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Abstract: 

To ensure the safety and the serviceability of civil infrastructure it is essential to visually inspect 

and assess its physical and functional condition. This review paper presents the current state of 

practice of assessing the visual condition of vertical and horizontal civil infrastructure; in 

particular of reinforced concrete bridges, precast concrete tunnels, underground concrete pipes, 

and asphalt pavements. Since the rate of creation and deployment of computer vision methods for 

civil engineering applications has been exponentially increasing, the main part of the paper 

presents a comprehensive synthesis of the state of the art in computer vision based defect 

detection and condition assessment related to concrete and asphalt civil infrastructure. Finally, the 

current achievements and limitations of existing methods as well as open research challenges are 

outlined to assist both the civil engineering and the computer science research community in 

setting an agenda for future research. 

Keywords: 

Computer Vision, Infrastructure, Condition assessment, Defect detection, Infrastructure 

monitoring 

 

Research Highlights: 

 Visual inspection of civil infrastructure is essential for condition assessment. 

 We focus on concrete bridges, tunnels, underground pipes, and asphalt pavements. 

 Accordingly, we review the latest computer vision based defect detection methods. 

 Using computer vision most relevant types of defects can be automatically detected.  

 Automatic defect properties retrieval and assessment has not been achieved yet. 
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1. INTRODUCTION 

Manual visual inspection is currently the main form of assessing the physical and functional 

conditions of civil infrastructure at regular intervals in order to ensure the infrastructure still 

meets its expected service requirements. However, there are still a number of accidents that are 

related to insufficient inspection and condition assessment. For example, as a result of the 

collapse of the I-35W Highway Bridge in Minneapolis (Minnesota, USA) in 2007 13 people died, 

and 145 people were injured [1]. In the final accident report the National Transportation Safety 

Board identified major safety issues including, besides others, the lack of inspection guidance for 

conditions of gusset plate distortion; and inadequate use of technologies for accurately assessing 

the condition of gusset plates on deck truss bridges. A different, less tragic example is the 

accident of a freight train in the Rebunhama Tunnel in Japan in 1999 that resulted in people 

losing the trust in the safety and durability of tunnels. According to [2], the failure to detect shear 

cracks had resulted in five pieces of concrete blocks, as large as several tens of centimeters, 

which had fallen onto the track causing the train to derail. 

In order to prevent these kinds of accidents it is essential to continuously inspect and assess the 

physical and functional condition of civil infrastructure to ensure its safety and serviceability. 

Typically, condition assessment procedures are performed manually by certified inspectors and/or 

structural engineers, either at regular intervals (routine inspection) or after disasters (post-disaster 

inspection). This process includes the detection of the defects and damage (cracking, spalling, 

defective joints, corrosion, potholes, etc.) existing on civil infrastructure elements, such as 

buildings, bridges, tunnels, pipes and roads, and the defects’ magnitude (number, width, length, 
etc.). The visual inspection and assessment results help agencies to predict future conditions, to 

support investment planning, and to allocate limited maintenance and repair resources, and thus 

ensure the civil infrastructure still meets its service requirements.  

This review paper starts with the description of the current practices of assessing the visual 

condition of vertical and horizontal civil infrastructure, in particular of reinforced concrete 

bridges (horizontal: decks, girders, vertical: columns), precast concrete tunnels (horizontal: 

segmental lining), underground concrete pipes (horizontal) (wastewater infrastructure), and 

asphalt pavements (horizontal). In order to motivate the potential of computer vision, this part 

focuses on answering the following questions: 1) what are the common visual defects that cause 

damage to civil infrastructure; 2) what are the typical manual procedures to detect those defects; 

3) what are the limitations of manual defect detection; 4) how are the defects measured; and 5) 

what tools and metrics are used to assess the condition of each infrastructure element. 

Due to the availability of low cost, high quality and easy-to-use visual sensing technologies (e.g. 

digital cameras), the rate of creation and deployment of computer vision methods for civil 

engineering applications has been exponentially increasing over the last decade. Computer vision 

modules, for example, are becoming an integral component of modern Structural Health 

Monitoring (SHM) frameworks [3]. In this regards, the second and largest part of the paper 

presents a comprehensive synthesis of the state of the art in computer vision based defect 

detection and condition assessment of civil infrastructure. In this respect, this part explains and 
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tries to categorize several state-of-the-art computer vision methodologies, which are used to 

automate the process of defect and damage detection. Basically, these methods are built upon 

common image processing techniques, such as template matching, histogram transforms, 

background subtraction, filtering, edge and boundary detection, region growing, texture 

recognition, and so forth. It is shown, how these techniques have been used, tested and evaluated 

to identify different defect and damage patterns in remote and close-up images of concrete 

bridges, precast concrete tunnels, underground concrete pipes and asphalt pavements. 

The third part summarizes the current achievements and limitations of computer vision for 

infrastructure condition assessment. Based on that, open research challenges are outlined to assist 

both the civil engineering and the computer science research community in setting an agenda for 

future research. 

 

2. STATE OF PRACTICE IN VISUAL CONDITION ASSESSMENT 

This section presents the state of practice in visual condition assessment of reinforced concrete 

bridges, precast concrete tunnels, underground concrete pipes and asphalt pavements. 

2.1 Reinforced concrete bridges 

As per US Federal Highway Administration (FHWA)’s recent bridge element inspection manual 

[4], during a routine inspection of a reinforced concrete (RC) bridge, it is mandatory to identify, 

measure (if necessary) and record information related to damage and defects, such as 

delamination/spall/patched area, exposed rebar, efflorescence/rust staining, cracking, 

abrasion/wear, distortion, settlement and scouring. While this list of defects comprises the overall 

list for common RC bridge element categories, such as decks and slabs, railings, superstructure, 

substructure, culverts and approach ways, not all defects are applicable to all components. 

