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Manuscript: Abnormal visuomotor processing in schizophrenia 

 

Highlights:  

 Visual and motor deficits in schizophrenia are rarely investigated. 

 We use MEG to non-invasively assess the neural basis of these deficits. 

 Patients showed abnormalities in neuronal oscillations in motor cortex. 

 Beta band power, reflecting cortical inhibition, was reduced after movements. 

 Increased movement frequency may be a behavioural compensation for this reduction. 
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Abnormal visuomotor processing in schizophrenia 

S. Robson, M. Brookes, E. Hall, L. Palaniyappan, J. Kumar, M. Skelton, N. Christodoulou, A. 

Qureshi, F. Jan, M. Katshu, E. Liddle, P. Liddle and P. Morris 

Response to Reviewer 

 

We thank the reviewer for their comments. In what follows, text from our manuscript is in bold 

typeface; additions to our manuscript are in bold italic typeface. 

The referee raises the important point that the relationship between the deficit in post-movement 

beta rebound and a composite score for illness severity might be mediated by a selective association 

with specific clinical features.  We had tested the association with a factor score representing a 

weighted combination of clinical features that we had previously identified as features that persist 

during a stable phase of illness, and had shown to be related to disordered connectivity 

(Palaniyappan et al, 2013).  We reported association with this single measure to avoid the problem 

of multiple comparisons.  This composite score included measures of symptoms, and cognitive, 

occupational and social function. 

   

Although much evidence from prior studies suggests that distinguishable pathological processes  are 

involved in the three symptom clusters characteristic of schizophrenia, all three clusters of 

symptoms are associated with impairment of cognitive, occupational and social function in the 

stable phase of illness, and furthermore, a composite score of these clinical features is associated 

with disordered connectivity (Palaniyappan et all, 2013) suggesting that they are associated with a 

shared pathological feature that predisposes to persistence. Nonetheless we agree that an 

examination of the degree to which different clinical features contribute to the factor is warranted.    

 

We have added a clause to the description of the patient sample (section 2.1) to emphasise that 

they were studied during a stable phase of illness. 

 

All patients were in a stable phase of illness with no change in antipsychotic, antidepressant, or 

mood- stabilizing medications, nor a change of more than 10 points in occupational and social 

function scored according to the Social and Occupational Function Assessment Scale (SOFAS) (APA 

1994), in the 6 weeks prior to the study.   

 

In the results section we have included a table giving the loadings of the various clinical features on 

the factor score. 

 

Table 4: Loadings on the first factor derived from factor analysis of clinical features hypothesised 

to reflect current severity of illness: reality distortion, psychomotor poverty and disorganisation 

syndromes from the Signs and Symptoms of Psychotic Illness (SSPI) scale (Liddle, 2002); and scores 

from the Digit Symbol Substitution Test (DSST; Wechsler, 1944) and the Social and Occupational 

Function Assessment Scale (SOFAS; APA, 1994). 

Illness severity 

measure 

Loading on severity 

of persisting illness 

factor 

Reality distortion 0.72 

Psychomotor poverty 0.61 

Disorganisation 0.58 

DSST -0.37 

SOFAS -0.67 
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We have also modified the caption to figure 5 to emphasize that the clinical features represent a 

score for severity of persisting clinical features.  

 

Figure 5: Correlation between PMBR and severity of persisting psychotic illness.  The amplitude of 

the post-movement beta rebound showed a significant negative correlation with a measure of 

overall psychotic illness severity persisting during a stable phase of illness in the patient group. 

 

We have modified the discussion as follows.  

 

The PMBR was inversely correlated with a score of overall severity of psychotic illness assessed 

during a stable phase of the illness.  The scores for the three core syndromes of schizophrenia 

loaded positively on the illness severity measure, while social, occupational and cognitive function 

loaded negatively on it (Table 4).  The magnitude of the DSST loading is lower than for the other 

items, but DSST score was retained because the set of items were selected a priori as a measure of 

illness severity (Palaniyappan et al., 2013) and a meta-analysis of cognitive impairments in 

schizophrenia has shown that the DSST quantifies an inefficiency of information processing that is 

an important feature of schizophrenia (Dickinson et al, 2007).  

 

Similar to previous studies (e.g. Liddle, 1987b), the three syndrome scores showed low mutual 

correlations (0.033 to 0.33; p<.05), but all three loaded heavily on a single factor, along with the 

SOFAS and DSST scores, indicating that they are associated with a latent variable likely to reflect 

severity of illness.  Scores on this composite measure of overall current severity of psychotic illness 

exhibited a significant negative Pearson correlation with the PMBR in the patient group (R=-0.52; 

p=.015; Figure 5), with no correlation between illness severity and ERBD or visual gamma (R=-.18 

and .06 respectively; p=ns).  Therefore, those patients with higher severity scores had stronger 

core symptoms and lower levels of function and these were also the patients who showed the 

smallest beta rebound. 

 

Additional references 

Liddle PF (1987b) The symptoms of chronic schizophrenia: a re-examination of the positive-

negative dichotomy.  British Journal of Psychiatry,  151: 145-151. 

Dickinson D, Ramsey ME, Gold JM. (2007) . Overlooking the obvious: a meta-analytic comparison 

of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch Gen Psychiatry. 

64(5):532-42. 
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Abstract 

Subtle disturbances of visual and motor function are known features of schizophrenia and 

can greatly impact quality of life; however, few studies investigate these abnormalities using 

simple visuomotor stimuli.  In healthy people, electrophysiological data show that beta band 

oscillations in sensorimotor cortex decrease during movement execution (event-related 

beta desynchronisation (ERBD)), then increase above baseline for a short time after the 

movement (post movement beta rebound (PMBR)); while in visual cortex, gamma 

oscillations are increased throughout stimulus presentation.  In this study, we used a self-

paced visuomotor paradigm and magnetoencephalography (MEG) to contrast these 

responses in patients with schizophrenia and control volunteers.  We found significant 

reductions in the peak-to-peak change in amplitude from ERBD to PMBR in schizophrenia 

compared with controls.  This effect was strongest in patients who made fewer movements, 

whereas beta was not modulated by movement in controls.  There was no significant 

difference in the amplitude of visual gamma between patients and controls.  These data 

demonstrate that clear abnormalities in basic sensorimotor processing in schizophrenia can 

be observed using a very simple MEG paradigm. 

