the period of
maximum phytoplankton activity. For siderite data we use
the equation of Zhang et al. (2001), which is considered ro-
bust for defining equilibrium precipitation at lower temper-
atures (Ludvigson et al., 2013), and assume a bottom water
temperature of+6◦C (±2◦C; Stankovic, 1960). The calcu-
latedδ18Olw is given in Fig. 3 and the averages for each MIS
are compared to those ofδ13Cc andδ13Cs in Fig. 7a.
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The calculatedδ18Olw from glacial siderite is generally
lower compared that from calcite (higherδ18Olw) during
warmer interglacial periods (Fig. 7). Although siderite hori-
zons probably represent distinct rapid and recurrent events in
Lake Ohrid (Vogel et al., 2010), overall lowerδ18Olw may
nevertheless be expected through glacial periods due to re-
duced lake water evaporation as a result of decreased tem-
peratures. Jones et al. (2007) calculated evaporation rates at
Eski Acıgöl in central Turkey and showed that glacial evapo-
ration was around 3 times lower compared to that of the Late
Holocene (0.4 m yr−1 vs. 1.1 m yr−1). If a similar calculation
is conducted for Lake Ohrid, glacial evaporation may have
been over 4 times lower than during the present interglacial
(0.4 m yr−1 vs. 1.8 m yr−1), after Jones et al. (2007) using the
equation of Linacre (1992). Higher evaporation rates are typ-
ically associated with closed lake basins and covariance be-
tweenδ18O andδ13C (Talbot, 1990; Li and Ku, 1997), which
is observed in the Lake Ohrid data as interglacialδ18Olw
from calcite has a moderate covariance (r = 0.30; Fig. 7b),
corroborating that interglacial periods were characterised by
higher evaporation. As rates of evaporation reduce during
colder intervals, the influence of other controlling factors,
such asδ18Op, may have had a greater importance in deter-
mining δ18Olw during glacial periods.

During colder intervals,δ18Op would have been lower as
a direct correlation exists between annual precipitation and
temperature of+0.6 ‰◦C−1 at mid–high latitudes (Dans-
gaard, 1964) and+0.2 ‰◦C−1 in the central Mediterranean
(Bard et al., 2002). If a mean annual temperature difference
of up to 9◦C is assumed between interglacial and glacial pe-
riods, based on pollen-inferred temperature data from nearby
Lake Maliq (Bordon et al., 2009),δ18Op may have decreased
by between−5.4 and−1.8 ‰ in glacial periods. When con-
sidering interglacial–glacial timescales, changes to the oxy-
gen isotope composition of seawater may also influence
δ18Op. The isotope composition of mean global seawater is
reported to be 1.0 ‰ higher during the last glacial due to the
expansion of global ice volume (Schrag et al., 2002) and up
to 1.2 ‰ in the Mediterranean due to local evaporative en-
richment (Paul et al., 2001). Therefore, the net effect of tem-
perature and source changes during glacial periods results in
lower δ18Op.

In addition to more regional effects onδ18Olw , local in-
fluences may also contribute to lower isotope values through
glacial periods. Today, a significant proportion of winter pre-
cipitation occurs as snowfall at higher altitudes in the Ohrid-
Prespa catchment, which is ultimately transferred to the lakes
during spring when temperatures remain high enough for
the snow to melt (Hollis and Stevenson, 1997; Popovska
and Bonacci, 2007). Average winter temperatures at present
are around 2◦C (Stankovic, 1960); however, winter temper-
atures would have been considerably reduced during glacial
periods and temperatures during summer months may also
have been lower (Bordon et al., 2009). If lower temperatures
persisted throughout much of the year, a higher proportion
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the Lini site Holocene Co1262 calibration data set (Lacey et al.,
2015).

of annual precipitation may have fallen in winter as snow.
Snow is typically characterised as having much lowerδ18O
than rainfall, which reflects in-cloud equilibrium conditions
and cooler condensation temperatures (Darling et al., 2006),
and so would provide a further potential source for lowδ18O
(Dean et al., 2013).

