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Abstract—Hyper-heuristics are a class of high-level search
techniques which operate on a search space of heuristics rather
than directly on a search space of solutions. Early hyper-
heuristics focussed on selecting and applying a low-level heuristic
at each stage of a search. Recent trends in hyper-heuristic
research have led to a number of approaches being developed
to automatically generate new heuristics from a set of heuristic
components. This work investigates the suitability of using genetic
programming as a hyper-heuristic methodology to generate con-
structive heuristics to solve the multidimensional 0-1 knapsack
problem. A population of heuristics to rank knapsack items are
trained on a subset of test problems and then applied to unseen
instances. The results over a set of standard benchmarks show
that genetic programming can be used to generate constructive
heuristics which yield human-competitive results.

Index Terms—Hyper-heuristics, Genetic Programming,
Heuristic Generation, Multidimensional Knapsack Problem

I. INTRODUCTION

Many optimisation problems create a search space which is

too large to enumerate and exhaustively search for an optimal

solution. A large number of heuristics and meta-heuristics

have been successfully applied to such NP-hard problems. A

weakness of these approaches is the need to manually adapt

the method used in order to solve different problem domains or

classes of problem. Hyper-heuristics are an emerging class of

high-level search techniques designed to automate the heuristic

design process and raise the level of generality at which

search methods operate [1]. Hyper-heuristics operate on a

search space of heuristics unlike traditional computational

search methods which operate directly on a search space of

solutions. Hyper-heuristic research is driven by the desire to

provide more general search methods which select and create

methods for solving problems rather than searching directly

for solutions.

Hyper-heuristics can be broadly split into two main cate-

gories, those methodologies which select a low-level heuristic

to apply at a given point in the search and those methodologies

which create new heuristics from a set of low-level compo-

nents [2]. Here we will be concerned with the latter of these

two categories. A motivation for this area of research is that a

heuristic can be automatically specialised to a given class of

problems, with certain characteristics. It is often prohibitively

expensive to manually tune a heuristic methodology for each

new class of problem instances, but doing so would produce

better results. If we can research methods to successfully

automate that design process, then much better results can

potentially be obtained, with no extra human effort. Genetic

programming is a standard evolutionary computation tech-

nique which has been successfully employed to automatically

generate heuristics for a number of NP-hard [3] combinatorial

optimisation problems [4], [5], [6], [7], [8], [9], [10]. The

multidimensional 0-1 knapsack problem is a standard NP-hard

problem which is derived from real-world applications such as

capital budgeting [11] and project selection [12].

In this paper, we investigate the suitability of genetic

programming to evolve reusable constructive heuristics for

the multidimensional 0-1 knapsack problem. We compare

the performance of the automatically generated heuristics to

human-designed constructive heuristics and meta-heuristics

from the literature over a set of standard benchmark instances.

Section II provides an overview of hyper-heuristics in

general and genetic programming hyper-heuristic in particular.

Then the multidimensional 0-1 knapsack problem is described

in section III. Section IV provides the experimental design

and settings of genetic programming for solving the problem

which is followed by section V discussing the results of the

computational experiments. Finally, section VI concludes our

work.

II. HYPER-HEURISTICS

Denzinger et al. [13] first used the term ‘hyper-heuristic’

to describe a system which selects and combines a number

of artificial intelligence methods. Although this was when the

term ‘hyper-heuristic’ originated, the idea of operating on a

search space of heuristics can be traced back to the early

1960’s. Fisher and Thompson [14] showed that combining

rules for job shop scheduling could yield better results than

taking any single individual rule. Cowling et al. [15] intro-

duced the term in the field of combinatorial optimisation and

defined hyper-heuristics as ‘heuristics to choose heuristics’. A

more recent definition was provided by Burke et al. [2], [16]

to include hyper-heuristics which generate new heuristics from

components of existing heuristics:



‘A hyper-heuristic is a search method or learning

mechanism for selecting or generating heuristics to

solve computational search problems.’

A. A classification of hyper-heuristic approaches

Burke et al. [2] outline two main categories of hyper-

heuristics; heuristic selection methodologies and heuristic

generation methodologies. Heuristic selection methodologies

select a low-level heuristic to apply at a given point in the

search space. Heuristic generation methodologies automati-

cally generate new heuristics from a set of low-level com-

ponents or building blocks. In either case, the set of low-level

heuristics being selected or generated can either be further

split to distinguish between those which construct solutions

from scratch (constructive) and those which modify an existing

solution (perturbative) (see [17] for more). As well as the

nature of the search space, hyper-heuristics can learn from

feedback concerning heuristic performance throughout the

search process. Hyper-heuristics which utilise online learning

continuously adapt throughout the search process based on the

feedback they receive. Hyper-heuristics using offline learning

train a hyper-heuristic on a subset of instances before being

applied to a larger set of unseen instances.