 

Key words 

Schizophrenia, magnetoencephalography, motor cortex, visual cortex, electrophysiological processes 
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1.  Introduction 

Schizophrenia is a psychiatric disorder characterised by a range of symptoms including 

hallucinations, delusions, disorganised thought and behaviour, and reduced cognitive and 

emotional capacity.  Research tends to focus on these core symptoms; however, patients 

also experience impairments in more basic sensorimotor processes (Bombin et al., 2005; 

Butler et al., 2001; Vrtunski et al., 1986).  Abnormalities in motor function have been noted 

since the earliest descriptions of the disorder (Kraepelin, 1919) and are a well-accepted 

feature of schizophrenia, with the vast majority of patients exhibiting at least one type of 

motor symptom (Peralta et al., 2010; Walther et al., 2012).  These symptoms include 

involuntary movements, catatonia, Parkinsonism and deficits in the production of both 

simple and complex movements such as coordination, reflexes and motor sequencing 

(Bombin et al., 2005; Kraepelin, 1919; Vrtunski et al., 1989).  Similarly, patients with 

schizophrenia exhibit deficits in low-level visual function, particularly in processing stimuli of 

low spatial frequencies, as evidenced by reduced contrast sensitivity, centre-surround 

interference and abnormal motion perception (Butler et al., 2001; Cadenhead et al., 2013; 

Keri et al., 2002; Slaghuis, 1998).   

 

There is significant evidence that these subtle abnormalities in basic sensorimotor 

processing are present in childhood, at the onset of core symptoms and in relatives of 

individuals with schizophrenia (Chen et al., 2000; Walther et al., 2012; Whitty et al., 2009), 

indicating that they are likely to be inherent to the disorder rather than being a 

consequence of long-term exposure to medication.  Importantly, visual and motor deficits, 

as well as other neurological abnormalities, correlate with the primary symptoms of 

schizophrenia such as affective flattening, apathy and disorganisation (Bombin et al., 2005; 
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Jahn et al., 2006; Liddle, 1987; Peralta et al., 2010) , and with illness severity (Jahn et al., 

2006), social functioning (Dickerson et al., 1996; Jahn et al., 2006; Lehoux, 2003) and 

functional outcome (Boden et al., 2014; Javitt, 2009), suggesting they could be used as a 

biomarker for the disorder.   

 

Understanding the neuronal basis of these symptoms could therefore ultimately contribute 

to development of treatments permitting improved quality of life; however, at present the 

neuronal mechanisms underlying sensorimotor processing deficits in schizophrenia are not 

known.  It is likely that different types of symptoms have different aetiologies (Chen et al., 

2000).  Visual deficits have been reported to be due to abnormalities in lower-level visual 

pathways, particularly in magnocellular neurons (Butler et al., 2001).   These neurons rely on 

N-methyl-D-aspartate (NMDA)-type glutamate receptors, which may show dysfunctional 

transmission in schizophrenia (Javitt, 2009).  A review of motor symptoms and their 

potential aetiology by Walther and Strik (2012) describes reductions in volume of the 

anterior cingulate cortex and midbrain structures (putamen, caudate and thalamus), and 

disturbed gamma-aminobutyric acid (GABA)-ergic neurotransmission in these areas and the 

primary motor cortex.  Neuroimaging techniques are of great use in measuring the 

structural and physiological abnormalities that may contribute to sensorimotor 

abnormalities in schizophrenia. 

 

Magnetoencephalography (MEG) allows non-invasive inference of current flow in neuronal 

cell assemblies through measurement of extracranial magnetic fields.  MEG signals are 

dominated by oscillations, which result from rhythmic activity in large populations of 

neurons.  Neuronal oscillatory responses to visual and motor stimulation have been well 
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characterised in healthy volunteers: in motor cortex, the amplitude of beta (13-30Hz) 

oscillations decreases during movement (event-related beta desynchronisation (ERBD)) and 

increases above baseline on movement cessation (post-movement beta rebound (PMBR)), 

returning to baseline ~4s after movement offset (Pfurtscheller et al., 1999).  In visual cortex, 

a decrease in alpha (8-12Hz) oscillatory amplitude occurs alongside a concomitant increase 

in gamma (30-70Hz) oscillations (Siegel et al., 2010).  Notably, individual differences in the 

amplitude of motor beta oscillations correlate with electromyogram measures of muscle 

control (Jain et al., 2013; Mima et al., 2000), whilst visual gamma oscillations correlate with 

orientation discrimination performance (Edden et al., 2009).  Measurement of these 

electrophysiological features is therefore likely to offer insight into the neuronal basis of 

motor and visual deficits in schizophrenia. 

 

Previous studies have identified electrophysiological visuomotor abnormalities in 

schizophrenia and related disorders: Wilson et al (2011) showed that adolescents with early-

onset psychosis exhibit enhanced ERBD and reduced PMBR while conducting a motor task.  

Since beta oscillations are thought to reflect inhibition (Cassim et al., 2001; Gaetz et al., 

2011), reduced amplitude may reflect a greater degree of processing required to plan and 

execute movements in patients.  In visual cortex, either no change (Uhlhaas et al., 2006) or a 

reduction in amplitude (Grutzner et al., 2013) and frequency (Spencer et al., 2004) of 

gamma oscillations have been reported in schizophrenia.  However, available data are 

sparse and typically relate to complex stimuli (e.g. faces or Gestalt stimuli) that require 

integration of visual features.  The question therefore remains of whether patients with 

schizophrenia show abnormalities in oscillations reflecting low-level visual and motor 

processing.  In this study, we measure ERBD and PMBR in sensorimotor cortex and gamma 
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oscillations in visual cortex during a simple visuomotor task, to test the hypothesis that 

these well characterised phenomena are perturbed in schizophrenia. 

