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Abstract

Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin fam-

ily and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well character-

ised in model systems such as yeast and human cells, but surprisingly little is known about

their number and role in Plasmodium, the unicellular protozoan parasite that causes

malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes.

During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an

extremely rapid mitotic process during male gametogenesis. Both schizogony (producing

merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the

mosquito vector, are endomitotic with repeated nuclear replication, without chromosome

condensation, before cell division. The role of specific cyclins during Plasmodium cell prolif-

eration was unknown. We show here that the Plasmodium genome contains only three

cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse

genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite,

Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged pro-

tein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth

of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global

transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete

stages identified differentially expressed genes required for signalling, invasion and oocyst
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development. Collectively these data suggest that cyc3modulates oocyst endomitotic

development in Plasmodium berghei.

Author Summary

The malaria parasite is a single-celled organism that multiplies asexually in a non-canoni-

cal way in both vertebrate host and mosquito vector. In the mosquito midgut, atypical cell

division occurs in oocysts, where repeated nuclear division (endomitosis) precedes cell

division, which then gives rise to many sporozoites in a process known as sporogony. The

molecular mechanisms controlling this process are poorly understood. In many model

organisms including mouse and yeast cells the cell cycle is regulated by members of the

cyclin protein family, but the role of this family in the malaria parasite is unknown. Here,

we show that there are only three cyclin genes and investigate the function of the single P-

type cyclin (CYC3) in the rodent malaria parasite, Plasmodium berghei. We show that

CYC3 has a cytoplasmic and nuclear localisation throughout most of the parasite lifecycle

and by gene deletion we demonstrate that CYC3 is important for normal oocyst develop-

ment, maturation and sporozoite formation. Moreover, we show that deletion of cyc3

affects the transcription of genes required for cell signalling and oocyst development. The

data suggest that CYC3 modulates asexual multiplication in oocysts and plays a vital role

in parasite development in the mosquito.

Introduction

The mechanisms of mitotic cell division and the various molecules involved are well studied in

many model systems including yeast, plants and human cells. Progression through mitosis is

controlled by a range of factors, including cyclins, protein kinases (PKs) and phosphatases

(PPs), and the anaphase-promoting complex (APC) components [1–4]. Cyclins play active

roles at distinct stages of the cell cycle [4] via regulation of cyclin-dependent kinases (CDKs).

Cyclins possess a conserved ~100-residue sequence known as the cyclin box that mediates

CDK binding and activation [5]. Certain cyclins are capable of binding several CDKs, which

are themselves able to associate with multiple cyclins [6,7]. These distinct but overlapping

functions orchestrate cell cycle progression.

In most model systems, the synthesis and level of cyclins are tightly regulated during the cell

cycle, with each cyclin being degraded via ubiquitination once its function is complete [8,9].

Key cell cycle transitions are regulated by specific cyclins: G1/S cyclins, which are essential for

cell cycle entry at G1/S (start), and G2/M cyclins, which are essential at the G2/M (mitosis)

transition. In some species, there are multiple forms of G1 and G2 cyclins. For example, in ver-

tebrates there are at least three G1 cyclins (C, D, and E) and two G2 cyclins (A, which is also

active in S phase, and B). Many other cyclins with additional functions have also been

described [10,11].

Recent bioinformatic analyses have identified 3 distinct classes of cyclin: Group I (including

cyclin A, B, D, E, F, G, I, J, and O families), Group II (P/Pho80-like, and Y), and Group III (C,

H, K, L, and T) [12,13]. Group I includes known essential cell cycle cyclins including some

involved in mitosis and meiosis [10,14,15], while Group III contains cyclins associated with

transcription and RNA processing [11]. Group II contains both cell cycle cyclins and those of

other function, such as cell metabolism (e.g. P-type cyclins (CYCPs), which were originally

P-Type Cyclin in Plasmodium
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believed to be unique to plants) and appear to link cell cycle regulation to nutritional status

[16–18]. The cyclin box of CYCP in plants shows high similarity to the corresponding domain

of trypanosome cyclins CYC2, CYC4, CYC7, CYC10 and CYC11 [13,19] and S. cerevisiae

PHO80-like cyclins [20].

Malaria parasites, Plasmodium, which belong to the phylum Apicomplexa, divide and prolif-

erate in an unusual way compared to other eukaryotes. During its life cycle, Plasmodium exhib-

its two types of cell division; one in asexual stages that resembles endomitosis and one in sexual

stages. The endomitotic-like asexual stage is characterized by multiple nuclear divisions pre-

ceding cytokinesis, with maintenance of the nuclear membrane wherein the microtubule orga-

nising centre (MTOC) or spindle body is embedded [21–23]. This process is observed at three

developmental stages of the parasite life cycle: during schizogony, replication and multiplica-

tion within liver and red blood cells in the vertebrate host [21], and at the sporogonic stage of

parasite development in the mosquito vector [24]. The other type of cell division occurs during

male gametogenesis, where three rounds of rapid DNA replication are followed by cell division

and chromosome condensation giving rise to eight microgametes [23,25,26].

In the human malaria parasite, Plasmodium falciparum, the stages of development during

asexual multiplication inside red blood cells have been described as (a) ring stage (early tropho-

zoite) with a single (haploid) interphase nucleus in G0, (b) mature trophozoites ready for chro-

mosome replication (G1) and undergoing DNA synthesis (S phase), and (c) the schizont stage

when asynchronous nuclear division begins (M phase) and repeated S and M phases continue

resulting in a multinucleate syncytium [21,27]. At the end of the growth phase, cell division

occurs in the late stage schizont or segmenter to form merozoites that are released to invade

new red blood cells. This process resembles that of endomitosis observed in Drosophila cells

[28].

The molecular mechanisms that regulate nuclear and cell division in the malaria parasite

remain largely unknown. We have previously shown that the single putative homologue of cell

division cycle protein 20 (CDC20), a well-characterised activator of the anaphase promoting

complex/cyclosome (APC/C), is crucial for karyokinesis and cytokinetic control of male game-

togenesis [29]. Furthermore, systematic genome-wide functional analysis of the protein

kinome and phosphatome has identified molecules crucial for both male gametogenesis and

asexual multiplication during sporogony, including CDKs, CDPK4, MAP2 and PTPLA [30–

32]. Plasmodium has a number of genes that code for calcium dependent protein kinases

(CDPKs) that are implicated in control of growth and cell division [31,32]. Other kinases, such

as ARK1, an aurora-like kinase associated with the spindle pole body, have been identified and

implicated in cell division [33]. Knowledge of cyclin function in Plasmodium is limited. Previ-

ously, four cyclin genes were described in P. falciparum, Pfcyc1 to -4 [34,35]. Biochemical stud-

ies showed that PfCYC1, PfCYC3 and PfCYC4 associate with histone H1 kinase activity

present in the parasite extract [35], and PfCYC1 and PfCYC3 bind and activate the Plasmo-

dium CDK1 homologue (PK5) in vitro [34,35]. PfPK5 has also been shown to be activated by

mammalian proteins (p25 and RINGO) that have no detectable primary sequence similarity to

cyclin [34,35]. Recently, PbCYC3 has been shown to be a target gene of the AP2-O transcrip-

tion factor, and is involved in oocyst development [36].

Here, we describe an in-depth phylogenetic analysis of the cyclin repertoire in Plasmodium.

We then focus on the single P-type cyclin (CYC3) and examine its role during parasite cell divi-

sion, using the rodent malaria model Plasmodium berghei. We show that whilst CYC3 is dis-

pensable for asexual cell cycle progression in the mammalian host, it modulates oocyst

development and the subsequent differentiation of sporozoites, the endomitotic process of spo-

rogony within the mosquito vector.

P-Type Cyclin in Plasmodium
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Results

Plasmodium parasites have a small, unusual complement of cyclins

Cyclins are a diverse superfamily of proteins (for example see [13]). A number of PFam models

incorporate parts of the conserved domain (including PF08613, PF00134, PF02984), but none

covers the entire conserved region and each is biased towards particular classes.

To investigate the Plasmodium cyclin repertoire, we built a pan-cyclin hidden Markov

model (HMM) of cyclins from a range of model species and used this to identify putative

cyclins in a wide range of eukaryotes (see Methods). Our HMM showed good sensitivity, iden-

tifying full cyclin repertoires in diverse organisms not included in the seed alignment, and the

resultant proteins sequences were aligned, trimmed to conserved regions and classified by con-

structing phylogenetic trees (Fig 1A and S1 Fig).

Plasmodium species encode only three identifiable cyclins–CYC1, CYC3 and CYC4. A P.

falciparum gene (encoded by PF3D7_1227500) annotated as PfCYC2 did not show a signifi-

cant match to any of the cyclin-specific HMMs built during these analyses (even at extremely

liberal thresholds), nor to the domains built by PFam. This protein was originally identified as

a cyclin on the basis of a very limited similarity to a cyclin A from the sea star Patiria (Asterina)

pectinifera (13% identity across alignable length) [35], but it lacks key alignable residues across

most of the cyclin box and has no detectable cyclin-like function in biochemical assays [35].

