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Dynamic Phasor Modelling of Multi-Generator
Variable Frequency Electrical Power Systems

T. Yang, S. Bozhko, Member, IEEE, J.M. Le-Peuvedic, G. Asher, Fellow, IEEE
and Cl. Hill, Member, IEEE

Abstract—The Dynamic Phasor (DP) concept has been widely
used in modelling electrical power systems. So far, the DP concept
has been restricted to modelling systems with one single electrical
source at a fixed fundamental frequency; either one generator or
an ideal three-phase AC source. This paper aimsto extend the DP
modelling methodology to a wider application area. Two major
achievements have been introduced: 1. application of DPs for
multi-source, multi-frequency systems,; 2. modelling of systems
with time-varying frequencies. These two techniques enable the
use of DPs to study nearly all types of Electrical Power Systems
(EPS). The developed theory is validated using a twin-gener ator
system from the More Open Electrical Technologies (MOET)
project. The accuracy and effectiveness of the developed modelsis
confirmed by comparing the simulation results of detailed
switching models and DP models under both balanced and
unbalanced conditions.

Index Terms— more-€electric aircraft, dynamic phasors,
modelling, multi-sour ce, multi-frequency, time-varying frequency

|. ABBREVIATIONS
ATRU Auto-Transformer Rectifier Unit
APU  Auxiliary Power Unit

DP Dynamic Phasor

ECS  Environment Control System
EMA  Electro-Magnetic Actuator

EPS Electrical Power Systems

FTC Frame Transformation Coefficient
GCU Generator Control Unit

HVDC High-Voltage Direct Current
HVAC High-Voltage Alternative Current
MEA  More Electric Aircraft

MOET More Open Electrical Technology
PEC Power Electronic Converter

PMM  Permanent Magnet Machine

SG Synchronous Generator
WIPS Wing Icing Protection System

Il. INTRODUCTION

grid, distributed energy resources and the electrical systems of
ships, aircraft and vehicles. However, increased system
complexity and a wide variation in the time scales of
electromagnetic and electromechanical phenomena in the
system will lead to significant challenges for EPS designérs [1]
Modelling and simulation of these power electronic based
systems is thus essential to design and verify the developed
energy systemp [2]

Traditionally, the dynamic behaviour of EPS can be studied
using models created in commercial software such as Saber
Matlab/Simpower, etc[ [3]5]. These models usually include
detailed switching behaviour of semiconductor devices. When
studying large-scale EPS, the application of these switching
models often leads to significant computing time as well as
large computer storage requirements. In addition, the switching
models are discontinuous and thus difficult to extract the
small-signal characteristics for system-level stufligs [2]

Since the switching behaviour of Power Electronic
Converters (PECs) has little added value for system-level
studies, a number of approaches have been exploited to balance
the accuracy and efficiency of the models. Averaging the
variables during one switching period, the dynamic average
model, has been widely used and proved to be an efficient
method to model PECs. However, the publications available
mainly focus on the modelling of PECs under balanced
conditions [[2[6-8]. For unbalanced conditions, the complex
behaviour of switching functions of PECs makes it difficult to
develop the average models with high accuracy. For
three-phase EPS, the average model is based on the Park
transformation which transfers the quantities in the three-phase
coordinate (ABC frame) into a synchronous rotatilggrame.

This technique is also referred to as the DQO average modelling
technique. These average models have shown great
performance for EPS studies during balanced opertian][9-
However, for unbalanced and faulty regimes this technique
loses its efficiency and is time-consuming due to the second
harmonic in the d and q axfE&].

An alternative approach that can address this problem is to
use Dynamic Phasor (DP) models, also referred to as the
general averaging modgl3]. DPs are essentially time-varying
Fourier series coefficients. This method can model the
fundamental component as well as higher harmonics in the

With the advancement of power electronics and contrslystem. Under both balanced amdbalanced conditions, the
theory, there has been significant penetration of pow®®P variables are constant or slow-varying complex quantities
electronics into Electrical Power Systems (EPS) in recent yeandiich allow big time steps during the simulation process.

