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Abstract — This paper considers the control of a 7-leg back-to-

back Voltage Source Inverter (VSI) arrangement feeding a 4-
wire load from a 3-phase Permanent Magnet Synchronous 
Generator (PMSG) operating at variable speed. The PMSG is 
controlled using a sensorless Model Reference Adaptive System 
(MRAS) to obtain the rotor position angle. The 7-leg converter is 
regulated using Resonant Controllers (RCs) at the load side and 
self-tuning resonant controllers at the generator side. The control 
system is augmented by a feed-forward compensation algorithm 
which improves the dynamic performance during transients. 
Experimental results, obtained from a prototype, are presented 
and discussed. 
 

Index Terms— AC-AC Power Convertion, Power 
generation control, Converters, Variable speed generation. 
 

I.  INTRODUCTION 
 

ariable speed operation of generation systems has several 
advantages which are well reported in the literature. For 
instance more energy capture in wind generators [1]; 

higher efficiency of diesel engines, which can be operated at 
the optimum power/fuel consumption ratio [2]; less stress in 
the mechanical components; smaller portable  generation 
systems [3]; etc.  To connect a 4-wire load (e.g. an off-grid 
residential load) to a 3-phase variable-speed generator, several 
power converter topologies are feasible [4]–[8]. For instance a 
conventional 3-leg back-to-back voltage source converter 
connected to a -Y transformer can be used. The star-
connected secondary of the transformer is then used to allow 
the circulation of zero sequence current through the load. 
However, this is a bulky solution with a low power density. 

Another alternative is to use a conventional back-to-back 
converter with the neutral point of the load connected to the 
middle of a split capacitor bank in the dc-link. The main 
problem of this approach is that relatively large capacitors are 
required to minimise the ripple [8]. A different topology is 
presented in [7], where a 4-leg matrix converter is proposed to 
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feed the output load.  This is a good solution if a compact 
generation system with a high power density is required. 
However there are also some problems with the matrix 
topology which have been reported in the literature. For 
instance matrix converters do not have boost capability [4]; 
therefore low speed operation of the generator is not feasible if 
constant load voltage is required. Another problem is 
produced when the generation system feeds unbalanced/non-
linear loads. In this case, because of the lack of a dc capacitor 
bank, pulsations in the instantaneous output power produce 
harmonic distortion in the input current [6].   

In this paper the application of a 7-leg back-to-back 
voltage source PWM converter is proposed with a 3-leg 
Machine-Side Converter (MSC) and a 4-leg Load-Side 
Converter (LSC) as shown in Fig. 1. Both converters are 
controlled using space vector modulation algorithms and RCs.  

RCs have been selected in this application because they 
have several advantages in 4-wire applications. For example 
they provide the capability to control zero sequence currents 
and voltages [5]–[7] (which do not exist in signals obtained by 
conventional - and d-q transformations) and they also allow 
straightforward implementation of power factor control at the 
generator side (as discussed in Section IIIA). Additionally, 
RCs provide a simple approach to eliminate waveform 
distortion using cascade controllers [9]–[14]. Moreover, in  

 
Fig. 1. Proposed 7-leg variable speed generation system. 
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this paper a feed-forward compensation algorithm is proposed 
(see Fig. 1) which is more conveniently implemented when 
both sides of the 7-leg converter are controlled using resonant 
controllers. 

In this paper the LSC output is controlled to operate at a 
constant 降勅茅, corresponding to an electrical  frequency of 
50Hz. Therefore the resonant controllers of the LSC are tuned 
to operate at fixed frequencies and they have to regulate the 
positive, negative and zero sequence load-voltage 
components. When non-linear loads are fed by the LSC, 
waveform distortion has to be also eliminated using RCs. In 
the MSC side the generator output frequency varies with 
rotational speed. Therefore a resonant controller is proposed 
which has a frequency adaptive (self - tuning) structure, 
designed to obtain a good dynamic performance over the 
whole operating range. 

In Fig. 1 a speed demand calculation block is required to 
adaptively change the speed according to some control law, 
e.g. to reduce the fuel consumption in a diesel-based 
generation system, to increase the performance of a micro-
hydro system, or  to improve the energy capture in  a wind 
energy conversion system. The control system proposed in this 
work has been designed to operate across the whole speed 
range and the calculation/regulation of the optimal rotational 
speed, is considered outside the scope of this paper. 

The contribution of this work can be summarised as 
follows: 
 To the best of our knowledge this is the first paper where a 

variable speed generator is interfaced by a 7-leg back-to-
back VSI to a 4-wire load.  The power converter topology 
presented in this paper can be applied to variable speed 
diesel systems [15], low voltage micro-grids [16][17], [18], 
wind-diesel hybrid systems[19],  utility power supplies [3],  
etc. In general this topology can be used in any application 
where a variable speed 3 generator has to be interfaced 
with a 4-wire load/grid. 

 A new methodology for the design of a self-tuning RC, 
capable of operating over a wide frequency range, is 
presented. The RC is designed in the z-domain, to avoid the 
problems related with the bilinear transform or other 
discretisation methods [20]. This design methodology can 
be advantageously used for grid connected power 
converters, [21], [22], droop-controlled converters for  
micro-grids and variable speed machines [23], [24]. The 
design methodology presented in this paper is certainly 
superior to that conventionally used to implement the “PR 
controller” reported in the literature [25].   

 A novel feed-forward compensation algorithm is analysed 
and presented. The feed-forward term compensates the 
perturbations produced by fast variations of an unbalanced 
linear/non-linear load on the dc-link voltage. This feed 
forward compensation method can be used in other 
applications where high dynamic response (in the presence 
of power oscillations produced by unbalanced signals) is 
required. For instance in conventional 3-leg back to back 
converters, [1] and even single phase systems. 

