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 
Abstract—The Dynamic Phasor (DP) concept has been widely 

used in modelling electrical power systems. So far, the DP concept 
has been restricted to modelling systems with one single electrical 
source at a fixed fundamental frequency; either one generator or 
an ideal three-phase AC source. This paper aims to extend the DP 
modelling methodology to a wider application area. Two major 
achievements have been introduced: 1. application of DPs for 
multi-source, multi-frequency systems; 2. modelling of systems 
with time-varying frequencies. These two techniques enable the 
use of DPs to study nearly all types of Electrical Power Systems 
(EPS). The developed theory is validated using a twin-generator 
system from the More Open Electrical Technologies (MOET) 
project. The accuracy and effectiveness of the developed models is 
confirmed by comparing the simulation results of detailed 
switching models and DP models under both balanced and 
unbalanced conditions. 
 

Index Terms— more-electric aircraft, dynamic phasors, 
modelling, multi-source, multi-frequency, time-varying frequency  
 

I. ABBREVIATIONS 

 
ATRU    Auto-Transformer Rectifier Unit 
APU       Auxiliary Power Unit 
DP          Dynamic Phasor 
ECS       Environment Control System 
EMA      Electro-Magnetic Actuator 
EPS        Electrical Power Systems 
FTC        Frame Transformation Coefficient 
GCU       Generator Control Unit 
HVDC    High-Voltage Direct Current 
HVAC    High-Voltage Alternative Current 
MEA      More Electric Aircraft 
MOET   More Open Electrical Technology 
PEC     Power Electronic Converter 
PMM     Permanent Magnet Machine 
SG          Synchronous Generator 
WIPS     Wing Icing Protection System 
 

II. INTRODUCTION 

     With the advancement of power electronics and control 
theory, there has been significant penetration of power 
electronics into Electrical Power Systems (EPS) in recent years.  
This includes within applications such as the modern electric 

 
 

 

grid, distributed energy resources and the electrical systems of 
ships, aircraft and vehicles. However, increased system 
complexity and a wide variation in the  time scales of 
electromagnetic and electromechanical phenomena in the 
system will lead to significant challenges for EPS designers [1]. 
Modelling and simulation of these power electronic based 
systems is thus essential to design and verify the developed 
energy systems [2].  
    Traditionally, the dynamic behaviour of EPS can be studied 
using models created in commercial software such as Saber, 
Matlab/Simpower, etc. [3-5]. These models usually include 
detailed switching behaviour of semiconductor devices. When 
studying large-scale EPS, the application of these switching 
models often leads to significant computing time as well as 
large computer storage requirements. In addition, the switching 
models are discontinuous and thus difficult to extract the 
small-signal characteristics for system-level studies [2].  

Since the switching behaviour of Power Electronic 
Converters (PECs) has little added value for system-level 
studies, a number of approaches have been exploited to balance 
the accuracy and efficiency of the models. Averaging the 
variables during one switching period, the dynamic average 
model, has been widely used and proved to be an efficient 
method to model PECs. However, the publications available 
mainly focus on the modelling of PECs under balanced 
conditions [2, 6-8]. For unbalanced conditions, the complex 
behaviour of switching functions of PECs makes it difficult to 
develop the average models with high accuracy. For 
three-phase EPS, the average model is based on the Park 
transformation which transfers the quantities in the three-phase 
coordinate (ABC frame) into a synchronous rotating dq frame. 
This technique is also referred to as the DQ0 average modelling 
technique. These average models have shown great 
performance for EPS studies during balanced operation [9-11]. 
However, for unbalanced and faulty regimes this technique 
loses its efficiency and is time-consuming due to the second 
harmonic in the d and q axes [12].  