This includes within applications such as the modern electric
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The DP technique has been successfully used in modelling & key factor in developing dynamic models based on DPs is
number of electrical and electronic devices, such as electrithé relationship between the derivatives of the varigh)eand
machines[T4-16], power system dynamics and faulE7], the derivatives of the"kFourier coefficient given as:
flexible AC transmission systenfd€d][19], sub-synchronous
resonancgd0], de-dc converterf2[l] and High-Voltage Direct <Q(> () _XO ko X, (t) 3)
Current (HVDC) system$2p]. For system-level studies, the dt/ dt

single machine infinite bus has been studied with @' [ This can be verified using (1), (2), and be used in evaluating th
Where' all the generator's were perfectly synchronized an phasor of time-domain model. The differential term on the
opergtlng at a common f|>§ed fundament frequency. Howevq{ght side of (3) is crucial, since this term represents the
this s .not always true. in the real world. In fact, MaN¥ransient dynamic of variables. Dropping this term, the
applications require variable frequency or generators Wiffierential property of DPs reduces to be the same as that of
multiple frequencies. For example; the electrical outpyf,iiona| phasors. This property will also be modified when

frequency of a generator which is time varying during start b is time-varying and will be discussed in section IV.

and shut down, t_he typical osgillationg thgt occur in_ the “Another important property of DPs is that tHeghasor of a

synchronous machines a conventional grid with frequencies qy,ct of two time-domain variables can be obtained via the

of 0.1-4Hz, and the EPS in future aircraft as these will Q& o1ution of corresponding DPs:

supplied by variable frequency generators with a common

HVDc bus. . . . . <Xy>k = Z<X>k—i<y>i (4)
This paper aims to establish a foundation for DP modelling i

of multi-generator, multi-frequency systems as well as syste . .

with time-varying frequencies. The paper is organized e properties (3) and (4) play a key role when transforming

follows: the DP concept is introduced in Section Il; Sectlbn I?ﬁe _t|me?domia|n _models Into DP dO”?a'”- Algeb_ra|c

develops the theory of DP modelling of time-varying frequengg‘an'pulat'onS n th|_s pap(.ar will also exploit the following

systems; the theory of DP modelling of multi-generat roperty of real functions(z):

multi-frequency systems is introduced in Section IV; the X, (8) = X (t) (5)

implementation of the developed theory is demonstrated using

a twin-generator aircraft EPS in Section V, which is followegvhere the notatiof*” denotes a complex conjugafeplying

by the paper’s conclusions in Section VI. (5), the real time-domain waveform can be derived from (1) and
rewritten as:

[1l. DYNAMIC PHASOR CONCEPT X(t) = X, (t) + 2i {S‘RG{Xk(t)e"““st ]} ©®)

The DP concept is based on the generalized averaging thepf¥nsforming (1) into the frequency domain gives
and was first reported if1§]. DPs are essentially time-varying

Fourier coefficients. For a time-domain quasi-periodic X (jo) = ixk(iwfjkws) (7)

waveform x¢), defining a time-moving windowe (t-T, t], as k=

shown il Figure JL, and viewing the waveforms in this windows seen in (7), applying the DP concept shifts all the band

to be periodic, the Fourier expansion of the waveform in thjgyited components atkws by —kos This makes all the

interval can be represented by the following Fourier series: 5rmonics become base-band componeassillustrated in
[Figure 4, and allows bigger simulation steps and higher

_ > jkaogr l . ..
()= D" X, (t)e’ (1) computation efficiency.
K=—c0
X(w)
X(t) X, ‘ ‘ X,a‘(w) X,ﬁ(fU) Xll(w) | Xa(}w)
LT, LT | | | | i !
T C AU ﬂ ﬂ AL
| | b | ~30, 20, -, 0, 20, 3o,
1 : -t I : >t { To DPs
tl'T tZ'Ttl t2 tl‘T tl
@ (b)
X (jo—kea)
Figure 1 (a) Defined moving window at time &nd §, (b) equivalent
periodic signal at timeg t
// !) w
wherews=27/T and T is the length of the window,(® is the K' 0