 Small signal models are presented, describing the dynamics 
of the dc-link, power balance equation, dynamics of the 
PMSG, etc. These small signal models consider the effect of 
non-linear loads and can be used to design the controllers 

using conventional linear control tools. The linearised 
models presented in this work can be extended to other 
applications where power converters are used to feed non- 
linear unbalanced loads.   

The remainder of the paper is organised as follows. Section 
II briefly discusses the sensorless control system; In Section 
III the self-tuning resonant control system is analysed; the 
load-side resonant control is very briefly presented in Section 
IV. Section V discusses the feed-forward algorithm and 
Section VI presents results from an experimental prototype. 
Finally, Section VII discusses the conclusions from the work. 
Parameters of the experimental rig are presented in the 
Appendix.  

II.  SENSORLESS CONTROL 

Later, in Section III, it is shown that for the 
implementation of the self-tuning resonant controller, the rotor 
position (しr) and rotational speed (r) of the Permanent 
Magnet Synchronous Generator (PMSG) are required. In this 
work しr and r are estimated using a sensorless Model 
Reference Adaptive System (MRAS) observer. Such systems 
have been extensively discussed in the literature before [26]–
[29] so only a brief discussion is provided here for 
completeness. 

The MRAS observer is based on a reference model and an 
adaptive model [28], [29], [31]. The reference model is 
obtained as: 

 閤鎚 噺 完盤懸鎚 伐 迎鎚件鎚匪穴建              (1) 

Where 閤鎚 is the stator flux, 懸鎚 is the stator voltage,  件鎚 is the 

stator current and Rs is the stator resistance (0.2).  
 Unlike motors, PMSG are not expected to operate at very 
low rotational speeds. As stated in Section III.C it is assumed 
in this work that the PMSG is operating between 500rpm-
2000rpm (0.25n to n). Therefore, even at 500rpm, the 
voltage 懸鎚 is relatively large compared to the small voltage 
drop variations produced by changes in Rs with temperature 
(see (11)).  
 For instance if the PMSG winding temperature varies from 
20C to the maximum value of 140C, the stator resistance 
will change from Rs0.2 to a Rs0.294 (assuming a 
temperature coefficient =0.00393/C for the copper 
windings). Therefore the resistive voltage drop will change 
from 3V to 4.4V at rated current (i.e. V1.4V). Hence even 
for the extreme case of rated current, minimum speed and the 
maximum allowable temperature rise, the change in resistive 
voltage drop is less than 5% of the phase voltage. Moreover, 
as reported in [31],  for permanent magnet machines the 
stability of MRAS-based sensorless control loops is not 
compromised by stator resistance variation.  
  The adaptive model is obtained using: 
 閤侮鎚 噺 詣鎚件鎚 髪 閤陳結珍提撫認              (2) 

Where the superscript ““ indicates an estimated variable. In 
(2) Ls is the stator inductance and 閤陳 噺 閤陳結珍提撫認 is the 

estimated rotor flux. A smooth air-gap permanent magnet 
machine is used in this work (i.e. Ld=Lq=Ls).  

The error between the stator flux estimated by the adaptive 
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model and that obtained from (1) is defined as: 綱 噺 嵳閤鎚 戯 閤侮鎚嵳 噺 弁閤鎚庭閤侮鎚底 伐 閤鎚底閤侮鎚庭弁 噺 嵳 閤鎚嵳 嵳閤侮鎚嵳 sin 岫肯岻  (3) 

In (3) the symbol  represents cross-product and   is the 
phase angle between the vectors 閤鎚  and 閤侮鎚. The advantages 

of using cross product for the calculation of 綱 are discussed in 
[32].  
 Unlike induction machines, in a PMSG there is no slip 
velocity (i.e. slip=0) and the rotational speed is equal to the 
stator electrical frequency. Therefore the speed can be 
correctly estimated from the frequency of the electrical 
signals, even if the stator resistance is affected by temperature 
variations. This is also concluded by inspecting (2)-(3) and a 
rigorous mathematic demonstration is presented in [31].    
 However because the error 綱  is defined as the cross product 
between 閤鎚  and 閤侮鎚 (see (3)), the rotor position angle 肯侮追 can 

be incorrectly estimated if the phase angle of the stator flux 閤鎚 

(obtained from (1)) is affected by large stator resistance 
variations. Nevertheless, as discussed before, for the speed 
operating range the variation in the stator resistance voltage 
drop, due to temperature effects, is relatively small compared 
with the PMSG internal voltage (see Fig. 2a). Moreover, in 
this work the generating system is designed to operate with a 
power factor close to unity. Hence, the position error in 閤鎚 is 

further reduced considering that 懸鎚 and 伐迎鎚件鎚 (see (1)) have 
almost identical phase. This is depicted in Fig. 2a, where the 
calculation of the vectors 懸鎚 伐 迎鎚件鎚  and 懸鎚 伐 岫迎鎚 髪 ッ迎鎚岻件鎚   is 
shown. If  the angle 0 (corresponding to close to unity power 
factor operation of the PMSG), then the phase shift between 
both vectors is also zero. Notice that Fig. 2a is not drawn to 
scale  and  the  voltage  drops 迎鎚件鎚 and 弘迎鎚件鎚 have  been  

 
 

 
Fig. 2. a) Phasor diagram showing the calculation of the vectors  懸鎚 伐 迎鎚件鎚  
and 懸鎚 伐 岫迎鎚 髪 ッ迎鎚岻件鎚    b) Proposed  MRAS observer. 

magnified in that figure. 
If the PMSG is utilised at an operating point where the 

effect of the stator resistance variation is no longer negligible, 
then the implementation of on-line identification methods 
could be required. For instance the PMSG parameter 
identification method reported in [16]  based on adaptive 
observers, or the sliding-mode observer proposed in [33]. 
Alternatively some of the methods proposed for stator 
resistance identification in induction machines, e.g. the P-
based MRAS observer reported in [34] could be modified for 
Rs identification in PMSGs.  