An alternative approach that can address this problem is to 
use Dynamic Phasor (DP) models, also referred to as the 
general averaging model [13]. DPs are essentially time-varying 
Fourier series coefficients. This method can model the 
fundamental component as well as higher harmonics in the 
system. Under both balanced and unbalanced conditions, the 
DP variables are constant or slow-varying complex quantities 
which allow big time steps during the simulation process. 
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The DP technique has been successfully used in modelling a 
number of electrical and electronic devices, such as electrical 
machines [14-16], power system dynamics and faults [17], 
flexible AC transmission systems [18, 19], sub-synchronous 
resonance [20], dc-dc converters [21] and High-Voltage Direct 
Current (HVDC) systems [22]. For system-level studies, the 
single machine infinite bus has been studied with DPs [17], 
where all the generators were perfectly synchronized and 
operating at a common fixed fundament frequency. However, 
this is not always true in the real world. In fact, many 
applications require variable frequency or generators with 
multiple frequencies. For example; the electrical output 
frequency of a generator which is time varying during start up 
and shut down, the typical oscillations that occur in the 
synchronous machines of a conventional grid with frequencies 
of 0.1-4Hz, and the EPS in future aircraft as these will be 
supplied by variable frequency generators with a common 
HVDC bus.  

 This paper aims to establish a foundation for DP modelling 
of multi-generator, multi-frequency systems as well as systems 
with time-varying frequencies. The paper is organized as 
follows: the DP concept is introduced in Section II; Section III  
develops the theory of DP modelling of time-varying frequency 
systems; the theory of DP modelling of multi-generator 
multi-frequency systems is introduced in Section IV; the 
implementation of the developed theory is demonstrated using 
a twin-generator aircraft EPS in Section V, which is followed 
by the paper’s conclusions in Section VI.  

  

III.  DYNAMIC PHASOR CONCEPT 

    The DP concept is based on the generalized averaging theory 
and was first reported in [13]. DPs are essentially time-varying 
Fourier coefficients. For a time-domain quasi-periodic 
waveform x(Ĳ), defining a time-moving window Ĳ(t-T, t], as 
shown in Figure 1, and viewing the waveforms in this window 
to be periodic, the Fourier expansion of the waveform in this 
interval can be represented by the following Fourier series: 
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Figure 1  (a) Defined moving window at time t1 and t2, (b) equivalent 

periodic signal at time t1 

where Ȧs=2ʌ/T and T is the length of the window. Xk(t) is the kth 
Fourier coefficient in a complex form and is referred to as a 
“Dynamic Phasor” (DP). It is defined as follows: 
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A key factor in developing dynamic models based on DPs is 
the relationship between the derivatives of the variable x(Ĳ) and 
the derivatives of the kth Fourier coefficient given as: 
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This can be verified using (1), (2), and be used in evaluating the 
kth phasor of time-domain model. The differential term on the 
right side of (3) is crucial, since this term represents the 
transient dynamic of variables. Dropping this term, the 
differential property of DPs reduces to be the same as that of 
traditional phasors. This property will also be modified when 
Ȧs is time-varying and will be discussed in section IV.  
    Another important property of DPs is that the kth phasor of a 
product of two time-domain variables can be obtained via the 
convolution of corresponding DPs: 
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The properties (3) and (4) play a key role when transforming 
the time-domain models into DP domain. Algebraic 
manipulations in this paper will also exploit the following 
property of real functions x(Ĳ): 

)()( * tXtX kk                                               (5) 

where the notation ‘*’ denotes a complex conjugate. Applying 
(5), the real time-domain waveform can be derived from (1) and 
rewritten as: 
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Transforming (1) into the frequency domain gives 
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As seen in (7), applying the DP concept shifts all the band 
limited components at kȦs by –kȦs. This makes all the 
harmonics become base-band components, as illustrated in 
Figure 2, and allows bigger simulation steps and higher 
computation efficiency. 
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Figure 2 Frequency-shift phasors of non-band-pass signals 
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IV.  DYNAMIC PHASOR MODELLING OF VARYING FREQUENCY 