These data strongly suggest that CYC2 is not a true cyclin and it is not included in the reper-

toire described here.

The Plasmodium cyclin repertoire is highly unusual in that it entirely lacks Group I, the

largest group of cyclins. This group contains most canonical cyclin families that regulate spe-

cific cell cycle transitions with their CDK partners: Cyclin D-CDK4/6 for G1 progression,

Cyclin E-CDK2 for the G1/S transition, Cyclin A-CDK2 for S phase progression and CyclinA/

B-CDK1 for mitosis, although in fission yeast, all cell cycle transitions are driven by a single

Cyclin B/CDK complex (CDC13/CDC2) [3,37]. In keeping with this key role and previous

analyses [13], Group I cyclins were found in all non-apicomplexan species examined here,

including the alveolate Tetrahymena thermophila [13]. However, none of the apicomplexan

species examined contained Group I cyclins, except Cryptosporidium, which was found to

encode three Group I cyclins of indeterminate family, suggesting that there has been a loss of

Group I cyclins during the evolution of apicomplexan lineages (Fig 1B).

Plasmodium species encode only one cyclin from the P family (Group II) and two Group III

cyclins from families H and L. The cyclin P family is not found in animals, but includes many

plant cyclins and Pho80 in budding yeast, which link nutritional sensing to cell cycle progres-

sion. In contrast, both H and L families are associated with transcription: the CDK7/Cyclin H/

MAT1 complex functions as a Cdk-activating kinase in cell cycle regulation [38] and as a mod-

ulator of the general transcription factor TFIIH [39,40]. Similarly, CDK11-Cyclin L complex in

fission yeast regulates the formation of the Mediator complex, a coactivator of RNA polymer-

ase II transcription [41].

Plasmodium cyclins are transcribed at all developmental stages

We used quantitative RT-PCR (qRT-PCR) to investigate the RNA levels of cyc1, 3 and 4 in six

stages of the wild-type parasite life cycle. The transcription profiles showed expression of the

cyclins throughout parasite development with the highest RNA levels for all three cyclins

found in gametocytes (both non-activated and activated) and schizonts (particularly cyc4). The

cyc3 RNA level was highest in non-activated gametocytes, whereas for cyc1 and cyc4, the levels

were highest in activated gametocytes (Fig 2A). These results are similar to those obtained

P-Type Cyclin in Plasmodium

PLOS Pathogens | DOI:10.1371/journal.ppat.1005273 November 13, 2015 4 / 29



previously for P. berghei by RNA-seq analysis [42] and for P. falciparum using both RT-PCR

[35] and RNA-seq [43].

Fig 1. Characterisation of the cyclin repertoire of the Apicomplexa. (A) Maximum likelihood phylogeny
based on an alignment of cyclins from Plasmodium falciparum, Toxoplasma gondii, Cryptosporidium parvum

andHomo sapiens. CYCP1 and CYCH1 from Arabidopsis thaliana have been included for clarity. Topology
support from bootstrapping is shown at nodes. (B) Distribution of cyclin families across Apicomplexa.
Presence (filled dot) or absence (empty circle) of specific families of cyclin in each predicted proteome is
shown. Dot area is proportional to number of putative proteins. The Group I cyclins inCryptosporidium

cannot be placed reliably into any specific families within the group (“Orphaned”). *The Plasmodium berghei

predicted proteome (release 9.3; plasmodb.org/) contains no apparent orthologue of CYC1, as the likely gene
encoding the protein on Chromosome 13 (downstream of PBANKA_132730, syntenic with cyc1 in other
Plasmodium species) is interrupted by a sequence gap.

doi:10.1371/journal.ppat.1005273.g001
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P-type CYC3-GFP is cytosolic and nuclear at most stages of the
lifecycle

To investigate the localisation of CYC3, the only P-type cyclin in Plasmodium, throughout the

P. berghei life cycle, we generated a C-terminal GFP fusion protein using single crossover

recombination at the endogenous cyc3 gene locus (PBANKA_123320; S2A Fig). Correct inte-

gration was confirmed by PCR, pulsed-field gel electrophoresis (PFGE) and Southern blot

(S2B–S2D Fig). CYC3-GFP parasites were able to complete the full life cycle with no detectable

phenotype observed from tagging with GFP including oocyst development at 14 days post

infection (dpi) in mosquitoes (S2F and S2G Fig). Western blot with an anti-GFP antibody con-

firmed the expression of CYC3-GFP. A 54 kDa protein was detected in lysates from three

stages of parasite development (schizonts, activated gametocytes and ookinetes) with the high-

est expression observed in activated gametocyte and ookinete stages compared with the 29 kDa

GFP control extracted from a parasite line constitutively expressing GFP (GFPcon 507 cl1)

[44] (S2E Fig).

Live imaging of parasites revealed CYC3-GFP presence throughout the parasite cell body

with a predominantly cytosolic localisation at most of the key Plasmodium life cycle stages

examined (trophozoite, male and female gametocyte, zygote, ookinete, oocyst and salivary

gland sporozoite) (Fig 2B). However, we could not exclude the presence of CYC3-GFP also in

the nucleus of trophozoites, gametocytes and ookinetes (Fig 2B). Therefore, for a more detailed

analysis of the CYC3 localisation at trophozoite, schizont, gametocyte and ookinete stages, we

used deconvolution fluorescence imaging (Fig 2C). Although no expression was detected in

schizonts, two dimensional optical slices from 3D stacks showed that CYC3-GFP was uni-

formly present throughout both the cytoplasm and the nucleus in trophozoites, gametocytes

and ookinetes (Fig 2C) and noticeably enriched in the nucleus of ookinetes (Fig 2C, line

profile).

CYC3 affects oocyst development, differentiation and sporozoite
formation within the mosquito

To assess the function of CYC3 in the Plasmodium life cycle, we used a double crossover

homologous recombination strategy to delete the cyc3 gene (S3A Fig). Successful integration of

the targeting construct at the cyc3 locus was confirmed by diagnostic PCR across the junction

of the expected integration site, as well as by Southern blot and PFGE (S3B–S3D Fig).

Analysis of two independent cyc3 deletion clones, cyc3 cl1 and cyc3 cl3 (hence forward called

Δcyc3) showed no overt phenotype during blood stage asexual proliferation, microgamete

exflagellation or ookinete conversion in vitro when compared with control parasites which

constitutively express untagged GFP (WTGFPcon 507 cl1 line, henceforth known as WT) [44]

(Fig 3A–3C).

To determine whether CYC3 is essential for parasite development in the mosquito vector,

we fed female Anopheles stephensimosquitoes with the Δcyc3mutant or WT parasites. There

was no significant reduction in the number of Δcyc3 oocysts compared to WT controls at 5 dpi,

Fig 2. CYC3-GFP protein expression throughout most stages of the life cycle. (A) Transcription of cyc1, cyc3 and cyc4 as analysed by qRT-PCR,
normalised against two endogenous control genes, arginine-tRNA synthetase and hsp70. Each bar is the mean of three biological replicates ± SEM. All
asexual blood stages: AS; schizonts: Sch; non-activated gametocytes: NAG; activated gametocytes: AG; ookinete: Ook; 14 dpi oocysts/sporozoites: Spor.
(B) Expression of CYC3-GFP in trophozoites, schizonts, gametocytes, zygotes, ookinetes, oocysts and sporozoites. 13.1, a cy3-conjugated antibody which
recognises P28 on the surface of activated females, zygotes, and ookinetes was used with the sexual stages. Scale bar = 5 μm. (C) Deconvolved 2D
projections of live trophozoite, gametocyte, and ookinete expressing CYC3-GFP (green), co-stained with Hoechst 33342 (blue) and cy3-conjugated anti-P28
antibody, 13.1 as a marker for the ookinete surface (red). Scale bar = 5 μm. Line profiles (red) in the black and white images indicate pixel intensity for that
channel.

doi:10.1371/journal.ppat.1005273.g002
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however a significant reduction was observed at 7 dpi, which became even more evident at 10,

14 and 21 dpi (Fig 3D and 3E).

Furthermore, oocysts at 14 and 21 dpi appeared substantially smaller in Δcyc3 compared

with WT lines (Fig 3F). To quantify this reduction in oocyst size, the diameter of WT and

Δcyc3 oocysts was measured at multiple time points during development in three independent

mosquito infections (Fig 3G). Even at early stages during oocyst development (5 and 7 dpi), we

already detected a difference in mean oocyst diameter between Δcyc3 and WT parasites (8 μm

and 11 μm for 5 dpi; 10 μm and 14 μm for 7 dpi, respectively) and by 10 dpi, the majority of

Δcyc3 oocysts were substantially smaller thanWT (12 μm and 25 μmmean diameter, respec-

tively) (Fig 3F and 3G). This difference in oocyst size increased dramatically at 14 and 21 dpi as

WT oocysts reached maturity (mean diameter of 31 μm at 14 dpi compared to 15 μm for Δcyc3

oocysts, Fig 3G). The majority of Δcyc3 oocysts were smaller in size even at 5 dpi. After this,

although a small number of the Δcyc3 oocysts continued to develop normally, the majority

appeared to arrest and remained the same size until 21 dpi (Fig 3G).

