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    Abstract— The More-Electric Aircraft (MEA) has become a dominant trend for next-generation aircraft. The 

Electrical Power System (EPS) on-board may take many forms: AC, DC, hybrid, frequency-wild, variable voltage, 

together with the possibility of novel connectivity topologies. To address the stability, availability and capability issues 

as well as to assess the performance of the power quality and transient behaviour, extensive simulation work is 

required to develop the EPS architectures. The paper develops a fast-simulation model of active front-end rectifiers 

based on the dynamic phasor concept. The model is suitable for accelerated simulation studies of EPS under normal, 

unbalanced and line fault conditions. The performance and effectiveness of the developed model have been 

demonstrated by comparison against time-domain models in three-phase and synchronous space-vector 

representations. The experimental verification of the dynamic phasor model is also reported. The prime purpose of 

the model is for the simulation studies of MEA power architectures at system level; however it can be directly applied 

for simulation study of any other EPS interfacing with active front-end rectifiers. 

  

Index Terms – AC-DC power conversion, Aircraft Power Systems, Converters, Dynamics, Modelling, Rectifiers, Vectors. 

  



I. INTRODUCTION 

In recent years there has been significant penetration of power electronics into Electrical Power Systems (EPS). 

Terrestrial EPS’s, particularly at distribution level, promises a multiplicity of Power Electronic Converter (PEC) units 

handling renewable interfacing, energy storage and EPS conditioning. A similar scenario pertains for the More Electric 

Aircraft (MEA) and other mobile EPSs. In the MEA for example, the electrification of on-board power will require power 

electronic conversion to handle power distribution, flight actuation, landing gear, and other functions [1], [2]. 

The use of large numbers of PECs and their associated control systems has led to significant modelling challenges 

at the EPS system level due both to system complexity and the wide variation in time constants. For EPS simulations the 

challenge is to balance the simulation speed against the model accuracy. This is dependent on the modelling task. Power 

harmonic and Electromagnetic Capacity (EMC) studies, for example, require high bandwidth, switching converter models (of 

various complexity) and it is appropriate, and often only possible, to simulate a subset of the EPS system. On the other hand, 

when assessing EPS-system level effects such as system stability, power control and management, load dispatching, fault 

performance and imbalance, there is little added value in using switching models since the converter switching and 

harmonics generally have little influence upon the low frequency system dynamics. For MEA simulations, the different 

modelling bandwidths for different tasks are represented in a four-layer modelling paradigm [3]-[5]. These are: architectural 

modelling (zero-bandwidth - dc and state events); functional modelling (bandwidth to 30% of the AC frequency fe with 

<5% error); behavioural modelling (bandwidths of 100s of kHz and covering converter switching); and component models 

with no bandwidth limit. 

In order to achieve acceptable simulation times for system level EPS modelling, a number of approaches have been 

exploited. Average state-space models [6], [7] are a standard technique for considering only the fundamental wave behaviour 

of PECs. For AC distribution systems, it is also desirable to transform the EPS AC signals to the baseband frequency where 

steady state variables become DC resulting in very fast computation under steady state conditions. Transforming all AC 

variables to a synchronous rotating frame, henceforth termed the dq0 model, is a known and effective technique [5], [8]. In 

contrast, a model in which three-phase AC variables are the solution variables is henceforth called an abc model. 

One of the disadvantages of the dq0 approach is that under faulted and unbalanced conditions 2fe components 

appear and the simulation time steps must be drastically reduced to maintain accuracy; under such conditions the dq0 

approach simulates slower than the abc model. An alternative approach that can address this problem is that of Dynamic 

Phasors (DPs) [9], [10]. The kth order DP is the complex time-varying coefficients of the kth Fourier harmonic derived over a 

moving time windowed signal. The modelling accuracy and bandwidth is selected by choosing the window length and the 



harmonic order. Considering only the significant harmonic components, the DP model is capable of retaining the dominant 

dynamic features of an EPS and is ideally suited for functional non-switching EPS modelling. Again, under steady-state 

conditions, the DP variable is a complex dc quantity and simulation is rapid. Under steady state imbalanced conditions, the 3 

complex DP variables (one per phase) are still dc valued resulting in much better computational performance compared with 

the dq0 approach. 