Temperatures may have been sufficiently reduced during
glacials to also allow (at least discontinuous) permafrost to
form in the Ohrid catchment, thereby decreasing input from
karst waters and perhaps restricting the inflow of water from
Lake Prespa (Belmecheri et al., 2009). Lake Prespa provides
a large proportion of water input to Ohrid through the under-
ground network of karst channels, which has higherδ18Olw
when compared to measured precipitation (Fig. 4; Leng et
al., 2010a). This infers that during periods where glacial con-
ditions were prevalent in the catchment, the inflow of water
comprising highδ18O from Lake Prespa may have reduced,
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and input would have instead been principally sourced from a
combination of direct precipitation and surface run-off, both
of which would result in lowerδ18Olw .

5.3.4 Carbon isotope composition of carbonate

When a carbonate mineral precipitates under equilibrium
conditions it captures theδ13C of the total dissolved in-
organic carbon (TDIC) of lake water. TDIC in most lakes

(at neutral pH) can be approximated to dissolved HCO−

3 ,
which is principally derived from the dissolution of carbon-
ate catchment rocks, soils, and atmospheric CO2 (Cohen,
2003). Consequently there are several carbon reservoirs that
may influenceδ13CTDIC, in addition to two major fractiona-
tion effects: (1) the chemical exchange between atmospheric
CO2 and dissolved HCO−3 and (2) kinetic processes during
the formation of organic matter (Hoefs, 1980; McKenzie,
1985). In Lake Ohrid, endogenic calcite precipitated within
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the epilimnion is thought to form in equilibrium with sur-
face waters; thusδ13Cc can provide information on past vari-
ations inδ13CTDIC and associated carbon-cycle transitions
(Leng and Marshall, 2004). The DEEP site record (Fig. 3)
shows overall high and consistentδ13Cc throughout the core
(+0.4± 0.6 ‰, 1σ , n = 924), which is most likely driven in
part by the carbon isotope composition of inflow (δ13CTDIC).
Within karst catchments the local and groundwater chemistry
will be dominated by Ca2+ and HCO−

3 ions (Cohen, 2003),
andδ13CTDIC will be high as catchment limestones usually
comprise ancient marine carbonates (averageδ13C= 0 ‰;
Hudson, 1977; Jin et al., 2009) and typically range between
−3 and+3 ‰ (Andrews et al., 1993; Hammarlund et al.,
1997). Althoughδ13CTDIC has not been measured for Lake
Ohrid, analysis conducted on several of the main geological
units in the catchment provides averageδ13C of +1 ‰ (Leng
et al., 2010a), which confirms thatδ13CTDIC will most prob-
ably be high as over 50 % of water input to Ohrid is derived
from springs fed by karst aquifers (Matzinger et al., 2006b).
Over glacial–interglacial timescales, the extent to which ge-
ological sources of carbon contribute to TDIC will primar-
ily be determined by hydrological balance and associated
changes in the residence time of water passing through the
karst system; lowerδ13CTDIC may occur during wetter peri-
ods with a lower residence and higherδ13CTDIC in more arid
periods with a higher residence time.

In opposition to geological sources of highδ13C, a ma-
jor source of carbon in ground- and river water typically de-
rives from CO2 liberated during the decay of terrestrial or-
ganic matter (lowδ13C). Lowδ13CTDIC is measured for Lake
Prespa water inputs (averageδ13CTDIC = −11.5 ‰; Leng et
al., 2013) and may be similar to the inflow to Lake Ohrid.
Over glacial–interglacial timescales, variations in the propor-
tion of soil-derived CO2 incorporated into catchment waters
will likely influence Lake Ohridδ13CTDIC. In colder peri-
ods, δ13CTDIC would be higher due to poor soil develop-
ment (Panagiotopoulos et al., 2014; Sadori et al., 2016); con-
versely, during wetter and warmer intervals the development
of dense forests would promote well-developed soils (lower
δ13CTDIC) and encourage the delivery of Ca2+ and HCO−

3
through the dissolution of carbonate catchment rocks.