In addition to the decrease in size, the number of Δcyc3 sporozoites in infected mosquitoes

was significantly reduced compared to WT in midguts at 14 and 21 dpi and in salivary glands

at 21 dpi (Fig 3H, S4A and S4B Fig). However, when infected mosquitoes were allowed to feed

on mice in bite-back experiments, we found that not only did transmission occur successfully

but the pre-patent period for Δcyc3 was the same as for WT parasites (S4A and S4B Fig). These

data show that sporozoites produced from the few normal oocysts in the Δcyc3mutant are not

affected in their efficacy of host infectivity.

Next we investigated whether the oocyst growth phenotype was related to a defect in ooki-

nete structure, motility or DNA content. Ultrastructural analysis of ookinetes by transmission

electron-microscopy revealed no morphological differences between Δcyc3 and WT (S4C Fig).

Similarly, both DNA content and the gliding motility of Δcyc3 ookinetes were similar to WT

(S4D and S4E Fig) suggesting that ookinetes are not affected by cyc3 deletion.

Finally, we wanted to investigate whether Plasmodium CYC3 might function as a G1 or G2/

M cyclin, which would explain the Δcyc3 phenotype during sporogony. To this end, we exam-

ined the ability of a codon-optimized version of the P. berghei cyc3 gene to complement a triple

cln (G1 cyclin) mutant of the budding yeast Saccharomyces cerevisiae or a temperature sensitive

growth phenotype of a cdc13-117 B-type cyclin mutant of the fission yeast Schizosaccharomyces

pombe (G2/M transition), respectively (S5A and S5B Fig). In both cases, P. berghei cyc3 failed

to rescue yeast cyclin mutant strains, suggesting that P. berghei CYC3 does not function as a

classical G1 cyclin or G2/M cyclin under these conditions.

Fig 3. CYC3 is dispensable in asexual and sexual stages but important for oocyst development. (A) Average number of nuclei per schizont measured
using Giemsa stained slides at 100x magnification. Bar is the mean ± SEM. n = 4 independent experiments. (B) Microgametogenesis of Δcyc3 compared
with WTmeasured as the number of exflagellation centres per field. Means ± SEM are shown. n = 4 independent experiments. (C) Ookinete conversion as a
percentage in Δcyc3 andWT lines. Ookinetes were identified using the marker 13.1 and defined as those cells that successfully differentiated into elongated
‘banana shaped’ ookinetes. Bar is the mean ± SEM. n = 5 independent experiments. (D) Total number of GFP-positive oocysts per infected mosquito,
including normal and small oocysts, at 5, 7, 10, 14, 21 dpi for Δcyc3 andWT lines. Bar is the mean ± SEM. n = 3 independent experiments (20 mosquitoes for
each). Example of relative oocyst size and numbers at (E) 10x and (F) 63x magnification in Δcyc3 andWT lines. Images show DIC and GFP at 5, 7, 10, 14
and 21 dpi. Scale bar = 100 μm for 10x and 20 μm for 63x. (G) Individual Δcyc3 andWT oocyst diameters in μm at 5, 7, 10, 14 and 21 dpi. Horizontal line
indicates the mean from 3 independent experiments (20 mosquitoes for each) of Δcyc3 andWT. p <0.001 for all time points. (H) Total number of sporozoites
per mosquito from 14 and 21 dpi midguts for Δcyc3 andWT lines. Three independent experiments are described, n = 20 mosquitoes for each replicate. **
p� 0.01, *** p� 0.001. (I) Genetic complementation of Δcyc3. Mosquitoes were fed with a combination of WT, Δcyc3 or Δcyc3with either male (Δp48/45
and Δhap2) or female (Δdozi and Δnek4) mutants. Shown is a representation of one experiment (20 mosquitoes per line).

doi:10.1371/journal.ppat.1005273.g003
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CYC3 functions in both male and female lineages

Since CYC3-GFP was expressed in gametocytes (Fig 2B), we examined whether the defect in

oocyst formation was sex-specific. To do this we performed genetic crosses between Δcyc3 par-

asites and lines deficient in either male (Δp48/45 and Δhap2) or female (Δdozi and Δnek4) gam-

etes [45–48]. As scored by an increase in normal size oocysts at 14 dpi, we found that all

mutants could only partially rescue the phenotype of the cyc3 knockout, which affected both

male and female lines equally (Fig 3I). These results reveal that the functional cyc3 is inherited

through both male and female lines and its function is independent of sexual commitment at

the gametocyte stage (Fig 3I).

CYC3-GFP expression shows a temporal pattern during sporogony

As the Δcyc3 phenotype is observed during early oocyst development, we next examined

CYC3-GFP expression during oocyst and sporozoite development at the same time points (5,

7, 10, 14 and 21 dpi) as described for the Δcyc3 phenotypic analysis within mosquitoes using

fluorescence microscopy (Fig 4).

Fluorescent imaging showed no detectable CYC3-GFP expression in oocysts at 5 and 7 dpi

(representative images in Fig 4). Expression of CYC3-GFP was first observed at low levels in

the majority of oocysts at 10 dpi with the highest expression detected at 14 dpi. Oocysts that

had formed fully mature sporozoites showed the highest protein expression. After 14 dpi, we

observed a decrease in CYC3-GFP expression in oocysts up to day 21pi (Fig 4).

Δcyc3 parasites show defects in cell growth and sporozoite budding,
with abnormal membrane fusion and vacuolation

To define further the defect in oocyst growth during different developmental stages of sporog-

ony, Δcyc3 and WT parasite-infected mosquito midguts at 7, 10, 14, and 21 dpi were examined

by transmission electron microscopy. Marked differences were observed at the later time points

in the ultrastructure of the majority of Δcyc3 compared to WT oocysts, although some Δcyc3

oocysts appeared similar to WT (Fig 5). At every time point there were significantly fewer

Fig 4. Expression of CYC3-GFP during sporogony in mosquitoes. Fluorescence microscopy of CYC3-GFP at different time points: 5, 7, 10, 14 and 21
dpi during development in the mosquito. Scale bar = 20 μm. Representative percentage of oocysts that either: do not express GFP (black number), have a
low expression of GFP (red number) or have a high expression of GFP (green number).

doi:10.1371/journal.ppat.1005273.g004
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Fig 5. Ultrastructure analysis of oocyst development in Δcyc3mutant. (A) Low power ultrastructural
images of oocyst development at 7–10 days (i, iv, vii) and 14–21 days post-infection (dpi) showing normal
sporulation of WT (ii, iii) and certain Δcyc3 (v, vi) parasites while other Δcyc3mutants show evidence of
cytoplasmic vacuolation (V) and degeneration (vii, viii, ix). N–nucleus. Bars represent 10 μm. (B) Details
showing progressive stages in sporozoite formation in wild type parasites (i-iii) and various abnormal
developmental stages of the Δcyc3 parasite (iv-vi). Bars represent 1 μm. i. Initiation of sporozoite formation
with formation of the inner membrane complex (I) beneath the plasmalemma and above a peripherally
located nucleus (N) with nuclear pole (NP). ii. Early sporozoite (S) with rhoptry anlagen (R) budding from the
surface of the sporoblast. N–nucleus. iii. Late stage in sporozoite formation showing the elongated
sporozoites (S). R–rhoptry. iv. Detail of the sporoblast cytoplasm showing nuclei (N) enclosed by abnormal
membrane whorls v. Part of a nucleus with extensive nuclear spindle microtubule (Mt) not seen in WT
parasite. vi. Detail of a late stage in parasite degeneration showing apoptotic-like nuclei (N) and dilated
endoplasmic reticulum (ER).

doi:10.1371/journal.ppat.1005273.g005
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oocysts in the guts of mosquitoes infected with Δcyc3 compared to the WT parasites (5

oocysts/gut Δcyc3 compared to 60 oocyst/gut WT at 7 dpi).

At 7 and 10 dpi the oocysts of both the WT and Δcyc3 had similar structural appearance

being spherical with the cytoplasm completely filling the cyst (Fig 5Ai, 5Aiv and 5Avii). The

cytoplasm contains numerous nuclear profiles and homogenous appearing cytoplasm contain-

ing mitochondria and apicoplasts. However, a proportion (approximately 10%) of the Δcyc3

oocysts also showed centrally located nuclei and exhibited some vacuolation of the cytoplasm

(Fig 5Avii). By 14 dpi, the majority (>98%) of WT oocysts exhibited various stages of sporozo-

ite formation (Fig 5Aii, 5Aiii and 5Bi–5Biii) or oocysts with mature sporozoites (Fig 5Aiii). In

contrast, there were many fewer Δcyc3 oocysts (10 Δcyc3 compared to 60 WT oocysts) and

only a proportion (<40%) of these showed similar features of sporulation (Fig 5Av and 5Avi).

Many (>60%) of the Δcyc3 oocysts showed no evidence of sporulation (Fig 5Aviii and 5Aix).

