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Abstract: Aberrant salience attribution and cerebral dysconnectivity both have strong evidential sup-
port as core dysfunctions in schizophrenia. Aberrant salience arising from an excess of dopamine activ-
ity has been implicated in delusions and hallucinations, exaggerating the significance of everyday
occurrences and thus leading to perceptual distortions and delusional causal inferences. Meanwhile,
abnormalities in key nodes of a salience brain network have been implicated in other characteristic
symptoms, including the disorganization and impoverishment of mental activity. A substantial body
of literature reports disruption to brain network connectivity in schizophrenia. Electrical oscillations
likely play a key role in the coordination of brain activity at spatially remote sites, and evidence impli-
cates beta band oscillations in long-range integrative processes. We used magnetoencephalography
and a task designed to disambiguate responses to relevant from irrelevant stimuli to investigate beta
oscillations in nodes of a network implicated in salience detection and previously shown to be struc-
turally and functionally abnormal in schizophrenia. Healthy participants, as expected, produced an
enhanced beta synchronization to behaviorally relevant, as compared to irrelevant, stimuli, while
patients with schizophrenia showed the reverse pattern: a greater beta synchronization in response to
irrelevant than to relevant stimuli. These findings not only support both the aberrant salience and dis-
connectivity hypotheses, but indicate a common mechanism that allows us to integrate them into a sin-
gle framework for understanding schizophrenia in terms of disrupted recruitment of contextually
appropriate brain networks. Hum Brain Mapp 37:1361–1374, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

We call an event “salient” when it catches our attention.
Its salience can be due to its sensory properties (“bottom
up” salience), or its relevance to current concerns (“top–
down” salience) [Corbetta and Shulman, 2002]. Both tend
to produce a phasic increase in dopamine in circuits impli-
cated in associative learning [Schultz et al., 1997], binding
the event to its current context, establishing causal links,
and facilitating prediction. Kapur [2003] hypothesized that
psychosis arises from “aberrant salience” in which excess
dopamine activity leads to the attribution of unwarranted
salience to stimuli that would not ordinarily be regarded
as significant, leading to a pathologically heightened sense
of the significance of everyday occurrences, perceptual dis-
tortions, and delusional causal inferences.

Palaniyappan and Liddle [2012] extended Kapur’s con-
cept of abnormal salience to embrace not just the halluci-
nations and delusions of psychosis but the disabling
disruptions to cognition and volition of chronic schizo-
phrenia. They put forward the concept of “proximal sali-
ence,” with a hypothesis involving the role of the anterior
insula in salience processing. The anterior insula is a key
node of a “salience network” [Menon and Uddin, 2010;
Seeley et al., 2007; Sridharan et al., 2008], and implicated
in integrating salient sensory and interoceptive informa-
tion with representations of goals and outcomes [Augus-
tine, 1996; Bossaerts, 2010; Kurth et al., 2010]. Structural
and functional abnormalities of the anterior insula are
implicated in mental health disorders [Nagai et al., 2007],
and a meta-analysis of structural brain imaging studies in
schizophrenia by Glahn et al. [2008] identified the insula
as the site of the most consistent grey matter abnormal-
ities. Citing this evidence, Palaniyappan and Liddle [2012]
postulated that in schizophrenia, disruption to insula con-
nectivity results in inappropriately assigned “proximal
salience,” defined as a property attained by “an event,
such as an externally generated sensation, a bodily sensa-
tion or a stimulus-independent thought. . . when it gener-
ates a momentary state of neural activity within the
salience network that results in updating of expectations
and, if warranted by the context, initiates or modifies
action.” Inappropriately assigned proximal salience, they
postulated, leads not only to the perceptual and cognitive
distortions of acute psychosis but also, via disrupted infor-
mation processing, to the symptoms of disorganization,
and, via disrupted goal-setting, to the negative symptoms
of psychomotor poverty.

This broader disrupted salience connectivity model is
supported by three recent fMRI studies [Manoliu et al.,
2014; Moran et al., 2013; Palaniyappan et al., 2013] that
indicate that the directional influence of the insula on the
dorsolateral prefrontal cortex is impaired in schizophrenia.
The model thus not only extends the concept of aberrant
salience in schizophrenia to account for disruption to cog-
nition and volition but also links aberrant salience to the
long-standing concept of schizophrenia as a dysconnection

syndrome [Fitzsimmons et al., 2013; Fornito et al., 2012;
Friston and Frith, 1995].

In order to investigate brain networks involved in the
assignment of proximal salience in health and in schizo-
phrenia, we developed a Relevance Modulation (RM) task
in which behavioral salience was manipulated by alternat-
ing relevant stimuli with irrelevant stimuli that were visu-
ally identical, and in which only a minority of relevant
stimuli required an overt behavioral response [Brookes
et al., 2012, 2015]. This task enables us to isolate solely
top–down effects of task relevance from bottom–up sen-
sory salience common to both conditions, as well as from
signal associated with the motor response itself.

Although functional cortical networks have hitherto
largely been delineated in fMRI studies using temporal
correlations in the Blood Oxygenation Level-Dependent
(BOLD) signal, anatomically similar networks can also be
elicited in MEG data using a number of linear, nonlinear,
static, and dynamic metrics, the most common involving
correlations between band-limited neural oscillatory ampli-
tude [Baker et al., 2014; Brookes et al., 2011, 2012; Hipp
et al., 2012; Luckhoo et al., 2012; Marzetti et al., 2013;
O’Neill et al., 2015; de Pasquale et al., 2010]. Using the RM
task to investigate the effects of behavioral salience on
these networks in healthy volunteers, we found the most
robust effects in a network centered on the bilateral insula
and adjacent regions, as well as in a left motor network
[Brookes et al., 2012]. While both stimulus types (relevant
and irrelevant) elicited an initial decrease in beta ampli-
tude, a phenomenon known as event-related desynchroni-
zation (ERD), followed by an increase above baseline,
known as event-related synchronization (ERS), these
effects were significantly enhanced for relevant compared
to irrelevant stimuli. The most pronounced effect of stimu-
lus relevance was ERS in the insula network, beginning
about 400 ms after stimulus onset.