 

2.  Methods 

2.1.  Participants.  The study received ethical approval from the National Research Ethics 

Service and all participants gave written informed consent.  The patient group was recruited 

from community-based mental health teams in Nottinghamshire, Derbyshire and 

Lincolnshire, United Kingdom.  Diagnoses were made in clinical consensus meetings through 

a review of case files and a standardized clinical interview (Signs and Symptoms of Psychotic 

Illness or SSPI (Liddle, 2002)) in accordance with the procedure of Leckman et al. (1982).  All 

patients were in a stable phase of illness with no change in antipsychotic, antidepressant, or 

mood- stabilizing medications, nor a change of more than 10 points in occupational and 

social function scored according to the Social and Occupational Function Assessment Scale 

(SOFAS) (APA 1994), in the 6 weeks prior to the study.  Patients were taking a range of 

psychotropic medication, with a mean defined daily dose (DDD) of 1.8 (SD 1.3).  Controls 

were selected to match the patient group in terms of demographic variables.  There were 

seventeen male and six female patients with schizophrenia and the same number of male 

and female controls.  There was no significant difference between the ages of the two 

ｪヴﾗ┌ヮゲ ふヮ;デｷWﾐデゲ ;ﾐS Iﾗﾐデヴﾗﾉゲげ ﾏW;ﾐ ;ｪW ヲヶくΒ ふSD Αくヰぶ ;ﾐS ヲヶくΑ ふSD Αくヲぶが ヴWゲヮWIデｷ┗Wﾉ┞き 

U=264.5, p=1.0).  Groups were also matched for socio-economic background using the 

National Statistics Socio-Economic Classification (NS-SEC) self-coded method.  NS-SEC scores 

are given in Table 1 and did not differ significantly between groups (‐2
(4, N=46)=2.3, p=.69).  

All participants had normal or corrected to normal vision. 
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 NSSEC score 1 2 3 4 5  Mean SD 

Number of 

participants 

Schizophrenia 13 1 4 1 4  2.2 1.6 

Controls 11 2 5 3 2  2.3 1.4 

Table 1.  National Statistics Socio-Economic Classification (NS-SEC) scores. 

 

Participant Drug (dose) Total DDD 

1 Risperidone (25mg/1 to 2 weeks); Citalopram (20mg) 1.66 

2 Risperidone (2mg) 0.4 

3 Diazepam (2mg); Mirtazapine (45mg); Aripiprazole (20mg); Zopiclone (7.5mg) 4 

4 Amisulpride (200mg); Clozapine (275mg) 1.42 

5 Olanzapine (15mg) 1.5 

6 Olanzapine (25mg); Sertraline (50mg) 3.5 

7 Lofepramine (70mg) 0.67 

8 Paliperidone (100mg/month); Risperidone (3mg) 1.15 

9 Mirtazapine (45mg); Aripiprazole (20mg); Pregabalin (150mg) 3.3 

10 Clozapine (400mg) 1.3 

11 Olanzapine (5mg) 0.5 

12 Aripiprazole (20mg) 1.33 

13 Quetiapine (200mg) 0.5 

14 Clozapine (350mg), Sulpiride (200mg) 1.42 

15 Aripiprazole (5mg) 0.33 

16 Risperidone (2mg), Sertraline (100mg) 2.4 

17 Clozapine (400mg), Sulpiride (400mg) 1.8 

18 Sertraline (200mg), Lithium (1g), Clozapine (200mg) 5.77 

19 Zuclopenthixol (20mg) 2.86 

20 Olanzapine (20mg) 2 

21 Quetiapine (200mg), Procyclidine (5mg), Venlafaxine (75mg), Modecate 

(25mg/2 weeks) 2.45 

22 Clozapine (300mg) 1 

23 Aripiprazole (10mg) 0.67 

Mean 1.82 

SD 1.34 

Table 2.  DWデ;ｷﾉゲ ﾗa ヮ;デｷWﾐデゲげ ヮｴ;ヴﾏ;IﾗﾉﾗｪｷI;ﾉ デヴW;デﾏWﾐデ ｷﾐIﾉ┌Sｷﾐｪ the drug, its dose and the 

total defined daily dose (DDD) of psychotropic medication for each participant.  Doses are 

per day unless given as a depot, in which case the frequency is specified. 

 

2.2 Symptom severity measurement.  In order to derive a score for overall severity of 

psychotic illness in the patient group, we followed the procedure employed by Palaniyappan 

et al. (2013).  We computed the first principle component of: the scores for the three 

characteristic syndromes of schizophrenia (reality distortion, psychomotor poverty and 
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disorganization) assessed using the SSPI; speed of cognitive processing assessed using a 

variant of the Digit Symbol Substitution Test (Wechsler, 1944); and scores from the Social 

and Occupational Function Scale (SOFAS; (APA, 1994)).  Unlike Palaniyappan et al. (2013), 

who focussed on chronic symptom burden, we did not include duration of illness in our 

measure of current illness severity. 