These oocysts showed no retraction of the plasmalemma to form the sporoblasts and there was

no evidence of the initiation of sporozoite formation (Fig 5Aviii and 5Aix). However, cyto-

plasmic changes were observed including abnormal membrane reduplication (Fig 5Biv) and

nuclei containing large numbers of microtubules, suggesting mitosis and cytokinesis were

affected (Fig 5Bv). There was evidence of nuclei with apoptotic-like chromatin changes and

dilated endoplasmic reticulum (Fig 5Bvi). There appeared to be continued cytoplasmic vacuo-

lation consistent with progressive cell death (Fig 5Aviii, 5Aix and 5Bvi). These results are con-

sistent with the idea that DNA synthesis, endomitosis and cytokinesis are severely defective in

most but not all oocysts. Moreover, structural abnormalities in some Δcyc3 oocysts suggest that

they are incapable of forming viable sporozoites.

Transcriptome analysis of Δcyc3 parasites reveals modulated
expression of genes involved in signalling, ookinete invasion, and oocyst
development

The marked changes in Δcyc3 oocyst morphology and growth led us to analyse the regulation

of mRNA in Δcyc3 parasites compared with WT. We first used strand-specific RNA sequenc-

ing (RNA-seq) to investigate the global transcript levels in Δcyc3 andWT activated gameto-

cytes and ookinetes. The deletion of cyc3 was confirmed by RNAseq, with no reads mapping to

the region of the gene targeted for disruption (S6A Fig). Generally, most transcript levels were

very similar in activated gametocytes, with strong linkage between levels in Δcyc3 and WT

lines. However, the ookinete transcriptome was greatly altered by loss of cyc3, with many genes

down-regulated and a smaller number up-regulated. In total, 813 and 2,069 genes showed

modulated expression in activated gametocytes and ookinetes, respectively (p<0.05 and fold

change>2; 702 and 1,891 genes in activated gametocytes and ookinetes, respectively, with p

<0.01 and fold change>2) (Fig 6A, S6B Fig and S2 Table), including those with roles in revers-

ible phosphorylation, transcription, cell signalling and inner membrane complex function (Fig

6B, S6C Fig and S3 Table). We identified several functional clusters that were significantly dif-

ferentially expressed in Δcyc3 (Fig 6B, S6C Fig and S3 Table) which may be collectively respon-

sible for the observed phenotype. Global Gene Ontology (GO) analysis showed enrichment of

genes associated with GO terms ‘kinase activity’, ‘protein phosphorylation’ and’ inner mem-

brane complex’ (S6D Fig).

To validate our RNA-seq data, we performed qRT-PCR analysis of specific sets of genes

known to have roles in cell cycle, signalling and transcription, or invasion and oocyst develop-

ment (Fig 6C and S2 Table). These data showed very good correlation with the RNA-seq results

(Fig 6D) validating the results for activated gametocytes and ookinetes. In addition, qRT-PCR

data were collected for schizonts and/or day 14 oocysts (Fig 6C); these data showed that most
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Fig 6. Transcript analysis of genes involved in parasite development. (A) Ratio-Intensity scatter plots for Δcyc3 activated gametocytes and ookinetes.
The y-axis shows the log2 fold change between wild-type and mutant and the x-axis shows the average of normalised FPKM (See also S2 Table).
Significantly up-regulated genes are highlighted in green while down-regulated genes are highlighted in red. (B) Heatmaps for invasion, kinase and
phosphatase gene clusters based on their log2 fold change in Δcyc3 activated gametocytes (inner track) and Δcyc3 ookinetes (outer track) relative to WT.
Functional groups were inferred from annotations available in GeneDB (http://www.genedb.org/). Genes that were found significantly misregulated are
shown in bold and those validated by qRT-PCR are shown in red. Full gene list and functional clusters are shown in S3 Table. (C) Log2 fold transcript change
in Δcyc3 at different life-cycle stages of cell cycle, signalling and transcription genes, and invasion and oocyst development genes, studied in Δcyc3

(compared against WT) using qRT-PCR. Data were normalised against an endogenous control gene, hsp70 (PBANKA_081890). Each bar is the mean of
relative expression in comparison to WT from three biological replicates ± SEM. Sch: schizonts; AG: activated gametocytes; Ook: ookinetes; Spor: 14 dpi
oocysts/sporozoites. * p�0.05; ** p�0.01, *** p�0.001. (D) Comparison of qRT-PCR and RNA-seq data (Cuffdiff2 analysis) using Log2 values for
activated gametocyte and ookinete samples.

doi:10.1371/journal.ppat.1005273.g006
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of the changes in transcript levels for these sets occur at the ookinete stage, with some addi-

tional effects in oocysts.

Importantly, both RNA-seq and qRT-PCR analyses showed that neither of the other two

Plasmodium cyclin genes were differentially expressed in response to deletion of cyc3, suggest-

ing that there is no compensation provided by up-regulation of other cyclins. In contrast, sev-

eral of the cdks were differentially expressed at different stages (Fig 6C): of particular interest

was crk1 and crk5, which were significantly up-regulated in ookinetes and are known to have

roles in gene transcription [49] and cell cycle [50], respectively.

Recently, it has been shown that a family of transcription factors (apiAP2) is responsible for

gametocyte commitment, as well as ookinete and sporozoite development [36,51–55]. This

family is also a feature of chromerid genomes and their evolutionary history suggests they have

mediated evolutionary changes during lineage differentiation [56]. Our analysis showed that

several apiAP2 family members were affected by cyc3 deletion, notably a significant down-reg-

ulation of ap2-sp and ap2-l in Δcyc3 ookinetes and oocysts, consistent with a reduction in nor-

mal oocyst formation (Fig 6C, S6C Fig and S2 Table). Due to the important role of reversible

phosphorylation in cell cycle progression in other systems [3], we next looked at the expression

of protein kinases, phosphatases and cell cycle proteins involved in parasite development, espe-

cially those that either display a similar phenotype to that of Δcyc3 when deleted (pk7, ppm5)

or are involved in sexual development (nek4). The expression of genes involved in male sexual

development (cdpk4 and cdc20) [29,57,58] was not significantly affected. Furthermore, the

transcription of ppm7, ppm5 and pk7, which have similar protein localisation and/or similar

phenotypes in gene knock-out lines [30,31], were also unaffected (Fig 6C). However, two genes

important for zygote differentiation (nek2 and nek4) [47,59] were significantly mis-regulated

in activated gametocytes and ookinetes. Based on the phenotype observed in Δcyc3 parasites

and the fact that several known invasion genes were significantly affected, as detected in the

RNA-seq analysis, we next focused on genes involved in ookinete invasion and oocyst develop-

ment. Interestingly, there was a marked down-regulation of genes required for ookinete motil-

ity and invasion (Fig 6C), such asmtip, ctrp and soap [60,61], despite the fact that ookinete

development and motility appeared to be unaffected (S4 Fig). Genes known to be required dur-

ing oocyst development, such as cap380, coding for a capsule protein necessary for healthy

oocyst formation and subsequent transmission [62], and csp, important for infectivity of the

host [63], were mis-regulated in multiple stages (Fig 6C). These data suggest that the oocyst

development phenotype in Δcyc3may be a downstream consequence of the mis-regulation of

these genes, well before sporogony commences.

Overall, deletion of cyc3 caused the modulated expression of a number of genes related to

the observed phenotype, especially in ookinetes, including transcription factors, putative cyclin

binding partners, and genes for signalling and subsequent oocyst development.

Discussion

The molecular mechanisms controlling the cell cycle and mitosis are regulated by key mole-

cules including CDKs and cyclins. Cyclins are key regulators of CDKs and are synthesised and

degraded at specific phases of the cell cycle [5,64]. Although cdk/cyclins have been well studied

in many eukaryotic model systems, their role in the unicellular parasite Plasmodium is not well

understood. Here, we show that despite its complex and atypical pattern of cell cycle and divi-

sion, Plasmodium only has three cyclin genes, a very small complement compared to other

organisms including human (30 annotated genes in the Refseq dataset), yeast (22 genes) and

Drosophila (12 genes). Plasmodium has no Group I cyclins but has homologues belonging to

Group II (CYC3) and Group III (CYC1 and CYC4). CYC3 is a P-type cyclin, a family which
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contains many cyclins of plants (CYCPs) [17]. It also shows similarity to PHO80 cyclin from

Saccharomyces cerevisiae [20] and a G1 cyclin present in kinetoplastids [65,66]. Both Pho80

and plant CYCPs appear to link cell cycle regulation to nutritional status: in yeast, Pho80 and

other P-like cyclins associate with CDK Pho85 to phosphorylate a variety of substrates involved

in phosphate, glycogen and carbon source metabolism (reviewed in [16]), whereas CYCP2;1 in

Arabidopsis is required for G2/M transition in meristem activation in a nutrition-responsive

manner [18]. Trypanosomes encode at least three P-type cyclins, CYC2, 4, and 7, with CYC10

and 11 being likely divergent members of the family (“Pho80-like” cyclin TbCYC5 [66] is a

cyclin Y, see S1 Fig). In contrast to CYCP, Trypanosoma brucei CYC2 is required for progres-

sion from G1 phase in the insect stage of the parasite [67], which would put its cell cycle activity

in a position more akin to the Pho80-like cyclins (Pcls) in yeast [16]. In keeping with this,

TbCYC2 is able to rescue a yeast CLN mutant [19], in which 3 Group I G1 cyclins, CLN1, 2

and 3, were inactivated [68].