The MRAS observer used in this work is shown in Fig. 2b. 
To avoid the drift produced by integrating dc signals,   the 
reference stator flux 閤鎚 is calculated using a band-pass filter 

instead of a pure integrator. The cross-product is calculated 
using the -く components of (1)-(2). In Fig. 2b a PI controller 
is used to drive the error of (3) to zero, by adjusting the 
position of the magnetic flux  閤陳.   

In most of the applications related to variable speed 
generation of electrical energy (e.g. wind energy systems, 
diesel generation, etc.) the changes in rotational speed are 
relatively slow, due to the inertia of the prime-mover. 
Therefore to design the PI controller of Fig. 2b, a simplified 
small-signal model can be used, similar to that discussed in 
[26].  

Using the parameters of the PMSG and experimental rig 
(see the appendix), the MRAS has been designed for a 
bandwidth of about 20Hz. 

III.  SELF-TUNING RESONANT CONTROL OF THE MACHINE-SIDE 

CONVERTER 

A.  Proposed Control System for the MSC. 

The position angle 肯侮追 is estimated from the MRAS 
observer of Fig. 2. Because 肯侮追 corresponds to the flux vector 閤陳 angle, (see Fig. 3), the position of the PMSG machine 

internal voltage 肯侮暢 is estimated as: 肯侮暢 噺 肯侮追 髪 訂態                (4) 

Figure 3 shows the proposed control system for the MSC. A 
PI controller, whose output is the current iP, regulates the dc-
link voltage of the back-to-back converter. An additional term 
from a feed-forward compensation algorithm (see iff in Fig. 3) 
can be used to improve the dynamic performance of the dc-
link voltage. This is further discussed in Section V.  

In order to operate the generator with unity displacement 
factor, the reference currents required are: 件底茅 噺 件暢 cos岫肯侮暢岻  

 件庭茅 噺 件暢 sin 岫肯侮暢岻                (5) 

It is also possible to introduce a phase shift angle 肯椎朕 between 
the voltage and stator current of the PMSG. For instance three 
alternatives to obtain 肯椎朕 have been presented in the literature 
[27], [35]  (see the phasor diagram of Fig. 4). Option 1 
operates the PMSG at unity power factor, maximising the 
power transfer  from the PMSG to the load [27], with the MSC 
providing the reactive power required by the inductance Ls. 
Option 3 operates the MSC at unity power factor with the  
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Fig. 3. Generator-side control system. 

 
Fig. 4. Phasor diagram corresponding to the input stage. 
 
required phase angle 肯椎朕 calculated by setting 懸暢 蛤 降追閤陳 

yielding: 肯椎朕 蛤 伐嫌件券貸怠 岾 挑濡泥尿  弁件暢弁峇              (6) 

Option 2 attempts to reduce saturation and obtain a 
compromise between the converter rating and the generator 
rating [35], by locating the current mid-way between the 
voltage vectors 懸暢 and 懸頂 with 肯椎朕 set to half the value of (6). 
The control system proposed in this work could be used to 
implement any of these power factor control strategies. 

 

B.  Design of the dc-link Control System. 

As discussed before, the machine stator current magnitude 
is controlled using a PI controller augmented by a feed-
forward compensation term (see iff in Fig. 3). The design of 
the PI controller is discussed below. The feed-forward 
algorithm is discussed in Section V. 

Neglecting the MSC losses, the power supplied by the 
PMSG is equal to that supplied by the MSC to the dc-link. 
Therefore, the following expression can be written: 
 継鳥頂件鳥頂ｅ沈津 噺 倦底庭盤懸暢底件暢底 髪 懸暢庭件暢庭匪             (7) 
 

Where 件鳥頂ｅ沈津 is the dc current on the generator side and 倦底庭 is 
dependent on the - transformation being used. Using the 
angle 肯椎朕, then (7) can be written as:  
 継鳥頂件鳥頂ｅ沈津 噺 倦底庭 件暢 懸暢cos 岫肯椎朕岻            (8) 
 

where vM and iM are the magnitude of the generator voltage 
and current vector respectively. For a PMSG 懸暢 蛤 閤陳降追. 
Therefore, the dc link current 件鳥頂ｅ沈津 is obtained as: 件鳥頂ｅ沈津 噺 倦底庭 摘認泥尿帳匂迩 件暢 cos 岫肯椎朕岻            (9) 

Linearising the system about an operating point indicated by 
the subscript “0” yields:  
 ッ件鳥頂日韮 噺 倦底庭閤陳cos 岫肯椎朕岻 釆 摘認轍帳匂迩轍 ッ件暢 髪 沈謎轍帳匂迩轍 ッ降追 伐摘認轍沈謎轍帳匂迩轍鉄 ッ継鳥頂挽                              (10) 
 

 