The DP method has been applied to the modelling of terrestrial EPS including unbalanced regimes [10]-[12]. A 

comparative study of a simple EPS with line faults, carried out in the abc, dq0 and DP domains, is given in [13] where the 

efficiency of the DP approach is demonstrated. The DP method has also been applied to synchronous and induction machines 

[14], [15] and Doubly-Fed Induction Generators (DFIG) [16]. Flexible AC Transmission System (FACTS) devices [17], 

[18], including active filters [19] and STATCOMs [20], [21] have also been reported. In [22], [23], a DP model for thyristor-

based HVDC transmission systems is reported, although only balanced conditions are considered. In [24] the DP model of 

Voltage-Source Converter based (VSC) HVDC is reported; here authors approximate the converter’s Pulse-Width 

Modulation (PWM) by the fundamental wave component of switching function that was derived assuming symmetrical 

balanced operation. 

In order to handle EPS with PECs in both balanced and unbalanced AC conditions, a general DP representation of 

three-phase AC-DC converters is required. The two most typical representatives of this converter class are the uncontrolled 

diode rectifier (in MEA applications it is often used in conjunction with an autotransformer [2]) and the PWM active front-

end rectifier using IGBTs. This paper addresses this general representation first through the consideration of the controlled 

PWM rectifier. Henceforth this will be termed the Controlled Rectifier Unit or CRU. A follow on paper will cover the case of 

the diode family which is a more difficult case on account of the existence of discontinuous states and variable switching 

patterns under AC faulted conditions. 

State-average models of the CRU in a synchronous frame were developed in [29], [30] and report good accuracy. 

Based on these, a non-switching functional dq0 model of CRU was developed in [31] and shown to deliver accuracy within 

the MEA functional-level requirements. The simulation speed was reported to be three orders of magnitude higher than the 

abc model incorporating converter switching. However, under unbalanced and line fault operation, the simulation speed 

reduced significantly and lends motivation for the development of DP models of this paper. 

DP modelling of systems containing PWM-controlled CRUs has been reported recently. In [18], a CRU-type 

converter is considered as a part of the unified power flow controller (UPFC) controlling the power flow between a 

Synchronous Generator (SG) and the Infinite Bus (IB). Here, the authors derived a DP model base on the dq-frame averaging 



model with the d axis orientated on the synchronous rotor frame. The DP model derived in [18] can only be used for 

modelling elements such as Double-Fed Induction Generator (DFIG) and Unified Power Flow Controller (UPFC). In these 

cases the DP model is derived from dq-frame averaging model and the d axis is naturally fixed on the machine rotor. 

However, for the CRU, the d axis is aligned with the voltage vector at the coupling point and the voltage vector angle is not 

known but derived from a Phase-Locked Loop (PLL). To get round this restriction the authors had to control the CRU using 

frame-invariant real and reactive power. However, this is in contrast to the typical CRU structures which use active and 

reactive components of the input current for control; this requires orientation on the voltage vector at the point of connection. 

In addition only simulation results for a low degree of unbalance are given in [18] and fault capability was not demonstrated. 

In [20] and [24] a CRU-type converter is also considered as a part of a STATCOM and VSC-HVDC system respectively. 

However the reported models are applicable for balanced conditions only. 

Summarizing all the above, system-level simulation studies of MEA EPS require accurate but time-efficient 

functional-level models for AC/DC converters capable of reproducing system dynamic behaviour under both normal and 

abnormal operations. This paper aims to develop a CRU model that exhibits the same computational effectiveness found in 

dq0 models at balanced conditions but, unlike dq0 models,  maintains its effectiveness under both unbalanced and line fault 

scenarios. In order to reach this goal, this study will exploit some remarkable properties of DPs. The contribution of this 

paper is as follows: 

• The reported model is applicable for significantly accelerated simulations of complex EPS’s, both balanced and 

unbalanced, containing multiple active PWM rectifier feeds; this cannot be represented using the DP based models published 

so far. 

• As an outcome to the above, the PWM active rectifier feeds can be current controlled through orientation at the 

local point of connection; this cannot be represented using the DP based models published so far. 

• The model is verified experimentally and the computational performance is compared against both the 

corresponding time-domain abc switching model and the functional non-switching dq0 model. A significant computational 

acceleration for the DP-based model in simulation of different operational scenarios is demonstrated. 