 

2.3.  Paradigm.  The task comprised visual stimulation with a centrally-presented maximum 

contrast vertical square wave grating (3 cycles per degree), which subtended an 8° visual 

angle and was displayed behind a red fixation cross on a mean luminance background.  The 

grating was presented for two seconds followed by a seven second fixation only baseline 

period.  Participants were instructed to press a button with their right index finger regularly 

but as many times as they chose during the 2s presentation of the grating, though ensuring 

デｴ;デ デｴW┞ SｷSﾐげデ ヮヴWゲゲ ゲﾗ ┗ｷｪﾗヴﾗ┌ゲﾉ┞ ;ゲ デﾗ I;┌ゲW デｴWｷヴ ;ヴﾏ デﾗ ﾏﾗ┗W.  There were 45 trials, 

giving a total task length of seven minutes.  A short practice of the task was given outside 

the scanner.  Stimuli were generated on a PC using MATLAB (The Mathworks, Inc., Natick, 

MA) and were back-projected via a mirror system onto a screen inside a magnetically 

shielded room at a viewing distance of 46cm.  All participants were scanned in a supine 

position.  Right index finger button presses were recorded via a response pad (Lumitouch 

Photon Control Response System). 

 

2.4.  Data acquisition and analysis.  MEG data were obtained using a 275 channel whole 

head CTF system (MISL, Coquitlam, Canada), with four channels switched off due to 

excessive sensor noise.  Twenty-nine reference channels were also recorded for noise 

cancellation purposes and the primary sensors were analysed as synthetic third order 
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gradiometer measurements (Vrba et al., 2001).  Data were acquired at a sampling frequency 

of 600Hz with a 150Hz low-pass anti-aliasing hardware filter.  The position of the head 

within the MEG helmet was measured continuously during the recording by energising three 

electromagnetic head position indicator coils located at the nasion and left and right pre-

auricular points, allowing continuous head movement tracking throughout the acquisition.  

A 3-dimensional digitisation of the head shape and fiducial locations was obtained using an 

Isotrak (Polhemus Inc., Vermont) system prior to the MEG measurement.  All participants 

also underwent an anatomical MRI scan, acquired using a Philips Achieva 7T system with a 

volume transmit and 32 channel receive head coil.  A 1mm isotropic image was obtained 

using an MPRAGE sequence (TE/TR = 3/7ms, FA=8°).  Coregistration of the MEG sensor 

geometry to the anatomical MR image was achieved by fitting the digitised head surface to 

the equivalent head surface extracted from the anatomical MR image. 

 

Initially, MEG data were inspected visually.  Common sources of interference, for example 

the magnetomyogram, magnetooculogram and magnetocardiogram, have well 

characterised neuromagnetic signatures which are easily identified by an experienced 

operator.  Here, any trials deemed to contain excessive interference generated via such 

ゲﾗ┌ヴIWゲ ┘WヴW ヴWﾏﾗ┗WS aヴﾗﾏ デｴ;デ ｷﾐSｷ┗ｷS┌;ﾉげゲ S;デ; ふゲWW ;ﾉゲﾗ Gヴﾗゲゲ Wデ ;ﾉく (2013)).  Head 

movement was assessed via continuous head localisation and any trials in which the head 

was found to be more than 7mm (Euclidean distance) from the starting position were 

excluded.  This left an average of 42 trials (SD 3.6) in controls and 38 (SD 4.9) trials in 

patients.  Lead fields were computed individually for each participant using a multiple-local-

sphere head model (Huang et al., 1999) and the dipole model derived by Sarvas (1987).  A 

scalar beamformer (synthetic aperture magnetometry (Robinson et al., 1998)) was used to 
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project extracranial field signals into source space.  Images showing the spatial signature of 

task induced oscillatory power change were computed in the beta (13-30Hz) and gamma 

(30-70Hz) ranges.  In both cases, an active window of 0.5-1.8s was compared to a control 

window spanning 7.0-8.3s, relative to stimulus onset.  Covariance matrices for beamformer 

reconstruction were calculated individually for the active and control windows, giving even 

amounts of data and thus ensuring equivalent accuracy (Brookes et al., 2008).  The resulting 

pseudo-t-statistical images were used to derive the locations of the peak decrease in beta 

band oscillations in left motor cortex and the peak increase in gamma oscillations in visual 

cortex in each participant, which were used for further analyses (see Figures 1e and f for a 

representative example).  Note that since both peaks were identified from the active period 

contrasted with the baseline, the motor cortex (ERBD) peak was also used for analysis of the 

PMBR.  

 

Virtual sensor timecourses were constructed for these peak locations also using a 

beamformer spatial filter.  Beamforming was applied to data filtered into the 1-150Hz band 

and the covariance matrix was generated using data spanning the entire experiment.  The 

spatially filtered (virtual sensor) timecourses were sequentially filtered (temporally) into 23 

overlapping frequency bands in the range of 1-100Hz using a firls filter implemented in 

NUTMEG (http://nutmeg.berkeley.edu).  For each band, the Hilbert envelope was calculated 

and averaged across task trials.  A resting baseline signal was estimated as the mean Hilbert 

envelope within the 7.0-8.3s window, relative to stimulus onset, and the percentage 

difference in signal from this baseline was calculated across the trial averaged timeseries for 

all frequency bands.  These individual frequency bands were then concatenated to generate 

time frequency spectrograms, which were averaged across participants in the patient and 
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control groups (Figure 1).  The percentage change from baseline for the beta 

desynchronisation was taken from the 0.5-1.8s window, during which participants were 

moving, but which allowed time for participants to react to the stimulus onset.  The beta 

rebound signal was taken from the 2.3-4.3s window, based on the observed signal in a time 

frequency spectrogram averaged over all patients and controls.  In both cases a 13-30Hz 

frequency range was used.  To test gamma band amplitude in visual cortex, the percentage 

change from baseline was computed in the 30-70Hz frequency window in the 0.5-1.8s time 

window, in order to obtain only the sustained gamma response and not the initial gamma 

spike.  These data are shown in Figure 2.  Pseudo t-statistical images for Figure 1 were 

visualised using mri3dX (Singh, CUBRIC, Cardiff).  Statistical analysis was carried out in SPSS 

(Armonk, NY: IBM Corp.) and MATLAB (The Mathworks Inc., Natick, MA).  