Fourier coefficient in a complex form and is referred to as a

“Dynamic Phasor” (DP). It is defined as follows: Figure 2 Frequency-shift phasors of non-band-pass signals

X ® =1 [x()e *ndr = (x), @)
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IV. DYNAMIC PHASOR MODELLING OF VARYING FREQUENCY d(x), d(x) do 1 !l
WAVEFORMS m k= dek o w(t)g x{t(0)e”’ ‘]‘Hﬂ (12

So far, all the DPs are constant frequency. As mentionggjadd'tlon’ the DP form of a differential teri/d? can be

before, there is no system with a perfectly fixed frequencg.'ven as:
Even in a conventional grid, it is typical that an oscillation with <dx> S 1% dxt(o)
k

— ko
a frequency of 0.1-4Hz is manifested in the synchronous dt/, 2z, dt e™dg (13
machines. The application of DPs in modelling time-varying 1% dx() do
frequency systems has been touched ofidB). [There, the = ) do i de
author chooses a ‘sliding window’ with phase angle 6(t)=2n for 2
the time-varying frequency signals. The theory developed Binced6/dt=w(t), (13) can be written as:
is difficult for application and there has been no further )
development in this area sinf&g]. In this section, the authors <E‘> _1 [ o(he *dxt(6) 14
propose another methodology that makes the application of dt/, 2r
DPs in modelling time-varying EPS convenient.

As briefly highlighted in section Il, the analysis based on (
is valid if ws is constant. In the case where the frequencis dx
time varying, the selection of a ‘time-movingwindow’ in the <a>
DP definition should be reconsidered. The main difficulty of “
DPs of time-variant frequency waveforms is to derive th&he first term, from 12) is equal taf/dt. The second term,
differential of a DP whenws varies. For a waveform with a from (8) is equal tgkw(t)x».. Therefore, combining (8)10)
time-varying frequency, it is convenient to define the DP usingnd (L5) gives (L1).
the phase angkinstead of the angular speg@gdas was used in  Comparing (11) and (3), one can notice that the derivative

6-2x

z'ghen exchanging the integration termsid)(yields:

o 1 a
+ lka® |

0-2r -2,

= 1 X(t(0))w(t)e
2z

X(z(0))e *’do (15

(2). Using the phase anglethe DP definition becomes: characteristics of frequency based DP and phase angle based
B DP are of the same form. This implies that these two types of
(x), -1 j X(t(@)e ™ do  k=012,... (8) ' DPs can be treated equally.
0-27
where

V. MULTI-FREQUENCY SYSTEMS MODELLING WITH DYNAMIC
t
o) = st(f)df 9) PHASORS

) ) In addition to DP modelling of time-varying frequency EPS,
This approach was reported[iB] where the author derived  another issue addressed in this paper is the DP modelling of

the derivative property as: EPS with multiple frequencies, i.e. multiple generators. EPS
d)\  dx®), 1 i) _ with multiple generators working in parallel are very common
<T>k =g, X T el-TOITO (10 for redundancy and safety reasons. Taking the Airbus AS80 a

10 oo [0 prime examplether_e are four main generators _and an Auxiliary
—Z*OL xHe {m— ka(t)}d‘g Power Unit (4°U) in the EPS. During the engine start-up and
shutdown process of the aircraft, there is a transition between
The proof of (0) is shown in[13] and will not be detailed in  the aircraft electrical power being supplied by the APU and the
this paper. As can be seen above, when the frequencynisin generators. During this transition multiple generators are
constant, i.ew()=0 and T(r)=0, (10) will reduce to (3). running in parallel at differing frequencies. In this section, the
However, for the case @f(r)#0, equation 10) is extremely DP modelling technique will be extended to modelling
complicated and this makes its implementation totallynulti-generator parallel-operation systems. A common
impractical. Therefore in reality, it is not possible to u€® {o  reference frame, called the master frame, is chosen in the
study EPS. This is due to the fact that the two terms x(t-T(tpulti-generator system and all the variables in the model are
andw(t-T(t)) require the solver to store all the results during theeferred to the master frame. It will be seen later in this section,
T(t) period, for a large-scale EPS with many state variablestfiat the transformation between different frames can be
will result in impractical computation time. Indeed, after theepresented with some simple algebraic functions. This is
authors reveal (10) if1B], DPs have never been used inextremely convenient when implementing the theory developed
literature for time-varying frequency systems. in this section.
In this paper, we introduce an alternative approach to deriveFor the same time-domain waveform, the DP transformation
a simple formula for the DP of the differential term and this iswith different base frequencies, will define distinct series of
DPs. Let a time-domain waveforrgt} be associated with the