 

<insert table 1 here> 

 

Table 1 highlights which defects are applicable to which components and hence need to be 

checked for each type of component on a bridge. While some of the stated defects are visually 

detected, some others of them may require physical measurements for accurate documentation 

and assessment. The size of the defect plays an important factor in deciding if it is necessary to go 

beyond the visual approach. 

In addition to the list of defects stated above, FHWA also mandates that all bearings should be 

checked during inspection, irrespective of the material type and functional type of the bridge. 

Some of the relevant defects for bearings are corrosion, connection problems, excessive 

movement, misalignment, bulging, splitting and tearing, loss of bearing area, and damage. 

Furthermore, for seals and joints, inspectors focus on a specific set of defects, such as leakage, 

adhesion loss, seal damage, seal cracking, debris impaction, poor condition of adjacent deck, and 

metal deterioration or damage. While most of these defects can be detected visually, assessing 
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severity of the defects however needs close-up examination and measurements with suitable tools 

and equipment. 

All of the existing defects on a bridge are categorized on a scale of 1 to 4 - each corresponding to 

the condition state of a particular element (1-Good, 2-Fair, 3-Poor, and 4-Severe). The condition 

state is an implicit function of severity and extent of a defect on a component. Though such 

categorization of condition states provides uniformity for each component and effects, the actual 

assessment that results in such categorization can be subjective. Table 2 provides some examples 

of guidelines provided in [4] for categorization of the condition states of different defects. Please 

refer to Appendix D2.3 in [4] for the complete list of guidelines for all defects. 

There are typically three ways to perform manual inspection for concrete bridge elements: visual, 

physical and advanced. A combination of these methods is required depending on the condition 

of the bridge member under consideration. During visual inspection, an inspector focuses on 

surface deficiencies, such as cracking, spalling, rusting, distortion, misalignment of bearings and 

excessive deflection. Usually, the inspector can visually detect most of the relevant defects, 

provided there is suitable access to the bridge element. Visual inspections might not be adequate 

during the assessment of specific defect. For example, an inspector can identify visually that there 

is delamination when looking at a patch of concrete, but would not be able to gauge the extent 

and depth of it accurately by just visual inspection. Visual inspections, without utilization of any 

other inspection techniques, are also known to be subjective which might result in unreliable 

results [5] [6].  

 

<insert table 2 here> 

 

In contrast to the visual inspection, efforts during physical inspections are mainly towards 

quantifying the defects once they are identified visually.  For example, to determine delamination 

areas in a pier or concrete deck, physical methods, namely, hammer sounding or chain drag may 

be used [7]. Measurements concerning expansion joint openings and bearing positions are also 

essential during the inspection and evaluation of a bridge. In some cases, advanced inspection 

methods like those based on strength, sonic, ultrasonic, magnetic, electrical, nuclear, 

thermography, radar and radiography, are used to detect sub-surface defects or for precise 

measurements of even surface defects. 

 

2.2 Precast concrete tunnels 

Precast concrete tunnels are one example of civil infrastructure components that are becoming 

increasingly important when developing modern traffic concepts worldwide. However, it is 

commonly known that numerous tunnels, for example in the US, are more than 50 years old and 

are beginning to show signs of deterioration, in particular due to water infiltration [8]. In order to 

support owners in operating, maintaining, inspecting and evaluating tunnels, the US Federal 

Highway Administration (FHWA), for example, has provided a Tunnel Operations, Maintenance, 

Inspection and Evaluation (TOMIE) Manual [8] and a Highway and Rail Transit Tunnel 
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Inspection Manual [9] that promote uniform and consistent guidelines. In addition, Best Practices 

documents summarize the similarities and differences of tunnel inspection procedures among 

different US federal states and transportation agencies [10]. 

 

There are different types of tunnel inspections: initial, routine, damage, in-depth and special 

inspections [8]. Routine inspections usually follow an initial inspection at a regular interval of 

five years for new tunnels and two years for older tunnels, depending on condition and age. 

According to [9], inspections should always be accomplished by a team of inspectors, consisting 

of registered professional engineers with expertise in civil/structural, mechanical, and electrical 

engineers, as both structural elements and functional systems have to be assessed. However, the 

focus of this review is on civil and structural condition assessment of precast concrete tunnels. 

Accessing the various structural elements for up-close visual inspection requires specific 

equipment and tools. Commonly, dedicated inspection vehicles, such as Aerial bucket trucks and 

rail-mounted vehicles, equipped with, for example, cameras (used for documentation), chipping 

hammers (used to sound concrete), crack comparator gauges (used to measure crack widths), and 

inspection forms (used to document stations, dates, liner types, defect locations and condition 

codes), are driven through the tunnel and permit the inspectors to gain an up-close, hands-on view 

of most of the structural elements. 

 

More recently, integrated and vehicle-mounted scanning systems have entered the market. For 

example, the Pavemetrics Laser Tunnel Scanning System (LTSS) uses multiple high-speed laser 

scanners to acquire both 2D images and high-resolution 3D profiles of tunnel linings at a speed of 

20 km/h [11]. Once digitized the tunnel data can be viewed and analyzed offline by operators 

using multi-resolution 3D viewing and analysis software that allows for high-precision 

measurement of virtually any tunnel feature. A different system is the Dibit tunnel scanner that is 

manually moved through the tunnel [12]. It provides an actual comprehensive visual and 

geometrical image of the recorded tunnel surface. The corresponding tunnel scanner software 

allows easy, quick and versatile data evaluations to visualize the inspected tunnel and manually 

assess its condition.  

 

According to [9], visual inspection must be made on all exposed surfaces of the structural 

(concrete) elements (e.g. precast segmental liners, placed concrete, slurry walls), and all noted 

defects have to be documented for location and measured to determine the scale of severity 

(Table 3).  

 

<insert table 3 here> 

 

Based on the amount, type, size, and location of defects found on the structural element as well as 

the extent to which the element retains its original structural capacity, elements are individually 
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rated using a numerical rating system of 0 to 9, 0 being the worst condition (critical, structure is 

closed and beyond repair) and 9 being the best condition (new construction) [9]. 