One possible explanation of the observed biphasic ERD–
ERS of event-related beta-modulation is that the ERD
reflects decreased excitatory–excitatory and increased exci-
tatory–inhibitory reciprocal local connections between exci-
tatory pyramidal and fast-spiking inhibitory interneurons,
resulting in a transition from beta to gamma oscillations,
and a reduction in beta amplitude [Kopell et al., 2000,
2010]. Donner and Siegel [2011] propose that such tran-
sient modulations of frequency from beta to gamma fol-
lowing a stimulus reflects local gamma-band processes
implicated in the encoding of stimulus features or motor
responses. In contrast, they suggest long-range integrative
processes over large networks are associated with
increased oscillatory amplitude over a more diverse oscil-
latory range, including frequencies in the beta range. For
instance, they cite evidence from an MEG study using a
coherent motion detection task [Donner et al., 2007], in
which they found that a slowly rising beta signal follow-
ing stimulus presentation and localized to frontal and pari-
etal sources was superimposed on a more rapid posterior
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event-related beta desynchronization, and associated with
greater perceptual accuracy.

Thus, the characteristic biphasic ERD–ERS pattern
observed in response to salient task-relevant stimuli may
reflect the summation of a short-latency transition from
beta to gamma, reflecting local encoding processes likely
to be implicated in “bottom–up” salience detection, with a
more gradual later-peaking increase in a beta signal gener-
ated by the integration of information across remote sites,
as would be required, for instance, in demanding percep-
tual tasks such as the coherent motion detection task used
by Donner et al. [2007]. Such a summation would result in
a net biphasic ERD–ERS signal, even if the integrative beta
generator process began contemporaneously with the local
beta-to-gamma transition.

Interestingly, while abnormalities of oscillations in schiz-
ophrenia have been observed across a wide range of fre-
quencies [Doege et al., 2010; Fujimoto et al., 2012;
Grutzner et al., 2013; Stephane et al., 2008; Uhlhaas and
Singer, 2010], evidence implicates beta-band abnormalities
specifically in perceptual integration: Uhlhaas et al. [2006]
observed that deficits in Gestalt perception in schizophre-
nia were specifically associated with reduced beta-band
phase synchrony between spatially remote sites, while Sun
et al. [2013] using a similar perceptual task, showed
reduced correlation between beta-band oscillations and
high gamma band activity in first episode cases of schizo-
phrenia relative to controls.

Given, first, our proposed model of schizophrenia as a
disorder of salience processing arising from disruption to
an insula-centered salience network; second, our observa-
tion of modulation of event-related beta by stimulus rele-
vance in the bilateral insula in healthy participants; and
third, evidence for beta-band abnormalities in schizophre-
nia that are likely to reflect disrupted connectivity result-
ing in impaired integrative processing, we hypothesized
that patients with schizophrenia would show abnormal
modulation by task-relevance of event-related beta ampli-
tude in the bilateral insula, and, specifically, that the

enhanced rising beta signal induced by task-relevant stim-
uli that we had observed in the insula in healthy partici-
pants would be disrupted in schizophrenia.

METHODS

Participants

Twelve patients satisfying criteria for schizophrenia
according to the Diagnostic and Statistical Manual of Men-
tal Disorders, 4th edition [American Psychiatric Associa-
tion, 1994], were recruited from community-based mental
health teams in Nottinghamshire, UK, including the Early
Intervention in Psychosis teams. Diagnosis was made in
accordance with the procedures of Leckman et al. [1982]
and a standardized clinical interview [Liddle et al., 2002].
Patients were in a stable phase of illness, defined as a
change of no more than 10 points in their Global Assess-
ment of Function score [American Psychiatric Association,
1994], assessed both 6 weeks prior to and immediately
prior to study participation. No patient had a change in
antipsychotic, antidepressant, or mood-stabilizing medica-
tions in the 6 weeks prior to the study. The mean Defined
Daily Dose of antipsychotics was calculated for all patients
[WHO Collaborating Centre for Drug Statistics and Meth-
odology, 2003]. For inclusion in the study, patients had to
be between 18 and 50 years old, and have an IQ score of
above 70 (measured by the Quick Test [Ammons and
Ammons, 1962]). Healthy volunteers were recruited from
the community via advertisements to form a control sam-
ple, matched groupwise to the patient group for age, sex,
and parental socioeconomic status (SES), assessed accord-
ing to the National Statistics Socio-Economic Classification
[Rose and Pevalin, 2003]. A clinical interview by a research
psychiatrist was performed to ensure that the controls
were free from current Axis I psychiatric disorders; history
of psychotic or neurological disorder; or a history of psy-
chotic illness in a first degree relative. After exclusion of
two participants’ datasets (one patient and one control)
owing to excessive movement artefacts in the MEG data,
demographic data (Table I) from the remaining partici-
pants were then rechecked to ensure that there were no
statistically significant differences between the groups in
mean age, parental SES, or gender composition. As
this resulted in groups that were no longer matched for
age, the youngest control participant (age 20) and the
oldest patient (aged 50) were removed from further
analyses, leaving data from 10 patients and 12 controls.
Demographic data from these participants is given in
Table I. Of the 10 patients retained in the study, seven
were receiving antipsychotic medication, and three were
not. All participants gave written informed consent
according to the World Medical Association Declaration of
Helsinki, and the study was given ethical approval by the
National Research Ethics Committee, Leicestershire,
United Kingdom.