Equilibrium exchange between atmospheric CO2 and lake
water will result inδ13CTDIC of approximately+3 ‰ (frac-
tionation factor+10 ‰ when in equilibrium with CO2 gas).
As δ13Cc is thought to reflect changes inδ13CTDIC, higher
δ13Cc in the Ohrid record may also reflect variable de-
grees of equilibration between atmospheric CO2 and dis-
solved HCO−

3 . This process is also observed in isotope data
from Lake Prespa, where lowδ13CTDIC entering the lake
(−11.5 ‰) is modified by within-lake processes to increase
lake waterδ13CTDIC to give the average value of−5.2 ‰
(Leng et al., 2013). In addition to evaporation, it is also likely
that biogenic productivity drives higherδ13CTDIC in Prespa
(and Ohrid) due to the preferential incorporation of12C dur-

ing photosynthesis, assuming the organic carbon is exported
to the lake floor and buried (Meyers and Teranes, 2001).

Evaporative drawdown will also affectδ18O as the prefer-
ential loss of16O during evaporation can drive higherδ18O
resulting in covariance betweenδ18O andδ13C. The signal
of covariance will be recorded in primary lacustrine car-
bonates and can potentially be used to determine the de-
gree of past hydrological closure (Talbot, 1990). The ex-
tent to which isotope measurements covary can depend on
several factors, including hydrological balance, stability of
the lake volume, vapour exchange, and evaporation (Li and
Ku, 1997). Covariance may therefore not simply be a func-
tion of residence time or hydrological closure (Leng et al.,
2010a) and has been shown to be spatially inconsistent be-
tween Mediterranean lake sediment records (Roberts et al.,
2008). Nevertheless, lake level fluctuations are thought to
have occurred in Lake Ohrid, at least during MIS 6, as ev-
idenced by the presence of subaquatic terraces on the north-
east shore of the lake (Lindhorst et al., 2010). Reductions
in lake level, most probably coincident with periods of re-
gional aridity and generally lowerP /E, may limit surface
outflow, solely met at present by the river Crim Drim (66 %;
Matzinger et al., 2006b), which in turn would extend lake
water residence time and increase the possibility of evapo-
ration and isotope exchange, resulting in higherδ18O and
δ13C. However, periods of higher covariance are generally
restricted to certain intervals, for example MIS 5 (r = 0.53,
p = < 0.001,n = 104), as throughout the whole core corre-
lation betweenδ18O andδ13C is generally weak (r = 0.30,
p = < 0.001,n = 924; Fig. 7). In those areas whereδ18O and
δ13C are decoupled, local in situ process are likely to domi-
nate the evolution ofδ13CTDIC and act to buffer any climate
signal (Regattieri et al., 2015).

In contrast toδ13Cc, δ13Cs is higher in Lake Ohrid sedi-
ments by > 8 ‰ and has a mean value of+12.3± 0.5 ‰ (1σ ,
n = 22). Higherδ13C is characteristic of siderite formed in
non-marine sediments and is most probably associated with
the incorporation of13C-enriched bicarbonate derived from
methanogenesis. The metabolic pathway utilised by bacteria
during the reduction of organic matter strongly fractionates
in favour of12C, which, for isotopic mass balance, produces
methane (lowδ13C) and proportionally enriches the bicar-
bonate ion in13C. The methane is subsequently removed
by ebullition or by emission through the stems of aquatic
macrophytes, and the enriched bicarbonate is incorporated
into TDIC (Curry et al., 1997).

5.4 Climate and interglacial variability at Lake Ohrid
over the past 637 ka

The Late Quaternary is characterised by cyclic alterna-
tions between colder glacial and warmer interglacial peri-
ods, the timing and magnitude of which are principally de-
termined by orbital-induced climate oscillations and vari-
ations in atmospheric greenhouse gas concentrations (Im-
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brie et al., 1984; Shackleton, 2000). This glacial–interglacial
climate signal has been globally observed in deep marine
sediments (Lisiecki and Raymo, 2005), ice cores (Jouzel et
al., 2007), and continental sequences (Sun and An, 2005),
which, when compared, indicate a broad correspondence
over orbital timescales (Tzedakis et al., 1997; Lang and
Wolff, 2011). However, comprehensive terrestrial sequences
covering multiple glacial–interglacial cycles are still rare
(Prokopenko et al., 2006; Tzedakis et al., 2006), especially
when isotope stratigraphies are considered, and consequently
the 5045-1 record can provide valuable information on cli-
mate evolution over an extended time frame. Although it is
beyond the scope of this paper to look in detail at each in-
terglacial over the last 637 ka (MIS 15 to MIS 5), some pre-
liminary observations can be made about their structure and
consistency.