 

2.3 Underground concrete pipes  

There is a great deal of buried infrastructure in modern cities, most of which appears to be out-of-

sight and out-of-mind.  Thus, whereas the number of cracks or depths of potholes in asphalt and 

concrete pavements may very well be the subject of water-cooler conversation, an interest in or 

an awareness of the state of underground sewage pipes is quite far removed from the perception 

of most citizens. 

However there are two key attributes that motivate attention to underground infrastructure: 

1. Being buried, the infrastructure is challenging to inspect 

2. Being buried, the infrastructure is very expensive to fix or replace. 

Indeed, the costs associated with sewage infrastructure modernization or replacement are 

staggering, with dollar figures quoted in the range of one or more trillion dollars [13]. 

There is, however, a strong incentive to undertake research and to develop sophisticated methods 

for underground concrete pipe inspection, due to the huge cost gap between trenchless approaches 

and the far more expensive digging up and replacement.  The North American Society for 

Trenchless Technology and corresponding No-Dig conferences worldwide demonstrate the 

widespread interest in this strategy, dating back many years [14]. 

Direct human inspection, which is possible, at least in principle, for above-ground exposed 

infrastructure such as tunnels and road surfaces, is simply not possible for sewage pipes because 

of their relatively small size and buried state.  Thus there has long been interest [15] in automated 

approaches, normally a small remotely-controlled vehicle with a camera. 

A sewage pipe would normally be classified [16] into anticipated structures, 

 Undamaged pipe 

 Pipe joints (connections between pipe segments) 

 Pipe laterals (connections to other pipes) 

and some number of unanticipated problem classes: 

 Cracks 

 Mushroom cracks (networks of multiple, intersecting cracks, a precursor to collapse) 

 Holes 

 Damaged / eroded laterals or joints 

 Root intrusion 

 Pipe collapse 

In common with other forms of infrastructure, the primary challenge to sewage pipe inspection is 

the tedium of manual examination of many hours of camera data, exacerbated by the sheer 

physical extent of the infrastructure which, in the case of sewer pipes, exceeds 200,000 km in 

each of the UK, Japan, Germany, and the US [17].  There are, however, a few attributes unique to 

sewage pipe inspection: 
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 Lighting is typically poor, since the only light available is that provided by the inspecting 

vehicle, and any forward-looking camera sees a well-lit pipe at the sides transitioning to 

completely dark ahead. 

 Sewage pipes are subject to extensive staining and background patterning that can appear 

as very sudden changes in color or shade, giving the appearance of a crack. 

Since the focus of this paper is on the computer vision analysis techniques, this following 

overview of data acquisition is brief, and the reader is referred to substantial review papers [15] 

[17] [18] [19]. Closed circuit television (CCTV) [15] [17] [20] [18] [19] [21] [22] [23] [24] is the 

most widespread approach to data collection for sewage pipe inspection; nevertheless the sewer 

infrastructure which has been imaged amounts only to a miniscule fraction of perhaps a few 

percent [19].  Because the most common approach is to have a forward-looking camera looking 

down the pipe, the CCTV method suffers from drawbacks of geometric distortion, a significant 

drawback in automated analysis. 

Sewer scanner and evaluation technology (SSET) [15] [16] [25] [26] [19] represents a significant 

step above CCTV imaging.  The pipe is scanned in a circular fashion, such that an image of a 

flattened pipe is produced with very few distortions and is uniformly illuminated. Laser profiling 

[17] [27] [28] [20] is similar to the SSET approach, in that a laser scans the pipe surface 

circularly, with an offset camera observing the laser spot and allowing the three-dimensional 

surface geometry of the pipe to be constructed via triangulation. 

There are a few further strategies, albeit less common, for sewer pipe inspection. A SONAR 

approach [15] [28] [19] has been proposed for water-filled pipes, where most visual approaches 

will fail, particularly if the water is not clear. Ultrasound methods [29] [30] [31] [17], widely used 

to assess cracks in above-ground pipes, have been proposed to allow an assessment of crack 

depth, which is difficult to infer from visual images.  Infrared Thermography [15] [17] [19] relies 

on the fact that holes, cracks, or water intrusion may affect the thermal behavior of the pipe and 

therefore be revealed as a thermal signature.  Finally, ground penetrating radar [15] [17] allows 

the buried pipe to be studied from the surface, without the clutter and challenges of driving robots 

in buried pipes, but at a very significant reduction in resolution and contrast. 

Because of rather substantial cost associated with data acquisition of sewer pipes, there is 

significant interest in maximizing the use of data.  Prediction methods [32] [33] [34] [35] develop 

statistical, neural, or expert system deterioration models to predict pipe state, over time, on the 

basis of earlier observations. 

 

2.4 Asphalt pavements  

As reported by the American Society of Civil Engineers (ASCE), pavement defects, also known 

as pavement distress, cost US motorists $67 billion a year for repairs [36]. Therefore, road surface 

should be evaluated and defects should be detected timely to ensure traffic safety. Condition 

assessment of asphalt pavements is essential to road maintenance. 

There exist several techniques to detect distress in asphalt pavements. These techniques differ in 

the pavement data which is being collected and in the way this data is processed. Sensor-based 
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techniques utilize devices to measure parameters of the pavement surface. Visual-based 

techniques make use of observations of the pavement surface to identify anomalies that indicate 

distress. Depending on the way of processing data, techniques are classified as purely manual, 

semi-automated or automated [37]. Manual processing is entirely performed by experts, while 

semi-automated and automated techniques require little or no human intervention. 

Visual-based techniques consist in manually inspecting the road surface or employing digital 

images and computing devices to assess the pavement condition. In case of manual inspection, 

trained personnel walks over the road shoulder and rates the pavement condition according to 

distress identification manuals. The disadvantage of this technique is that it is subjective despite 

the use of manuals and it depends on the experience of the personnel. Also, the personnel are 

exposed to traffic and weather, which makes the inspection procedure hazardous. Another issue 

related to the manual inspection of the road service is the time required to perform it. 