TABLE I. Demographic data from patients with

schizophrenia and healthy controls who remained in the

study after movement artefact rejection

Patients Controls

Number of participants 10 (8 male) 12 (8 male)
Mean age (standard deviation) 37 (10.3) 30.3 (6.1)
Mean IQ (standard deviation) 96 (12.7) 104(10.7)
Mean parental SES

(standard deviation)
3 (1.6) 2.8 (1.6)

Mean defined daily dose of
antipsychotic medication
(standard deviation)

0.72(0.55) n/a

Groups remained matched statistically (differences not significant
at p < 0.05) for age, gender, and SES.
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Relevance Modulation Task

The RM task is a target-detection task that has minimal
motor response requirements and in which the task-
relevance of the stimuli is manipulated. In each block of
trials, there were two types of stimuli: images of butterflies
and images of ladybirds, and two types of block:
butterflies-relevant and ladybirds-relevant. Images of typi-
cal stimuli are provided in Supporting Information, Figure
S1. Stimuli were presented in eight blocks, during each of
which images of butterflies and images of ladybirds alter-
nated regularly. Blocks lasted for 90 s, including instruc-
tions, and consisted of 40 stimuli (20 butterfly images, 20
ladybird images), followed by a 30 s rest period during
which time the participant was required to look at a fixa-
tion cross. Stimulus duration was 800 ms, and to avoid
entrainment of oscillations, intertrial intervals were ran-
domly drawn from a Gaussian distribution with a mean of
1930 ms and a standard deviation of 40 ms. Subjects were
instructed before each block that either the butterflies or
the ladybirds would be the relevant stimuli in that block,
and to ignore the intervening irrelevant stimuli. The eight
blocks were presented in the pattern: B–L–L–B–L–B–B–L
(where B 5 butterflies-relevant and L 5 ladybirds-relevant).
For the butterflies-relevant blocks, participants were
shown a color-filled line drawing of a target butterfly with
a specific shape, inner wing color, and outer wing color at
the start of the block and instructed to press a button
every time they saw a butterfly that matched the target on
all three attributes, while ignoring the interleaved images
of ladybirds. In the ladybirds-relevant condition, an image
was a target if there were equal numbers of red and yel-
low ladybirds. The ladybirds were positioned and oriented
randomly on each stimulus presentation and the total
number of ladybirds ranged between four and six. Partici-
pants were instructed to press a button for a target lady-
bird image, while ignoring the intervening images of
butterflies. For both block-types (butterflies-relevant and
ladybirds-relevant) the probability of a target being pre-
sented was 0.05, a value set intentionally low so as to
ensure close attention to the stimuli while minimizing tri-
als with button presses. All participants were given a full
explanation of the task outside the scanner as well as an
opportunity to practice. During practice, the stimulus tim-
ings were at first controlled by the scanner operator via a
button press to advance each stimulus presentation at a
slower speed to ensure the participant fully understood
the task. The speed was gradually increased and practice
continued until the operator was satisfied that the partici-
pant understood the task and could perform at full speed.
Therefore, there was no set practice time; practice duration
was tailored to each participant’s learning rate.

Data Acquisition

MEG data were acquired using the third-order synthetic
gradiometer configuration of a 275 channel MEG system

(MEG International Services Ltd., Coquitlam, Canada), at a
sampling rate of 600 Hz and using a 150 Hz low pass anti-
aliasing filter. Three head position indicator coils were
attached to the participant’s head at the nasion, left pre-
auricular, and right preauricular points. These coils were
energized sequentially with the participant inside the scan-
ner to allow localization of the head relative to the geome-
try of the MEG sensor array. Head location was measured,
using the three head position indicator coils, at the begin-
ning and the end of data acquisition. Any subject whose
head moved more than 8 mm (Euclidean distance)
between the beginning and end of the scan was removed
from the study.

The surface shape of the participant’s head was digi-
tized using a 3D digitizer (Polhemus, Isotrack) relative to
the coils. The surface shape of each participant’s head and
the coil locations were then registered to the head surface
extracted from an anatomical MR image, acquired using a
Philips 3T Achieva MR system at 1 3 1 3 1 mm isotropic
resolution using an MP-RAGE sequence.

MEG Data Analysis

MEG data were inspected visually for artefacts and
blocks containing excessive interference (for example,
caused by the magnetomyogram) were removed (three
patients had 1, 3, and 3 bad blocks removed, respectively;
two controls had 1 and 2 blocks removed, respectively,
resulting in a total of 6% data loss). Data from all target
trials and from any trial containing a button press were
removed, leaving only data from nontarget trials with no
button responses.

One problem in comparing network function in healthy
participants with a patient group is that of defining net-
works in a manner that represents healthy function yet is
orthogonal to the contrast between the healthy and patient
groups in this study. One solution is to define the net-
works on an independent sample of healthy participants.
For this study, we decided to use the network maps gener-
ated by our previous study [Brookes et al., 2012]. These
had been derived from data acquired from an independent
sample of healthy participants, during three tasks includ-
ing the RM task. The maps had been generated using a
“meta-ICA” process, in which four initial ICAs were per-
formed on the amplitude envelopes of the concatenated
beam formed time courses filtered into four broad fre-
quency bands (theta, alpha, beta, and delta). A second
ICA was then conducted on the output from these four
band-specific ICAs. The purpose of this procedure was to
generate weighted spatial maps representing between-
band as well as within-band temporal correlations.
Because each spatial map represented one component,
they included many voxels that made little contribution to
the component, and were likely to represent noise. Visual
inspection of the maps suggested that a single threshold of
0.3 would generate anatomically plausible maps for all
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components. [Beckmann et al., 2005; Seeley et al., 2007;
Smith et al., 2009] (see Brookes et al. [2012] for further
details). We considered therefore that the weighted and
thresholded spatial maps of the bilateral insula network
and the left motor network from that previous study were
an appropriate yet orthogonal operationalization of the
networks relevant to this study.