5.4.1 MIS 16–13 (637–474 ka)

At the transition between MIS 16 and 15,δ13Cc shows a pro-
longed trend to lower values between ca. 625 and 615 ka,
whereas aδ18Oc minima occurs at ca. 622 ka, following
which values increase (Fig. 8) concomitant with increasing
TIC and biogenic silica (BSi; Francke et al., 2016). This
suggests an initial phase of higher precipitation (elevated
P /E) may have been associated with a mediated catch-
ment soil development and gradual climate warming follow-
ing the MIS 16 glacial, and after ca. 622 ka lake waters be-
came more evaporated. Excursions to lowerδ18Oc andδ13Cc
within MIS 15, centred on ca. 615, 600, and 577 ka, are most
likely related to lowerδ18O in LR04 (Fig. 8; Lisiecki and
Raymo, 2005), the Mediterranean Sea (Kroon et al., 1998),
and the Ionian Sea (Rossignol-Strick and Paterne, 1999), rep-
resenting an influx of glacial meltwater into the oceans and
warmer conditions during MIS 15e, 15c, and 15a respec-
tively (Fig. 8). In addition, this is mirrored by high arbo-
real pollen (AP) at Tenaghi Philippon (Tzedakis et al., 2006)
and warmer temperatures during these times also promoted
vegetation growth in the catchment at Lake Ohrid (Sadori et
al., 2016), leading to enhanced soil development and lower
δ13Cc.

MIS 14 is the only glacial of the record to contain a higher
proportion of TIC and TOC throughout the majority of the
stage (Francke et al., 2016), indicating temperatures at Lake
Ohrid did not decrease significantly to abate productivity and
calcite production (therefore calcite isotope data are available
for the majority of MIS 14). Hydroclimate conditions are as-
sumed to have remained fairly similar to MIS 15 as average
δ18Oc remains consistent between the two stages (Fig. 8),
suggesting that MIS 14 was a particularly weak glacial. Sus-
tained warmth through MIS 14 is in agreement with a range
of global records, including in sea surface temperature (SST)
estimates from the Iberian margin (Fig. 8; Rodrigues et al.,
2011) and South China Sea (Yu and Chen, 2011), BSi and
magnetic susceptibility from Lake Baikal (Prokopenko et al.,

2002, 2006), and several proxies from Antarctic ice cores
(Jouzel et al., 2007; Masson-Delmotte et al., 2010). Although
overall warmer conditions may have prevailed during MIS
14, the Ohrid record suggests that colder glacial-like con-
ditions occurred between ca. 540 and 531 ka, which is sup-
ported by the presence of siderite (Fig. 3).δ13Cc increases
throughout MIS 14 imply a progressive decline in catchment
soil development. A reduction in the amplitude ofδ13Cc os-
cillations, for example when compared to MIS 15, may be
due to low orbital eccentricity reducing the influence of pre-
cession and insolation variability (Fig. 8).