WAVEFORMS  

 
    So far, all the DPs are constant frequency. As mentioned 
before, there is no system with a perfectly fixed frequency. 
Even in a conventional grid, it is typical that an oscillation with 
a frequency of 0.1-4Hz is manifested in the synchronous 
machines. The application of DPs in modelling time-varying 
frequency systems has been touched on in [13]. There, the 
author chooses a ‘sliding window’ with phase angle ș(t)=2ʌ for 
the time-varying frequency signals. The theory developed in 
[13] is difficult for application and there has been no further 
development in this area since [13]. In this section, the authors 
propose another methodology that makes the application of 
DPs in modelling time-varying EPS convenient.  
    As briefly highlighted in section II, the analysis based on (2) 
is valid if Ȧs is constant. In the case where the frequency Ȧs is 
time varying, the selection of a ‘time-moving window’ in the 
DP definition should be reconsidered. The main difficulty of 
DPs of time-variant frequency waveforms is to derive the 
differential of a DP when Ȧs varies. For a waveform with a 
time-varying frequency, it is convenient to define the DP using 
the phase angle ș instead of the angular speed Ȧs as was used in 
(2). Using the phase angle ș, the DP definition becomes: 
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where 
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This approach was reported in [13] where the author derived 
the derivative property as: 
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The proof of (10) is shown in [13] and will not be detailed in 
this paper. As can be seen above, when the frequency is 
constant, i.e. Ȧሶ ሺtሻ=0  and Tሶ ሺtሻ=0 , (10) will reduce to (3). 
However, for the case of Ȧሶ ሺtሻ≠0, equation (10) is extremely 
complicated and this makes its implementation totally 
impractical. Therefore in reality, it is not possible to use (10) to 
study EPS. This is due to the fact that the two terms x(t-T(t)) 
and Ȧ(t-T(t)) require the solver to store all the results during the 
T(t) period, for a large-scale EPS with many state variables, it 
will result in impractical computation time. Indeed, after the 
authors reveal (10) in [13], DPs have never been used in 
literature for time-varying frequency systems.  
    In this paper, we introduce an alternative approach to derive 
a simple formula for the DP of the differential term and this is: 

k
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Proof: To prove this result, it must first be recalled that 
according to the definition in (8), the differential of DP ۃxۄk can 
be expressed as: 
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In addition, the DP form of a differential term dx dtΤ  can be 
given as: 
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Since dș/dt=Ȧ(t), (13) can be written as: 
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Then exchanging the integration terms in (14) yields: 
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The first term, from (12) is equal to d‹x›k/dt. The second term, 
from (8) is equal to jkȦ(t)‹x›k. Therefore, combining (8), (12) 
and (15) gives (11).   

Comparing (11) and (3), one can notice that the derivative 
characteristics of frequency based DP and phase angle based 
DP are of the same form. This implies that these two types of   
DPs can be treated equally.  
 

V. MULTI-FREQUENCY SYSTEMS MODELLING WITH DYNAMIC 

PHASORS 

In addition to DP modelling of time-varying frequency EPS, 
another issue addressed in this paper is the DP modelling of 
EPS with multiple frequencies, i.e. multiple generators. EPS 
with multiple generators working in parallel are very common 
for redundancy and safety reasons. Taking the Airbus A380 as a 
prime example, there are four main generators and an Auxiliary 
Power Unit (APU) in the EPS. During the engine start-up and 
shutdown process of the aircraft, there is a transition between 
the aircraft electrical power being supplied by the APU and the 
main generators. During this transition multiple generators are 
running in parallel at differing frequencies. In this section, the 
DP modelling technique will be extended to modelling 
multi-generator parallel-operation systems. A common 
reference frame, called the master frame, is chosen in the 
multi-generator system and all the variables in the model are 
referred to the master frame. It will be seen later in this section, 
that the transformation between different frames can be 
represented with some simple algebraic functions. This is 
extremely convenient when implementing the theory developed 
in this section. 
    For the same time-domain waveform, the DP transformation 
with different base frequencies, will define distinct series of 
DPs. Let a time-domain waveform xq(t) be associated with the 
qth Synchronous Generator (SG) with a base frequency Ȧq. 
Then the DP of xq(t) can be written as:  
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where Ȧq=2ʌ/Tq. The first subscript ‘q’ in Xqn(t) denotes that 
the DP is associated with the variable xq(t) and the qth generator 
with a base frequency Ȧq. The second subscript ‘n’ gives the 
DP index in this frame. To proceed, we define a master frame or 
primary frame with base frequency Ȧp and the DPs for the 
signal xq(t) in this frame can be written as: 
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where Ȧp=2ʌ/Tp. The ‘m’ gives the DP index in the 
corresponding Ȧp frame. In this paper, the DPs in their own 
frame are denoted using ‘X’ and the DPs after frame 
transformation are denoted with ‘Y’. A linear relation between 
DPs in the master frame (Ȧp frame), and the slave frame (Ȧq 
frame) can be written as: 