Anatomical MRIs were segmented to remove the skull
and scalp using the brain extraction tool (BET) [Smith,
2002] in the fMRIB software library (FSL) [Jenkinson et al.,
2012]. They were then downsampled spatially to an 8 mm
isotropic resolution. The two thresholded network maps
were then registered to each participant’s (8 mm) anatomi-
cal space using FLIRT [Jenkinson et al., 2002]. To generate
a time course of electrophysiological activity for each net-
work, individual voxel signals were first derived. Scalar
beam former weights and corresponding voxel time
courses, Q̂i tð Þ, were calculated at the center of all voxels
(on the 8 mm grid) spanning the regions of interest
defined by the network maps. Covariance was computed
within a 1–150 Hz frequency window and a time window
spanning the whole experiment in order to minimize
covariance matrix error [Brookes et al., 2008]. Regulariza-
tion was applied to the data covariance matrix using the
Tikhonov method with a regularization parameter equal to
4 times the minimum eigenvalue of the unregularized
covariance matrix. The forward model was based upon a
dipole approximation [Sarvas, 1987] and a multiple local
sphere head model [Huang et al., 1999]. Dipole orientation
was determined using a nonlinear search for optimum
signal-to-noise ratio (SNR). Beam former time courses
were sign flipped where necessary prior in order to
account for the arbitrary polarity introduced by the beam
former source orientation estimation. Finally, the network
time course, Q̂R tð Þ, was generated based on the ICA net-
work map so that

Q̂R tð Þ5
X

i

WiQ̂i tð Þ (1)

where i represents the count over all voxels within the
thresholded network map, Q̂i tð Þ represents the beam for-
mer projected time course for voxel i, and Wi denotes the
value of the network map for voxel i. Note that this essen-
tially amounts to a weighted sum of electrophysiological
time courses across the thresholded network.

Each of the two resulting network time courses were fre-
quency filtered into 17 partially overlapping frequency
bands between 1 and 70 Hz (1–4, 2–6, 4–8, 6–10, 8–13, 10–
15, 13–20, 15–25, 20–30, 25–35, 30–40, 45–50, 50–60, 55–65,
60–70). For each band, the amplitude envelope was com-
puted as the absolute value of the analytic signal, which
itself was calculated via Hilbert transformation. Sequential
application of this technique across all bands yielded a
time–frequency (TF) spectrogram showing the time evolu-
tion of the amplitude envelope of oscillatory power, for all
frequency bands of interest. For each network, these

amplitude envelopes were averaged across relevant and
irrelevant trials, respectively. Data from relevant trials in
butterfly-relevant and ladybird-relevant blocks were col-
lapsed together, as were data from irrelevant trials. Thus
both irrelevant and relevant trial spectrograms included
data from both stimulus types (butterflies and ladybirds),
so that the only consistent difference between relevant and
irrelevant trials was the task-relevance of the stimulus, not
its visual attributes.

The mean oscillatory amplitude in each band was com-
puted during the resting phase of the paradigm (estimated
as the average of the amplitude envelope for each fre-
quency band during a 30 s rest period that followed each
block of trials). These mean resting values in each fre-
quency band were first checked to ensure that there were
no between-group differences in spectral power (see S2 for
resting spectra), then subtracted from the trial-averaged
TF-spectrograms, yielding time–frequency difference (TFD)
spectrograms showing absolute change in oscillatory
amplitude from resting baseline for relevant and irrelevant
trials in each of the two networks. The spectrograms were
then averaged across participants in the control and the
patient groups.

Statistical Hypothesis Tests

The study hypotheses regarding salience abnormalities
in schizophrenia were tested by comparing patient and
control time courses of mean beta amplitude in each net-
work (insula and motor) for each type of trial (relevant
and irrelevant). In order to avoid overlap with the subse-
quent trial, only data from the first 900 samples (1500 ms)
following stimulus presentation in each spectrogram were
analyzed.

In the first set of analyses, data from the spectrograms
were averaged over three beta-bands (13–20, 15–25, and
20–30 Hz) and downsampled using a simple averaging
kernel (83 ms window) into 18 50-sample time bins for
each participant. These binned data were then entered into
a repeated-measures ANOVA, with three within-subjects
factors (network: insula and motor; relevance: relevant and
irrelevant; time: 18 time-bins), and with diagnostic group
as a between-subjects factor (group: patients with schizo-
phrenia and healthy controls). We operationalized the
strength of the biphasic ERD–ERS pattern as the extent to
which the time series could be fitted by a cubic polyno-
mial with a negative cubic term and a positive quadratic
term. Such a function will have an early trough (to fit the
ERD) and a later peak (to fit the ERS). Where an ANOVA
yielded a statistically significant effect of time, polynomial
contrasts were conducted to test the statistical significance
of the cubic and quadratic terms, and the signs of the coef-
ficients checked. Where ANOVAs yielded statistically sig-
nificant interactions (p < 0.05) of interest, follow-up
ANOVAS with the interacting factors separated were car-
ried out in order to interpret the interaction.
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Permutations Tests