There are only three clearly identifiable CDKs (PfPK5, Pfcrk1 and Pfcrk3) in the Plasmo-

dium genome [31,69]. The lack of cyclin D in Plasmodium here mirrors the absence of CDK4/

6 orthologues previously reported [49], and Pfcrk1 is a CDK10/11-related protein [69], which

matches well with the presence of cyclin L family members identified here. Moreover, a fourth

protein, Pfmrk, was initially described as a CDK7 homologue and was shown to be stimulated

by binding to human cyclin H in vitro [70], but subsequent work showed that its affinities are

less clear [69] and functional work suggests it might be a RNA polymerase II carboxyl-terminal

domain kinase rather than a CDK [71]. There is no homologue of Pho85 identified in Plasmo-

dium and the essential kinase PfPK5 is a relative of CDK1/2, which would normally be acti-

vated by a Group I cyclin in animals or fungi.

Transcription of P. berghei cyclins varies during different phases of the life cycle with the

highest transcription seen in gametocytes and schizonts [35]. Our localisation studies of

CYC3-GFP by fluorescence and deconvolution microscopy showed both cytoplasmic and

nuclear localisation, which is expected given the localisation and role of most cyclins in model

systems [10]. The subcellular location of P-type cyclins (for example, CYCP2;1) in plants is

mainly nuclear [18], however, TbCYC2 is also expressed in the cytosol of procyclic forms and

controls posterior morphogenesis of the parasite during the G1/S and G2/M transition

[19,65,66,72].

A recent study on the AP2-O transcription factor in Plasmodium showed that cyc3 is a tar-

get of AP2-O and used deletion of cyc3 as a validation tool to show that it had a role in ookinete

to oocyst development [36]. Our gene deletion mutant is consistent with this analysis in terms

of number and size of oocysts, but further dissects in depth the function of cyc3 throughout the

lifecycle using transcriptome analysis and high resolution microscopy. Maturation of most of

the Δcyc3 oocysts, based on their abnormal shape and size, was impaired in infected mosquito

guts, and detailed studies revealed that this defect in oocyst growth and differentiation began

during early sporogony. Plasmodium oocysts contain a highly lobed syncytial nucleus that

divides at the time of sporozoite budding into a number of lobes, which undergo subsequent

mitotic division resembling endomitosis [23,25]. The Δcyc3 phenotype suggests that although

initial oocyst formation occurs, in many of the oocysts the division of nuclear lobes with oocyst

growth is drastically affected and further budding of sporozoites from these lobes does not

occur. This defect leads to abnormalities in membrane formation, vacuolation and subsequent

cell death during the later stages of sporogony. The characteristics of Δcyc3 oocyst development

suggest that maturation and differentiation are arrested, with cells unable to progress further to

form additional lobes and start sporozoite budding and mitotic division.

A number of gene deletion mutants have been described in Plasmodium that affect oocyst

maturation for example; PbCAP380, affecting oocyst capsule formation [62]; PbGEX and
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PbDMC1, affecting oocyst size and sporozoite formation [73,74]; PbLAPs and PbCDLK, affect-

ing sporogony but not the size of the oocyst [31,75,76]; PbMISFIT, causing small sized oocysts

[77]; and G actin sequestering protein (C-CAP) affecting oocyst development and showing

similar features to Δcyc3 during early oocyst development [78]. However, the phenotype of

Δcyc3 lines differs from that of all these mutants due to the fact that some normal oocysts are

produced, which are able to form invasive salivary gland sporozoites and initiate liver stage

infection. Moreover, none of the other mutated genes was implicated in cell cycle control or

cell division. The presence of a small number of normal oocysts/sporozoites in the Δcyc3

mutant does suggest that CYC3 has a subtle role in oocyst/sporozoite development. The reduc-

tion in sporozoite number (in addition to the reduction in oocyst number) is drastic at 14 and

21 dpi compared to the WT parasites and there is clear expression of CYC3-GFP in 14 dpi

oocysts, both indicative of a role in sporozoite development. This might suggest that there are

unknown regulatory mechanisms involved in the control of the oocyst development that can

by-pass a default CYC3-dependent pathway to some degree in these parasites during early

oocyst development and sporogony.

Specific protein kinase and phosphatase mutants (PbPK7 and PbPPM5) show some resem-

blance to the Δcyc3 phenotype, with a reduced number of oocysts, which were abnormally

small and did not complete sporogony before arresting [30,31]. However, only minor changes

in the transcript level of protein kinase (pk7) or phosphatase (ppm5) were detected. Conversely,

cyc3 transcripts are down-regulated in Δppm5 parasites [30] suggesting that PPM5 acts

upstream of CYC3.

Gene deletion revealed that CYC3 is dispensable during asexual multiplication in erythro-

cytes and in the liver (erythrocytic and exo-erythrocytic schizogony) and sexual development

during male gametogenesis. However, CYC3 clearly modulates sporogony via endomitotic

multiplication during oocyst development in the mosquito. Oocysts are the only replicative

extracellular stage during the parasite life cycle, and therefore it is possible that CYC3 modu-

lates this extracellular replication in response to metabolic sensing within the mosquito. For

example, Arabidopsis CYCP2;1 is transcribed in response to sugar signals by a specific tran-

scriptional factor, allowing cell cycle progression [18]. CYC3 may have a direct or indirect role

in regulation of transcription in the ookinete, of specific genes involved in oocyst growth

(defined as a G1 phase) and sporogony (defined as S/mitotic phases), and that could explain

why we see expression of CYC3-GFP in ookinetes and 10 to 14 dpi oocysts. Rescue experiments

in yeast suggest that Plasmodium CYC3 does not behave as a classical G1 or G2/M cyclin, or at

least cannot substitute for the function of yeast cyclins. Nevertheless the peak in expression of

CYC3-GFP around 10 to 14 dpi of oocyst development, just before sporogony, and the defect

in sporozoite production in Δcyc3mutants, are both consistent with a cyclin-B-like role in cell

cycle progression and a role in G1/S progression.

Global transcript analysis of the Δcyc3mutant suggested that neither cyc1 nor cyc4 compen-

sates for the cyc3 deletion. Analysis of all the CDKs showed that several, including crk1, with a

role in transcription [49], were mis-regulated at several stages in Δcyc3 parasites; however it is

unlikely that transcription of a putative CDK partner would be controlled by CYC3. It has

been reported previously that PfCYC3 binds and activates the CDK1 homologue, PfPK5, in

vitro [35], and a similar result was reported for the homologues from Eimeria tenella [79],

although we saw no significant mis-regulation of pk5 in Δcyc3 parasites and no study has

shown a Plasmodium cyclin-CDK interaction in vivo. Other cell cycle genes were affected

including predicted members of the mini chromosome maintenance (MCM) family. While no

MCM has been functionally characterised in Plasmodium, the MCM family has been bioinfor-

matically well classified in Apicomplexa [80,81] and MCMs are known to be important for G1/

S phase progression and initiation of DNA replication [82].
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Misregulation of genes involved in ookinete invasion and structure (such asmtip, ctrp and

soap) had no observable effect on ookinete motility or oocyst formation at 5 dpi and we

observed no detectable phenotype with electron microscopy, however, a subtle delay in oocyst

initiation (due to ookinete invasion or motility) may be enough to initiate deleterious conse-

quences downstream during oocyst development. In addition to this, we cannot rule out the

possibility that CYC3 is indirectly involved in nutrient/environmental sensing in the mosquito

gut, a known function of cyclins in other systems [18]. The mis-regulation of these, as yet

undefined, genes may be responsible for the mixed population of small, defective oocysts versus

normal, healthy oocysts. Thus, the absence of cyc3may make these parasites more sensitive to

environmental stimuli such as nutrient abundance, or the impact of developmental mis-timing

(via mis-regulation of invasion genes).

Oocyst growth may further deteriorate following the mis-regulation of genes required for

oocyst development (such as cap380). Transcription analysis also showed that several members

of the apiAP2 transcription factor family, which have been shown to regulate various stages of

development, were affected in Δcyc3 oocysts. This is perhaps unsurprising considering that

normal regulation of these genes is required for successful oocyst development [52,53,55].

Global transcriptomics is a useful tool for the identification of possible dysregulation and com-

pensatory mechanisms in Δcyc3 parasites however the measurement of mRNA levels is not

necessarily indicative of the corresponding protein levels. Future proteomic work may provide

more information on protein-protein interactions betweenCYC3 and putative CDK partners

or on the effects of cyc3 deletion on global (or cell cycle specific) protein levels in the Δcyc3

mutant.

In conclusion, this is the first study to classify phylogenetically the cyclins in Plasmodium

and uncover, in depth, an important function for CYC3, a novel P-type cyclin. We describe a

key role for this cyclin during the early stages of ookinete to oocyst development, specifically

the G1/S phase, which subsequently affects differentiation and sporogony, suggesting it is a

modulator of transcription and oocyst endomitotic development in Plasmodium.