...2,1,0   ,)()(   mtXeCtY
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nmpm
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The proof of (18) is shown in Appendix I. In (18), 
∆Ȧnm=nȦq-mȦp and the coefficient Cnm is dependent on ∆Ȧnm. 
Using (18), transformation from DPs in the master Ȧp frame to 
DPs in the slave Ȧq frame can be achieved. In this case, every 
component of Xqn(t) will contribute to a widespread range of 
Ypm(t) (m=0, 1,2, …). However, this study is focused on the 
functional modelling level [10] and as such we neglect high 
harmonics and only the fundamental component is considered. 
Thus all signals are represented by their fundamental 
components.  
Applying:  

)cos()(   tAtx qq
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Let the base frequency Ȧq, then the DP Xqn(t) can be calculated 
as: 
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From (20), it can be concluded that in the Ȧq frame, all the DPs 
except Xq1(t) (n=1) are equal to zero. Using (18) and (20), the 
DPs in the master frame are written as: 

)()( 11
1 tXeCtY q

tj
mpm

m ,     m=1, 2, …           (21) 

Therefore, it can be seen from (20) and (21), that in the slave 
frame, Xqn(t) only includes the DP component with n=1. 
However, when transferred into the master frame, 
Ypm(t) includes a series of DPs with a wide range of frequency 
components (m= 1, 2,…). This makes the frame transformation 
difficult to calculate and impractical for applications. To make 
progress, we utilise the fact that in the slave frame, the DPs of 
xq(t) only include the n=1 component, as shown in (20).  

From (21), we can define the complex variable Ypm
' (t) as:  
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1

' tYCtY pmmpm
 ,    m=1, 2,…                  (22) 

Combining (21) and (22) gives: 
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Equation (22) illustrates a linear relation between Ypm
' (t) and 

Ypm(t). This indicates that Ypm
 ' (t) is still in the master frame. 

Equation (23) reveals that the DP Ypm
' (t) can be derived from a 

rotational transformation of the DP Xq1(t), with rotating angle 
Ȗ=∆Ȧ1mt=(Ȧq-mȦ1)t.  
    From (20), we know that Xq1(t) includes all the information 
for the sinusoidal xq(t). While, equation (23) reveals that Ypm

 ' (t) 
is derived from a rotational transform of Xq1(t). It can therefore 
be concluded that each item of Ypm

 ' (t) (m=1,2,…) contains all 
the required information needed for xq(t). Indeed, considering 
the case m=1 in (23) gives: 
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Combining (6) and (24) the time-domain waveform xq(t) can be 
traced back from Yp1

 ' (t) with 
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where the function Re derives the real term of the complex 
variable. Equations (24) and (25) illustrate that the complex 
variable Yp1

 ' (t) can be used as a DP in the master frame. The 
DPs in those two different frames are related with a rotating 

function ej∆Ȧ11t, as shown in (24). The introduction of this extra 
complex variable Yp1

 ' (t) makes the frame transformation more 
convenient and mathematically easier for application.  
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Figure 3 DP modelling of multi-generator systems 

The application of (24) can be illustrated using a 
multi-generator system as shown in Figure 3. The synchronous 
generator SG1, with rotating frame Ȧp, is selected as the master 
frame. Other generators SGj (j≠1) are viewed as slave 
generators. The voltages and currents, associated with SG1, are 
transformed to DPs in the Ȧp frame and denoted as Xp1(t) . The 
DPs of variables associated with the qth generator are denoted 
as Xq1(t)  in the Ȧq frame. Using this technique, an interface can 
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be developed to connect a itslave-frame based DP subsystem 
with a master-frame based DP subsystem using: 
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where Xq1
௩ (t)ǡ Xq1

௜ (t) are DPs of the voltages and currents in the 

slave frame and Yq1
ᇱ௩(t)ǡ Yq1

ᇱ௜ (t) are the DPs in the master frame 
after transformation. 
  