II. DYNAMIC PHASORS 

In this section, in order assist readability, the basic DP theory is reviewed [9], [12], [14]. This will be intensively 

used throughout the rest of the paper.  

The DP concept is based on the generalized averaging theory [9] and assumes a time-domain nearly-periodic 

waveform x(Ĳ) can be represented on the interval Ĳ(t-T, t] by the following Fourier series: 
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where Ȧs=2ʌ/T and T are the fundamental period of the waveform. Xk(t) is the kth Fourier coefficient in complex form 

referred to as a “dynamic phasor” (DP) and determined as follows: 
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where k is the DP index. In contrast to the traditional Fourier Transformation (FT), these Fourier coefficients are time-

varying as the integration interval (window) slides through time. The selected set of DPs, or K={1,2,...k,...}, defines the 

approximation accuracy of the waveform. For example, for dc-like variables and signals the index set only includes the 

component K={0}, and for purely sinusoidal ones K={1}. It is crucial to notice that an interface between time-domain 

models and DP models can be developed based on (2). 

A key factor in developing dynamic models based on DPs is the relation between the derivatives of the variable x(Ĳ) 

and the derivatives of kth Fourier coefficients given as [9], [10]: 
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This can be verified using (1), (2), and be used in evaluating the kth phasor of time-domain model. The differential 

term on the right side of (3) is crucial. This term allows the DP to study transient behaviour of signals. If we drop this term, 

the differential property of DP reduces to be the same as that of traditional phasors.  

Another important property of DP is that the kth phasor of a product of two time-domain variables can be obtained 

via the convolution of corresponding DPs: 
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The properties of (3) and (4) play a key role when transforming the time-domain models into the DP domain. 

Algebraic manipulations in this paper will also exploit the following property of real functions x(Ĳ): 

)()( * tXtX kk   (5) 

where the notation * denotes a complex conjugate. 



III.  CRU MODELLING USING DYNAMIC PHASORS 

The active front-end CRU is well-known from previous publications [25], [30] and in its basic form is shown in 

Fig.1. A key requirement for the model being developed is the capability of time-efficient simulation of CRU operation under 

both balanced and unbalanced operational conditions, with the required accuracy according to the functional modelling level 

specification (within 5% envelope of the behavioural-level model waveform [4], [5]). 

This converter allows for independent control of active and reactive power flow via the control of the AC current 

components expressed in a synchronously rotating frame. The direct axis is aligned with the voltage vector at the point of 

connection. In terms of three-phase quantities, this voltage can be expressed as follows: 
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where va, vb and vc are phase voltages at the point of connection. The voltage vector angular position ș is normally derived by 

a PLL. The PLL itself is a control system with its own dynamics. Modern PLL structures [32] perform a very accurate 

voltage tracking. Therefore, for the purpose of this study, we can assume that the PLL in Fig.1 delivers the exact value of ș 

for any set of phase voltages va, vb, vc, including cases of severe voltage unbalance and phase displacement.  

Vdc
PLL

PWMabc

dq

Va

Vb

Vc

R L

mabcVabc Iabc

PI

PI

PI

abc

dq

ȦeL

ȦeL

ș 

Vd

Id

Iq
I
*
q=0

I
*
dV

*
dc

C
IL

 

Fig. 1 Active front-end rectifier control structure 

 

Basically, the reported model is derived by transforming the time-domain CRU dynamic equations into the 

frequency-domain DP form. The model development process can be conditionally broken-down into the following key 

stages: 



- Establishing how to map the generally unbalanced time-domain CRU supply voltage vector (6) into DPs. Since 

CRU operation and control require decomposition of the voltage vector (6) into synchronously rotating frame 

components, it is essential to establish how the DPs of these components can be derived from time-domain values of 

individual phase voltages va, vb and vc. Furthermore, it is necessary to establish how these components will behave 

during balanced and unbalanced conditions; 

- Since the CRU control is based on controlled current components oriented on a rotating frame aligned to a voltage 

vector (6), these components are mapped into the DP domain for subsequent use in CRU control; 

- Transforming the CRU control structure into DPs; 

- Transforming the power conversion stage into the DP domain. The functional modelling level requirement means 

that a non-switching model of the power conversion is used.   

In the text below, the model development process is reported according these stages. 