B. Genetic programming as a hyper-heuristic

Genetic programming is one of the more recently developed

classes of evolutionary algorithms proposed by Koza [18].

Unlike traditional forms of evolutionary computation, pop-

ulations of computer programs usually expressed as tree

structures are evolved. Rather than producing fixed-length

encoded representations of candidate solutions to a given

problem, the evolved program itself, when executed, is the

solution. Burke et al. [19] outline the suitability of genetic

programming as a hyper-heuristic to generate new heuristics

and survey previous work attempting to create heuristics using

genetic programming. One of the advantages highlighted is

that genetic programming relies on expert knowledge to define

its terminal and function sets. As human expert knowledge is

necessary, domain specific information can be incorporated

into the fundamental components of the system. A second

advantage is that other methods (such as genetic algorithms)

may restrict the length of an encoded solution in order to

facilitate simple genetic operators, genetic programming trees

have variable length representation. This can be useful if the

best length encoding for heuristic representation is not known.

Finally, genetic programming can be used to evolve trees

as executable programs allowing low-level heuristics to be

generated directly.

Genetic programming has successfully been used to evolve

new constructive heuristics comparable to human designed

heuristics for a number of problem domains. Burke et al. [4],

[5] showed that stand-alone heuristics generated using genetic

programming could outperform the human designed ‘best-

fit’ heuristic from the literature on unseen instances of the

same class of one dimensional bin packing problems. This

work was extended to three dimensional bin packing by Allen

at al. [20] and generalised by Burke et al. [6] to include

one, two and three dimensional bin packing problems, again

obtaining human competitive results. A similar method was

presented by Burke et al. [21] for two dimensional strip

packing problems. Bader-El-Din and Poli [8] used genetic

programming to quickly generate ‘disposable’ heuristics to

solve the satisfiability problem. Again, this work generated

heuristics comparable to those which were human designed.

However, only a limited search space of heuristics was cov-

ered. Kumar et al. [22] used genetic programming as a hyper-

heuristic to evolve heuristics for the biobjective 0-1 knapsack

problem. This system successfully created ‘reusable’ heuristics

able to produce a set of Pareto-optimal solutions. The Pareto

fronts generated using this approach are indistinguishable from

those obtained using the human-desinged profit-to-weight ratio

heuristic. Hauptman et al. [10] employ genetic programming

to generate solvers for two common puzzles including the

NP-Complete Freecell. Genetic programming has also been

used as a hyper-heuristic by Keller and Poli [23] for the

travelling salesman problem, by Fukunaga [9] to generate local

search heuristics for satisfiability and by Geiger et al. [7] to

create dispatching rules for the job shop problem. At a higher

level of abstraction, Hyde et al. [24] evolve the acceptance

criteria component of a selection hyper-heuristic. The evolved

acceptance criteria performed well when compared to standard

acceptance criteria from the literature on instances of both bin

packing and MAX-SAT.

III. THE MULTIDIMENSIONAL 0-1 KNAPSACK PROBLEM

The multidimensional 0-1 knapsack problem is an NP-

hard [3] combinatorial optimisation problem whereby the

objective is to select a subset of items which maximise

profit whilst conforming to a number of constraints. Each

item consumes a certain amount of resources in each of

the knapsacks dimensions and the capacity of each of the

knapsacks dimensions must be respected. More formally, a

multidimensional 0-1 knapsack problem with n items and m

dimensions can be defined as:

maximise

n∑

j=1

pjxj (1)

subject to

n∑

j=1

aijxj ≤ bi, i = 1, ...,m (2)

with xj ∈ {0, 1}, j = 1, ..., n (3)

where pj is the profit for selecting item j, x1,...,xn is a

set of decision variables indicating whether or not object j is

selected, bi is the capacity of each dimension i and aij is the

resource consumption of item j in dimension i.

Senju and Toyoda [25] proposed a heuristic which starts

with all variables x1,...,xn set to 1 and successively sets

variables to 0 in order of increasing utility value until a

feasible solution is found. Magazine and Oguz [26] presented

a heuristic algorithm which combined the method of Senju

and Toyoda [25] with the Generalised Lagrange Multiplier



approach of Everett [27] to fix certain variables. This work was

improved by Volgenant and Zoon [28]. More recently, a variety

of exact and meta-heuristic methods have also been proposed

in the literature to solve the multidimensional 0-1 knapsack

problem including simulated annealing [29], [30], neural net-

works [31], genetic algorithms [32], memetic algorithms [33],

[34], selection hyper-heuristics [35] and particle swarm opti-

misation [36] and core-based and tree search algorithms [37],

[38], [39]. Fréville [40] provides a more complete survey of

the multidimensional 0-1 knapsack problem literature.