 

3.  Results 

The task was well tolerated by all patients and controls.  Across all 46 participants, two 

patients and two controls failed to show a well localised beta desynchronisation peak in the 

motor cortex and one patient did not show a clear gamma peak in visual cortex.  These 

participants were excluded from analysis of these voxels, giving a total of 21 patients and 

controls contributing to analysis of motor beta, and 22 patients and 23 controls for visual 

gamma.   
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Figure 1: Time frequency spectrograms.  Percentage change from baseline in the trial-

;┗Wヴ;ｪWS ゲｷｪﾐ;ﾉ ;デ デｴW ﾉﾗI;デｷﾗﾐゲ ﾗa ｷﾐSｷ┗ｷS┌;ﾉゲげ ヮW;ﾆ SWIヴW;ゲW ｷn motor beta (a&b) and 

increase in visual gamma (c&d) during stimulation.  Data are averaged across controls (a&c) 

and patients (b&d).  Visual stimulation and motor responses were from 0-2s.  On the right 

are example pseudo t-statistical images from a single representative subject showing the 

spatial signature of the beamformed signal in the stimulus window (0.5-1.8s) contrasted 

with a baseline window (7-8.3s) in the beta (13-30Hz ) band (e) and gamma (30-70Hz) band 

(f). 

 

Figure 1 shows time frequency spectrograms, averaged across task trials and participants, 

for patients and controls at the motor and visual locations of interest.  Both groups exhibit 

the expected changes in oscillatory power in the beta and gamma bands throughout the 
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trial: in motor cortex, beta amplitude decreases during stimulation with a PMBR on 

movement cessation; and in visual cortex, there is a decrease in alpha oscillatory amplitude 

and a concomitant increase in gamma amplitude during stimulation.  As hypothesised, there 

were differences between patients and controls in features of these typical response 

profiles. 

 

 

Figure 2: Beta and gamma band responses.  Mean timecourse of beta band amplitude in 

motor cortex (a) and gamma band amplitude in visual cortex (b), measured as a percentage 

difference from baseline (7-8.3s); shaded areas show standard error of the mean (SEM) 

across participants. c) Mean percentage signal change from baseline in motor cortex during 

event-related beta desynchronisation (ERBD; 0.5-1.8s) and post-movement beta rebound 



14 

 

(PMBR; 2.3-4.3s); and in visual gamma oscillations during stimulation (0.5-1.8s).  Error bars 

represent SEM.   

 

Figures 2a and 2b show the timecourses of percentage signal change in oscillatory 

amplitude from baseline (7.0-8.3s) for the beta band (13-30Hz) in the motor cortex (a) and 

the gamma band (30-70Hz) in the visual cortex (b) for patients (red) and controls (blue).  The 

mean percentage changes during ERBD, PMBR and visual stimulation are shown in Figure 2c 

for both groups.  ERBD and visual gamma were measured in the 0.5-1.8s window, the PMBR 

was measured from 2.3-4.3s.  Note that the largest difference between patients and 

controls is in the PMBR, which shows a 30% increase from baseline in controls, and only a 

14% increase in patients. 

 

Interestingly, behavioural data indicated that on average, patients made more button 

presses per trial (mean 6.83 presses, between subjects standard deviation (SD) 2.18, within 

subjects SD 1.03) than controls (mean 5.27 presses, between subjects SD 2.02, within 

subjects 0.60).  This difference ｷﾐ デｴWゲW けH┌デデﾗﾐ ヮヴWゲゲ Iﾗ┌ﾐデゲげ was statistically significant 

(t(44)=-2.52; p=.016).  However, the mean time of the last button press in each trial was 

similar for patients (1.92s, SD 0.34) and controls (1.89s, SD 0.19) (U=33; p=.156).  These 

results indicate that on average, patients with schizophrenia pressed the button more 

frequently in the allocated time period than controls but not for longer; therefore patients 

tended to press faster than controls.  In order to investigate MEG data from groups with 

comparable behaviour, participants who pressed on average between four and eight times 

per trial were selected for initial analyses, based on the overlap of the distributions of 

button press counts from the two groups.  This criterion gave groups of 12 controls and 13 
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patients.  Responses from these subgroups are presented in Figure 3.  Note that the 

difference between groups in the PMBR remains, suggesting qualitatively that this effect is 

not simply accounted for by the different numbers of button presses in the two groups. 

 

 

Figure 3: Timecourses for groups with equivalent numbers of button presses.  Mean motor 

beta (a) and visual gamma (b) timecourses in groups of patients (red, N=12) and controls 

(blue, N=13) who made similar numbers of button presses (mean of 4-8 presses per trial).  

Shaded areas are SEM across participants. 

 

Statistical analysis of these behaviourally comparable data was conducted with a repeated 

measures analysis of variance (ANOVA), the results of which are shown in Table 3a.  This 

analysis indicated that when beta amplitude was summed across both stages of the 

response, patients showed a slightly lower amplitude response than controls.  However, the 

difference in beta amplitude between the groups was dependent on the stage (ERBD or 

PMBR) of the response, in that the two groups showed very similar ERBD but the PMBR was 

significantly reduced in patients.  As expected, the PMBR was significantly greater than the 

ERBD in both groups.  The difference in gamma amplitude between groups was analysed 
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using a Mann-Whitney  U-test, because these data were not normally distributed.  There 

was no significant difference in gamma amplitude in visual cortex between the two groups 

(U=83; p=.810).   

 

 

Table 3.  Results of a repeated measures ANOVA on beta amplitude in the subgroup with 

comparable behavioural responses (a), with the between subjects factor of group (patients 

and controls) and within subjects factor of beta stage (ERBD and PMBR).  The same 

contrasts but with the covariate of mean button press count are presented in the ANCOVA 

results, which includes data from all participants (b). 
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The difference between groups in the mean number of button presses made per trial (the 

button press count) warranted further investigation in relation to its impact on the MEG 

data from the full cohort of participants.  An analysis of covariance was therefore conducted 

on the beta responses of all participants with button press count included as a covariate.  