<Q(> =M+,-kw(t)<x>k (1) g" Synchronous Generator (SG) with a base frequengy
di/,  dt Then the DP of «t) can be written as:

Proof: To prove this result, it must first be recalled that 1t o

according to the definition in (8), the differential of D&, can Xot) = jxq(r)e "fdz, n=012... (16)
be expressed as: qt-T,
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wherewq=27/Ty. The first subscriptq’ in Xq(t) denotes that - _ jhant m=1 3
the DP is associated with the variabj@pand the § generator Yor(D) =€ X (1) 30 €3
with a base frequency,. Thesecond subscript ‘n’ gives the

DP index in this frame. To proceed, we define a master frame

Eoguation 22) illustrates a linear relation betweé;fpn(t) and
primary frame with base frequeney, and the DPs for the Y,,(t). This indicates thaij,'m(t) is still in the master frame.

signal x(t) in this frame can be written as: Equation 23) reveals that the DP;,m(t) can be derived from a
1 rotatioral transformation of the DP (Xt), with rotating angle

Ypm(t):_l_— j X, (0)e ™ dr, m=012.. (AN  yHAw,= mo)t. _ . |
P t-T, From @0), we know that ¥(t) includes all the information

where w,=27/T, The ‘m’ gives the DP index in the for thg sinusoidal t). While, equation3) reveals that;,,(7)
correspo%dinguz frame. In this paper, the DPs in their own'S derived from a rotatlcm'transf(,)rm of X4(t). It can thgrefore
frame are denotedising X° and the DPs after frame P€ ConCIIUdeq that eaCh item B, (1) (m=1,2,...) contains ‘?‘"
transformation are denoted with ‘Y’ A linear relation between the required information needed foftx Indeed, considering
DPs in the master frame frame), and the slave frame{ the case m=1ir2Q) gives:
frame) can be written as: , .
) Ypl(t) =elnt qu(t) 24)
= JAwnd = 18
Ypm(t) ;Cnme an(t), m=012.. (18 Combining (6) and44) the time-domain waveformyt) can be

. _ _ traced back frony,,(#) with
The proof of (8 is shown in Appendix I. In (18),

Aw,,,=nw -mo, and the coefficient,,, is dependent ofw,,,. ot

nm a P m nm t) = 2Re\X ,(e™
Using (18), transformation from DPs in the mastgrframeto %® { a(? } _ (25)
DPs in the slave), frame can be achieveth this case, every = Zﬂie{\q;le’jAwlfe’”“‘ }: Z%e{\(,;le’”"’t}
component of ¥(t) will contribute to a widespread range of
Y,,(#) (m=0, 1,2, ...). However, this study is focused on thewhere the functiorRe derives the real term of the complex

functional modelling leve{T0 and as such we neglect highvariable. Equations (24) and (25) illustrate that the complex

harmonics and only the fundamental component is consider¥@'iableY,, (1) can be used as a DP in the master frame. The
Thus all signals are represented by their fundamentaPs in those two different frames are related with a rotating

components. functione®@11, as shown inZ4). The introduction of this extra
Applying: complex variable,,(r) makes the frame transformation more
X, (t) = Acos@,t +¢) 190 convenient and mathematically easier for application.