As discussed before, in this work it is assumed that the PMSG 
speed changes slowly, therefore the term ッ降追 can be 
neglected when the dynamics of the current iM are considered.    
Moreover the variation idc_in produced by Edc (last term in 
(10)), is compensated by an identical variation in idc_out at the 
LSC side. This is due to the fact that the LSC is operating with 
constant power output and the load voltage is regulated with a 
fast dynamic response. Therefore neglecting ッ降追 ┸ つ継鳥頂 the 
current ッ件鳥頂 circulating through the dc link capacitors is 
obtained as: つ件鳥頂 噺 倦底庭cos 岫肯椎朕岻 摘認任泥尿帳匂迩任 つ件暢                (11) 

The transfer function of (11) and the small signal model of 
Fig. 5 can be used for the design of the dc-link PI controller. 
Notice that the gain of the controller is a function of r. This 
allows the system to remain tuned in spite of speed variations 
(see (11)). Moreover, even if the relatively small losses of the 
system (not considered in (7)) affect the gain of (11), linear 
control tools can be used to design a robust PI controller 
whose performance is little affected by small variations of this 
gain.  

Notice that in (9-11) it is assumed that the feed-forward 
current (ッ件捗捗) is an external perturbation. Therefore it can be 
considered that ッ件牒 噺 ッ件暢 because the closed loop poles of 
the dc link voltage control system are not affected by the feed-
forward compensation algorithm. 

C.  Generator-Side Resonant Control System. 

 
Resonant Controllers are based on the internal model 

principle and they can be used in control systems with 
sinusoidal reference signals [5]–[7], [9], [10], [25], [36]–[38]. 
One of the advantages is that a single RC per phase can be 
used to regulate the positive, negative and zero sequence 
signals at the load-side converter. In this application RCs are 
used to regulate the stator current in the PMSG and the voltage 
of the load fed by the LSC.  
 Resonant controllers have been discussed in the literature  
however RCs are generally used in applications where 
variations in the resonant frequency are small, e.g   for grid-
connected converters [10], [25], [36]. However, in the 
proposed system, the PMSG can operate over a wide speed 
range (e.g. 500rpm to 2000rpm). Therefore, the coefficients 
of the resonant control system have to be adjusted according 
to the stator frequency variation, in order to operate with a 
suitable bandwidth and phase margin over the whole speed  

 
Fig. 5. Control system for the regulation of the dc-link voltage. 
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range. This type of controller is usually called a “self-tuning” 
resonant controller in the literature [23], [24], [39], [40]. To 
the best of our knowledge, [39] is the only paper where a self- 

tuning RC is designed and experimentally tested for a system 
where operation over a wide frequency range is considered. 
However, in contrast to the approach proposed here, the 
methodology reported in [39] proposes to locate the resonant 
poles in a position where the PMSG stator currents cannot be 
regulated with low or zero steady state error. In this paper, 
digital design in the z-plane is proposed, avoiding the 
problems associated with the conventional implementation of 
resonant controllers based on discretisation methods [20]. 

The stator current of the PMSG is obtained from:  懸暢 噺 迎鎚件暢 髪 詣鎚 鳥沈謎鳥痛 髪 懸頂            (12) 

where 懸頂 is the MSC voltage vector. Using (11)-(12) the 
control loop shown in Fig. 6 is proposed where the reference 
current vector 岫 件暢茅 岻 is derived from (5). The MSC voltage 
vector 懸頂 is obtained at the output of a self-tuning resonant 
controller (block labelled “RC” in Fig. 6) whose transfer 
function is: 迎系岫権岻 噺 計追 盤佃貸追岫摘赴 認岻勅乳狽赴 認畷濡匪盤佃貸追岫摘赴 認岻勅貼乳狽赴 認畷濡匪盤佃貸勅乳狽赴 認畷濡匪盤佃貸勅貼乳狽赴 認畷濡匪    (13) 

 

Notice that in (13), ù赴 嘆 is the rotational speed (in electrical 
rad/s) estimated by the MRAS observer. As demonstrated in 
[31], tracking of the rotational speed by an MRAS observer in 
a PMSG is not affected by inaccurate identification of the 
machine parameters, i.e. Rs, Ls , therefore if the rotational 
speed changes relatively slowly, the resonant controller of (13) 
is tuned to the correct frequency even if the machine 
parameters change.   In Fig. 6 the SVM and MSC is 
represented as a zero order hold (see block labelled “ZOH”) 
and a delay of one sampling period. 

The controller of (13) has two poles located in the unit circle 
(see Fig. 7) and two zeroes, relatively closed to the poles, used  
 to increase the damping coefficient of the closed loop system. 
In (13), Ts is the sampling time, Kr is the controller gain and 堅岫降赴追岻 is the distance from the controller zeros to the origin. 
For variable speed operation of the PMSG, the poles of (13) 
are moved along the unit circle in order to track, with zero 
steady-state error, the reference currents of (5) (see つ降赴追 in 
Fig. 7). 
  In this work the values of Kr and 堅岫降赴追岻 have been tuned 
using Bode diagrams and Evan’s root locus at different 
operating points. For instance in Fig. 8 the open loop Bode 
diagram, considering operation of the PMSG at 2000rpm, is 
shown. The control system has been designed to obtain a 
phase margin of 60 at this operating point with a current 
control system bandwidth of 60-65Hz. 
 

 
Fig. 6. Resonant control system for the generator side converter.  

 
Fig. 7. Poles and zeroes of the resonant controller. 

 
Fig. 8. Open loop bode diagram for operation at 2000rpm. 
 