The results of this analysis are presented in Table 3b.  In this analysis, the overall difference 

between groups in the sum of beta amplitude across the two stages was not statistically 

significant; however, again there was a difference between the way in which the two groups 

responded at the two stages of the beta response (shown by the significant group by stage 

statistical interaction).  Follow-up univariate ANCOVAs conducted on each group separately 

and on each stage separately indicated that while the mean amplitudes of ERBD and PMBR 

were not significantly different between the groups, controls showed a significant increase 

from ERBD to PMBR (the peak-to-peak けbeta differenceげ), irrespective of the number of 

button presses, whereas in patients, the beta difference was related to button press count: 

individuals who pressed the button more often showed a greater increase from ERBD to 

PMBR (correlation between beta difference and button press count R
2
=0.23; p=.029).  This 

effect can be observed in Figure 4, which shows that for patients in the lowest quartile of 

mean button press counts, there is little change between the two beta stages, but as button 

press count increases, the beta difference in patients increases and the timecourse becomes 

more similar to controls.  Controls show similar timecourses regardless of how many times 

they press the button (correlation of beta difference with button press count R
2
=0.02; 

p=.494).  Figure 4 again suggests that the PMBR is more affected by schizophrenia than 

ERBD; however there are insufficient numbers of participants to statistically test the group 

difference on the two stages across different button press counts.   
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Figure 4: Effect of number of button presses.  Mean beta timecourses for groups of patients 

(red) and controls (blue), defined by the quartiles of mean button press count across all 

volunteers, from lowest (a) to highest (d).  Shaded areas represent SEM across all trials. 

 

Visual gamma was analysed using a univariate ANCOVA with mean button presses as a 

Iﾗ┗;ヴｷ;デWく  TｴWヴW ┘;ゲ ﾐﾗ ゲｷｪﾐｷaｷI;ﾐデ SｷaaWヴWﾐIW HWデ┘WWﾐ ヮ;デｷWﾐデゲ ;ﾐS Iﾗﾐデヴﾗﾉゲげ ┗ｷゲ┌;ﾉ ｪ;ﾏﾏ; 

amplitude (F(1,41)=.08; p=.780) and the button press count did not influence visual gamma 

(main effect of button presses: F(1,41)=1.45; p=.236, and interaction between group and 

button presses: F(1,41)=.64; p=.428). 

 

To investigate the influence of medication on the electrophysiological measures obtained, in 

a separate analysis of only the patient group, defined daily dose (DDD (Methodology, 2012)) 
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of psychotropic medication was considered as an additional covariate in the contrast 

between beta stages.  Taking DDD into consideration did not alter the results: patients with 

lower button press counts showed a smaller beta difference than those with higher button 

press counts, regardless of their dose of antipsychotic medication (significant beta 

stage*button press count interaction (F(1,17)=5.04; p=.038); non-significant main effects of 

beta stage, button press count and DDD, and all other interactions between these variables 

(all F(1,17)<1.89); p>.187).  To assess the relationship between DDD and gamma, the 

correlation between 10,000 randomly paired gamma and DDD values was obtained, and the 

measured correlation was compared with the upper and lower 2.5% of values in the 

resulting distribution of correlations, to assess the probability of obtaining a correlation of 

the measured strength.  DDD did not relate significantly to gamma amplitude in patients 

(R=-0.07; p=ns; 95% CI [-0.367 and 0.486]).  These findings indicate that medication did not 

have a significant effect on motor beta or visual gamma oscillations.   

 

Scores of overall severity of persisting psychotic illness exhibited a significant negative 

Pearson correlation with the PMBR in the patient group (R=-0.52; p=.015; Figure 5), with no 

correlation between illness severity and ERBD or visual gamma (R=-.18 and .06 respectively; 

p=ns).  The scores for the three core syndromes of schizophrenia loaded positively on the 

illness severity measure, while social, occupational and cognitive function loaded negatively 

on it (see table 4), so those patients with higher severity scores had stronger core symptoms 

and lower levels of function.  These were also the patients who showed the smallest beta 

rebound. 
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Figure 5: Correlation between PMBR and severity of persisting psychotic illness.  The 

amplitude of the post-movement beta rebound showed a significant negative correlation 

with a measure of overall psychotic illness severity persisting during a stable phase of illness 

in the patient group. 

 

Illness severity measure Loading on severity of persisting illness factor 

Reality distortion 0.72 

Psychomotor poverty 0.61 

Disorganisation 0.58 

DSST -0.37 

SOFAS -0.67 

 

Table 4: Loadings on the first factor derived from factor analysis of clinical features 

hypothesised to reflect current severity of illness: reality distortion, psychomotor poverty and 

disorganisation syndromes from the Signs and Symptoms of Psychotic Illness (SSPI) scale 

(Liddle, 2002); and scores from the Digit Symbol Substitution Test (DSST; Wechsler, 1944) 

and the Social and Occupational Function Assessment Scale (SOFAS; APA, 1994). 

 

An additional interesting feature of the time-frequency spectrograms (Figure 1) was the 

apparent difference in theta oscillations between groups.  These were not part of our 
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hypothesis, but were contrasted in non-planned post-hoc comparisons of the stimulation 

period (0.5-1.8s).  Patients showed significantly reduced theta in motor cortex (U=78; 

p<.001), while the difference in visual cortex was not significant (t(43)=.62; p=.542). 