A. Voltage and Current Vector 

In this section we establish how, using three-phase time-domain values of abc voltages, one can derive the DPs for 

the synchronously rotating frame components of generally unbalanced CRU input voltages. 

Assuming the CRU is supplied by the three-phase voltage with the following individual phase components: 

)cos( iii tVv   ,   i=a,b,c (7) 

where Vi  is the phase voltage magnitude and ĳi  is the corresponding phase angle. The DPs of (7) can be derived according to 

the DP definition (2).  Selecting the DP set as K={1} since (7) includes only the fundamental component, we have: 
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As one can see from (8), these DPs are just complex numbers. It is important to notice that the DP ‹vi›1 is half of its 

corresponding traditional phasors Vሶ i. Substituting (7) and (8) into (6) and re-arranging the terms results in the following 

relation: 
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This equation shows how the voltage vector (6) can be defined through DP components. It is clearly seen that the two right-

hand side terms define the positive and the negative sequences of the input voltage vector respectively. The latter will only 



appear when phase voltages are unbalanced. Using (9), the DPs for voltage vector components in a synchronously rotating 

reference frame can now be derived.  

Considering the stationary Įȕ reference frame in which the voltage vector can be expressed as: 
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 where ݒԦఈఉ represents voltage vector in the Įȕ frame. The components vĮ and vȕ  are the real and the imaginary parts of (9). 

Under balanced conditions, |v| and ĳ are constant and equal to Va and ĳa respectively. In general cases, the magnitude |v| and 

the angle ĳ are not necessarily constant and depend on the magnitudes and phase angles of all individual phase voltages in 

(7). In general, both these values are time-dependent, i.e. |v|= |v|(t) and ĳ=ĳ(t). 

A reference frame dq is now introduced. This frame rotates synchronously with the speed corresponding to the base 

EPS frequency Ȧ=2ʌfe, as shown in Fig.2. The input voltage vector in terms of the dq frame can be derived from Įȕ-frame 

representation in a simple manner: 
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Substituting (9) and (10) into (11) results in: 
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where variables Vd0, Vq0, Vd2 and Vq2 can be calculated as: 
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The equations (12), (13) define a general voltage vector in a synchronous dq frame expressed with the DPs of individual 

phase voltages ‹vi›1. Analysis of (12) shows that the variables Vd0 and Vq0 define the positive sequence of the voltage whilst 

Vd2 and Vq2 define the negative one. 

            The d- and q- axis components of the input voltage vector vd and vq can be derived from (12) by separation of real and 

imaginary parts: 

  tVtVVvv qdddqd  2sin2cosRe 220 
   (14) 



  tVtVVvv dqqdqq  2sin2cosIm 220 
                                                                                                            (15) 

The following can be concluded from (14) and (15): 

 Under balanced conditions the voltage dq-components become DC-like: vd =Vd0 and vq =Vq0.  

 If  the supply voltage is unbalanced, the dq frame components of the voltage vector will include components of the 

doubled frequency as well as the dc components Vd0 and Vq0 .  

 The DP set K, representing a general supply voltage in synchronously rotating dq frame should include DC and 2nd 

harmonics, i.e. 

 2 ,0K   (16) 

The DPs for the CRU input voltage vector dq-frame components are given in Table I together with the DPs for the input 

current iԦ derived in a similar manner. 

 
TABLE I. DPS FOR CRU INPUT VOLTAGE AND CURRENT IN SYNCHRONOUSLY ROTATING FRAME 

Variable 
DPs 

k=0 k=2 

vd   

vq   

id   

iq   

 
Hence, the mapping of the synchronously rotating reference frame components of the CRU input voltage and current into the 

frequency domain of DPs is established.  

B. Active and Reactive Current Components 

Operation of the CRU requires an independent control of the input current components with respect to the input 

voltage vector as shown in Fig.2. We define a new rotating frame, DQ frame, and align the D-axis with the voltage vector, 

under both balanced and unbalanced conditions. Under balanced conditions, this DQ frame will move synchronously with the 

frame dq defined in the previous section. During unbalance, the voltage vector (9), and hence the DQ frame as well, will 

exhibit a complex motion with double-frequency components with respect to the dq frame according to (13). Hence, the DPs 

for the input currents in the DQ-frame components (denoted as iD and iQ) are required. This is the subject of this section. 