 From the analytical and experimental work, and considering 
the parameters of the experimental system presented in the 
appendix, it has been concluded that for most of the operating 
range an almost fixed value of 堅岫降赴追岻 蛤 ど┻ひの produces a good 
dynamic response. However for a relatively low speed (close 
to 500rpm), the plant pole is closer to the poles and zeroes of 
the RC (see Fig. 7) and the value of  堅岫降赴追岻 has to be changed 
in order to maintain a good dynamic performance. This 
approach is simple to implement and produces a good result 
considering that the PMSG acceleration is relatively slow. A 
small look-up table or similar implementation methodology 
can be used to obtain the value of 堅岫降赴追岻. 

Expanding (13), the z-plane transfer function is obtained as: 迎系岫権岻 噺 計追 盤佃鉄貸態追岫摘赴 認岻頂墜鎚岫摘赴 認脹濡岻佃袋追岫摘赴 認岻鉄匪岫佃鉄貸態頂墜鎚岫摘赴 認脹濡岻佃袋怠岻      (14) 

Using (14) the self-tuning resonant controller can be 
implemented in real time using a Digital Signal Processor 
(DSP). 

IV.   CONTROL OF THE LOAD SIDE CONVERTER 

In order to feed a stand-alone load and provide a path for the 
circulation of zero sequence currents, the LSC has 4 legs at the 
output  (see Fig. 9). Resonant  controllers  are  used  to 
regulate the load phase-to-neutral voltages (van,vbn,vcn). It is 
assumed that the output frequency is constant; therefore, the 
LSC resonant controllers do not require frequency adaptation. 
The approach is essentially the same as that discussed in [5]–
[7] for a 4-leg matrix converter so only a brief treatment is 
given here. 

 Assuming a resistive load, the transfer function relating the 
phase to neutral voltage of the load to that at the output of the 
LSC is: 
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Fig. 9. LSC feeding an unbalanced linear/non-linear load. 

 塚尼韮岫鎚岻塚任尼岫鎚岻 噺 眺薙尼鎚鉄眺薙尼寵肉挑肉袋鎚挑肉袋眺薙尼            (15) 
 

where van is the load voltage and voa is the output voltage of 
the LSC; RLa is the load resistance and Cf, Lf are the 
capacitance and inductance of the second order output filter 
respectively. A resistive load has been assumed in (15), 
however the control system presented in this work can be used 
with both leading and lagging power factor loads. Substituting 
RLb and RLc for RLa, transfer functions similar to (15) are 
obtained for the voltages vbn and vcn in terms of vob and voc. 

The resonant control system is designed for the worst case 
operating point, i.e. when there is no load connected to the 
output of the power filter, and the transfer function of (15) is: 

 塚尼韮岫鎚岻塚任尼岫鎚岻 噺 怠鎚鉄寵肉挑肉袋怠                (16) 

in this case the damping coefficient of the second order system 
is =0 and the poles of (16) are located on the j axis. Using 
(16) the control system shown in Fig. 10 is designed and 
implemented.  
 For the control system shown in Fig. 10, only one RC per 
phase is used. However if the output load is strongly non-
linear, multiple resonant controllers could be required to 
supply voltages with low harmonic distortion to the load. 
 In the experimental work discussed in this paper, the control 
of the LSC is realised using a single RC per phase when the 4-
leg front-end converter is feeding linear loads. For loads with 
strong non-linear behaviour three controllers per phase are 
implemented for the regulation of the load voltage (see 
Section VI). A full discussion of the issues related to the 
implementation of multiple order fixed-frequency resonant 
controllers, is considered outside the scope of this paper and 
the interested reader is referred elsewhere [5], [7], [36].  

V.  FEED-FORWARD COMPENSATION ALGORITHM 

The PMSG stator current control system is augmented with 
a feed-forward compensation term (see iff in Fig. 3) improving 
the dynamic response of the system when fast variations in the 
load fed by the LSC are produced. The feed-forward algorithm 
is based on input/output power balancing. 

 
Fig. 10. Resonant control system for the LSC. Only one phase is shown. 

Assuming that the load voltage is well regulated and 
balanced, the instantaneous LSC output power is calculated as: 

 

 鶏墜通痛 噺 迎結岫倦底庭懸挑件墜頂岻               (17) 
 

where the superscript “c” is the complex conjugate operator,  懸挑 is the load voltage vector (see van,vbn,vcn in Fig. 9) and 件墜   
is the LSC output current vector. Expanding (17) Pout is 
obtained as: 
 鶏墜通痛 噺 迎結峙倦底庭懸挑結珍摘賑痛盤デ 件賃結珍岫摘賑賃痛袋提入岻賃 髪 デ 件朕結貸珍岫摘賑朕痛袋提廿岻朕 匪頂  峩  (18) 
 

which can be rewritten as: 
 鶏墜通痛 噺 迎結範倦底庭懸挑 盤デ 件賃結珍岫岫怠貸賃岻摘賑痛袋提入岻賃 髪 デ 件朕結珍岫岫朕袋怠岻摘賑痛袋提廿岻朕 匪飯   (19) 
 

With 倦┸ 月 半 な┻ In (18-19) the index “k” is used to denote the 
positive sequence LSC output currents, and “h” is used for the 
negative sequence components. It is assumed that (k, h) are 
arbitrary phase angles.  

Neglecting the losses, the power balance in the 7-leg 
converter can be written as: 迎結盤倦底庭懸暢結珍摘認痛件暢匪 噺 怠態 系 鳥帳匂迩鉄鳥痛 髪迎結範倦底庭懸挑 盤デ 件賃結珍岫岫怠貸賃岻摘賑痛袋提入岻賃 髪 デ 件朕結珍岫岫朕袋怠岻摘賑痛袋提廿岻朕 匪飯 (20) 
 

where the term at the left hand side of (20) is the power 
supplied by the PMSG and the term 岫な にエ 岻系岫穴継鳥頂態 穴建エ 岻 is the 
instantaneous power absorbed or supplied by the dc-link 
capacitor bank C.   