To speed up the assessment process, pavement images are analyzed instead of walking on the 

roads. Pavement images are obtained using downward-looking video cameras mounted on 

sophisticated vehicles. When the images and data are analyzed by human experts, the process of 

assessing the pavement condition is semi-automated. However, the rating of the pavement still 

depends on the experience of the analyzer and the subjectivity issue remains. 

Most distress detection techniques, regardless of whether they are manual, semi- automated or 

automated, depend on the pavement distress type. Pavement distress varies in its form and causes. 

Commonly, distress is characterized as alligator cracking, bleeding, block cracking, depression, 

longitudinal or transverse cracking, patches, potholes, rutting, raveling and more. The U.S. Army 

Corps of Engineers, for example, distinguishes between 19 types of distress [38].  

Distress types and measurements are defined in visual pavement distress identification manuals. 

Some of these measurements and indices vary between different countries, and federal states. 

Table 4 presents examples of defect assessment measurements and condition indices defined in 

such manuals [39] [40] [41] [42] [43]. As can be seen, severity and extent are present in most of 

the manuals. The common procedure to obtain the extent value is to count the occurrences of the 

different severity levels for each type of distress for the whole segment and convert the amount of 

distress into distress percentage. 

 

<insert table 4 here> 

 

Condition assessment indices are calculated based on the distress measurements. Several 

pavement condition assessment indices have been developed and the procedures of their 

calculation are described in visual distress identification manuals. For instance, the pavement 

condition index (PCI) is widely used. The pavement condition index is a statistical measure of the 

pavement condition developed by the US Army Corps of Engineers [38]. It is a numerical value 

that ranges from 0 to 100, where 0 indicates the worst possible condition and 100 represents the 

best possible condition. A verbal description of the pavement condition can be defined depending 
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on the PCI value. This description is referred to as pavement condition rating (PCR). PCR 

classifies the pavement condition as failed, serious, very poor, poor, fair, satisfactory or good. 

 

3. COMPUTER VISION METHODS FOR DEFECT DETECTION AND ASSESSMENT 

This section presents a comprehensive synthesis of the state of the art in computer vision based 

defect detection and assessment of civil infrastructure. In this respect, this part explains and tries 

to categorize several state-of-the-art computer vision methodologies, which are used to automate 

the process of defect and damage detection as well as assessment. Figure 1 illustrates the general 

computer vision pipeline starting from low-level processing up to high-level processing (Fig. 1, 

top). Correspondingly, the bottom part of Figure 1 categorizes specific methods for the detection, 

classification and assessment of defects on civil infrastructure into pre-processing methods, 

feature-based methods, model-based methods, pattern-based methods, and 3D reconstruction. 

These methods, however, cannot be considered fully separately. Rather they build on top of each 

other. For example, extracted features are learned to support the classification process in pattern-

based methods.  

Subsequently, it is shown, how these methodologies have been used, tested and evaluated to 

identify different defect and damage patterns in remote and close-up images of concrete bridges, 

precast concrete tunnels, underground concrete pipes and asphalt pavements. 

 

<insert figure 1 here> 

 

3.1 Reinforced concrete bridges 

Much of the research in defect detection and assessment using computer vision methods for RC 

bridges have largely focused on cracks, and to some extent on spalling/delamination and rusting. 

Many of these research studies targeted and contributed successfully to the automation of 

detection and measurement of defects.  More studies need to be done to improve the methods 

used for automatic assessment as they are currently based on several assumptions. 

In addition to cracks, there are also other defects that are essential to be detected and assessed in 

relation to a RC bridge. Being able to detect, assess and document all defects as independent 

entities is paramount to provide a comprehensive approach for bridge inspection.    

Currently, some of the other categories of defects are being inherently detected or assessed as part 

of other major dominating defects present at the using computer vision methods. For example, 

some methods detect abrasion as part of the crack [44]. In other cases, such as distortion and 

misalignment of bearings etc., no automated method exists for detecting and assessing them. This 

clearly indicates that more research needs to be done in the direction of automating the detection 

and assessment of various defects. To be able to perform automatic assessment and condition 

rating assignment, as a first step, it is necessary to identify the relevant defect parameters to 

accurately and comprehensively represent the defect information.  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11 
 

Below we will present the synthesis of the research done so far in the computer vision domain for 

various types of defects.  

 

3.1.1 Cracking 

Previously, Jahanshahi et al. [45] reviewed automatic defect detection approaches. Very recently, 

Rose et al. [46] reviewed existing crack detection and assessment algorithms for concrete bridges 

and classified them broadly as edge detection, segmentation and percolation, machine learning 

methods, morphology operations, ground and aerial robot photography, template matching, and 

other techniques. Building on this categorization, we reviewed and discussed some of the existing 

algorithms below.  

Abdel-Qader et al. [47] compared various edge detection algorithms and found the Haar Wavelet 

method to be the most reliable among them, for the purpose of crack detection. However, the 

performance of edge detection algorithms on noisy image data is questionable, and same is the 

case with morphological operation based methods [48]. Yamaguchi et al. [49] used scalable local 

percolation-based image processing techniques and they proved to be efficient and accurate even 

for large surface images [50]. Abdel-Qader et al. [51] used a Principle Component Analysis based 

algorithm to detect cracks on a bridge surface. In this case, the accuracy of results varied with 

camera pose and distance from where images are taken. Prasanna et al. [52] developed a 

histogram-based classification algorithm and used it along with Support Vector Machines to 

detect cracks on a concrete deck surface. The results of this algorithm on real bridge data 

highlighted the need for improving the accuracy. Nevertheless, training data from various 

locations on the bridge could be used to build the classifier and testing could be done on data 

from a different location of similar structural composition. Similarly, Lattanzi and Miller [53] 

developed an automatic clustering method for segmentation based on Canny and K-Means to 

achieve greater accuracy of crack detection under various environmental conditions at a greater 

speed. Lattanzi and Miller's work is significant, especially if training data comprises images from 

different locations because it is important to offset the environment variability associated with 

variable lighting and shading conditions at different locations on the bridge, which is often the 

case with real world bridges. Some researchers also combined image-based 3D scene 

constructions with other techniques, in order to obtain depth perception that a 2D image lacks, to 

support automatic crack detection [54] [55]. 