IV. A GENETIC PROGRAMMING HYPER-HEURISTIC FOR

THE MULTIDIMENSIONAL KNAPSACK PROBLEM

A number of papers in the literature [25], [26], [33], [41],

[42], [43], [44] make use of an add and (or) drop phase

to either construct, improve or repair solutions to the mul-

tidimensional 0-1 knapsack problem. These techniques more

often than not use a utility-weight value to score and sort the

objects in order of their relative efficiency. Here we use genetic

programming to evolve a population of heuristics which assign

a score to each potential knapsack item. Each heuristic is

evaluated by attempting to add the items to the knapsack in

descending order determined by these scores (highest rank

first) over a set of ‘training’ instances.

A. Genetic programming function and terminal sets

The first four rows of Table I show the function set of the

genetic programming runs. The arithmetic operators add, sub-

tract, multiply and protected divide are chosen to be included

in the function set. In addition to standard add, subtract and

multiply operators we use ‘protected divide’ instead of the

traditional divide function. As there is always a possibility

that the denominator could be zero, protected divide replaces

zero with 0.001. The rest of Table I shows the terminal set.

The avgDiff for item j is calculated as:

avgDiffj =

∑m

i=1
bi − aij

m
(4)

Depending on the number of dimensions in the set of instances

currently being considered there is a set of m conDim

terminals for each of conDimj,1 ... conDimj,m.

B. Experimental design

The ORLib instances introduced by Chu and Beasley [33]

are used to test the genetic programming hyper-heuristic.

ORLib contains 270 instances with n ∈ {100, 250, 500}
variables, m ∈ {5, 10, 30} dimensions and tightness ratio ∈
{0.25, 0.50, 0.75}. As optimal solutions are not known for

these instances the %-gap is used to measure performance.

The %-gap is the distance from the upper bound provided by

the solution to the related LP-relaxed problem calculated as:

100 ∗ LPopt−SolutionFound
LPopt

(5)

For each set of 10 instances we use 5 to ‘train’ the hyper-

heuristic before applying the best evolved heuristic to the

TABLE I
FUNCTION AND TERMINAL SETS OF EACH GENETIC PROGRAMMING RUN

Name Description

+ Add two inputs

- Subtract second input from first input

* Multiply two inputs

% Protected divide function

pj Profit of the current item j

avgDiffj Average difference between the capacity and
resource consumption of the current item for
each dimension of the knapsack

conDimj,1 Resource consumption of the current item j in
dimension 1

conDimj,2 Resource consumption of the current item j in
dimension 2

conDimj,... Resource consumption of the current item j in
dimension...

conDimj,m Resource consumption of the current item jin
dimension m

TABLE II
PARAMETERS OF EACH GENETIC PROGRAMMING RUN

Generations 50

Population Size 10000

Crossover Probability 0.85

Mutation Probability 0.1

Reproduction Probability 0.05

Tree initialisation method Ramped half-and-half

Selection Method Tournament Selection, Size 7

further 5 as yet unseen ‘test’ instances. The fitness of an

individual in the GP population is measured as the sum of the

profit obtained on the 5 training instances. The next generation

of the genetic programming run is then populated using the

best performing heuristics. Table II shows the parameters used

in the genetic programming runs. The mutation operator uses

the ‘grow’ method described by Koza [18], with a set depth

of five. The crossover operator produces two individuals with

a maximum depth of 17.

Each experiment was repeated 5 times for each set of

instances. All experiments were carried out on an Intel i7 2

GHz CPU with 6 GB memory using the genetic programming

implementation of the ECJ (Evolutionary Computation in

Java) package.

V. EXPERIMENTAL RESULTS

Table III shows the average results in terms of %-gap for

the best evolved heuristic of 5 runs for each set of instances in

ORLib. Each set of instances consists of 5 ‘training’ instances

and 5 ‘test’ instances and is labelled as ORmxn with m ∈ {5,

10, 30} dimensions and n ∈ {100, 250, 500} variables. Each

mxn combination also varies with tightness ratio ∈ {0.25,

0.50, 0.75}. From this table we note that a better average

percentage gap is obtained when tightness ratio increases.

Table IV shows the average %-gap for a number of tech-

niques from the literature over all 270 instances in the ORLib

benchmark set. Our approach generates heuristics which can

outperform previous human-designed constructive heuristics.