Let the base frequeney,, then the DP (t) can be calculated Subsystem in the, frame

as X Xa®)
i X, Xat) Load
05Ae n=1 system1
X () = €0 [
0 n=x1l L

From @QO0), it can be concluded that in thg frame, all the DPs @}_»
Load

except X,(t) (n=1) are equal to zero. Using (18) aR@)( the f i
DPs in the master frame are written as: , Qe
. ]
You(t) =Cp@m X (), m=1,2,... @y '

Therefore, it can be seen fro®0f and @1), that in the slave x40 Y"H)

frame, Xn(t) only includes the DP component with n=1. ol 2 T [ o,
However, when transferred into the master frame, ALH system g
Y,,(#) includes a series of DPs with a wide range of frequency
components (m= 1, 2,...). This makes the frame transformation

difficult to calculate and impractical for applications. To makehe application of Z4) can be illustrated using a
progress, we utilise the fact that in the slave frame, the DPsmfilti-generator systemsshown ifi Figure B. The synchronous

Figure 3 DP modelling of multi-generator systems

Xq(t) only include the n=1 component, as showrid).( generator SG1, with rotating framg, is selected as the master
frame. Other generator§G (j#1) are viewed as slave
From @1), we can define the complex variablg, (#) as: generators. The voltages and currents, associated with SG1, are
. transformed to DPm thew, frame and denoted a5, (¢) . The
—_Cb = P 1
Yor(®) = CunYom(®) - M=1,2,... e2) DPs of variables associated with tHe generator are denoted

Combining (21) and (22) gives: asX,(?) intheo, frame Using this technique, an interface can
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be developed to connectitslave-frame based DP subsystem L
with a master-frame based DP subsystem using: ” sonz_ | door
1

VO] ooy [X50 - B L

Y ) Xby(t) 2 N //ﬁw UL
whereXfl’j(t),Xfﬂ(t) are DPs of the voltages and currents in the 3 0. \\w/ 1 H ] H \
slave frame and;(r), Y;i](t) are the DPs in the master frame 1 { v V
after transformation. ) )

o1 0.02 _ 0.03 0.04
Time(s)

VI. IMPLEMENTATION Figure 5 Phase A currents flowing through resiB@omparison between DP
Two test cases are presented in this section. The first cas&'¢ge! and experimental results with frequency steps fitiiz So 400Hz

used to validate the application of the phase-based DPs imhe load currents (phase A) from the DP models are
modelling frequency-varying systems. This is validate¢tansformed to the time-domain and compared with the
experimentally. The second case applies the DP fraragperimenal results, as shown [n_Figurd 5. The experimental
transformation theory to a twin-generator EPS in gesults, and those from phase-based DP model, are almost
More-Electric Aircraft MEA). The results from DP models areidentical before and after step change fiequency. This
compared with those from detailed behavioural modetperefore confirms the accuracy of phase-based DP in
(referred to as ABC models). The DP models of EPS elememi®delling time-varying frequency systems.
can be found in our recent publicatiof23P5|. Simulations
have been performed on an Intel i7 CPU@3.20GHz, 24.0GB o
RAM using Modelica/Dymola v.7.4 software. The Radau lla . , i
algorithm has been chosen in the solver and the tolerance hgd tWin-generator electrical power system of MEA is shown
been set at 1% As a quantitative evaluation of the computatiof'LEiQure 8. This large aircraft hybriC/DC power system is
efficiency, the computation time has been compared betwel@S€d On an A380 style EPS and was the subject of studies

B. Twin-generator system

DP and ABC models within More-Open Electrical Technologies (MOET) project
.
A Application of phase-based DPs Subsystem 1 2 5 otner
ATRU1 2 g 2 DC load ECS1

The proposed phase-based DPs will now be validated ?i&.{%i 17| Seest w
experimentally. The scheme for testing is shoyin in Figlite 4. g
three-phase power supply with internal impedangcari L is “jN. <
used to supply an RL load. The California MX45 is used as the Tz EMAL

AC power supply. When running as an AC source, the MX45 Sees Sewa ¥
has internal impedance ofR50mQ and L&=200uH. The load e @F

resistancés R=57.2Q and inductance is L=0.8mH. In this test,

a step change of frequency from 50Hz to 400Hz is applied to
the system. This step change will rarely happen in a generator
driven system. However, this extreme case provides a good test
to validate the developed theory. In order to trigger the scope,
the magnitude of AC power is also stepped from 20Vrms to
40Vrms.