The relation between the input current components in the DQ and dq frames at any instant can be derived from the 

geometry in Fig.2: 

00 dd Vv  2/)( 222 qdd jVVv 

00 qq Vv  2/)( 222 dqq jVVv 

00 dd Ii  2/)( 222 qdd jIIi 

00 qq Ii  2/)( 222 dqq jIIi 



 sincos   qdD iii   (17) 

 cossin-   qdQ iii                                                                                                                                              (18) 

where  is the angle between d axis and D axis.  

Fig. 2. Frame considerations for developing DP CRU model 

Mapping (17) and (18) into the DP involves the application of the convolution property in (4). In addition to knowledge of 

the DPs for id and iq (derived in the previous section), one needs to establish the DPs for sin and cos due to the time-

varying . From the geometry of Fig.2, they can be expressed via d and q axes voltage components: 
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The transformation of non-linear functions (19), (20) into the DP domain (i.e. calculation of the DPs 
k

sin and 
k

cos  by 

directly applying (2), (12) and (13)) is not analytical. We therefore propose expanding (19) and (20) into a Taylor series with 

respect to vd and vq followed by the transformation of the truncated series into the DP domain. This is now described. 

Approximating (19) and (20) by the Taylor series requires selection of the operational point for the expansion. The 

natural choice is the voltage dq components corresponding to the positive sequence of the voltage vector. Hence, the 

operating point is defined as {Vd0, Vq0} according to (12). The Taylor expansion of (19) and (20) yields: 
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where kij  are constant coefficients depending on the selected operation point. These can be calculated using (13), (19)-(20) 
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and are given in Appendix I.  

The series (21) and (22) can be converted into the frequency domain after suitable truncation. Traditionally only the 

first-order terms are considered. Due to the DP convolution property (4), converting high-order terms into DPs is possible 

and this will improve accuracy. In this study we found that truncating 3rd-order and higher terms in (21), (22) provides very 

good approximations even for very unbalanced fault conditions when vd and vq in (19) and (20) are severely disturbed by the 

doubly-frequency components. This will be shown by comparative simulations in following Sections. Applying DP 

definition (2), convolution property (4) to (21), (22) and using Table I, after some algebraic manipulation, we can derive the 

following DPs (the set is K={0,2} as above): 
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All the voltage DPs participating in (23), (24) are already derived and given in the Table I. Thus, the frequency-

domain images of functions (19), (20) are derived as the DPs (23)-(24). Equations (17) and (18) can now be mapped into the 

DPs as well using the convolution property (4): 
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coscoscossinsinsin  qqqdddQ iiiiiii   (26) 

02202202
sinsincoscos    qqddD iiiii   (27) 

022002202
coscossinsin  qqddQ iiiii   (28) 

Hence, all DPs constituting the controlled variables – namely iD and iQ, are derived. From the basic principle of CRU control, 

the components ݅ۃ஽ۄଶ  and ݅ۃொۄଶ  should be controlled to zero. The component ۃi୕ۄ଴  controls the reactive power. The 

component ۃiୈۄ଴ controls the active power flow and hence the DC-link voltage. 

C. Dynamic Phasors for the PI controller 

As shown in Fig.1, the control structure of the CRU employs Proportional-Integral (PI) controllers that should be 



converted into the DP domain as well. The state-space equation for the PI controller in the time domain is: 

xukyukx pi      ,  (29) 

where u is the input, and kp and ki are the proportional and integral gains correspondingly. This equation can be converted 

into DPs as: 

kkpkkki
k xukyxjkuk

dt

xd
    ;  (30) 

The selection of DPs index K is as (14) with K={0,2}. Other linear controllers can be handled in a similar fashion.  

D. Modulation index and transformation to three-phase coordinates  

The CRU control output is a three-phase modulation index mabc (in the three-phase domain) that is derived from the 

DQ frame index mDQ produced by the current controllers. The relation between mDQ and mabc is: 

   TQDs
T

cba mmKmmm                                                                                                                                      (31) 

where the transformation matrix Ks is given by 
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As discussed previously, in unbalanced conditions the angle  is not constant, hence Ks is not constant either. 