VI.  IMPLEMENTATION  

Two test cases are presented in this section. The first case is 
used to validate the application of the phase-based DPs in 
modelling frequency-varying systems. This is validated 
experimentally. The second case applies the DP frame 
transformation theory to a twin-generator EPS in a 
More-Electric Aircraft (MEA). The results from DP models are 
compared with those from detailed behavioural models 
(referred to as ABC models). The DP models of EPS elements 
can be found in our recent publications [23-25]. Simulations 
have been performed on an Intel i7 CPU@3.20GHz, 24.0GB of 
RAM using Modelica/Dymola v.7.4 software. The Radau IIa 
algorithm has been chosen in the solver and the tolerance has 
been set at 1e-4. As a quantitative evaluation of the computation 
efficiency, the computation time has been compared between 
DP and ABC models.  

 
A. Application of phase-based DPs 

 
    The proposed phase-based DPs will now be validated 
experimentally. The scheme for testing is shown in Figure 4. A 
three-phase power supply with internal impedance Rs and Ls is 
used to supply an RL load. The California MX45 is used as the 
AC power supply. When running as an AC source, the MX45 
has internal impedance of Rs= 50mȍ and Ls=200ȝH. The load 
resistance is R=57.2ȍ and inductance is L=0.8mH. In this test, 
a step change of frequency from 50Hz to 400Hz is applied to 
the system. This step change will rarely happen in a generator 
driven system. However, this extreme case provides a good test 
to validate the developed theory. In order to trigger the scope, 
the magnitude of AC power is also stepped from 20Vrms to 
40Vrms.  
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VaVb

Vc

R L

R L

R L

AC power 

supply

       
                           (a)                                                       (b) 

Figure 4 Validation of varying frequency DPs. (a) system configuration; (b) test 
rig 

 
Figure 5 Phase A currents flowing through resistor R comparison between DP 
model and experimental results with frequency steps from 50Hz to 400Hz  

    The load currents (phase A) from the DP models are 
transformed to the time-domain and compared with the 
experimental results, as shown in Figure 5. The experimental 
results, and those from phase-based DP model, are almost 
identical before and after step change in frequency. This 
therefore confirms the accuracy of phase-based DP in 
modelling time-varying frequency systems.  
 

B. Twin-generator system 

A twin-generator electrical power system of MEA is shown 
in Figure 6. This large aircraft hybrid AC/DC power system is 
based on an A380 style EPS and was the subject of studies 
within More-Open Electrical Technologies (MOET) project 
[10].  
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 Figure 6 One twin-generator electrical power system of MEA  

 
The main elements of the EPS in Figure 6 include the 

Synchronous Generator (SG) and its control unit, 
Auto-Transformer Rectifier Units (ATRUs), Wing-Ice 
Protection System (WIPS), Environmental Control System 
(ECS) and Electro-Mechanical Actuators (EMAs). The 
Generator Control Unit (GCU) is used to control the voltage of 
the main AC bus. The ATRUs provide AC to DC power 
conversion. They are comprised of an auto-transformer and 
three sets of diode bridges [26]. The WIPS is an electrical 
de-icing system. It is modelled as a three-phase variable 
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resistive load. The ECS system is driven by large compressors 
which are modelled as Permanent Magnet Machines (PMMs). 
The ECS provides environmental temperature control and 
cabin pressurization. The EMAs, which are mainly used for the 
flight control actuation, consist of an electric motor and gear 
box assembly and are modelled as PMMs fed by back-to-back 
inverters. 

 
 

1)  Normal Operation Conditions 
    This section presents simulation studies of the power system 
in Figure 6 under start-up and normal conditions. During the 
start-up process, the two subsystems operate independently. It 
is assumed that the generators have reached the rated speed 
before the electrical system starts operation. The electrical 
frequencies of synchronous generators SG1 and SG2 are fixed at 
400Hz and 405Hz respectively with different initial rotor 
angles. This asynchronism represents a real situation where the 
two generators are driven by different engine shafts. After the 
generators reach steady state, a series of events occurs. The 
event sequence during start-up of the twin-generator aircraft 
EPS is shown in Table I.  
 