Materials and Methods

Ethics statement

All animal work at Nottingham has passed an ethical review process and was approved by the

United Kingdom Home Office. Work was carried out in accordance with the United Kingdom

‘Animals (Scientific Procedures) Act 1986’ and in compliance with ‘European Directive 86/

609/EEC’ for the protection of animals used for experimental purposes under UK Home Office

Project Licenses 40/3344 and 30/3248. Sodium pentabarbitol was used for terminal anaesthesia

and a combination of ketamine followed by antisedan was used for general anaesthesia. All

efforts were made to minimise animal suffering.

Animals

Six-to-eight week old female Tuck-Ordinary (TO) (Harlan) outbred mice were used for all

experiments.

Bioinformatic analysis of cyclins

To identify cyclin-like proteins, a pan-cyclin hidden Markov model was used to perform a sim-

ilarity search using HMMER3 [83]. Briefly, all annotated cyclins were taken from the predicted

proteomes of human, Arabidopsis thaliana, Caenorhabditis elegans, Saccharomyces cerevisiae,

Schizosaccharomyces pombe, and Toxoplasma gondii. These cyclins were aligned using
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MAFFTv6.925b [84] with the L-INS-i strategy [85], trimmed to conserved regions and used to

create a HMM, which was used to search the predicted proteomes of 12 apicomplexan parasites

(EuPathDB; http://eupathdb.org; see Fig 1C) as well as 20 other eukaryotes from diverse

groups. The conserved cyclin domains were excised from these sequences based on HMM hits

with e-values� 10−18, realigned and used to create a refined HMM, which was then used to re-

search the apicomplexan proteomes at a threshold of e-value� 10−12. Alignments of cyclins

were trimmed to conserved regions and used to infer maximum likelihood phylogenies as

implemented by the program PhyML3.0 [86] using the LG substitution matrix with a gamma-

distributed variation in substitution rate approximated to 4 discrete categories (shape parame-

ter estimated from the data). Trees shown are a majority-rule consensus of 100 bootstrap repli-

cates for each alignment.

Generation of transgenic parasites

For GFP-tagging by single homologous recombination [30], a 986 bp region of cyc3 starting

332 bp upstream of the ATG start codon and omitting the stop codon was amplified using

primers T0891 and T0892. This was inserted upstream of the gfp sequence in the p277 vector

using KpnI and ApaI restriction sites. The p277 vector contains the human dhfr cassette, con-

veying resistance to pyrimethamine. Before transfection, the sequence was linearised using

HindIII,

The gene targeting vector for Δcyc3 lines was constructed using the pBS-DHFR plasmid,

which contains polylinker sites flanking a T. gondii dhfr/ts expression cassette conveying resis-

tance to pyrimethamine, as described previously [31]. PCR primers N0451 and N0452 were

used to generate a 411 bp fragment of 50 upstream sequence of cyc3 from genomic DNA, which

was inserted into ApaI and HindIII restriction sites upstream of the dhfr/ts cassette of

pBS-DHFR. A 663 bp fragment generated with primers N0453 and N0454 from the 30 flanking

region of cyc3 was then inserted downstream of the dhfr/ts cassette using EcoRI and XbaI

restriction sites. The linear targeting sequence was released using ApaI/XbaI. All of the oligo-

nucleotides used to make these constructs can be found in S1 Table.

P. berghei ANKA line 2.34 (for GFP-tagging) or ANKA line 507cl1 (for gene deletion [44])

were then transfected by electroporation [44]. Briefly, electroporated parasites were mixed

immediately with 100 μl of reticulocyte-rich blood from a phenylhydrazine (6mg/ml, Sigma)

treated, naïve mouse, incubated at 37°C for 20 min and then injected intraperitoneally. From

day 1 post infection pyrimethamine (70 μg/ml, Sigma) was supplied in the drinking water for

four days. Mice were monitored for 15 days and drug selection was repeated after passage to a

second mouse. Resistant parasites were then used for cloning by limiting dilution and subse-

quent genotyping.

Genotypic analysis of mutants

For the C-terminal fusion GFP-tagged parasites, a diagnostic PCR reaction was used as illus-

trated in S2 Fig. Primer 1 (INT T89) and Primer 2 (ol492) were used to determine correct inte-

gration of the gfp sequence at the targeted locus (S1 Table). After confirmation of correct

integration, genomic DNA from wild type and transgenic parasites was digested with BsmI

and the fragments were separated on a 0.8% agarose gel, blotted onto a nylon membrane, and

probed with a PCR fragment homologous to the P. berghei genomic cyc3 sequence cloned in

the p277 vector, using the Amersham ECL Direct Nucleic Acid Labelling and Detection kit

(GE Healthcare). Parasites were also visualised on a Zeiss AxioImager M2 (Carl Zeiss, Inc)

microscope fitted with an AxioCam ICc1 digital camera (Carl Zeiss, Inc) and analysed by

Western blot to confirm GFP expression and the correct protein size.
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For the gene knockout parasites, two diagnostic PCR reactions were used as shown in S3

Fig. Primer 1 (INT N45) and primer 2 (ol248) were used to determine successful integration of

the selectable marker at the targeted locus. Primers 3 (N45 KO1) and 4 (N45 KO2) were used

to verify deletion of the gene. After confirmation of integration, genomic DNA from wild type

and mutant parasites was digested with HindIII and the fragments were separated on a 0.8%

agarose gel, blotted onto a nylon membrane (GE Healthcare), and probed with a PCR fragment

made with primers N0453 and N0454 which is homologous to the P. berghei genomic DNA

just outside of the targeted region. All of the oligonucleotides used to genetically confirm these

mutant parasite lines can be found in S1 Table.

Chromosomes of wild type, gene knockout and GFP-tagged parasites were separated by

pulsed field gel electrophoresis (PFGE) on a CHEF DR III (BioRad) using a linear ramp of 60–

500 s for 72 h at 4 V/cm. Gels were blotted and hybridized with a probe recognizing both the

resistance cassette in the targeting vector and, more weakly, the 30UTR of the P. berghei dhfr/ts

locus on chromosome 7.

Phenotypic analysis

To record the nuclei number per schizont, merozoites in late schizonts were counted 18–24

hours after schizont cultures were made. Exflagellation was examined on day 4 to 5 post-infec-

tion. Ten μl of gametocyte-infected blood was obtained from the tail with a heparinised pipette

tip and mixed immediately with 40 μl of ookinete culture medium (RPMI1640 containing 25

mMHEPES, 20% fetal bovine serum, 10 mM sodium bicarbonate, 50 μM xanthurenic acid at

pH 7.6). The mixture was placed under a Vaseline-coated cover slip and 15 min later exflagella-

tion centres were counted by phase contrast microscopy in 12–15 fields of view using a 40×

objective and 10× ocular lens. Ookinete formation was assessed the next day. Ten μl of infected

tail blood was obtained as above, mixed immediately with 40 μl ookinete culture medium, and

incubated for 2 hours at 20°C to allow completion of gametogenesis and fertilisation. Each cul-

ture was then diluted with 0.45 ml of ookinete medium and incubated at 20°C for a further 21–

24 hours to allow ookinete differentiation. Cultures were pelleted for 2 min at 5000 rpm and

then incubated with 50 μl of ookinete medium containing Hoechst 33342 DNA dye to a final

concentration of 5 μg/ml and a Cy3-conjugated mouse monoclonal antibody 13.1 [58] recog-

nizing the P28 protein on the surface of ookinetes and any undifferentiated macrogametes or

zygotes. P28-positive cells were counted with a Zeiss AxioImager M2 microscope (Carl Zeiss,

Inc) fitted with an AxioCam ICc1 digital camera. Ookinete conversion was expressed as the

percentage of P28 positive parasites that had differentiated into ookinetes [45].

For mosquito transmission experiments 20–50 Anopheles stephensi SD500 female mosqui-

toes were allowed to feed for 20 min on anaesthetised infected mice whose asexual parasitaemia

had reached ~12–15% and were carrying comparable numbers of gametocytes as determined

by Giemsa stained blood films. Days 5, 7, 10, 14, and 21 days post-infection (dpi) 20 mosqui-

toes were dissected and oocysts on their midguts counted. Oocyst formation was examined fol-

lowing Hoechst 33342 staining in PBS for 10–15 min and guts were mounted under Vaseline-

rimmed cover slips. Counting and images were recorded using 10x and 63x oil immersion

objectives on a Zeiss AxioImager M2 microscope fitted with an AxioCam ICc1 digital camera.

At 14 and 21 dpi, the same mosquito midguts used to record the oocyst number were homoge-

nised in a loosely fitting homogeniser to release sporozoites, which were then quantified using

a haemocytometer. Only for 21 dpi mosquitoes, salivary glands were dissected and homoge-

nised in a loosely fitting homogeniser to release sporozoites, which were then quantified using

a haemocytometer. Due to day-to-day variations in transmission levels, all data were normal-

ised to a matching number of wild type controls analysed on the same day. Mosquitoes infected
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with wild type or Δcyc3 parasites were used to perform bite back experiments with a TO mouse

each in three independent experiments. Blood stage parasitaemia was measured for wild-type

and Δcyc3 by Giemsa staining at 4 dpi.