Hence, mapping the coordinate transformation (32) into the DP domain requires knowledge of corresponding DP for matrix 

Ks. This can be found in the following way. Each element of Ks can be re-written as separate -dependent terms using basic 

trigonometric rules, for example: 

}sin)cos3(sincos)sin3cos{(5.0 )3/2cos( ttt    (33) 

The corresponding DP can be then derived using the convolution property (4) as detailed below. The terms cosȦt and sinȦt 

are converted into the DP domain directly applying (2). For these purely harmonic terms the DP index set includes only k=1 

as Ȧ is constant. The corresponding DPs are: 
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The DPs for cos and sin are derived in (23) and (24) and the DP set for these is {0, 2} according to (16). Hence, following 

(4), the DP index set for each element of matrix Ks should include the 1st (fundamental) and the 3rd harmonic. Applying (4) to 

(30), one obtains: 
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The DPs for other elements of Ks can be calculated in a similar way. Applying DP properties (4) and (5), the DP for 

coordinate transformation (31) can then be established: 
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Here ۃKs1ۄ and ۃKs3ۄ are matrixes of the same structure as (32) but constituted by DPs of k=1 and k=3 correspondingly. 

E. Power conversion 

Functional modelling does not require switching converter behaviour. Therefore the power conversion is governed 

by the following time-domain equations [31]: 

 mvv dc 5.0  (39) 

 


 imidc 5.0  (40) 

where vdc is the dc-link voltage, mȘ is the modulation index of the corresponding phase (Ș=a,b,c), iȘ is the phase current. 

Transforming these equations into DPs yields: 

kdck
mvv  0

5.0  (41) 
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*

0
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kkdc imi  (42) 

Here, only the fundamental component is considered on the ac side, so the DP index is chosen as k=1. For the dc-

side variables the set is k=0 since only the dc component is considered. 



F. Assembling the model 

The above derived DPs equations constitute the core model of the CRU. As a signal flow diagram the model is 

given in Fig.3. This model can be directly applied for simulation studies when an entire EPS is modelled in the DP domain, 

similar to the study reported in [26]. In this case all the required inputs (supply voltages, input currents, DC voltage) are 

available in the form of DPs, and the outputs of the model (CRU terminal voltages and DC current) can be directly interfaced 

with the other EPS unit models. The model’s signal flow can be easily conceived through comparison of Fig.1 and Fig.3. One 

notes that in DP domain the DC voltage control remains the same whilst the input current is controlled via its four 

components derived in (25)-(28). It is natural that all the 2nd-order DPs should be controlled to zero, together with main Q-

axis current’s DP to achieve the unity power factor. It is also seen from Fig.3 that the model order is increased compared to 

the three-phase domain model; however the AC DP signals are DC-like in steady state and a significant acceleration in 

simulation is expected (to be confirmed in the following Sections). 

The model can be applied to simulation studies of EPS dynamic in a traditional three-phase domain as well. In this 

case, the model in Fig.3 should be supplemented by the interfacing module as shown in Fig.4 in order to establish a 

communication between the three-phase and the DP domains. The interfacing module Fig.4 includes the DP calculators 

based on (2). The interfacing module also includes the DP-domain equations for the input RL circuit to link the CRU 

terminal voltages and the input currents: 
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Fig.3. DP domain model of active front-end rectifier 
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If the model is implemented according to Fig.4, the end user will be able to build three-phase EPS models, without 

the necessity of understanding DPs theory. 
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Fig.4. Three-phase interfacing of the DP CRU model 
 

IV.  MODEL EXPERIMENTAL VERIFICATION 

The experiments to verify the model were conducted on a CRU developed for operation as an active shunt filter in 

an aircraft EPS. The CRU was supplied by a programmable AC source Chroma 61705 capable of generating balanced and 

unbalanced sets of three-phase voltages. The CRU control is implemented using a Digital Signal Processor TMS320C671 

connected to an FPGA board for data acquisition and sampling. The rig parameters are given in Table II  below. 

TABLE II . EXPERIMENTAL SYSTEM PARAMETERS 

Three-phase supply V=120Vrms,  fs=400Hz 

Input  impedance L = 3 mH, R = 0.1 ȍ 

DC-Link capacitor C = 2200 ȝF 

Switching frequency fsw = 10 kHz 

Sampling frequency fc = 10 kHz 

 

For aircraft system-level EPS studies, the dynamics of the CRU DC output voltage and the AC input current are of 

prime importance, therefore these parameters were monitored during the experiments and reported below. 