While the above algorithms demonstrated capabilities to detect cracks, it is also important in a 

bridge inspection to understand the crack properties such as location, width, length and 

orientation, because condition ratings for bridge elements are assigned based on such properties. 

As outputs of the process of extracting properties from images are quantities, it is imperative that 

images are mapped to the global coordinate system. This requirement stems from the likelihood 

that images are collected on field with varying configurations i.e. resolutions, positions, 

orientations etc., over different inspections, which is primarily due to difficulty in replicating the 

same image capture configuration as well as a result of rapid advances in camera technologies 

over relatively shorter time periods. Towards normalizing different images to true world scale, 
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different researchers used techniques such as 3D pose estimation, multiple image stitching or by 

making measurements relative to the host structural element. In relation to that, some data 

acquisition systems used by researchers also had 3D pose control feature. These systems likely 

comprised surface-based (ground-based, water-based, bridge surface crawler) or aerial robots, 

which can either, have pre-configured settings or can log accurate image capture configuration 

dynamically. 

Targeting to achieve the goal of going beyond mere crack detection, Yu et al. [56] developed a 

graph-based search method to extract crack properties for further assessment and used a ground-

based robot for collecting images; however, this method needed manual input of start and end 

points of crack [50]. Later, Oh et al. [57] demonstrated a technique implementing automatic two-

step: crack detection and crack tracing algorithm to be able to detect as well as identify crack 

properties, such as width and length, and tested the developed algorithm on a real bridge. They 

collected images with a ground-based robotic system that had controlled pan and tilt mechanisms, 

and used median filter for smoothening in the pre-processing stage, then isolated the candidate 

crack points and applied morphological operations such as dilation and thinning to maintain crack 

segment connectivity. As part of their study, they compared their results with Fujita, Sobel and 

Canny’s method. The performance of the algorithm proposed by Oh et al. [57] matched the other 

three methods in terms of eliminating shaded regions and detecting major cracks, while 

outperforming them in the case of thinner cracks. 

Other researchers targeted developing crack maps. Jahanshahi et al. [58] proposed a crack 

detection system to extract a complete crack map using 3D scene reconstruction, morphological 

operations and machine learning classifiers, and followed it up with a robust photogrammetry-

based approach to compensate for camera perspective errors [59]. In another recent case, Zhu et 

al. [60] proposed a novel method involving thinning of the crack maps and subsequent 

measurement of each crack skeleton point to the crack boundary to automatically extract 

necessary crack parameters [50]. More recently, Lim et al. [61] proposed a Laplacian of Gaussian 

(LoG) based algorithm to perform crack detection and mapping on an RC bridge deck, and uses a 

mobile robotic system that can traverse a deck surface to capture images. The robot stores the 

spatial locations of image capture and uses robot coordinate system to transform from image 

coordinate system to global coordinate system. 

The results presented in most of these cases were based on application of their methods on bridge 

deck surface, or in some cases image data of the beams and columns were considered. Generally 

speaking, most of the images used in these studies were images from simple flat and curved 

surfaces. However, the joints, seals, bearings and other connections present more complex 

geometry, often comprise of many sub-components and generally have varying material 

composition. Thus, these conditions render it hard to distinguish cracks from true edges. Also, as 

bridge inspectors commonly look out for connection related defects, algorithms should be tested 

on images from these components. 
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3.1.2 Delamination/ Spalling 

Only recently, there have been developments in the detection and assessment of spalling on 

concrete surface and these works seem to have drawn inspiration from rusting detection and 

assessment [50]. German et al. [62] considered a combination of segmentation, template 

matching and morphological pre-processing, both for spall detection and assessment on concrete 

columns. They identified length of spalled region along longitudinal direction and distance 

between exposed reinforcement bars in the transverse direction and developed an approach for 

assessing the cumulative severity of the spalling based on different enumeration levels – (i) 

spalling of concrete cover without exposing reinforcement, (ii) spalling exposing longitudinal 

reinforcement and that of core concrete. The results obtained for the test images indicated spall 

detection with a precision of 81.1% and a recall of 80.2% for a set of 70 images. However, they 

indicated that more work is needed to achieve more detailed categorization of spall property 

result, with particular focus on spalling that exposes transverse reinforcement. 

Adhikhari et al. [63] presented a novel approach based on orthogonal transformation, using shape 

preserving algorithms such as affine and projective transformation, to overcome perspective and 

parallax errors of a camera during data collection that can result in inaccurate defect 

quantification. They could determine if spalling had occurred, and if spalling was present, they 

could retrieve spall properties automatically. Their research also used Bridge Condition Index 

(BCI) after quantifying the defects to map them to condition ratings. While they could achieve 

reasonably accurate results (85% accuracy) for automatic procedures, their algorithm could not 

completely address automatic identification and assessment in situations where multiple defects 

(e.g. spall and crack) interact at the same spatial location. 

Though work on spalling detection and assessment started only recently, the progress so far is 

very promising. The algorithms have been tested with images from decks and columns. Like in 

the case of cracks, even spalling needs to be checked for at concrete joints. Therefore, including 

images from those locations will be valuable for better detection and assessment performance of 

the algorithms. 