Oocyst diameter was measured with the AxioVision Imager software from images of 50–60

oocysts, in triplicate for 5, 7, 10, 14 and 21 dpi using a 63x oil immersion objective on a Zeiss

AxioImager M2 microscope fitted with an AxioCam ICc1 digital camera.

For genetic complementation, we used either male (Δp48/45 and Δhap2) or female (Δdozi

and Δnek4) parasites using a method described previously [30]. Briefly, mice were infected

with combinations of the different parasite lines mentioned above and subsequently fed to 3–6

day old mosquitoes. These were dissected 12–14 dpi and the diameter of oocysts was deter-

mined as mentioned above. Statistical analyses were performed using GraphPad Prism (Graph-

Pad Software). For comparison between Δcyc3 and WT, an unpaired Student’s t-test was used.

For the fluorescence pictures of CYC3-GFP oocysts, mosquito midguts have been dissected

at 5, 7, 10, 14 and 21 dpi and images were recorded using 63x oil immersion objectives on a

Zeiss AxioImager M2 microscope fitted with an AxioCam ICc1 digital camera.

Western blotting

Schizont, gametocyte and ookinete samples were isolated as described below. WT-GFP or

CYC3-GFP samples were then purified using a GFP-Trap kit to immunoprecipitate GFP-

fusion protein (Chromotek). After the addition of Laemmli sample buffer, the samples were

boiled and an equal concentration of total protein was loaded on a 4–12% SDS-polyacrylamide

gel. Samples were subsequently transferred to nitrocellulose membranes (Amersham Biosci-

ences) and immunoblotting performed using the Western Breeze Chemiluminescent Anti-

Rabbit kit (Invitrogen) and anti-GFP polyclonal antibody (Invitrogen) at a concentration of

1:1250, according to the manufacturer's instructions.

Electron microscopy

Ookinete samples (described below) and mosquito midguts at 7, 10, 14 and 21 dpi were fixed

in 4% glutaraldehyde in 0.1 M phosphate buffer and processed for routine electron microscopy

as previously described [87]. Briefly, samples were post fixed in osmium tetroxide, treated en

bloc with uranyl acetate, dehydrated and embedded in Spurr's epoxy resin. Thin sections were

stained with uranyl acetate and lead citrate prior to examination in a JEOL1200EX electron

microscope (Jeol UK Ltd).

Purification of schizonts, gametocytes, ookinetes and oocysts

Purification of gametocytes was achieved using a protocol modified from [88]. Mice were

treated by intra-peritoneal injection of 0.1 ml of phenylhydrazine (6 mg/ml,Sigma) in PBS to

encourage reticulocyte formation four days prior to infection with parasites. Four days after

parasites injection in mice, mice were treated with sulfadiazine (Sigma) at 20 mg/L in their

drinking water for two days to eliminate asexual blood stage parasites. On day six post-injec-

tion (p.i), mice were bled by cardiac puncture into heparin and gametocytes separated from

uninfected erythrocytes on a 48% NycoDenz gradient (27.6% w/v NycoDenz in 5 mM Tris-

HCl, pH 7.20, 3 mM KCl, 0.3 mM EDTA) in coelenterazine loading buffer (CLB), containing

PBS, 20 mMHEPES, 20 mM Glucose, 4 mM sodium bicarbonate, 1 mM EGTA, 0.1% w/v

bovine serum albumin, pH 7.25. Gametocytes were harvested from the interface and washed

twice in RPMI 1640 ready for activation of gamete formation. Blood cells from day 5 p.i mice

were placed in culture (40 ml RPMI 1640, 8 ml foetal bovine serum, 0.5 ml penicillin and strep-

tomycin; per 0.5 ml blood) for 24 h at 37°C for schizont- (with rotation at 100 rpm) and at
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20°C for ookinete production, as described above. Schizonts and ookinetes were purified on

60% and 63% NycoDenz gradients, respectively and harvested from the interface and washed.

For 14 dpi oocysts, 20 mosquito midguts were collected and homogenised with PBS in a loosely

fitting homogeniser to release sporozoites as described above.

Transcriptome sequencing and analysis

Parasites (activated gametocytes and ookinetes) were collected from Δcyc3 or GFP-expressing

lines. Samples were passed through a plasmodipur column to remove host DNA contamina-

tion prior to RNA isolation. Total RNA was isolated from purified parasites using an RNeasy

purification kit (Qiagen). RNA was vacuum concentrated (SpeedVac) and transported using

RNA stable tubes (Biomatrica). Strand-specific mRNA sequencing was performed from total

RNA using TruSeq Stranded mRNA Sample Prep Kit LT (Illumina) according to the manufac-

turer's instructions. Briefly, polyA+ mRNA was purified from total RNA using oligo-dT dyna-

bead selection. First strand cDNA was synthesised primed with random oligos followed by

second strand synthesis where dUTPs were incorporated to achieve strand-specificity. The

cDNA was adapter-ligated and the libraries amplified by PCR. Libraries were sequenced in an

Illumina Hiseq machine with paired-end 100bp read chemistry.

RNA-seq read alignments were mapped onto the P. bergheiANKA genome (May 2015 release

in GeneDB—http://www.genedb.org/) using Tophat2 (version 2.0.13) [89] with parameters “—

library-type fr-firststrand–no-novel-juncs–r 60”. Transcript abundances (reported as FPKM-

fragments per kilobase of exon per million fragments) were quantified and differential expression

analysis was performed using Cuffdiff2 version 2.2.1 [90]. Genes with fold change greater than 2

and p-value less than 0.05 were considered as significantly differentially expressed. As a form of

independent validation of the differentially expressed genes, transcript abundances were

extracted as raw read counts using htseq-count [91] and differential expression analysis per-

formed using DESeq2 [92] in R version 3.2.1. P. bergheiGO terms (Gene Ontology) were down-

loaded from GeneDB (http://www.genedb.org/; May 2015 release) and gene ontology

enrichment analysis was performed for the DEG lists using GOstats R package [93]. All analyses

and visualizations were done with R packages- cummeRbund [94] and ggplot2 [95].

Quantitative RT-PCR

Total RNA was isolated from purified parasites using an RNeasy purification kit (Qiagen). For

qRT-PCR, cDNA was synthesised using an RNA-to-cDNA kit (Applied Biosystems) allowing

quantification from 250 ng of total RNA. qRT-PCR reactions consisted of 2 μl cDNA, 5 μl

SYBR green fast master mix (Applied Biosystems), 0.5 μl (500 nM) each of the forward and

reverse primers, and 2 μl DEPC-treated water. Where possible, one of the primer pairs was

placed over an intron, primers had melting temperatures of 60–62°C and together amplified a

region 70–200 bp long. Analysis was conducted using an Applied Biosystems 7500 fast

machine with the following cycling conditions: 95°C for 20 sec followed by 40 cycles of 95°C

for 3 sec; 60°C for 30 sec. Wild-type expression was determined using the Pfaffl method [96].

Relative quantification in the mutant line was normalised against wild-type expression using

the ΔΔCt method. Both methods used hsp70 (and arginine-tRNA synthetase for wild-type

expression) as a reference gene to provide a baseline of transcription levels between replicates

to allow normalization of the data [29]. Three biological replicates were used for each stage

(each with two technical replicates). See S1 Table for a full list of the primers used for

qRT-PCR. Statistical analyses were performed using Excel and GraphPad Prism (GraphPad

Software), with graphs showing normalised expression in Δcyc3 compared to a transcription

baseline derived fromWT. For relative gene expression, a Student’s unpaired t-test was used.
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For RNA-seq and qRT-PCR comparison, we used�30 genes at each stage and used GraphPad

Prism (GraphPad Software) to calculate fit and coefficient of determination.

Yeast experiments

Standard protocols of handling Schizosaccharomyces pombe and Saccharomyces cerevisiae were

followed [97,98]. For yeast complementation experiments, the triple-clnmutant (cln1Δ cln2Δ

cln3Δ TRP::GAL1-CLN3 ade1 leu2-3 his2 trp1-1 ura3Δ bar1Δ pep4Δ::LEU2) or cdc13 tsmutant

strain (h- cdc13-117 leu1-32) was used.

Deconvolution microscopy

High resolution live cell imaging was performed using an Olympus-based Delta Vision Elite

work station fitted with a 100x objective (numerical NA 1.4, oil). Post-acquisition analysis was

carried out using Applied Precision software. Images presented are 2D projections of decon-

volved Z-stacks of 0.3 μm optical sections.

Ookinete motility assay

The ookinete motility assay was performed as previously described [99]. Twenty five microli-

ters of the ookinete cultures were added to an equal volume of Matrigel (BD) on ice, mixed

thoroughly, added to a slide, covered with a Vaseline-rimmed cover slip, and sealed with nail

varnish. The Matrigel was then allowed to set at room temperature for at least 30 minutes.