~e—==—~ Other
AC load

Figure 6 One twin-generator electrical power systeMBA

The main elements of the EPS|in_Figurp 6 include the
Synchronous Generator (SG) and its control unit,
Auto-Transformer Rectifier Units (ATRUs), Wing-Ice
Protection System (WIPSEnvironmental Control System
@) ®) (ECS) and Electro-Mechanical Actuators (EMAsThe
Generator Control Unit (GCU) is used to control the voltage of

Figure 4 Validation of varying frequency DPs. (a§tsyn configuration; (b)test the main AC bus. The ATRUs provideC to DC power
"o conversion. They are comprised of an auto-transformer and

three sets of diode bridgdg6. The WIPS is an electrical
deiicing system. It is modelled as a three-phase variable
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resistive load. The ECS systesdriven by large compressors  Since the system is assumed to be balanced, the currents
which are modelled as Permanent Magnet MachinesM§M flowing into the ATRU jry: are represented by the phase A
The ECS provides environmental temperature control amdrrent only. For comparison, the variables in the DP models
cabin pressurizatiomhe EMAS, which are mainly used for theare transformednto three-phase coordinates within the time
flight control actuation, consist of an electric motor and gealomain, as shown 8. The magnitudes of the DPs,
box assembly and are modelled as PMMs fed by bablack denoted by |DP|, are also shown in these figures. As can be

inverters. seen, the currentsykys remain at zero until the load is
connected to the HVDC buses. At 0.2s the acceleration of the
1) Normal Operation Conditions PMMs in the ECS causes increased currentsud. The

This section presents simulation studies of the power systé@mplication of rated ECS load causes another step response in
in under start-up and normal conditions. During tHerru1 at t=0.5s. Again, it can be seen that the results from the
start-up process, the two subsystems operate independentf?BC and DP models are well matched during the whole
is assumed that the generators have reached the rated sgiB#lation process. The DP magnitudes form envelops of the
before the electrical system starts operation. The electri¢dn€-domain currentsggy:.
frequencies of synchronous genera®®@ andSG, are fixed at

400Hz and 405Hz respectively with different initial rotor 100 _
angles. This asynchronism represents a real situation where the 80 ECs1 —ABC---DP
two generators are driven by different engine shafts. After the gﬁ 60 | SpeedsUPECS! Loadsonf ||
generators reach steady state, a series of events o€bars. S 40 )
event sequence during start-up of the twin-generator aircraft > 50 Acceflation vlvq " EMAS
EPS is shown in Table | Finished
% 0.2 0.4 0.6 0.8 1
100
TABLE | EVENTS SEQUENCE OF MEA TWIN-GENERATOR SYSTEM ECS2 speeds u
CASE ,>\ 80 ‘ l ECS. llUdLL n
X 60 —
S }
: =40 -
iy Events > 0 Aefosn
0.00 Simulation starts. &3, and 3¢, closed; GCUs start to % 02 04 06 08 1
regulate Myac1 and Vyaco to 230Vrms Time(s)
0.15 Switches _ﬁrRUl_and Srruz are closed Figure 7 The dynamic response afae: and viyocz. Above: response of
0.20 PM machines in ESL and ECS2 start to accelerate 1 Vivoez; below: response ofivocs
the rated speed (3,000rpm)
0.50 Rated load torques applied to ECS1 and ECS2 (95| 20 ‘, oads o ABC —DP—oF|
0.70 Rated load of WIPS applied (60kW) . 3 ECS1 | ; |
0.75 Power of WIPS changes from 60kW to 6kW 35 0 |
0.80 EMA1 and EMA2 start to accelerate to the rated spe £ ‘
— | |
(900rpm) ECSJ‘. zpeed b, IPS reudr‘ftion i
0.90 Rated load torque applied to EMA1 and EMA2 (54N -20 02 04 o086 o8 /1 12
1.00 SG1 and SG2 connected 15
magnitude of DPs
1.02 s, opens; SG1 and SG2 disconnected Z  SOTEED g,.l.ux e W \Mroer
< (SR T A
1.20  Simulation ends 2 ‘,'1‘ VAR ¥ 'E!",\;'Efl!ﬁi\ig\xl"l'!i"‘!!""\i!!\!f'\/\i\\l!!!}l‘l!
E o AV
- AR A i
Results from the ABC and DP models are compared in the 15 : SGs gonnect SG1 removes
. . . .96 0.98 1 1.02 1.04
following figures. The dynamic responses of th€ bus Time(s)
voltages, Mvoc: and yper are shown i 7. It can be seerfrigure 8 The dynamic r_esponseml, phasg A Curren? flowing into ATRUL.
that the voltagepc: and ¥ivpcz, from two different modelling Above: haca; below: zoom-in area Ofact
techniques, match very well. Since the initial values.Qbat The computation time consumed by the three models is