 

3.1.3 Other damage scenarios 

Zaurin et al. [3] used video imagery and bridge responses collected by strain gauges and fused 

them together to detect loss of connectivity between different composite sections, and change in 

boundary conditions. In the process, unit influence line of the bridge is extracted and statistical 

outlier detection is done to differentiate damage state from the baseline state. This method was 

tested using a four span experimental bridge belonging to University of Central Florida. Adhikari  

et al. [64] presented an change detection approach based on fourier transformation of the images, 

which could useful for detecting subtle defects such as periodic and sudden settlement of 

substructure. The review of the paper also suggests no proper basis for thresholding, and the 

results vary depending on the chosen threshold limit chosen. However, this method is a 

significant improvement over traditional change detection approach using the image difference, 

and can be used to quickly do a temporal comparison of different images. Uhl et al. [65] 
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developed a method to detect deflection in structural members by applying homography mapping. 

Specifically, they implemented an automatic shape filter and a corner detector to calculate the 

deflection using homography mapping between the two views. They implemented this algorithm 

on an experimental set up in a lab, and also on a real bridge, and verified their results with the 

deflection calculated using a laser scanner. The results seem to be very accurate with the average 

difference between both the measurements being less than 0.5%. Though the deflection is being 

calculated accurately, it did not address the problem of damage localization and assessment. 

Kohut et al. [66] extended Uhl et al.’s work [65] to include damage localization and assessment 

using a wavelet transform based analysis method to do irregularity detection. 

 

Various algorithms, related to detection and assessment of cracking, spalling and some damage 

scenarios in RC bridges, have been discussed above, and our focus was on the progress of the 

computer vision research in terms of automation in detection and assessment of these defects. 

 

3.2 Precast concrete tunnels 

In contrast to concrete bridge inspection, the image and video data acquired inside a tunnel is 

much different in terms of artificial lighting and camera distance. From that perspective, it is 

interesting to review the current state-of-the-art computer vision algorithms for defect detection in 

tunnel image data. According to Chaiyasarno [67], automated tunnel inspection systems that 

cover both defect detection and condition assessment can be grouped into the following themes: 

detection, visualization and interpretation.  

 

3.2.1 Defect detection 

In analogy to concrete bridges, the most sought after defects are cracks as they are the primary 

indicator of deterioration patterns, which are due to other severe causes that need to be further 

analyzed [68]. Yu et al. [56] also highlight that cracks are of particular concern as they most 

significantly affect the state of the concrete within a tunneling environment. 

Computer vision methods for crack detection generally involve a pre-processing step and a crack 

identification step. First, in the pre-processing step image processing techniques are applied to 

extract potential crack features, such as edges (threshold-based approaches). Second, the 

identification step usually applies crack modelling (model-based approaches) and/or pattern 

recognition techniques (pattern-based approaches) in order to classify if the extracted features 

belong to crack regions. Next to methods described in the previous section, mentionable 

contributions that are applicable to crack detection during tunnel inspection are the described 

below.  

 

Threshold-based approaches 

Miyamoto et al. [69] calculate the difference in intensity between each pixel and the average 

intensity of each row in an image. A pixel that differs considerably from the average is said to be 

a crack pixel. Fujita et al. [70] use a line filter based on the Hessian matrix to emphasize line 
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structures associated with cracks before they apply thresholding to separate cracks from 

background.  

The major drawback of threshold-based approaches is the question on how to choose a suitable 

threshold for extracting crack features. The described algorithms select a threshold based on prior 

knowledge. However, such methods can hardly be generalized and may be inapplicable to the 

imaging conditions found in real tunnel images. Moreover, they are prone to inaccuracy caused 

by shadows as the intensities of shadow pixels tend to have a similar brightness compared to 

crack pixels. 

 

Model-based approaches 

Ukai [71] developed a crack detection system based on the deformation of tunnel walls. Under 

this method, the model of a crack is characterized by eight quantities, such as area and Feret’s 
occupancy rate. Subsequently, a filter is used to remove noise. Yamaguchi et al. [49] modelled 

cracks based on the concept of percolation, which is a physical model describing the phenomenon 

of liquid permeation. The algorithm starts by initializing a seed region and then the neighboring 

regions are labelled as crack regions based on the percolation process. Paar et al. [72] present a 

crack detection algorithm based on the line tracing algorithm that assumes a crack is a series of 

short straight lines connected together. Again, the algorithm starts from a seed point followed by 

searches for a line within the neighboring regions. Yu et al. [56] proposed a crack detection 

method in conjunction with a mobile robot system for automated inspection of concrete cracks in 

tunnels. Their method calculates the length, thickness and orientation of concrete cracks through 

a graph search; however, it requires the crack’s start and end point to be manually provided. 
Moreover, the robot is required to maintain a constant distance from the tunnel wall in order to 

achieve accurate measurements of the damage properties. This system claims to have an overall 

detection accuracy rate of 75-85% and a measurement error of recognized cracks of less than 

10%. 

According to [67], model-based methods for crack detection strongly rely on user input to 

initialize the seed pixels. Consequently, hairline cracks may not be detection because users may 

be unable to identify the seed pixels. Due to reliance on the user input, these methods may not be 

scalable. 

 

Pattern-based approaches 

Liu et al. [73] apply a Support Vector Machine (SVM) classifier to determine if crack features 

appear in an image patch. Potential crack features are pre-defined based on intensity. Abdelqader 

et al. [51] use a Principal Component Principles (PCA) algorithm that reduces the dimensions of 

feature vectors based on eigenvalues, and extracts cracks from concrete images. The images are 

first pre-processed by line filters in three directions: vertical, horizontal and oblique; then further 

processed by the PCA algorithm and classified based on the nearest neighbor algorithm. 
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Methods based on pattern recognition considerably rely on training data in order to set up robust 

classifiers. Training and validation data are usually performed by manual labelling (supervised 

learning), which is a labor-intensive and error-prone procedure.  