MIS 13 in Lake Ohridδ18Oc andδ13Cc represents a rel-
atively stable period, experiencing only minor oscillations
through the stage. The average isotope composition is com-
parable to that observed during MIS 14 and 15 (Fig. 7); how-
ever MIS 13 is generally considered to be one of the weak-
est interglacials of the last 800 ka (Lang and Wolff, 2011).
Similar to the onset of MIS 15, MIS 13c is characterised by
relatively rapid transition to lowerδ18Oc at ca. 529 ka fol-
lowed by increasing values through to ca. 521 ka, associated
with a gradual concomitant trend to lowerδ13Cc (Fig. 8).
An excursion to higherδ13Cc centred around ca. 510 ka is
probably linked to cooler conditions and the onset of MIS
13b, and a transition to higherδ18Oc suggests lowerP /E,
which is similar to observations from Tenaghi Philippon and
Antarctic ice cores that indicate reduced AP and lower re-
constructed temperatures (Tzedakis et al., 2006; Jouzel et
al., 2007). The LR04 record also exhibits higherδ18O at this
time, signifying an expansion of global ice volume (Fig. 8;
Lisiecki and Raymo, 2005). A shift to lowerδ18Oc andδ13Cc
at ca. 502 ka most likely represents the onset of MIS 13a,
whereδ13Cc is the lowest of the stage (ca. 530 to 474 ka),
suggesting MIS 13a most probably experienced warmer con-
ditions than MIS 13c. The timing of interglacial conditions
is unique within the Lake Ohrid record, and correspondingly
in global sequences, as minimum ice volume (Lisiecki and
Raymo, 2005) and maximum warmth (Jouzel et al., 2007;
Loulergue et al., 2008) occurred in the final substage of the
MIS rather than directly following the glacial termination
(Fig. 8). This was most probably due to MIS 14 experienc-
ing only weak glacial conditions resulting in a low-amplitude
glacial termination (Voelker et al., 2010). Peaks to higher
δ18Oc andδ13Cc toward the end of MIS 13a are coincident
with an increased proportion of siderite in sediments (Fig. 3),
and so fluctuations may be the result of a mixed carbonate
composition rather than due to environmental change.

5.4.2 MIS 11 (425–380 ka)

MIS 11 is thought to have a characteristic orbital and climate
configuration potentially analogous to that of the Holocene
(Loutre and Berger, 2003) and follows a strong and relatively
wet glacial MIS 12 at Lake Ohrid (Sadori et al., 2016). Fol-
lowing the glacial terminationδ18Oc is low (around−6 ‰)
and increases over the next 15 ka to a maximum (−4 ‰) at

Biogeosciences, 13, 1801–1820, 2016 www.biogeosciences.net/13/1801/2016/



J. H. Lacey et al.: Northern Mediterranean climate since the Middle Pleistocene 1813

ca. 410 ka, whereasδ13Cc transitions to lower values be-
tween ca. 425 and 410 ka, suggesting a prolonged period
of warm and relatively stable conditions. This period most
likely corresponds to MIS 11c, where warmer, wetter con-
ditions are supported by high TIC and AP at Lake Ohrid
(Francke et al., 2016; Sadori et al., 2016). The overall pro-
gression ofδ18Oc andδ13Cc through MIS 11c corresponds
to high SST at the Iberian Margin (Fig. 8; Rodrigues et
al., 2011) and compares well with the development of CO2
and CH4 measured from the EDC Antarctic ice core record
(Loulergue et al., 2008; Lüthi et al., 2008). A distinctδ18Oc
andδ13Cc maxima centred around ca. 405 ka is likely asso-
ciated with colder conditions and a drier environment (lower
P /E) through stadial phase MIS 11b, which is supported
by higher K intensity, lower TIC, and a substantial decrease
in AP (Francke et al., 2016; Sadori et al., 2016). An overall
trend to lowerδ18Oc and δ13Cc through MIS 11a (ca. 402
to 385 ka) shows greater variability in comparison to MIS
11c, suggesting that the stability of hydroclimate conditions
changed after peak interglacial conditions. Greater variabil-
ity after ca. 400 ka is also seen in other proxies from Lake
Ohrid (TIC, BSi; Francke et al., 2016), as well as in recon-
structed SST at the Iberian Margin (Rodrigues et al., 2011)
and atmospheric CH4 and temperature profiles from Antarc-
tic ice cores (Fig. 8; Petit et al., 1999; Jouzel et al., 2007).
Following the climatic optimum of MIS 11c,δ18Oc transi-
tions to the lowest value of the record at ca. 384 ka (−7.6 ‰),
over which time there is an increase in global ice volume and
decrease in atmospheric greenhouse gas concentrations ob-
served through MIS 11b and 11a (Lisiecki and Raymo, 2005;
Loulergue et al., 2008). A trend to lowerδ18Oc at Ohrid also
traces reducing SST in the North Atlantic and on the Iberian
Margin (Stein et al., 2009; Rodrigues et al., 2011). The pro-
gression to lowerδ18Oc during a period of overall cooling
is expected, given that the reconstructedδ18Olw from glacial
siderite is typically lower than interglacialδ18Olw , as calcu-
lated from calcite (Fig. 3).