As the number of participants in each group was small
and the number of variables was large, some significant vio-
lations of the assumption of normally distributed residuals
were anticipated. Therefore, for each ANOVA, instead of
using the standard F distribution to compute p values for
the F values output by the ANOVAs, the distribution of F
values under the relevant null hypothesis was computed
using a resampling method. Ten thousand iterations were
performed, and the p value for each F computed as the fre-
quency of F values exceeding that observed. For between-
group effects, the null hypothesis was that groups were
drawn from the same population. Null datasets were con-
structed by randomly drawing, without replacement, groups
representing the sizes of the healthy and patient groups,
respectively, from values from the whole sample. F values
were then computed for between-group effects for each of
these randomly drawn sets of groups. For the within-subject
factor, relevance, the null hypothesis was that there was no
difference between relevant and irrelevant trials. Null data-
sets were therefore drawn for each participant by taking
their pairs of data (relevant and irrelevant) and equiprobably
either reversing or retaining, the order of the conditions. The
same method was used for the within-subjects factor, net-
work. For the within-subjects factor time, the null hypothesis
was that there would be no systematic evolution of the sig-
nal amplitude over time, and nor any systematic polynomial
fit. In order to preserve the mean value of the amplitude dif-
ferences between consecutive time bins, the step-changes
between each bin value were permuted rather than the data
values themselves. The mean value of the data series was
assigned to the first time-bin of the null time series, then for
each subsequent value in the time series, a step-change from
the original series, randomly selected without replacement,
was added to the previous value.

Modeling Two Beta Signals

In the second set of analyses, we tested our hypothesis
that event-related beta-modulation reflects two different,
superimposed oscillatory patterns, namely a reduction of
beta amplitude in local populations involved in encoding
processes, and a rising beta signal implicated in long-range
integrative processes. We modeled the beta suppression
associated with local encoding by an early negative-going
curve, and the beta signal associated with long-range inter-
actions with second curve, postulated to be positive-going,
as illustrated in Figure 3. Both curves were modeled by the
two-parameter Weibull probability density distribution:

f Tð Þ5 b

a

T

a

� �b-1

e- T=að Þb (2)

This distribution is useful for modeling time courses in
which a variable rises to a peak then decays to baseline; a
is the scale parameter >0 that determines the width of the

peak, and b is the shape parameter <0 that determines its
symmetry. Both local and integrative components were
modeled by Weibull functions, the function modeling the
integrative component being constrained to have a later
peak than the function modeling the local component. The
local beta component was modeled by a Weibull function
with a scale parameter constrained between 283 and
450 ms, and a shape parameter of 3 (approximately sym-
metrical). The integrative beta component was modeled by
a second Weibull function with a scale parameter con-
strained between 500 and 1700 ms (300–1020 samples), with
a shape parameter constrained to lie between 2 (slight nega-
tive skew) and 4 (slight positive skew). The parameters
were chosen so as to bracket best-fits for all participants.
Two curves at a time (one local, one integrative) were
entered as predictors into a series of general linear models
for each participant’s beta time course in each condition in
each network, the curve parameters being iteratively incre-
mented for each model. For each participant, the model
with the best fit (smallest sum of squared residuals) was
selected, with the additional constraint that the sign of the
coefficient for the local beta curve was negative, thus mod-
eling the hypothesized negative deflection. The sign of the
coefficient for the integrative beta curve was free to vary.
For each participant, the best-fitting pair of Weibull func-
tions was selected, and the AUC (area under the curve) for
local and integrative models was then taken to quantify its
respective beta component, and the location of its peak
recorded as the latency of the component.

AUCs and peak-latencies were then analyzed, as with the
time-bin data, in a mixed-model ANOVA with network,
beta-type, and relevance and network as within-subject var-
iables and group as a between-subject variable, with
follow-up analyses on separate factors carried out to inter-
pret any interactions. Again, the distribution of F values
under the relevant null hypothesis was determined by
resampling over 10,000 iterations, and the p value evaluated
as the proportion of F values exceeding those observed.

Long-Range Integrative Function

As a final check on the concept underlying the partition
of beta power into “local” and “integrative” components,
we tested the hypothesis that if our putative integrative
beta values were involved in long-range integrative func-
tion between networks, we would see a positive correla-
tion between insula integrative beta and the gamma signal
assumed to reflect local neural activity in a remote region
engaged during the task, at least in healthy control sub-
jects in the relevant condition. We therefore computed the
gamma spectrogram (8 band overlapping bands: 25–35 Hz,
30–40 Hz, 45–50 Hz, 50–60 Hz, 55–65 Hz, 60–70 Hz) for
each trial type (relevant an irrelevant) in a primary visual
network also defined in our previous study [Brookes et al.,
2012] and compared the correlations, for each subject, over
their 900 averaged poststimulus sampled time-points,
between the predicted value of their integrative beta signal
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from the insula network at each time point and the power
in each of the 8 gamma band frequencies at each time
point. Fisher-transformed correlation values were then
entered into a three-way mixed ANOVA (2 levels of rele-
vance: relevant and irrelevant; 8 levels of visual gamma
frequency; 2 levels of diagnostic group).

RESULTS

Behavioral Data

Task accuracy was measured for each participant as d0

score (z-transformed proportion of targets correctly

identified minus z-transformed proportion of nontargets
misidentified). For healthy control participants, mean d0

score was 3.15 (SD 5 1.12), equivalent to a mean percent-
age accuracy of 99.9%, while for patients, mean d0 score
was 1.95 (SD 5 1.3), equivalent to a slightly lower mean
percentage accuracy of 97.4%. For healthy control partici-
pants, mean reaction time (RT) was 804 (SD 5 181), and
for patients, mean RT was 798 (SD 5 108). Between-group
comparisons of d0 scores and RTs using independent sam-
ples t-tests revealed that patients were significantly less
accurate in the task, t(20) 5 2.330, p 5 0.03, but that there
was no significant difference between groups in mean
reaction times (p 5 0.9).

Figure 1.

(A) Time frequency difference spectrograms representing oscillatory

activity (relative to resting baseline) for the 2 s following presenta-

tion of a stimulus, for each network, group, and relevance condition.