 

In summary, the results indicate that in groups of participants matched for performance on 

a self-paced button press task, the amplitude of post-movement beta oscillations is reduced 

in patients with schizophrenia compared with controls.  Beta reactivity, reflected in the 

change from the desynchronisation during movement to synchronisation following 

movement was reduced in patients who pressed the button less often.  Visual gamma did 

not differ significantly between groups.  TｴWデ; ﾗゲIｷﾉﾉ;デｷﾗﾐゲ ┘WヴW ヴWS┌IWS ｷﾐ ヮ;デｷWﾐデゲげ ﾏﾗデﾗヴ 

but not visual cortex. 

 

4.  Discussion 

Deficits in sensorimotor function have been a well-established feature of schizophrenia 

since the earliest descriptions of the disease; however, despite their prevalence and impact, 

few studies have probed the neuronal mechanisms underlying these symptoms.  In this 

study, we measured the electrophysiological signature of visual and motor processing in 

patients with schizophrenia and matched healthy control subjects using MEG.  Our results 

show that the characteristic profiles of oscillatory responses to visual and motor stimulation 

are preserved in schizophrenia.  However, significant differences in neuronal dynamics are 

observed in patients relative to controls.  Specifically, the well-characterised temporal 

signature of beta oscillations in motor cortex during finger movement differs between the 

two groups: when matched for behaviour, patients showed a reduced PMBR, while their 

ERBD was relatively preserved.  Interestingly, patients who pressed the button infrequently 
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in our self-paced motor task showed significantly less of a difference between the ERBD and 

PMBR stages of the trial than those who pressed very rapidly.  Patients who pressed rapidly 

showed beta timecourses that were similar to controls, in whom clear ERBD and PMBR 

responses were present regardless of their mean button press count.  There was no 

significant difference in visual gamma oscillations between groups.  Our results therefore 

indicate abnormalities in basic sensorimotor processing in patients with schizophrenia. 

 

The differences in beta oscillatory response profiles between patients and controls provide 

a potential neuronal correlate of known motor disturbances in schizophrenia.  There are 

various theories as to the roles that beta desynchronisation and rebound play in the 

generation and inhibition of movement.  At rest, beta oscillations in motor cortex may 

control tonic contractions involved in maintenance of posture, while simultaneously 

inhibiting additional movements (Gilbertson et al., 2005).  Decreases in beta synchrony 

during or preceding a movement may therefore reflect a switch to a state in which a greater 

range of movements can be made, since reduced synchrony allows greater flexibility to 

encode information in cellular assemblies (McIntosh et al., 2008).  The increase in beta 

power following a movement has been suggested to reflect inhibition of motor activity: 

voluntary movements are slowed both during periods of beta oscillations as measured using 

electrocorticograms (Gilbertson et al., 2005), and when beta rhythms are entrained using 

transcranial alternating-current stimulation (Pogosyan et al., 2009).  This post-movement 

inhibition may facilitate motor control by preventing repetition or generation of further 

movements and returning postural stability.  Evidence for this theory comes from findings 

that the PMBR is almost absent in young children but increases through development (Gaetz 

et al., 2010); while in ｷﾐSｷ┗ｷS┌;ﾉゲ ┘ｷデｴ P;ヴﾆｷﾐゲﾗﾐげゲ SｷゲW;ゲW ┘ｴﾗゲW ﾏﾗ┗WﾏWﾐデゲ ;ヴW ﾉｷﾏｷデWS ;ﾐS 
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poorly controlled, both ERBD and PMBR are reduced in amplitude compared with controls 

(Heinrichs-Graham et al., 2014; Pollok et al., 2012).  Beta oscillations may also reflect long-

range communication between brain regions, whereas gamma oscillations reflect more local 

processing (Donner et al., 2011).  In the context of these theories, the reduced reactivity of 

motor cortex in schizophrenia observed in this study may reflect maintenance of tonic 

contractions and reduced flexibility of responses during movements; reduced inhibitory 

control allowing efficient termination of the movement; and/or limited ability to switch 

between long-range and local communication between neurons. 

 

Growing evidence suggests that both beta and gamma oscillations in the cortex depend 

upon a delicate balance between excitation and inhibition (Brunel et al., 2003; Kopell et al., 

2000), governed largely but not exclusively by glutamate and gamma-aminobutyric acid 

(GABA), which are the principal excitatory and inhibitory neurotransmitters, respectively.  

There is a large amount of evidence for disruption to this balance in schizophrenia caused by 

GABAergic abnormalities (Lewis, 2014; Rowland et al., 2008), including reductions in levels 

of GAD, the enzyme necessary for synthesis of GABA from glutamate, and in the mRNA that 

codes for GAD and for the GABA transporter and receptors (Shin et al., 2011).  There are 

also reductions in the volume of pyramidal neurons (Sweet et al., 2004) and in the number 

of parvalbumin expressing GABAergic inhibitory interneurons, which are involved in the 

generation of gamma oscillations (Lewis, 2014).  Deletion of a gene coding for a receptor for 

neuroregulin molecules, which are involved in regulating neuronal development in 

parvalbumin interneurons, causes reorganisation of cortical networks, increases oscillatory 

activity particularly in the gamma frequency and leads to schizophrenia-like symptoms 

including disruption of emotional and social behaviour and cognitive function in mice (Del 
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Pino et al., 2013).  Restoring normal levels of neuroregulin reverses these symptoms (Marin 

et al., 2013).  These animal studies strongly suggest a link between abnormalities in 

parvalbumin interneurons and schizophrenia. 

 

In contrast with previous findings (Grutzner et al., 2013; Shin et al., 2011; Spencer et al., 

2004; Sun et al., 2013), our study did not show significant reductions in gamma oscillations 

in the visual cortex of patients with schizophrenia, although the difference observed was in 

this direction.  The link between GABAergic inhibition and beta oscillations has been 

assessed by an in vitro study showing generation of beta oscillations in neuronal assemblies 

of cortical layer V (Roopun et al., 2006), a magnetic resonance spectroscopy (MRS) study 

showing a positive correlation between GABA and PMBR power (Gaetz et al., 2011) and a 

pharmacological study showing that blocking GABA uptake increases ERBD and decreases 

PMBR amplitude (Muthukumaraswamy et al., 2012).  Impaired GABAergic 

neurotransmission in schizophrenia may therefore contribute to the decrease in amplitude 

of beta oscillations observed in patients in our study. 