and Vipc: are set at zero, when the switchgg$ and @mwu2  compared in Figure 10 and in Table Il. It can be seen that the
are closed, ¥pc1 and Vapcz jump from OV to around 800V pp model is 185 times faster than the ABC model.
This is due to the inrushf current charging the zero-initialized

capacitor. When generators SG1 and SG2 are connegiggl, v

and vyypc2 drop due to the difference betweep; and
Vhvacz- When the two generators disconnect at t=1.02s, the two
subsystems return to therevious steady state before parallel
operation. SG2 then starts to supply the whole load system and
the system settles into steady state after a short transient period.
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Figure 9 Comparison of the computation time betweesettifferent models

10

2 —ABC --- DPABC f
TABLE Il COMPARISON OF THE COMPUTATION TIME BETWEEN E o\ AN [ h AAA ““UU
THREE DIFFERENT MODES & VUV WV WWW
_101.19 1.2 1.21 1.22 1.23
Model ABC DP P ;
Simulation time (s) __ 7983.00 42.97 % AN g AAAAAAN M
Acceleration factor 1 185 = V V V VV V V V V V V V V
_101.19 1.2 1.21 1.22 1.23
2) Line-to-Line Fault Conditions 2 2
=AM AR AAAAAAN
The application of DPs in modelling EPS in faulty conditions 2 VVVVE Yy v V V V H’ VV \
has been discussed[@4[25]27]. In these publications, the DP ~ a0 L o . s
modelling technique was used to model synchronous ' ' Time(s) ' '
generators, ATRUs, front-end rectifier units, diode bridges angigyre11 The dynamic response of currents flowing into the ATRVitR a
transmission lines. All of the developed models were tested line-to-line fault occurring at t=1.2s

under both balanced and unbalanced conditionthis section, Figure 10 .
the system behaviour under liteetine fault conditions will be Figure 10| shows the DC-link voltages of ATRU1 and

) i . . ATRU2. After the fault occurs,¥pc1 and \ypco reduce from
studied. The linge-line fault is imposed between phase A an%4ov t0 a new steady state around 310V. The power quality of

phase B at the transmission line connecting the genes&or N .
and the HVAG bus, as shown i 6. The fault i the DC side is reduced and the apparent harmonics can be due

) . . %o the increased voltage ripple, as showh in FidifleThe
ys 9 oug ) . . 1886its from the DP model are transformed into three-phase
shown in Table I, prior to the lin®-line fault occurring at

t=1.2s. Since the fault happens at the main AC suopl Cable%oordinates within the time domain for comparison studies. It
o . hpens bRy Can be seen frofn_Figurkl] that after fault occurs, the AC
all the elements in the EPS will be fed by severely distorte flowing | he ATR di d Th Its f
ower during the fault condition currents flowing into the. Us are distorted. The results from
P ' the two different modelling techniques are well matched both