5.4.3 MIS 9 (335–285 ka)

The initial ca. 4 ka of MIS 9 is marked by a transition
to higher δ18Oc and lowerδ13Cc, similar to previous in-
terglacial stages. After ca. 330 ka variations inδ18Oc and
δ13Cc are coupled and a minimum in both values is observed
around ca. 329 ka (Fig. 8), which is assumed to correspond
to peak interglacial conditions during MIS 9e. The onset of
full interglacial conditions during MIS 9e is indicated to be
relatively rapid, given that a maximum of ca. 6 ka elapses be-
tween the onset of calcite precipitation and peak interglacial
conditions, which is consistent with warming at the start of
MIS 9 observed in AP from Tenaghi Philippon (Tzedakis et
al., 2006) and SST from the Iberian Margin (Fig. 8; Martrat
et al., 2007). An abrupt transition to the highestδ18Oc and
δ13Cc of MIS 9 between ca. 321 and 318 ka is coincident with
lower TIC, BSi, and AP at Lake Ohrid (Francke et al., 2016;

Sadori et al., 2016). A reduction inPinus populations in the
Ohrid catchment alongside lowerP / E indicates an overall
drier climate, which is also documented at Tenaghi Philippon
(Tzedakis et al., 2006) and most likely associated with stadial
conditions during MIS 9d. The subsequent transition to lower
δ18Oc andδ13Cc towards ca. 310 ka is probably associated
with a warmer climate, higher precipitation andP /E during
interstadial MIS 9c, reflected at Tenaghi Philippon by higher
AP (Tzedakis et al., 2006) and moderately lowerδ18O in the
LR04 stack (Fig. 8; Lisiecki and Raymo, 2005). A subse-
quent break in TIC preservation occurs between ca. 308 and
293 ka, which is preceded by a transition to higherδ18Oc and
δ13Cc, suggesting a drier climate prevailed, and is most likely
associated with stadial MIS 9b. This interval is also indicated
to be an extended period of cold and dry conditions at Lake
Ohrid by low TIC and BSi (Francke et al., 2016) and low
AP (Sadori et al. 2016), where the presence of siderite ad-
vocates that a glacial-like climate state persisted throughout
much of the stadial phase (Fig. 3). A trend to lowerδ13Cc be-
tween ca. 293 and 286 ka closely corresponds to an increase
in TIC, BSi, and AP, and a rapid shift to lowerδ18Oc after
ca. 293 ka indicates the onset of warmer and wetter condi-
tions during interstadial MIS 9a. Low and relatively stable
δ18Oc values between ca. 292 and 288 ka imply a fresh lake
system and higherP /E, which may be driven by increased
precipitation in association with the deposition of sapropelS′

in the Mediterranean Sea (Ziegler et al., 2010) and summer
insolation maxima (Fig. 8; Laskar et al., 2004). Overall, low
δ18Oc through MIS 9 and its calculatedδ18Olw are coinci-
dent with similarδ18Olw values from siderite during MIS 10
and MIS 8 (Fig. 3), indicating glacial and interglacial lake
water broadly converge through this interval.