A. Balanced operation 

In this experiment the CRU was supplied by balanced set of voltages 80Vrms at 400Hz. The CRU was loaded by 

200Ω resistor (15% of the rated power). The DC-link voltage demand was changed from 200V to 270V at t = 2s. The 

experimental and DP simulated DC-link voltage and CRU input currents responses are shown in Fig.5. As one can conclude, 



the model reproduces the transient behaviour of both DC-link voltage and input currents (its main harmonic) with accuracy 

well within functional-level requirements. 
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Fig.5. DC voltage (above) and input current (below) in response to a step in voltage demand (blue-experiment, red – model) under the balanced supply 

 

B. Unbalanced operation 

Similar transient conditions were applied in the case of an unbalanced supply. A step in DC-link voltage demand 

from 250V to 270V at t=2s was applied under RMS supply voltages Va=80V, Vb=90V, Vc=100V. The load resistor was 

200Ω. The result is shown in Fig.6 (a).  

A step in the load (Rload changed from 200Ω to 92Ω) at t=0.85s was applied under RMS supply voltages Va=65V, 

Vb=70V, Vc=60V and DC-link voltage = 185V. The experiment results are compared against the simulation results in 

Fig.6(b). These experiments give validation to the DP CRU model under unbalanced supply conditions.  



C. Line fault scenario 

In this experiment the model was verified with a phase to ground fault on phase C. Phases A and B voltages are 

80Vrms. The transient responses to a step increase in DC voltage demand from 200V to 270V at t = 2s compared in Fig.6 (c) 

and (d). These results show that the model accurately reproduces the dynamics of DC voltage, as well as the behaviour of 

CRU input currents under the phase loss. 

The experimental results above confirmed that the DP CRU model is well suitable as a functional level modelling 

library element for normal, unbalanced and EPS line fault regimes. Figure 6 also shows that the DP CRU model accuracy is 

within 5% of the actual experiment as specified by the MEA functional level model requirement. 
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Fig. 6. Comparison between simulation and experimental results under unbalanced conditions (a) vdc in response to a step in voltage 
demand; (b) vdc with a load impact; (c) vdc and (d) phase currents iabc  in response to a step in voltage demand under line fault conditions 

 

 



V. COMPARISON OF SIMULATION TIMES 

In this section the computational effectiveness of the proposed CRU model is assessed. For this purpose, we applied 

different modelling techniques to an example EPS shown in Fig.7 (EPS parameters are given in Appendix II). The CPU time 

taken for the EPS simulation under balanced and unbalanced conditions has been monitored. We assume EPS unbalance 

occurs due to a line-to-line fault in the middle of the cable supplying the CRU (the cable is modelled by an RLC 

representation). 

The following EPS models have been developed for the comparative study: 

 Three-phase EPS model with switching CRU model (ideal switches). This model is illustrated by Fig.7(a) and is 

referred to as the abc model in the text below; 

 dq0 model, in which the all AC variables in the EPS are represented in terms of synchronously rotating frame 

orientated on the supply voltage vector. This model is given in Fig.7(b) and is based on [5]. There are no three-

phase variables in this model. The individual component models, including the functional CRU model, are as 

reported in [31]; 

 DP domain model of the whole EPS with the DP CRU model of this paper, as shown in Fig.7(c). This model 

does not include three-phase variables. In the text below this model is referred to as the DP model; 

 An EPS model using a functional dq0 CRU model but with three-phase interfacing [31] as shown in Fig 7(d). 

The AC system is seen by the user as three-phase and the dq0 formulation is not visible. This model is referred 

to as the dq0/int model in this section; 

 An EPS model using the DP CRU model of Fig.3 but with the three-phase interfacing unit of Fig.4. The AC 

system is seen by the user as three-phase and the DP formulation is not visible. This model is shown in Fig 7(e) 

and is termed the DP/int model. 
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Fig.7. Example EPS modelling using different techniques 

All the models were built in Modelica/Dymola v7.4 environment. The simulation scenario assumed 1s of EPS 

operation including a step increase of DC load current IL from 5A to 10A occurring at t=0.2s. The simulation results are 

discussed below. 