Table Il SIMULATION SCENARIOS OF TWIN-GENERATOR before and after the fault occurs. The computation time of

AIRCRAFT EPS UNDER ABNORMAL OPERATION CONDITIONS different models is shown in TABLE/] As can be seen. the
. DP model in this case is almost 90 times faster than the ABC
Time (s) Events model.
Same as Table | TABLE IV COMPARISON OF THE COMPUTATION TIME
1.20 A line-to-line fault occur s between the SG, and EE)LVSEF%QNSTSEEE) DIFFERENT MODELS  (FOR 0.1S  FAULT
the HVDC2 bus
1.30 Simulation ends Model ABC DPABC

Simulation time (s) 724.5 8.066
Acceleration 1 89.7
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VII.

This paper has further developed the application of the DP
concept in two major areas. The first was DP modelling
frequency varying systems and the second was DP modellin
multi-frequency, multi-generator systems. When modelling a
multi-generator system using DPs, the frequency of one

CONCLUSION

generator is chosen as the master frame and the whole loading

g\ _ 1 1
(e t>pm_ﬂj(an—mwp)

Yon(t) = Z{<ej“”“‘>pqur(t)}, m= 012... (AI-3)

f
gl'&e FTCs can be calculated as:

e](nmq—mwp)t {I.— e—](an—m(up)Tp} (A'- 4)

system is modelled in this master frame. The slave generatrgfining nw,-mw,=Aw,, and using Euler and Half-Angle
connect to the loading system with an interface whicyrmulas (Al-4) can be written as:

transforms the DPs from the slave frame to the master frame.
After transformation, the DPs in the subsystems exhibit
time-varying behaviour at a frequensyw, which depends on

the difference between the master frame and the slave frame. In
general, the frequency difference will be small which means

that the subsystems will have slowly varying DPs. This Stiﬂ)efining the following coefficient:

allows larger simulation steps and hence accelerated
simulations, as shown in this papkreed, compared to ABC
model simulation results, the DP models have been shown to
provide significant acceleration while still maintaining
extremely high dynamic and steady state accuracy. The
phase-based DP concept, which is based on phase @ngle

instead of angular speed, has also been proposed forouPstituting (Al-5) andAl-6) into (Al-3) gives:

modelling time-varying frequency systems. The derivative
property revealed in this paper makes this type of DP modelling
much more convenient for application than the technique
presented in as the phase-based DP models can be
conveniently modified from the w-based DP. Finally, using a

twin-generator aircraft EPS, and comparing simulation results

sin(Am”mT") AwpeT Al- 5
<ejnmqt> :ejA(un";izeﬂ nzmn ( - )
pm (Aa)anp)
2
Aw. T
. nm'p
S ) (Al-6)
nm Aw, T
2 mTp.
( ) )
(Al-7)

You(t) =D C € X t), m= 012...
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APPENDIXI [

This appendix aims to explain the proof of (18). Combining
(17), (18) and the inverse DP transformation (1), the relatigp
between the DPs in the master frame and DPs in the slave frame
can be expressed as:

-1y Bl

n

t . .
Yy(t) = Ti ] [Z X qr(t)em%rjejmwdﬂ m= 012..
pLT,

Considering that in the integration term,(¥ is a slave-frame [4]
DP at the time instant ‘t’, and that it is constant during the
integration interval [t-Tt], then the term g{(t) can be moved Bl
outside the integration. Exchanging the integration and susg)
calculation order yields:

Ypm(t) — z{{-l} Iejanrejmwprdz'jx qr‘(t)}l m= 012,....

(Al- 2)

p t-Tp

. i [7]
The equation (Al-2) reveals that the DPs gf)xn the master
o, frame,Y,,,(?), can be expressed as an algebraic sum of D
in the slaveog frame, X(t). According to the DP definition (2),
the coefficients of ¥(t) in (Al-2) can be viewed as theé"dpP
of &' in the w, frame and denoted &&"“%'),,. The
coefficients are called DP Frame Transformation Coefficients
(FTCs). Therefore, (Al-2) can be written as:
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