 

3.2.2 Visualization  

The main goal of visualization is to visually organize large image and video data sets to enhance 

inspection. Image stitching or image mosaicing is a common method to combine and visualize a 

collection of images. In the domain of tunnel inspection, Chaiyasarn et al. [74] present a system 

that constructs a mosaic image of the tunnel surface with little distortion. Their system obtains a 

sparse 3D model of the tunnel by multi-view reconstruction [75]. Then, the Support Vector 

Machine (SVM) classifier is applied in order to separate image features lying on the cylindrical 

surface from those of the non-surface. The reconstructed 3D points are reprojected into images 

for accurate cylindrical surface estimation. Jahanshahi et al. [76] create stitched images of 

structural systems from a specialized camera that can tilt and pan. The method detects missing 

parts, such as bolts, when comparing images taken at different times for the purpose of structural 

health monitoring (SHM). The method applies a machine-vision algorithm to perform image 

registration to rectify images so that they are in the same coordinate frame. 

In general, image stitching provides a feasible way of increasing the field of view that cannot be 

achieved by a single image. Consequently, a wide-angle or stitched image may improve defect 

detection results, in particular in case of hairline cracks, since the stitched image provides a 

higher resolution of defects, e.g. cracks. 

 

3.2.3 Change monitoring 

Apart from detecting cracks, classifying crack patterns and associated sizes, it is essential to 

observe if cracks in tunnel liners have changed over time and how quickly they do so. This kind 

of information helps determine the deterioration rate of the structural tunnel components [67].  

Lim et al. [77] propose a system for change monitoring of cracks from multi-temporal images. 

Their system is based on a 2D projective transformation that can accurately determine the crack 

size, which is then monitored in consecutive images as the crack propagates. Although this 

system that can cope with images taken from different viewpoints, it requires explicit user input 

for the control points, which makes the system unscalable for a large number of images. Chen and 

Hutchinson [78] propose a framework for concrete surface crack monitoring and quantification. 

Their method is based on optical flow in order to track the movement of cracks. However, current 

solutions related to monitoring cracks or anomalies rely greatly on some degree of user input 

[67]. 

 

3.3 Underground concrete pipes  

Deplorably, on the basis of a search of sewage pipe inspection methods currently offered by 

North American contractors, most buried pipe inspection continues to be manual and CCTV 

based, implying a slow inspection process subject to operator fatigue and boredom.  Although this 
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limitation is frustrating, it strongly motivates continued research work on machine intelligence 

and computer vision in this application, and is the driving motivation for this section.  There have 

been significant with computer vision contributions to pipe inspection, in whole integrated 

systems such as PIRAT [28] [18], KARO [18], and AIMP [18] [79], and the mapping the 

underworld (MTU) project [19]. 

The computer vision analysis of underground concrete sewer pipes has much in common with 

other forms of infrastructure.  In particular, all of the parallel sections in this paper discuss aspects 

of crack detection, hole detection, and the classification of cracks into different forms or degrees 

of severity: multiple cracks, networked cracks etc.  The forms of concrete deterioration in 

different parts of infrastructure do, after all, share a great deal in common. 

As discussed in Section 2.3 and in review articles [15] [17] [18] [19], an unusually wide variety 

of possible imaging modalities has been developed for buried pipe inspection.  In terms of the 

role of computer vision, we will focus our discussion on the most widespread methods, which 

have seen the most attention in the literature, namely the CCTV, SSET, and laser profiling 

methods.  Other approaches, such as SONAR, ultrasonics, and ground penetrating radar do 

produce image-like data, but of a too specialized nature to consider here. 

The analysis of buried sewage pipes possesses certain unique aspects which influence the 

associated computer vision strategy: 

 Lighting:  The pipes are buried, dark and, depending on the modality of imaging, there 

may be constraints on the lighting possible, particularly in the case of CCTV imaging. 

 Patterned background and contrast:  Sewage pipes suffer from significant degrees of 

deposits and staining, which may be dark, affecting image contrast, or may be highly and 

irregularly patterned, looking very much like any of a number of sewage failure classes – 

holes, single cracks, networks of cracks, root intrusion etc. 

 Limited quality and quantity of data:  The slow, expensive approach to data collection 

strongly limits the total amount of data available for machine learning.  Furthermore the 

lack of standardization – varied methodologies of imaging, machine standards, concrete 

pipe standards, concrete pipe contents and staining – make it challenging to learn broadly 

applicable approaches. 

The methods of image analysis in the literature mostly involve feature extraction or modeling, 

both of which are widely used in computer vision and machine learning.  Feature extraction [80] 

is the crucial bridge between a raw image and an information-rich feature vector that can be used 

for classification.  The related problems of image modeling fall into three categories in the 

context of pipe inspection, from the most specific to the most abstract:  of parametric / explicit 

models, morphology / shape-based models, and implicit / black-box models.   

 

3.3.1 Feature Extraction 

Methods of pattern recognition and classification, such as a support vector machine or nearest 

neighbor classifier [80], expect to be given a vector of values describing the object to be 

classified.  An image, containing thousands to millions of pixels, represents data in far too dilute 
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a form to be classified, since computation time and training data requirements are exponential in 

the number of dimensions.  Feature extraction is essentially dimensionality reduction; in the 

context of analyzing images, computer vision has developed a vast range of approaches for 

extracting salient features. 

Because buried concrete pipes are patterned and poorly lit, robust feature extraction is an 

essential step and appears throughout the pipe inspection literature.  Methods include edge 

detection [25] [22] or the Hough transform [22] for edge/line detection, image segmentation [26] 

and background subtraction [18] for foreground object extraction, methods of image registration 

[18] and optical flow [24] for the tracking and association of objects in successive video frames, 

particularly relevant in CCTV imaging.  More advanced methods include texture-based methods, 

including co-occurrence [21] and histograms of oriented gradients [23], and multi-resolution or 

wavelet-based approaches [29] [17].  Not all of these methods can be described here, and the 

reader is referred to a comprehensive review [81]. 