From (20) a feed-forward term can be calculated in order to 
improve the regulation of the dc-link voltage Edc. However, it 
is relatively simple to demonstrate that the instantaneous 
power absorbed/supplied by the dc-link capacitance C cannot 
be driven to zero without producing harmonic distortion in the 
PMSG stator current when the LSC feeds an unbalanced non-
linear load.  Therefore some voltage variation has to be 
allowed in Edc which can be obtained using: 
 継鳥頂 鳥帳匂迩鳥痛 噺 伐 怠寵 迎結範倦底庭懸挑 盤デ 件賃結珍岫岫怠貸賃岻摘賑痛袋提入岻賃 髪デ 件朕結珍岫岫朕袋怠岻摘賑痛袋提廿岻朕 匪飯   岫 倦 伴 な岻                                         (21) 
 

 Eq. (21) can be useful for designing the dc-link capacitor 
bank considering the expected load characteristics.  

Harmonic distortion of the stator currents are not produced 
when the power generated by the PMSG is balanced with the 
dc instantaneous power produced by the positive sequence of 
the fundamental load current. Therefore replacing 懸暢 蛤 閤陳降赴追  
a feed-forward compensation current can be obtained 
calculating the term 弁件暢弁 in (20) as: 
 嵳件警嵳 噺 件捗捗 噺 牒尼寧虹賃琶破泥尿摘赴 認達誰坦 岫提妊廿岻          (22) 
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where Pavg is the dc component (i.e. obtained using k=1, ih=0 
in (21)) of  the load power.  
 The proposed feed-forward control system is shown in Fig. 
11. The power Pavg  is calculated using: 鶏銚塚直 噺 岫懸銚津件墜銚 髪 懸長津件墜長 髪 懸頂津件墜頂岻 テ 盤鎚鉄袋陳鉄摘賑鉄匪尿テ  岫鎚鉄袋替抵陳摘賑鎚袋陳鉄摘賑鉄岻尿       (23) 
 

The term at the right of (23) represents a cascade of notch 
filters tuned at 兼降勅, where 降勅 is the output frequency. If the 
load is unbalanced but linear, only one notch filter is required 
tuned at に降勅. If the load is non-linear, additional notch filters 
are required to eliminate the power pulsations due to the 
current distortion. 

 Fig. 11 shows the implementation of the feed-forward 
compensation term.  The output power is calculated using 
measurements of the phase to neutral load voltages and LSC 
output currents. From these measurements the average power 
Pavg is calculated using (23). Because of simplicity only one 
notch filter is shown in Fig. 11. An additional low-pass filter is 
used to eliminate the harmonics produced by the switching of 
the IGBT devices.  

Interconnection of the control systems, discussed in the 
previous sections, is shown in Fig. 12.  

VI.  EXPERIMENTAL WORK 

 The control system of Fig. 12 has been experimentally 
implemented (see Fig. 13) using a DSP based control board 
and an FPGA, the latter providing the switching signals for the 
14 IGBT gate drivers.  Data acquisition uses 20 Analogue to 
Digital (ADC) channels of 14bits, 1たs conversion time each, 
interfaced to the DSP. Additionally two digital oscilloscopes, 
operating simultaneously in single shot mode (with sampling 
frequencies of 5MHz) have been used in some of the 
experimental tests to store the current and voltages of the input 
and output side of the 7-leg converter.   Hall-effect transducers 
are used to measure the input currents, input voltages and 
output load voltages.  A switching frequency of 10kHz has 
been used to implement the SVM algorithms. 

For the experimental tests a Control Techniques, 4kW, 
2000rpm, 8 pole PMSG with surface mounted magnets is 
used. This PMSG supplies a sinusoidal voltage waveform with 
a Total Harmonic Distortion (THD) of less than 1.1% (the 
PMSG  voltage  waveforms  are  shown  in  Fig  13a).  The  

 
Fig. 11. Feed-forward compensation system. 

 
 

Fig. 12. Proposed control system for the 7-leg converter. 
 
parameters of the PMSG are given in Table I at the appendix. 
The prime mover  is  a  2  pole, 2910rpm, 5kW cage machine. 
A commercial inverter is used to drive the cage  machine using 
V/F control. The machines are shown in Fig. 13c. The position 
encoder has not been used to implement the control strategies. 
 A 7-leg power converter has been designed and 
implemented for the experimental validation of the proposed 
control system. The PCB is shown in Fig. 13b. Each leg has 
been implemented using a 1200V, 35A dual IGBT switch 
Infineon BSM35GB120DN2 device. The experimental system 
is controlled using a Texas Instruments TMS320C6713 DSP. 
A daughter board with an ACTEL FPGA is used to implement 
the PWM generation and for interfacing the A/D, D/A 
converters to the DSP. A 3 resistor bank with resistor taps of 
10.7 and 14.7 is used for the load. An electronic relay 
controlled using one of the D/A output channels is used to 
implement the load-step variations presented in this section. 
 Figs. 14-15 show the control system performance for an 
unbalanced load-step. Before the load-step the system is 
operating with a dc-link voltage Edc=325V, a load voltage of 
115V peak, r=1650rpm and a balanced LSC output current of 
5.3A (rms). At t42ms additional resistors are connected 
increasing the current to 12.4A (rms) in two of the phases. The 
output currents ia, ib and ic are shown in Fig. 14a. The neutral 
current, with the presence of zero sequence components, is 
shown in Fig. 14b. Finally Fig. 14c shows the load voltage 
which has a small perturbation when the load impact is 
applied; this is eliminated in less than 5ms (a quarter of a 
cycle) by the load-side RCs. 