After identifying a field containing ookinetes, time-lapse videos (1 frame every 5 sec, for 10

min) were taken of ookinetes using the differential interference contrast (DIC) settings with a

63× objective lens on a Zeiss AxioImager M2 microscope fitted with an AxioCam ICc1 digital

camera controlled by the Axiovision (Zeiss) software package. Speed of motility of individual

ookinetes was measured by multiplying the number of body lengths moved by the length of the

ookinete during the 10 min video, divided by 10. Multiple independent slides and cultures

were used for each parasite line.

Ookinete nuclear DNA content measurement

The nuclear content of the Δcyc3 ookinete was measured by the formula as previously

described [58]. Briefly, to measure nuclear DNA content of microgametocytes, digital images

of Hoechst-stained fixed or unfixed cells were obtained using a Zeiss AxioImager M2 micro-

scope fitted with an AxioCam ICc1 digital camera and analysed using ImageJ software version

1.33u (National Institutes of Health, USA). The relative nuclear fluorescence intensity was

determined with the following formula: Area (pixel) × (average intensity (relative units) − aver-

age background intensity (relative units)). The nuclear fluorescence intensity was standardized

to the haploid DNA content by measuring the fluorescence intensity of ring-stage parasites in

parallel on the same slide and with the same microscope and camera settings.

Supporting Information

S1 Fig. Phylogenetic analysis of cyclins. Amaximum likelihood protein phylogeny comparing

apicomplexan cyclins to sequences from human, Schizosaccharomyces pombe, and Trypano-

soma brucei. Select Arabidopsis cyclins and Pho80 from Saccharomyces cerevisiae have been

included for clarity of protein families. A consensus tree from 100 bootstrap replicates based

on 270 alignable positions is shown with topology support at nodes. Protein domain architec-

tures were predicted from the models in Pfam27 with e-value� 0.001.

(TIF)
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S2 Fig. Generation and genotypic analysis of CYC3-GFP parasites. (A) Schematic represen-

tation of the endogenous cyc3 locus, the GFP-tagging construct and the recombined cyc3 locus

following single cross-over recombination. Following recombination, the cyc3 locus contains

the tagged copy and the original cyc3 CDS lacking all but 332 bp of upstream region, which is

unlikely to sufficient for transcription. Arrows 1 and 2 indicate PCR primers used to confirm

successful integration in the cyc3 locus following recombination. (B) Integration PCR of the

cyc3 locus in wild type and CYC3-GFP parasites using primers IntT89 and ol492. Integration

of cyc3 with gfp gives a band of 1.2 kb. (C) Pulse Field Gel Electrophoresis (PFGE) using a

pbdhfr 3’UTR probe. The probe recognises the endogenous dhfr locus on chromosome 7 and

the recombined cyc3 locus on chromosome 12. (D) Southern blot analysis of WT and cyc3 par-

asite genomic DNA following BsmI digestion. A probe specific for the fragment homologous

to the P. berghei genomic cyc3 sequence cloned in the p277 vector bound to a 5.5 kb band in

WT and to a 12 kb band in Δcyc3 parasites. (E) Western blot of CYC3-GFP (54 kDa) and

WT-GFP (29 kDa) protein to illustrate CYC3-GFP concentration in three different parasite

stages. Total protein concentration for CYC3-GFP samples was normalised across all three

samples and controlled by a Coomassie gel (see below the western blot). WT-GFP is shown as

a control. Sch: schizont, AG: activated gametocytes, Ook: Ookinetes. (F) Total number of

oocysts per infected mosquito at 14 dpi for CYC3-GFP and WT lines. Bar is the mean ± SEM.

n = 2 independent experiments (15 mosquitoes for each) p>0.1. As the tagged line is not a

clonal population, in the CYC3-GFP parasite line 86% of oocysts were expressing GFP. The

rest of the oocysts are a WT population (not expressing GFP). (G) Individual CYC3-GFP and

WT oocyst diameters measured in μm at 14 dpi p<0.001.

(TIF)

S3 Fig. Generation and genotypic analysis of Δcyc3 parasites. (A) Schematic representation

of the endogenous cyc3 locus, the targeting knock out construct and the recombined cyc3 locus

following double homologous cross-over recombination. Arrows 1 and 2 indicate PCR primers

used to confirm successful integration in the cyc3 locus following recombination and arrows 3

and 4 indicate PCR primers used to show deletion of the cyc3 gene. (B) Integration PCR of the

cyc3 locus in WT and Δcyc3 cl.1 and cl.3 parasites using primers INT N45 and ol248. Integra-

tion of the targeting construct gives a band of 0.7 kb. Presence of the gene gives a band of 0.2

kb. (C) Southern blot analysis of WT, cyc3 cl.1 and cyc3 cl.3 parasite genomic DNA following

HindIII digestion. A probe specific for the cyc3 3’UTR bound to a 3.7 kb band in WT and to a

7.6 kb band in Δcyc3 parasites. (D) Pulse Field Gel Electrophoresis (PFGE) using a pbdhfr

3’UTR probe. The probe recognises the endogenous dhfr locus on chromosome 7, the gfp cas-

sette integrated in the 230p locus of the GFP-transgenic parasites used for transfection (chro-

mosome 4) and the recombined cyc3 locus on chromosome 12.

(TIF)

S4 Fig. Sporozoite numbers in WT and Δcyc3 parasite lines and Δcyc3 ookinetes show no

observable phenotypes. (A) Total number of sporozoites per mosquito from 21 dpi salivary

glands for Δcyc3 andWT lines. Three independent experiments are described, n = 20 mosqui-

toes for each replicate. (B) Table of mosquito numbers for Δcyc3 andWT lines. Bite back data

are presented as day in which blood stage parasites are observed. dpi = days post infection. (C)

Low power ultrastructural images of WT (i) and Δcyc3 (ii) ookinetes. N–nucleus. M–micro-

nemes. Bars represent 1 μm. (D) Graph representing the DNA content of Δcyc3 ookinetes com-

pared to WT. (E) Graph representing the motility of Δcyc3 ookinetes compared to WT.

(TIF)
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S5 Fig. Complementation of cyclin in yeast. (A) Plasmodium cyc3 cannot complement the tri-

ple cln (G1 cyclin) mutant of the budding yeast Saccharomyces cerevisiae. The triple-clnmutant

cln1 cln2 cln3 is lethal (+Glucose, empty vector), but it can be rescued by GAL-CLN3 (+-

Galactose). Plasmodium cyc3, CLN2 or empty vector was expressed under the control of the

methionine-repressible MET3 promoter. In the absence of methionine (promoter ON), Plas-

modium cyc3 (MET3-Pb_cyc3) was unable to rescue and form any colony whereas

MET3-CLN2 rescued the triple clnmutant and these cells grew normally. (B) Plasmodium cyc3

cannot complement the temperature-sensitive (ts) defect of a cdc13-117 allele (B-type cyclin)

of the fission yeast Schizosaccharomyces pombe. The ts cdc13-117mutant strains expressing the

indicated plasmids were grown on the minimal medium plates in the absence of thiamine for 3

days at the restrictive temperature (36°C) or the permissive temperature (25°C). Cyclins were

expressed from the nmt1medium-strength promoter (pREP41) or low-strength promoter

(pREP81). Although S. pombe cdc13+ rescued the temperature sensitivity (36°C), neither Pk

epitope-tagged nor MH (c-myc and His6) tagged Pbcyc3 rescued. At the permissive tempera-

ture (25°C), all the strains grew normally.

(TIF)

S6 Fig. Transcript analysis. (A) Strand-specific RNAseq reads aligned onto Plasmodium ber-

ghei genome, as visualized using Artemis. cyc3 gene is expressed in the wild types as shown by

RNAseq reads in the reverse (-ve) strand, while a major portion of the gene is deleted in the

knockouts as shown by the absence of RNAseq reads (area shaded in red).(B) Multidimen-

sional scaling of gene expression values for WT and Δcyc3 RNA-seq samples shows tight corre-

lation among individual replicates within each sample group. (C) Heatmaps for cell cycle,

inner membrane complex and apiAP2 transcription factor gene clusters based on their log2
fold change in Δcyc3 activated gametocytes (inner circular track) and Δcyc3 ookinetes (outer

circular track) relative to WT. Functional groups were inferred from annotations available in

GeneDB (http://www.genedb.org/). Genes that were found significantly misregulated are

shown in bold and those validated by qRT-PCR are shown in red. Full gene list and functional

clusters are shown in S3 Table. (D) GO term enrichment analysis of cyc3 activated gametocytes

and ookinetes. The size of the dot is proportional to the level of significance and the color

intensity represents the fold enrichment of enriched terms in biological process (green), molec-

ular function (purple) and cellular component (pink).

(TIF)

S1 Table. Oligonucleotides used in this study.

(XLSX)

S2 Table. List of differentially expressed genes (FDR-corrected p value< 0.05) between

Δcyc3 and WT activated gametocytes and ookinetes.

(XLSX)

S3 Table. RNA-seq data and functional clusters used to generate the heat maps.

(XLSX)
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