Time is on the horizontal axis, 0 corresponds to the stimulus pre-

sentation, and stimulus duration was 800 ms. Frequency is plotted

on the vertical axis. Healthy participants, during relevant trials, show

a marked period of beta ERS extending to a level above resting base-

line in the insula network after a brief period of beta ERD; in the

motor network during relevant trials, a similar pattern is observed.

These effects are attenuated in irrelevant trials. Patients, in both net-

works, during both relevant and irrelevant conditions, show more

conspicuous and prolonged beta ERD, and the suprabaseline insula

ERS effect visible in controls in relevant trials appears to be absent.

(B) Mean change from resting baseline of oscillatory amplitude in the

beta-band (13–30 Hz) in each network during the first 1500 ms of

each trial. Controls are shown as a solid black line, patients as a red

line (white in the print edition). Relevant trials are indicated by a

solid line, irrelevant by a dotted line; standard errors are shown as

transparent colored borders. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

r Salience Signaling in Schizophrenia r

r 1367 r

http://wileyonlinelibrary.com


Spectrograms

Spectrograms created from beam formed MEG data,
spatially filtered by bilateral insula and left motor network
masks, respectively, are shown in Figure 1, together with
time courses of the beta-band amplitude, and are in agree-
ment Brookes et al. [2012].

Statistical Tests

Modeling by time-series

First, to establish whether, overall, the pattern of signifi-
cantly enhanced beta ERD followed by ERS in relevant as
compared with irrelevant trials that we observed in our
earlier study [Brookes et al., 2012] in these networks, was
replicated to a statistically significant degree in this study,
we ran an initial set of ANOVAs on beta-band data from

whole group, irrespective of diagnosis, with network,
time, and relevance as repeated within-subjects variables
(no between-subjects factors). Test statistics from these ini-
tial ANOVAs are shown in Table II, and confirmed a sig-
nificantly biphasic ERD–ERS (averaged over both
networks and conditions) that was significantly more
marked in the relevant than in the irrelevant condition. As
with our earlier study, these effects were present in both
networks, as indicated by significant F values for the time
and time 3 relevance factors, and with significantly nega-
tive cubic and positive quadratic terms for the polynomial
contrasts, as predicted in our hypothesis.

We then tested our main study hypothesis that modula-
tion of the beta signal by stimulus-relevance in these net-
works would be disrupted in schizophrenia. Test statistics
are shown in Table III (upper panel). As can be seen from
the spectrograms and line plots Figure 1, the effects of
relevance on mean beta amplitudes differed between the

TABLE II. Statistics for ANOVAs testing within-subjects effects in the pooled sample

Network Factor(s)
Effect,

F

Polynomial
contrast, p

Cubic term,
F

Quadratic
term, p p p

Both Time 18.060 <0.001 49.797 <0.001 <0.001 <0.001
Time 3 Relevance 10.399 <0.001 31.457 <0.001 <0.001 <0.001

Insula Time 12.845 <0.001 38.511 <0.001 <0.002 <0.001
Time 3 Relevance 4.748 <0.002 14.559 <0.001 <0.001 <0.001

Motor Time 14.416 <0.001 29.070 <0.001 <0.001 <0.001
Time 3 Relevance 10.971 <0.001 25.954 <0.001 <0.001 <0.001

F values are given for each effect (df 5 17,357), and for the cubic polynomial contrast (df 5 1,21). Cubic terms were all negative and
quadratic term were all positive. All p values were computed by resampling.

TABLE III. Statistics for mixed-model ANOVAs showing omnibus test as well as

tests done to follow up significant interactions

Effects on mean beta amplitudes

Network Factor(s) F(df) P

Both Network 3 Relevance 3 Group 6.845 (1,20) <0.02
Network 3 Relevance 3 Group (with age as covariate) 5.347 (1,19) <0.05
Relevance 3 Time 3 Group 3.106 (17,340) <0.05
Relevance 3 Time 3 Group (with age as covariate) 2.107 (17,323) <0.05

Insula Relevance 3 Group 9.676 (1,20) <0.006
Relevance 3 Group (with age as covariate) 5.588(1,19) <0.05

Effects on beta-types

Beta-type Network Group Factor(s) F(df) P

Both Both Both Beta-type 3 Relevance 3 Group 5.877 (1,20) <0.02
Integrative Both Both Relevance 3 Group 8.727 (1,20) <0.007
Integrative Insula Both Relevance 3 Group 12.160 (1,20) <0.002
Integrative Insula Healthy Relevance 6.176 (1,11) <0.04
Integrative Insula Patients Relevance 5.826 (1,9) <0.05

Upper panel shows tests on mean beta amplitudes; lower panel shows tests on beta-type (local and integrative beta). All p values were
computed by resampling.
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two groups, and this effect of diagnosis differed signifi-
cantly between networks. In the insula, the effect of rele-
vance in the healthy control subjects was significantly
greater than in the patients. While in healthy controls,
task-relevant stimuli raised mean beta amplitudes above
those in irrelevant trials to the extent of reaching or
exceeding baseline, in patients, mean change from baseline
did not differ significantly between trial types, and was
significantly below baseline in both trial types. However,
in contrast, in the motor network, there were no differen-
ces between patients and controls in the extent to which
beta amplitude was modulated by relevance. The findings
remained robust when age was included as a covariate,
and age was not a significant predictor of beta amplitudes.
Mean beta amplitudes for each group, condition and net-
work are shown graphically in Figure 2. Groups also dif-
fered significantly in their modulation of beta over time by
relevance (relevance 3 time 3 group interaction), indicat-
ing, as hypothesized, altered modulation by relevance of
the time course of event-related beta in schizophrenia. The
nature of this modulation is delineated in the analysis
reported below.