5.4.4 MIS 7 (243–191 ka)

MIS 7 at Lake Ohrid is characterised by three distinct phases
of calcite preservation (Fig. 3; Francke et al., 2016), which
most likely correspond to MIS sub-stages 7e, 7c, and 7a
(Railsback et al., 2015). The first peak in TIC between
ca. 245 and 238 ka is associated with initially low and in-
creasingδ18Oc and high but decreasingδ13Cc, which both
show a higher amplitude of variability after ca. 242 ka. In-
creasingδ18Oc suggests a transition from wetter to drier cli-
mate through to ca. 238 ka; however, warm and wet condi-
tions are indicated by overall lowδ18Oc coincident with high
TIC, BSi, and AP (Francke et al., 2016; Sadori et al., 2016).
This period most probably corresponds to interglacial MIS
7e and is coincident with warming indicated by arboreal ex-
pansion at the Ioannina (Roucoux et al., 2008) and Tenaghi
Philippon (Fig. 8; Tzedakis et al., 2006) basins in Greece and
at Lake Van in Turkey (Litt et al., 2014). Overall warming is
supported by higher reconstructed SST for the Adriatic Sea
(Piva et al., 2008) and on the Iberian Margin (Fig. 8; Martrat
et al., 2007). A cessation of TIC production between ca. 238
and 221 ka indicates a colder, extended glacial-like climate
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state during stadial MIS 7d, which is also suggested by the
presence of siderite (Fig. 3). A relatively abrupt decrease in
δ13Cc after ca. 221 ka marks the onset of warmer conditions
at Lake Ohrid and the transition to interstadial MIS 7c. An
interval of lowδ13Cc between ca. 221 and 212 ka represents
the lowermost values of the core, which suggests MIS 7c may
have experienced warmer conditions than during the full in-
terglacial (MIS 7e) and is supported by a higher TIC plateau
(Francke et al., 2016). In addition, a greater diversity of AP is
observed at Tenaghi Philippon alongside a greater abundance
of thermophilous taxa (Tzedakis et al., 2003b) and higher
BSi at Lake Baikal (Prokopenko et al., 2006). Although CO2
and CH4 concentrations were lower in MIS 7c (Loulergue et
al., 2008; Lüthi et al., 2008), higher summer insolation dur-
ing MIS 7c most likely promoted warmer climate conditions
(Fig. 8). A change to stadial conditions is suggested around
ca. 211 ka by a shift to higherδ18Oc andδ13Cc, as well as
the presence of siderite (Fig. 3), which likely corresponds
to MIS 7b. Decreasingδ13Cc and an increasingδ18Oc trend
between ca. 210 and 202 ka most probably correspond to in-
terstadial MIS 7a; however, unlike substages 7e and 7c, the
interval is characterised by large amplitude coupled oscilla-
tions in bothδ18Oc andδ13Cc. A change in climate stability
is also reflected in AP at Tenaghi Philippon (Tzedakis et al.,
2003b) and in speleothemδ18O from northern Israel (Bar-
Matthews et al., 2003). After ca. 202 ka siderite is observed
to be abundant through MIS 6.

5.4.5 MIS 5 (130–80 ka)

MIS 5 has been characterised as one of the strongest warm
periods of the last 800 ka (Lisiecki and Raymo, 2005; Jouzel
et al., 2007; Lang and Wolff, 2011). At Lake Ohrid, the high-
estδ18Oc andδ13Cc of the record are observed during MIS 5
(Fig. 8), suggesting lowP /E and high rates of evaporation,
which may be related to severe lake level changes inferred
during MIS 5 (Lindhorst et al., 2010). A rapid transition to
lower δ18Oc andδ13Cc after ca. 129 ka is most likely asso-
ciated with the onset of full interglacial conditions during
MIS 5e. A climatic optimum is probably associated with the
point of lowest isotope values at ca. 124 ka; however,δ18Oc
decreases at a faster rate in comparison toδ13Cc (Fig. 8).
This may be due to terrestrial and lacustrine proxies decou-
pling due to local effects of ice cap and snowfield meltwater
entering the lake, as is observed at Lake Ioannina (Wilson
et al., 2015). Local ice caps on the mountains surrounding
Lake Ohrid are indicated for the Last Glacial by catchment
moraine deposits (Ribolini et al., 2011) and are likely to have
been present during early glacials, such as MIS 6 (Francke et
al., 2016). Overall, the interval of lowerδ18Oc andδ13Cc is
coincident with higher Mediterranean SST (Piva et al., 2008;
Martrat et al., 2014), the deposition of sapropel S5 (Ziegler et
al., 2010), and greater regional precipitation (Bar-Matthews
et al., 2003; Drysdale et al., 2005). An increase inδ18Oc and
δ13Cc values after ca. 114 ka signals the onset of stadial