Fig. 15 shows more experimental results corresponding to 
the unbalanced load step of Fig. 14. Fig. 15a shows the 3 
output power. Before the unbalanced load-step, the power is  
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Fig. 13. a) Two line to line voltages for the PMSG operating at 2150rpm b) 7-
leg converter designed and implemented in this work. c) 8-pole PMSG and 2-
pole cage machine.  
 
1.27kW without oscillations. After the load-step the mean 
output power is about 2kW with a relatively large 100Hz 
component. Using a digital notch-filter tuned at 100Hz and a 
first-order digital low pass filter tuned at 50Hz (see Figs. 11-
12 and (23)), the feed-forward current iff is calculated by the 
DSP using (22)-(23) and depicted in Fig. 15b. As discussed in 
Section V, this current is fed-forward to the stator current 
control system, to improve the dynamic response of the dc-
link voltage regulation. 
 In Fig. 15c the dc-link voltage is shown. With feed-forward 
compensation, the dip is only 6V. Notice that the dc- link has 
a 100Hz oscillation after the unbalanced load-step is applied. 
As discussed in Section V the controller has not been designed 
to compensate the ac ripple in the dc-link voltage, to avoid 
distortion in the PMSG stator currents. 
 Notice that Fig. 15c has a different time scale. In Figs. 15a 
and 15b signals internally calculated by the DSP are shown. 
Fig. 15c shows a dc voltage signal which is captured by the  
digital scope. 
 Fig. 16a shows the PMSG stator current corresponding to  

 
Fig. 14. Response of the LSC control systems for an unbalanced load step in 
two of the phases. a) LSC output currents. b) LSC neutral current. c) Load 
voltages. 

 
Fig. 15. a) 3 output power. b) feed-forward compensation current. c) dc-link 
voltage 
 
the test depicted in Figs. 14-15. The input current has a 
frequency of about 110Hz with virtually no distortion. For this 
case the current is regulated with  肯椎朕 蛤 ど (see Fig. 3).  Figs. 
16b and 16c show the - tracking error of the self-tuning 
resonant control system. For the whole test the tracking error 
is low, with a peak below 0.75A produced when the current iff  
has a fast variation from iff 12A to iff 18A (peak current) in 
t0.5s. 
 The control system of Fig. 12 has been tested considering a 
relatively fast ramp speed variation. For this test the 
experimental results are shown using the effective (rms) 
current of each phase. This methodology is preferred because 

PM Generator

Cage

Machine

Power

Filter

Encoder

MSC LSCDC-link

c)

b)

a)Line voltages

-15

-5

5

15

0 0.04 0.08 0.12
-150

-50

50

150
-15

-5

5

15

a)

b)

c)

Time (s)

Lo
a

d
 V

o
lt

a
g

e
(v

)
N

e
u

tr
a

l C
u

rr
e

n
t

(A
)

Lo
a

d
 C

u
rr

e
n

t
(A

)

Time (s)

0 0.2 0.4 0.6 0.8 1

1200

1600

2000

2400

0.4 0.45 0.5 0.55 0.6 0.65
10

14

18

0.7

a)

b)

P
ow

er
(W

)
C

ur
re

nt
(A

)

0 0.04 0.08 0.12300

320

340 c)

V
ol

ta
ge

(V
)



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

of the problems associated with displaying d-q currents under 
unbalanced operation. Moreover, the zero sequence 
components are not reflected in the d-q signals. 
 The LSC (rms) output currents are calculated using a digital 
implementation of:  件追陳鎚 噺 謬怠脹 完 件態岫建岻穴建               (24) 

A low pass filter is used to calculate the root mean square 
value of (24). 

 
Fig. 16. Input currents a) Instantaneous input current. b) -axis (rms) stator 
current tracking error. c) -axis (rms) stator current tracking error. 
 

 
Fig. 17. Control system performance for a ramp step variation. a) Reference 
(降追茅岻 and estimated 岫降赴追岻 rotational speeds. b) LSC output currents ia and ib. c) 
LSC output currents ic. d) Neutral current. 

 Fig. 17 shows results for a speed ramp variation between 
r800rpm to 1500rpm.  At t2s an unbalanced load step is 
applied to two of the phases and disconnected at t7.3s. Fig. 
17a shows the estimated rotational speed 降赴追 and the reference 
speed  降追茅 sent to the commercial inverter. In Figs. 17b-17c the 
LSC output currents ia, ib and ic are shown. Notice that the 
effective current is constant in phase c and that the unbalanced 
load-step variations are applied to phases b and c. Finally Fig. 
17d shows the zero sequence components circulating through 
the 4th leg, used as a neutral connection in this application. 
 Fig. 18 shows additional signals corresponding to the ramp 
speed variation test shown in Fig. 17. Fig. 18a shows the 
magnitude of the PMSG d-q stator current. Because the 
system is feeding a constant load at the output, the PMSG 
power current is proportional to 1/r. Fig. 18b shows the 
instantaneous power measured at the output. As explained 
before, this power is filtered and the feed-forward 
compensating current is obtained using (22)-(23). Fig. 18c 
shows the phase to neutral load voltage. Because of the boost 
capability of the MSC the load voltage can be regulated to a 
value which is  higher than the internal voltage (a phase 
voltage of 40V at 800rpm). This is an advantage compared to 
previous  implementations (see [5]). Notice that the load 
voltage is well regulated with a dip and an overshoot of less 
than 5V. Finally Fig 18d shows the dc-link voltage. For this 
test the dc-link voltage is well regulated (継鳥頂茅 噺 ぬどど撃岻 with a 
dip and overshoot of less than19V (6% of Edc).  
 The performance of the feed-forward compensation 
algorithm, for the regulation of the dc-link voltage, is shown 
in Fig. 19. The  system  is operating  with a rotational speed of  

  
Fig. 18. Control system performance corresponding to the ramp step variation 
of Fig. 17. a) PMSG stator current.  b) Instantaneous load power c) Magnitude 
(obtained from d-q coordinates) of the load voltage. d) dc-link voltage.  