Modeling by beta-type

We then investigated the effects of relevance and diag-
nosis on our modeled local and integrative beta measures
(AUCs for each postulated beta type) respectively. The
modeling process is illustrated in Figure 3.

There was a significantly greater effect of relevance and
group on integrative beta than on local beta. Test statistics
from these ANOVAs are shown in Table III (lower panel),
and means are graphed in Figure 4. For local beta, there

were no significant effects of diagnosis on the effect of
relevance, whereas for integrative beta, the effect of rele-
vance differed between groups. In the insula, both groups
showed significant effects of relevance, but in opposite
directions. For the controls, as expected, integrative beta
was significantly higher in the relevant than in the irrele-
vant condition, whereas for patients, the opposite was the
case: integrative beta was significantly higher in the irrele-
vant condition than the relevant. As with mean beta, in
the motor network effects of diagnosis on modulation by
relevance of integrative beta did not reach statistical signif-
icance (p value from resampling 5 0.221). There were no
significant effects of relevance, network, or group on peak
latencies for either beta-type.

Insula Integrative Beta and Visual Gamma

Spectrograms spatially filtered by the visual network
mask are shown in Figure 5. In the three-way ANOVA
testing the correlations between the predicted insula inte-
grative beta time course for each trial type, and visual
gamma in eight frequency bands, the correlation, across all
diagnoses and trial types was significantly positive,
F(1,20) 5 7.481, p 5 0.013. The relevance 3 group interac-
tion trended to significance, F(1,20) 5 3.858, p 5 0.064,
with the correlation tending to be stronger in the relevant
condition for healthy controls, and in the irrelevant condi-
tion for patients. For the healthy controls, the correlation
between visual gamma and insula integrative beta was sig-
nificantly positive, F(1,11) 5 10.284, p 5 0.008 for relevant
trials, and remained significantly positive when averaged
across both conditions, F(1,11) 5 6.417, p 5 0.028, but did
not reach significance for irrelevant trials. For patients, the
effect was larger for irrelevant than for relevant trials, but
neither was significant either separately or when averaged
across conditions. There were no significant effects of spe-
cific gamma frequency. These findings are shown graphi-
cally in Figure 6.

As a check on the specificity of this result, we used the
same curve-fitting procedure to compute integrative beta
values for the visual beta band, and repeated the analysis
on data from healthy controls for relevant trials but with
visual integrative beta as the predictor of power in the 8
gamma bands in each network in turn (insula, motor, and
visual). There was no significant correlation between vis-
ual integrative beta and gamma in any of the three net-
works (F < 1 in each case), including the relationship
between visual integrative beta and visual gamma, that is,
gamma in the same network. We also tested the correla-
tion between insula integrative beta and gamma in the
same (i.e., insula) network and also found no correlation
(F < 1). This supports the interpretation that, as we
hypothesized, insula integrative beta is implicated specifi-
cally in modulating long-range gamma band activity, for
instance, in a cortical network implicated in processing
sensory stimuli.

Figure 2.

Mean beta amplitude values averaged across all time bins for

each condition in each network, for each group. A significant

Group 3 Relevance interaction in the insula indicated that the

patients with schizophrenia showed a less marked modulation

by relevance than healthy controls, showing marked mean beta

desynchronization in both conditions, while a significant Group

3 Relevance 3 Network indicated that this effect of diagnosis

was significantly less marked in the motor network. Error bars

represent 95% confidence intervals.
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Controlling for Possible Medication Effects

Finally, to explore whether medication was likely to be
a contributory explanation for these results, the effect of
diagnosis on beta modulation by relevance was tested

including only the three patients who were not currently
receiving medication. In the time-series analysis, the
Group 3 Relevance effect remained significant in the
Insula, F(1,13) 5 6.301, p < 0.05, as did the Group 3

Figure 3.

(A) Samples from the series of Weibull distributions used to fit

each participant’s data. Downward deflecting curves represent

desynchronization of local beta, the upward deflecting curves rep-

resent integrative beta. (B) Examples of a fitted model for two par-

ticipants. The dashed curves represent the fitted local beta model,

and the solid curves the fitted integrative beta model. The

summed curves are indicated by a double line and the participant’s

observed data as a dotted line. The left-most example shows a fit-

ted integrative beta curve with a fairly long latency and narrow

width; the right-most example shows a fitted integrative beta

curve with shorter peak latency and larger width. Both sum to

form the characteristic beta ERD–ERS biphasic pattern. (C) Mean

fitted curves for each group, in each condition, in each network.

Mean model curves are shown as continuous lines, the mean

observed data as a dashed line.
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Figure 4.

Effects of integrative beta (AUC) by network, condition, and

group. Statistically significant contrasts (p < 0.05) are shown by

an asterisk; error bars represent 95% confidence intervals. In

the insula, healthy control participants showed integrative beta

values that were significantly greater in the relevant condition

than in the irrelevant condition, and significantly greater than

zero. Patients actually showed a reversal of this pattern, showing

significantly greater integrative beta in the irrelevant than rele-

vant condition. The Group 3 Relevance contrast was also statis-

tically significant. This was reflected in the motor network as a

trend, but did not reach statistical significance. There were no

significant effects of group or relevance on local beta.

Figure 5.

Time frequency spectrograms for the visual network, by group, and relevance condition. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Relevance effect in the insula on integrative beta
F(1,13) 5 5.720, p < 0.05.