A. CPU time taken for simulation of balanced operation 

The simulation results for the balanced operation scenario in Fig.8(a) confirm good accuracies of dq0 and DP 

models compared with the abc model. The CPU times taken by the selected models under balanced operation are given in 

Table III. From the Table, the dq0 model is fastest - 587 times faster than the abc model, whilst the developed DP model is 

369 times faster. For this example the dq0 model is 1.6 times faster than the DP. This is consistent with expectations since 

the dq0 variables under balanced conditions are DC-like, and the number of system equations is less than in the DP model. 

The three-phase interfaced models dq0/int and DP/abc are less efficient due to additional computation required for the 

transformations to and from the three-phase domain. But the acceleration gained is still significant. These models are a good 

base for building libraries for EPS simulations. 



 

 

 

Fig.8. Models comparison: DC-link voltage transient due to a step change in DC load under balanced and unbalanced conditions: (a) balanced conditions; 
(b) unbalanced conditions; (c) Computation time comparison 
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TABLE III . CPU TIME TAKEN FOR BALANCED SCENARIO SIMULATION 

Model: abc dq0 DP dq0/int DP/int 

CPU time taken: 455.5 0.774 1.232 1.092 1.935 

Performance index: 1 587 369 416 235 

B. CPU time taken for unbalanced scenario simulation 

The performance under unbalanced operation (line-to-line short between phases A and B) has been assessed. During 

the scenario, the same DC load current occurs as previously and the corresponding DC voltage transients are shown in 

Fig.8(b). As in the previous case, good accuracy of the functional models is demonstrated.  

The CPU times for this scenario using different models are given Table IV. As expected, the performance of dq0 

model degrades most significantly since the system variables are no longer DC-like. The dq0 model become only 35 times 

faster compare to the abc model. However the DP model has only slightly degraded, and is 409 times faster than the abc 

model, and 12 times faster than dq0 model. As one can conclude from Table IV, the DP/int model also maintains the 

performance during the imbalance. The simulations confirm that the DP-based models can maintain their performance in any 

condition. In spite of the larger number of equations in DP model compared to dq0 approach, all the system variables are still 

DC-like and result in larger integration time steps and faster simulations. 

TABLE IV . CPU TIME TAKEN FOR UNBALANCED SCENARIO SIMULATION 

Model: abc dq0 DP dq0/int DP-int 

CPU time taken: 453.9 12.866 1.108 37.168 1.466 

Performance index: 1 35 409 12 309 

The performance of the above models can be illustrated by Fig.8(c) showing the cumulative CPU time during 

simulation. In this Figure, it was assumed that the EPS starts operation under balanced conditions, and a line-to-line fault 

occurs at t=0.5s. The simulations ended at t=1s. One notes that the lines corresponding to DP-based models have roughly the 

same gradient before and after the fault whilst the dq0-based models start to consume the CPU time at a high rate. 

 

VI.  CONCLUSION 

In this paper we have presented an active front-end rectifier model suitable for accelerated simulations of EPS’s at 

functional level. The model maintains high computational performance under unbalanced supply voltages and line fault 

scenarios. This advantage was achieved by application of DPs that considers system variables as time-varying Fourier 

coefficients. The model has been validated experimentally. The model performance was assessed under balanced and 



unbalanced conditions and for the latter, the model has proved to be much more computationally efficient compared to 

models using variable transformations in synchronous rotating frames. The developed CRU model has been added to the DP 

based modelling library for accelerated studies of future MEA EPS architectures at the functional level. This library will 

provide an efficient and accurate tool for system engineers to design and optimize a variety of EPS architecture candidates. 

Currently the library is under development and will be reported in our future publications. 

 

APPENDIX I. TAYLOR SERIES COEFFICIENTS IN (21) AND (22) 
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APPENDIX II . CRU MODEL PARAMETERS USED FOR SIMULATIONS 

Supply: VA=VB=VC=115Vph-rms @400Hz. Cable (half section): Rc =0.01Ω; Lc = 2ȝH, Cc = 0.2nF. CRU: switching 

frequency - 10kHz; C = 2400mF. Current controllers: kpc=23, kic=7500. DC voltage controller: kpv=0.03, kiv=0.6; DC-link 

voltage reference – 540V. 
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