conditions (MIS 5d) and infers that interglacial conditions
persisted for approximately 15 ka, which is in broad agree-
ment with reported durations from other regional sequences
(Tzedakis et al., 2003a; Brauer et al., 2007; Pickarski et al.,
2015). Highδ18Oc and δ13Cc between ca. 114 and 108 ka
suggest drier conditions during MIS 5d, which is supported
by the presence of siderite and a reduction in AP (Sadori
et al., 2016). An excursion to lowerδ13Cc between ca. 108
and 91 ka is coincident with higher AP at both Lake Ohrid
and Tenaghi Philippon (Tzedakis et al., 2003b; Sadori et al.,
2016) and higher SST at the Iberian Margin (Fig. 8; Mar-
trat et al., 2007), which suggests warmer temperatures dur-
ing MIS 5c. δ18Oc is observed to be lower in MIS 5c than
during full interglacial conditions through MIS 5e (Fig. 8),
which could be due to refilling after a lake water lowstand
(Lindhorst et al., 2010). Alternatively, given higher insolation
and atmospheric CO2 and CH4 concentrations during MIS 5e
(Petit et al., 1999; Laskar et al., 2004; Loulergue et al., 2008),
evaporation may have been stronger and driven higherδ18Oc,
even under a regime of elevated regional precipitation (Bar-
Matthews et al., 2003; Drysdale et al., 2005). A transition
to higherδ18Oc andδ13Cc after ca. 91 ka corresponds to re-
duced TIC, BSi, and AP (Francke et al., 2016; Sadori et al.,
2016) and high siderite abundance, which are assumed to be
associated with stadial conditions during MIS 5b. The tran-
sition to higher isotope values occurs over a shorter time in-
terval in comparison to MIS 5d, suggesting MIS 5b probably
experienced a more produced change to cold and dry climate
conditions. This is supported by higher speleothemδ18O at
Soreq Cave (Bar-Matthews et al., 2003), lower reconstructed
SST from the Adriatic and Alboran seas (Martrat et al. 2004;
Piva et al., 2008), and lower atmospheric CO2 (Fig. 8; Petit
et al., 1999). A decrease inδ18Oc andδ13Cc after ca. 86 ka
is thought to be related to the onset of interstadial conditions
during MIS 5a. A minimum in both isotope values centred
around ca. 82 ka infers climate conditions may have been
wetter and warmer toward the end of the stage. A transition
to lowerδ18O is also observed at Soreq Cave (Bar-Matthews
et al., 2003), suggesting regional rainfall may have been en-
hanced toward the end of MIS 5a, which may be related to
a coincident peal in summer insolation (Fig. 8; Laskar et al.,
2004).

6 Conclusions

Here, new stable isotope data from the ICDP SCOPSCO
5045-1 composite core provide information on hydroclimate
variability in the northern Mediterranean over the last 637 ka
and represent one of the most extensive terrestrial isotope
records available for the region. Modern lake water data
(Leng et al., 2010a) and a high-resolution Holocene calibra-
tion data set (Lacey et al., 2015) show that contemporary lake
water is evaporated and that variations inδ18O principally re-
flect changes inP /E driven by regional water balance. Iso-
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tope data from calcite are continuous through intervals as-
sociated with high TIC (interglacials and interstadials), and
discrete bands of siderite are present during periods charac-
terised by low TIC (glacials and stadial). The siderite is con-
sidered to be early diagenetic and therefore, like calcite, can
be used as a proxy for past lake water conditions, assuming
at shallow depthsδ18O of the lake water and pore water at
the same. Overall, calculatedδ18Olw is lower during glacial
periods indicating lake water was fresher in comparison to in-
terglacials most probably due to a change in summer temper-
ature, evaporation rates, and the proportion of winter precipi-
tation falling as snow. The isotope data suggest largely stable
conditions persisted through MIS 15–13, inferring MIS 14
to be a particular weak glacial. A transition to lowerδ18Oc
is observed in the later stages of MIS 11 through to MIS 9,
followed by a change to higher values through MIS 7 and
evaporated conditions during MIS 5. The pattern of variabil-
ity observed in the Lake Ohrid sequence reflects comparable
changes in both regional and global palaeoclimate records,
and our data highlight the potential for future work on the
5045-1 composite profile to provide evidence for long-term
climate change in the Mediterranean, as a prerequisite for
better understanding the influence of major environmental
events on biological evolution within the lake.
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