DISCUSSION

Our results support our hypothesis that modulation by
task-relevance of event-related beta-band oscillations in the
insula would be disrupted in schizophrenia. They also sup-
port our specific prediction that the rising beta signal postu-
lated to represent long-range integrative processes [Donner
and Siegel, 2011], which we expected to be enhanced by
task-relevant stimuli in healthy controls, would be modu-
lated abnormally by task-relevance in patients, in line with
both the aberrant salience hypothesis and the dysconnectiv-
ity hypothesis. Healthy controls showed greater mean beta-
amplitude for task-relevant trials as compared with irrele-
vant trials, an effect not observed in patients, and this differ-
ence between patients and controls was significantly more
pronounced in the insula than in the motor network. More-
over, in healthy controls, as expected, the rising beta-signal
postulated to reflect integrative processes was significantly

enhanced in response to task-relevant images compared to
irrelevant images, while in patients, this signal was actually
significantly greater for irrelevant images than for task-
relevant images.

The early short-latency beta decrease postulated to be
associated with local encoding was not significantly modu-
lated by relevance, and did not differ between the groups.
We also found a significantly greater effect of diagnosis in
the insula than in the motor network on overall modulation
of beta-amplitude by task-relevance. These findings are con-
sistent with the proposal that the insula plays a key role in
integrating networks required to deal with salient events.

The observed reversal of the normal modulation in the
insula of integrative beta by task-relevance in patients
with schizophrenia is noteworthy, and may reflect mis-
placed attribution of salience to nonsalient events, and
thus relate to the aberrant salience model of delusions and
hallucinations proposed by Kapur [2003]. Moreover, the
specificity of this effect to the insula network is consistent
with the abnormal salience network hypothesis of Pala-
niyappan and Liddle [2012].

The finding of significant overall positive correlations
between insula integrative beta and visual gamma sup-
ports the interpretation of this beta signal as implicated in
mediating integrative processes between networks. We
anticipated that strength of the rising integrative beta sig-
nal in the insula would be reflected in increased local
gamma encoding processes in the visual cortex, particu-
larly when the stimulus was relevant and ongoing visual
processing would be required before the stimulus could be
dismissed. This was supported by our findings, and was
strongest as we anticipated (and statistically significant), in
the healthy controls while engaged in processing relevant
stimuli, although the difference between the effect in rele-
vant stimuli and irrelevant did not reach statistical signifi-
cance. In the light of our findings of reduced integrative
beta in the insula in patients in relevant conditions, this
suggests that a reduced insula-integrative beta signal in
schizophrenia may result in impoverished gamma oscilla-
tory processes in visual cortex where these are required
for adequate evaluation of a relevant stimulus.

An interpretation of our findings in terms of dysfunc-
tional integrative processes at the beta frequency in schizo-
phrenia is consistent with the study by Uhlhaas et al.
[2006] demonstrating diminished high beta (20–30 Hz)
phase coherence between spatially remote sites in schizo-
phrenia, as well as with the body of literature characteriz-
ing schizophrenia as a dysconnectivity disorder
[Fitzsimmons et al., 2013; Fornito et al., 2012; Friston and
Frith, 1995]. Our findings regarding disturbed integrative
oscillatory activity in the insula are thus consistent both
with the large body of evidence from systems neuro-
science for subtle but extensive abnormalities of brain
function in schizophrenia and with the evidence from cel-
lular neuroscience for disordered neurotransmission.

The observation that the three cases not on medication
showed significant abnormalities of beta modulation by

Figure 6.

Correlations between insula integrative beta and visual gamma.

The height of the bars shows the mean z-transformed correla-

tion between the inferred insula integrative beta signal and 8

overlapping gamma band oscillations from primary visual cortex,

centered on the frequencies shown. Error bars are standard

errors. Overall, the correlations were significantly positive, with

correlations for relevant trials in the healthy group being statisti-

cally significant at p 5 0.008.
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relevance similar to those seen in the medicated cases,
together with evidence from other studies indicating that
oscillatory abnormalities in schizophrenia are present in
unmedicated cases [Allen et al., 2011; Boutros et al., 2008;
Gallinat et al., 2004; Sun et al., 2013] and first-degree rela-
tives [Hong et al., 2008], suggest that the abnormalities
observed in our study are unlikely to be accounted for by
the effects of medication. Nevertheless, further investiga-
tion to examine the effects of medication on the oscillatory
abnormalities observed in this study is warranted.

We conclude that beta oscillations play at least two
important roles in processing of task stimuli in healthy
subjects, the second of which is disrupted in schizophre-
nia. First, both relevant and irrelevant task stimuli induce
a rapid but transient phasic reduction in beta amplitude
relative to baseline, probably due to the retuning of local
excitatory–inhibitory encoding circuits from the beta to the
gamma range. Second, in response to task-relevant stimuli,
there is enhancement of a more gradual phasic increase in
beta amplitude relative to baseline, postulated to represent
a beta signal implicated in integrating information across
widely distributed brain regions. Together, these two
opposing beta effects (early suppression of local beta in
favor of gamma; more gradual increase in long-range beta
integrative signal) sum to produce an initial net beta
amplitude reduction (beta ERD) followed by a sharp
increase (beta ERS). In schizophrenia, we conclude, the
local beta encoding signal, reflected in the early beta
desynchronization, is not abnormal. However, in the
insula network, the integrative beta signal showed an
attenuated response to task-relevant stimuli while con-
versely actually showed a significantly increased response
to irrelevant stimuli. Taken together with robust evidence
for grey matter deficits in the bilateral insula, this suggests
that in patients with schizophrenia a faulty salience net-
work fails to signal the salience of task-relevant stimuli,
resulting in disruption to the integrative processes
required for efficient evaluation of stimuli and appropriate
response selection. Such disruption could lead both to fail-
ure to recognize what is relevant, and to attribution of sali-
ence to what is irrelevant, thereby contributing to the
distortion of reality and the disorganization and impover-
ishment of mental activity that occur in schizophrenia.
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