 

In patients, the difference between beta desynchronisation and rebound was greater and 

more similar to controls when they pressed the button at a faster rate (Figure 4).  PMBR in 

response to median nerve stimulation is reduced by ERBD generated during simultaneous 

movement, and this effect is greater as the amount of motor activity increases (e.g. passive 

stretch compared with exploratory finger movement (Salenius et al., 1997), or imagined 

compared with performed movement (Schnitzler et al., 1997)), but direct measurement of 

the effects of movement complexity or frequency on the movement-related beta response 

have not to our knowledge been reported.  The relative poverty of motor responses in some 
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of the patients with schizophrenia in this study may arise from the observed abnormalities 

in beta reactivity.  Such an effect could be due to impaired communication between motor 

cortex and higher order cortical regions, and/or to altered neurotransmission; however, 

these suggestions are speculative and would require further study using measures of 

functional connectivity and transmitter concentration or cycling rates.  On average, patients 

tended to exhibit a higher button press count compared with controls.  It is not clear why 

this was the case; it may represent a form of coping strategy, given that with higher button 

press counts, the beta timecourse became more similar to controls.  This behaviour 

somewhat masked abnormalities in beta oscillations that would likely have been more 

striking had only one button press been required.   

 

Use of a task with self-paced movements and subsequent analysis of data taking into 

consideration the button press count has revealed interesting differences in the beta 

oscillatory profiles between the two groups that would not otherwise have been evident.  

Another significant advantage of the paradigm presented here is that it is short, simple and 

is suitable for individuals of all cognitive abilities.  The ability to measure differences 

between patients with schizophrenia and controls in such a basic paradigm is promising for 

eventual translation of similar approaches into clinical practice.  This MEG approach, which 

permits investigation of neuronal activity within brain networks of patients and healthy 

volunteers, also reduces the need to conduct similar studies in animal models of mental 

health disorders. 

 

It is important to consider the effect of medication on the electrophysiological measures 

obtained in this study.  The patients were primarily taking antipsychotics, which inhibit 
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dopaminergic function (Castle et al., 2013) and some were taking antidepressants, which 

enhance serotonergic or noradrenergic mechanisms (Feighner, 1999).  Because dopamine 

has an inhibitory effect on cortical activity (Ciccone, 2015), antipsychotics tend to shift the 

balance of activity towards cortical excitation.  There is evidence from preclinical studies 

that chronic administration of antipsychotics can reduce steady state oscillatory power in 

the gamma frequency (Anderson et al., 2014), while non-invasive neuroimaging has shown 

enhanced steady state delta and theta but reduced alpha and beta amplitude after 

administration of antipsychotics in healthy volunteers (Galderisi et al., 1996; Hubl et al., 

2001).  The observation that taking into account ヮ;デｷWﾐデゲげ S;ｷﾉ┞ SﾗゲW ﾗa ヮゲ┞IｴﾗデヴﾗヮｷI 

medication did not alter the results, together with evidence from other studies indicating 

that oscillatory abnormalities are present in unmedicated patients with schizophrenia 

(Boutros et al., 2008; Gallinat et al., 2004; Sun et al., 2013) and in first degree relatives 

(Hong et al., 2012) suggests that the abnormalities observed in our study are unlikely to be 

attributable to medication.  Nevertheless, further investigation into the impact of 

medication on the responses measured in this study is warranted.   

 

The PMBR was inversely correlated with a score of overall severity of psychotic illness 

assessed during a stable phase of the illness.  The scores for the three core syndromes of 

schizophrenia loaded positively on the illness severity measure, while social, occupational 

and cognitive function loaded negatively on it (Table 4).  The magnitude of the DSST loading 

is lower than for the other items, but DSST score was retained because the set of items were 

selected a priori as a measure of illness severity (Palaniyappan et al., 2013) and a meta-

analysis of cognitive impairments in schizophrenia has shown that the DSST quantifies an 
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inefficiency of information processing that is an important feature of schizophrenia 

(Dickinson et al, 2007).   

 

Similar to previous studies (e.g. Liddle, 1987b), the three syndrome scores showed low 

mutual correlations (0.033 to 0.33; p<.05), but all three loaded heavily on a single factor, 

along with the SOFAS and DSST scores, indicating that they are associated with a latent 

variable likely to reflect severity of illness.  Scores on this composite measure of overall 

current severity of psychotic illness exhibited a significant negative Pearson correlation with 

the PMBR in the patient group (R=-0.52; p=.015; Figure 5), with no correlation between 

illness severity and ERBD or visual gamma (R=-.18 and .06 respectively; p=ns).  Therefore, 

those patients with higher severity scores had stronger core symptoms and lower levels of 

function and these were also the patients who showed the smallest beta rebound. 

 

In conclusion, abnormalities in perceptual processing and psychomotor performance are key 

aspects of the pathophysiology that influences functional outcome in schizophrenia (Boden 

et al., 2014; Javitt, 2009).  Electrophysiological biomarkers for these deficits can be 

identified using non-invasive neuroimaging techniques (Javitt et al., 2008) and they can be 

modified using targeted training (Adcock et al., 2009).  We have used a simple visuomotor 

task and MEG imaging to show abnormalities in the dynamics of beta oscillations in motor 

cortex, giving direct electrophysiological evidence to support theories of impaired cortical 

inhibition in schizophrenia.  Consistent with our current understanding of GABA-glutamate 

dysfunction in this illness, our findings raise the possibility of targeting the visuomotor 

system for behavioural training and pharmacological treatments in patients with 

schizophrenia. 
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