-1.5

-0.5

0.5

1.5

0 0.2 0.4 0.6 0.8 1
-1.5

-0.5

0.5

1.5


-

tr
ac

ki
ng

 e
rr

or
 (

rm
s

A
)

Time (s)

b)

c)

0 0.04 0.08 0.12
-20

0

20

C
ur

re
nt

(A
) a)

0

2

4

6

1

2

3

0 2 4 6 8 100

1

2

3

500

1000

1500

2000

Load step

Time (s)

S
pe

ed
(r

pm
)

R
M

S
 C

u
rr

e
n

t
(A

)

a)

b)

c)

d)

ia, ib

ic

in

*

400

600

800

1000

1200

5

10

15

55

65

75

85

95

C
ur

re
nt

(A
)

P
ow

er
(W

)
V

ol
ta

ge
(V

)

a)

b)

c)

240

280

320

360

0 1 2 3 4 5 6 7 8 9 10
Time (s)

V
ol

ta
ge

(V
) d)



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 
Fig. 19. Performance of the feed-forward compensation algorithm. a) 3 
balanced load step. b) dc-link voltage variation without considering feed-
forward compensation. c) dc-link voltage variation considering feed-forward 
compensation. 
 

750rpm, the dc-link voltage is regulated to 200V and a 3 
balanced load-step is applied. Fig. 19a shows the output power 
variation from 500W to 1250W.  Fig. 19b shows the response 
of the dc link control system without the feed- forward term of 
(22). The nominal voltage is 200V and the dip and the 
overshoot are about 25V for a dc-link capacitor bank of about 
1600F. When the feed- forward term is included (Fig. 19c) 
the dip and the overshoot are reduced to 15V and the settling 
time (considering a 2% band) is reduced from 90ms to 
20ms for the same power step. 

 In Fig. 20 the performance of the proposed control system, 
for a non-linear load-step, is shown. The system is operating 
with a balanced load of about 1300W, 1650rpm, when at 
t58ms a non-linear load composed of a 14.7 resistor, in 
series with a rectifier diode, is applied to phase a. For this case 
additional resonant controllers, tuned to eliminate dc signals 
and third order harmonics are implemented in the LSC control 
system to regulate the load voltage. The implementation of 
high order resonant controllers is discussed in [5], [9], [36], 
[37]. 

Fig. 20a shows the LSC output currents ia, ib, ic. Before the 
non-linear step, the current in phase-a has negligible 
distortion. After the non-linear load step the current in phase-a 
is increased with a noticeable dc component whose magnitude 
is 32% with respect to the fundamental. Moreover, after the 
step, the second and the fourth harmonics are also present in ia 
with magnitudes of 11% and 3% respectively. Fig. 20b 
shows the zero sequence current components (produced by the 
non-linear load) that circulate in the neutral leg.  
 Fig. 20c shows the stator current which is well regulated 
with little distortion. Finally the load voltage is shown in Fig. 
20d. As shown in this graphic, the load voltage is well 
regulated and the effects of the non-linear step are negligible. 
Moreover the high order resonant controller reduces the 
distortion in the load voltage. 

 
Fig. 20.  Control system performance considering a non-linear load step. a) 
LSC output currents ia, ib and ic. b) Neutral current. c) PMSG stator currents. 
d) load voltage. 

VII.  CONCLUSIONS 

 A control method for a 7-leg back-to-back voltage source 
inverter has been presented. It is based on resonant controllers 
and a feed-forward compensation term. A frequency adaptive 
control system for the regulation of the PMSG stator current 
has been presented and experimentally validated. A control 
system topology for the regulation of the dc link voltage, 
avoiding distortion in the generator current, has been analysed 
in this work. A feed-forward compensation algorithm has been 
proposed that effectively improves the dynamic performance 
of the dc-link voltage control. 

The proposed control system has been tested considering 
balanced, unbalanced and non-linear load operating under 
variable/fixed rotational speed. The results have shown the 
good performance achieved with the proposed control 
methodology. 

APPENDIX 
 

TABLE I 
PARAMETER OF THE PMSG 

Nominal rotational speed 2000rpm 
Nominal Power 4kW 

Maximum Rotational Speed 2800rpm 
Torque constant 1.4Nm/A 
Nominal Torque 20Nm 
Voltage Constant 85.5V/Krpm 

(line voltage) 
Recommended Drive PWM 220/240V 
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Voltage (line voltage) 
Stator Inductance 4mH 
Stator Resistance 0.2 
Output Waveform Sinusoidal 

(THD<1.1%) 
 

 
TABLE II  

PARAMETER OF THE EXPERIMENTAL SYSTEM 
Switching Frequency 10kHz 
Output Filter Inductance Lf= 2.5mH   
Output Filter Capacitance Cf= 40 たF 

Output frequency 50Hz 
dc-link capacitance 1600F 
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