TABLE I EVENTS SEQUENCE OF MEA TWIN-GENERATOR SYSTEM 
CASE 

Time 
(s) 

Events 

0.00 Simulation starts. SSG1 and SSG2 closed; GCUs start to 
regulate vHVAC1 and vHVAC2 to 230Vrms 

0.15 Switches SATRU1 and SATRU2 are closed 
0.20 PM machines in ECS1 and ECS2 start to accelerate to 

the rated speed (3,000rpm) 
0.50 Rated load torques applied to ECS1 and ECS2 (95Nm) 
0.70 Rated load of WIPS applied (60kW) 
0.75 Power of WIPS changes from 60kW to 6kW 
0.80 EMA1 and EMA2 start to accelerate to the rated speed 

(900rpm) 
0.90 Rated load torque applied to EMA1 and EMA2 (54Nm)  
1.00 SG1 and SG2 connected 
1.02 SHVB opens; SG1 and SG2 disconnected 
1.20 Simulation ends 

 

Results from the ABC and DP models are compared in the 
following figures. The dynamic responses of the DC bus 
voltages, vHVDC1 and vHVDC2 are shown in Figure 7. It can be seen 
that the voltage vHVDC1 and vHVDC2, from two different modelling 
techniques, match very well. Since the initial values of vHVDC1 
and vHVDC2 are set at zero, when the switches SATRU1 and SATRU2 
are closed, vHVDC1 and vHVDC2 jump from 0V to around 800V. 
This is due to the inrush of current charging the zero-initialized 
capacitor. When generators SG1 and SG2 are connected, vHVDC1 
and vHVDC2 drop due to the difference between vHVAC1 and 
vHVAC2. When the two generators disconnect at t=1.02s, the two 
subsystems return to their previous steady state before parallel 
operation. SG2 then starts to supply the whole load system and 
the system settles into steady state after a short transient period.  

Since the system is assumed to be balanced, the currents 
flowing into the ATRU iATRU1 are represented by the phase A 
current only. For comparison, the variables in the DP models 
are transformed into three-phase coordinates within the time 
domain, as shown in Figure 8. The magnitudes of the DPs, 
denoted by |DP|, are also shown in these figures. As can be 
seen, the currents iATRU1 remain at zero until the load is 
connected to the HVDC buses. At 0.2s the acceleration of the 
PMMs in the ECS causes increased current in iATRU1. The 
application of rated ECS load causes another step response in 
iATRU1 at t=0.5s. Again, it can be seen that the results from the 
ABC and DP models are well matched during the whole 
simulation process. The DP magnitudes form envelops of the 
time-domain currents iATRU1.  

 

 
Figure 7 The dynamic response of vHVDC1 and vHVDC2. Above: response of 

vHVDC1; below: response of vHVDC2 
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Figure 8 The dynamic response of iHVAC1, phase A current flowing into ATRU1. 
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    The computation time consumed by the three models is 
compared in Figure 10 and in Table II. It can be seen that the 
DP model is 185 times faster than the ABC model.  
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Figure 9 Comparison of the computation time between three different models 

 

TABLE II  COMPARISON OF THE COMPUTATION TIME BETWEEN 
THREE DIFFERENT MODELS 

Model ABC DP 
Simulation time (s) 7983.00 42.97 
Acceleration factor 1 185 

     
2) Line-to-Line Fault Conditions 

    The application of DPs in modelling EPS in faulty conditions 
has been discussed in [24, 25, 27]. In these publications, the DP 
modelling technique was used to model synchronous 
generators, ATRUs, front-end rectifier units, diode bridges and 
transmission lines. All of the developed models were tested 
under both balanced and unbalanced conditions. In this section, 
the system behaviour under line-to-line fault conditions will be 
studied. The line-to-line fault is imposed between phase A and 
phase B at the transmission line connecting the generator SG2 
and the HVAC1 bus, as shown in Figure 6. The fault is 
implemented by using a 0.1mΩ resistor between the phases. 
The system goes through a series of events the same as those 
shown in Table I, prior to the line-to-line fault occurring at 
t=1.2s.  Since the fault happens at the main AC supply cables, 
all the elements in the EPS will be fed by severely distorted 
power during the fault condition. 

Table III SIMULATION SCENARIOS OF TWIN-GENERATOR 
AIRCRAFT EPS UNDER ABNORMAL OPERATION CONDITIONS 

Time (s) Events 

…. Same as Table I 
1.20 A line-to-line fault occurs between the SG2 and 

the HVDC2 bus 
1.30 Simulation ends 

 

 
Figure 10 The dynamic response of HVDC bus voltages, vHVDC1 and vHVDC2, 

with a line-to-line fault occurring at t=1.2s.  