TABLE III
DETAILED PERFORMANCE OF BEST HEURISTICS GENERATED BY GENETIC

PROGRAMMING HYPER-HEURISTICS ON ORLIB INSTANCES BASED ON

AVERAGE %-GAP

tightness ratio
Instance Set 0.25 0.50 0.75 Average

OR5x100 4.98 2.05 1.36 2.80
OR5x250 3.08 1.66 0.77 1.84
OR5x500 2.38 1.64 0.71 1.58
OR10x100 7.39 3.54 2.26 4.40
OR10x250 4.43 2.78 1.15 2.79
OR10x500 3.77 1.97 0.99 2.24
OR30x100 8.67 4.70 2.43 5.27
OR30x250 5.73 3.25 1.70 3.56
OR30x500 4.80 2.54 1.40 2.91

All instances 5.03 2.68 1.42 3.04

TABLE IV
COMPARISON OF GENETIC PROGRAMMING HYPER-HEURISTIC TO

PREVIOUS APPROACHES OVER ALL INSTANCES IN ORLIB IN TERMS OF

%-GAP

Type Reference %-gap

MIP Drake et al. [35] (CPLEX 12.2) 0.52

MA Chu and Beasley [33] 0.54

Selection HH Drake et al. [35] 0.70

MA Özcan and Basaran [34] 0.92

Heuristic Pirkul [41] 1.37

Heuristic Fréville and Plateau [43] 1.91

Metaheuristic Qian and Ding [30] 2.28

Generation HH Genetic programming hyper-heuristic 3.04

MIP Chu and Beasley [33] (CPLEX 4.0) 3.14

Heuristic Akçay et al. [45] 3.46

Heuristic Volgenant and Zoon [28] 6.98

Heuristic Magazine and Oguz [26] 7.69

The heuristics generated by our genetic programming hyper-

heuristic achieve an average %-gap of 3.04, this is lower than

the human-designed constructive heuristic methods proposed

by Akçay et al. [45], Volgenant and Zoon [28] and Maga-

zine and Oguz [26]. They can also outperform the primitive

MIP applied by Chu and Beasley [33]. Many of the better

performing techniques in the literature, such as the MA of

Chu and Beasley [33] and the selection hyper-heuristic of

Drake et al. [35], make use of a repair operator based on

solutions to the LP-relaxed version of the multidimensional 0-1

knapsack problem. Once a reusable constructive heuristic has

been evolved it takes considerably less computational effort

to find a solution than calculating the LP-relaxed solutions.

In this case, the LP-relaxed solutions must be calculated for

every new instance encountered. Approaches using LP-relaxed

solutions also then require the extra effort of applying a

metaheuristic or other technique afterwards. Figure 1 shows

the fitness value of the best performing heuristic at each

generation of a sample GP run on the OR5x100 set. This plot

shows a steady improvement in solution quality with the best-

of-run heuristic not found until the latter stages of the run.
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Fig. 1. Best solution found at each generation of a sample run on the on
the 5 training instances of the OR5x100 set

VI. CONCLUSIONS

In this work we have shown that genetic programming can

be used as a hyper-heuristic to generate reusable constructive

heuristics for the multidimensional 0-1 knapsack problem. Our

method is classified as a hyper-heuristic approach as it operates

on a search space of heuristics rather than a search space of

solutions. To the authors knowledge, this is the first time in

literature a GP hyper-heuristic has been used to solve the mul-

tidimensional 0-1 knapsack problem. This method has shown

that automatically generated heuristics can be competitive with

human-designed heuristics from the literature. Many methods

make use of an add and (or) drop phase to either construct,

improve or repair solutions. As future work, the rankings

derived from the evolved heuristics can be used to define the

order in which items are considered to be added or dropped.

Many of the best results in the literature rely on knowledge

gained from the LP-relaxed version of the multidimensional

0-1 knapsack problem. We intend to incorporate the optimal

LP-relaxed results as part of a more comprehensive function

set to attempt to improve the heuristics generated.
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[40] A. Fréville, “The multidimensional 0-1 knapsack problem: An
overview,” EJOR, vol. 155, no. 1, pp. 1–21, 2004.

[41] H. Pirkul, “A heuristic solution procedure for the multiconstraint zero-
one knapsack problem,” Naval Research Logistics, vol. 34, no. 2, pp.
161–172, 1987.

[42] S. Hanafi and A. Freville, “An efficient tabu search approach for the
0-1 multidimensional knapsack problem,” EJOR, vol. 106, no. 2-3, pp.
659–675, 1998.
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