 

Figure 11 The dynamic response of currents flowing into the ATRU2 with a 
line-to-line fault occurring at t=1.2s 

Figure 10 shows the DC-link voltages of ATRU1 and 
ATRU2. After the fault occurs, vHVDC1 and vHVDC2 reduce from 
540V to a new steady state around 310V. The power quality of 
the DC side is reduced and the apparent harmonics can be due 
to the increased voltage ripple, as shown in Figure 10. The 
currents flowing into the ATRU2 are shown Figure 11. The 
results from the DP model are transformed into three-phase 
coordinates within the time domain for comparison studies. It 
can be seen from Figure 11 that after fault occurs, the AC 
currents flowing into the ATRUs are distorted. The results from 
the two different modelling techniques are well matched both 
before and after the fault occurs. The computation time of 
different models is shown in TABLE IV. As can be seen, the 
DP model in this case is almost 90 times faster than the ABC 
model. 

TABLE IV COMPARISON OF THE COMPUTATION TIME 
BETWEEN THREE DIFFERENT MODELS (FOR 0.1S FAULT 
CONDITIONS ONLY) 

Model ABC DPABC 

Simulation time (s) 724.5 8.066 
Acceleration  1 89.7 
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VII.  CONCLUSION 

    This paper has further developed the application of the DP 
concept in two major areas. The first was DP modelling of 
frequency varying systems and the second was DP modelling of 
multi-frequency, multi-generator systems.  When modelling a 
multi-generator system using DPs, the frequency of one 
generator is chosen as the master frame and the whole loading 
system is modelled in this master frame. The slave generators 
connect to the loading system with an interface which 
transforms the DPs from the slave frame to the master frame. 
After transformation, the DPs in the subsystems exhibit 
time-varying behaviour at a frequency ∆Ȧ, which depends on 
the difference between the master frame and the slave frame. In 
general, the frequency difference will be small which means 
that the subsystems will have slowly varying DPs. This still 
allows larger simulation steps and hence accelerated 
simulations, as shown in this paper. Indeed, compared to ABC 
model simulation results, the DP models have been shown to 
provide significant acceleration while still maintaining 
extremely high dynamic and steady state accuracy. The 
phase-based DP concept, which is based on phase angle ș 
instead of angular speed Ȧ, has also been proposed for 
modelling time-varying frequency systems. The derivative 
property revealed in this paper makes this type of DP modelling 
much more convenient for application than the technique 
presented in  [13] as the phase-based DP models can be 
conveniently modified from the Ȧ-based DP. Finally, using a 
twin-generator aircraft EPS, and comparing simulation results 
from ABC and DP models, the effectiveness and accuracy of 
DP models was also demonstrated when the system is under a 
fault condition. 
 

APPENDIX I 

 
    This appendix aims to explain the proof of (18).  Combining 
(17), (18) and the inverse DP transformation (1), the relation 
between the DPs in the master frame and DPs in the slave frame 
can be expressed as: 
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Considering that in the integration term, Xqn(t) is a slave-frame 
DP at the time instant ‘t’, and that it is constant during the 
integration interval [t-Tp,t], then the term Xqn(t) can be moved 
outside the integration. Exchanging the integration and sum 
calculation order yields: 
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The equation (AI-2) reveals that the DPs of xq(t) in the master 
Ȧp frame, Ypm(t), can be expressed as an algebraic sum of DPs 
in the slave Ȧq frame, Xqn(t). According to the DP definition (2), 
the coefficients of Xqn(t) in (AI-2) can be viewed as the mth DP 
of ejnȦ೜t  in the Ȧp frame and denoted as ۃejnȦ೜tۄpm . The 
coefficients are called DP Frame Transformation Coefficients 
(FTCs). Therefore, (AI-2) can be written as:  
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The FTCs can be calculated as: 
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Defining nȦq-mȦp=∆Ȧnm  and using Euler and Half-Angle 
formulas, (AI-4) can be written as: 
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Defining the following coefficient: 
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Substituting (AI-5) and (AI -6) into (AI-3) gives: 
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