 

3.3.2 Parametric models 

In principle, any object which we can recognize in an image, such as a crack, hole, or joint, can 

be modeled parametrically, with parameters explicitly describing properties such as width, length, 

radius, color etc.  The strength of parametric models lies in their explicit nature, being relatively 

easy to understand and diagnose, however their limitation lies in their limited generalizability: in 

practice, any special case for which a given model is unprepared leads to a further iteration with a 

newly revised model addressing that case, and after repeated such iterations leading to ugly, 

clunky models containing a variety of exceptions. 

Given an explicit model, the most fundamental, albeit slow, approach to detecting such objects in 

an image is using a generalized Hough transform [82] [83].  Essentially the Hough transform is a 

matched filter, placing the model in all possible parametric permutations at all points in the image 

and asking regarding degree of fit.  If the number of parameters is sufficiently few, say two 

parameters describing the position plus one or two parameters describing size and shape, then the 

Hough approach may be possible, but given five or more parameters the Hough search space 

becomes far too large to search densely, and optimization approaches are needed. 

Significant challenges for parametric approaches arise, by definition, for those objects which 

cannot be well modeled.  So whereas a joint (line) or lateral (circle) is relatively simple, a crack is 

more challenging but may be modeled as a set of connected line segments, but a model to 

describe the wide range of appearances of root intrusions is very difficult.  Most parametric 

computer vision models focus on crack detection, such as modeling a crack as being darker or 

having a higher variance than its immediate surroundings [25] or as a set of segments [22]. 

 

3.3.3 Morphology 

Image morphology represents image shape on the basis of mathematical operations such as shape 

erosion (shrinking) and dilation (growing).  The morphological approaches are more limited than 

parametric ones since, in principle, a parametric model can encode any imaginable behavior, 
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however the strength of morphological approaches is their elegance and operating in a manner 

similar to humans. 

Any morphological operation is described or controlled through a structuring element, normally a 

relatively simple shape, such as a line, a rectangle, or a disc, which controls the extent to which a 

given pixel in the image affects its neighbors in dilating or eroding.  Many textbooks and tutorial 

papers have been written [84] [85] and the interested reader is referred to them for greater 

background. 

Much of pipe inspection is on the basis of binary (light/dark) primitive shapes, making image 

morphology a natural tool.  The most basic shapes are elongated (cracks, joints) and round (holes, 

laterals), and so analysis can proceed on the basis of one or more round and one or more 

rectangular structuring elements.  Recent uses of morphological approaches in buried pipes can 

be found in Sinha et al. [16], Su et al. [86], and Halfawy et al. [22]. 

 

3.3.4 Neural models 

There has been a huge resurgence in computer vision interest in neural-like models, particularly 

in the area of deep belief networks [87].  The key advantage of a neural approach is that all stages 

of the problem – contrast enhancement, feature extraction, texture / shape analysis, classification 

– are machine learned all at once, in an integrated fashion.  If the machine learning optimization 

converges well, then the integrated approach can offer robust classification.   

On the other hand the sewage pipe problem, with huge numbers of images and a wide range of 

background patterning and texture, is a very large nonlinear optimization problem for which 

convergence may be poor.  Neural-like methods are essentially black-box in nature, and therefore 

the actual effect or role of individual parameters is exceptionally hard to understand, in contrast to 

parametric models where the researcher can understand the operations of different parts of the 

algorithm and where, although parameters would ideally be machine learned, in principle the 

parameters could be tuned by hand on the basis of an understanding of their effect. 

Nevertheless, the limitations of the preceding paragraph notwithstanding, neural approaches have 

seen rather significant application in buried pipe inspection.  In most cases, the neural network is 

preceded by computer vision approaches for feature extraction, followed by neural learning [29] 

[27] [20] [21] or neuro-fuzzy approaches [26] [88]. 

 

3.3.5 3D Reconstruction  

A final contribution from computer vision relates to the three dimensional reconstruction of a 

buried pipe, as a direct geometric detection of deep cracks and holes, rather than indirectly 

through visual appearance.  The computer vision literature has developed a vast range of methods 

for 3D reconstruction, most notably shape from shading and stereo vision, both relatively 

complex problems.  In contrast, the instruments for pipe inspection employ a laser and generate 

3D shape one dot at a time, a far more constrained problem and relatively simple compared to 3D 

scene reconstruction from images.   
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The use of laser reconstruction is widespread in computer vision, to generate 3D models of heads, 

limbs for prosthetics, or objects for 3D printing.  For pipe inspection, methods for 3D 

reconstruction based on laser illumination are developed in Duran et al. [27] [20] and Kawasue et 

al. [89]. 

 

3.4 Asphalt pavements  

3.4.1 Pre-processing 

To automatically detect distress on pavement images, it is required to perform some 

preprocessing of the images. A common problem is that images are taken under different weather 

conditions or daytime and may contain shadows of trees. As a result non-uniform lighting is 

present in the images. Many of the methods for pavement distress detection are based on the 

assumption that distress pixels are darker than the background. Wang [90] and Tsai et al. [91] 

have concluded that such methods perform differently well according to varying lighting 

conditions and shadows. Figure 2 illustrates the so-called checker shadow illusion [92]. Square A 

looks darker than square B, but their pixel intensities are equal. This means, humans might be 

able to easily identify an asphalt crack in an image because it appears darker compared to the 

local background. Computers, however, may fail as they sometimes solely rely on global intensity 

values. 

 

<insert figure 2 here> 

 

Several solutions to the non-uniform lighting problem have been proposed. Varadharajan et al. 

[93] select only images that were taken during daytime and when the weather was overcast or 

mostly cloudy, so that the lighting conditions are good. The disadvantage of this approach is that 

the selection process is also time-consuming and all captured images must be saved before 

selection and processing, which results in large amounts of data that is stored. Cheng [94] 

proposed a method to convert all images to a standardized background. For that purpose, a frame 

is split into rectangular windows. The average light intensity of the pixels in the windows is 

calculated for each window. Notably low average values are then replaced by the average value 

of the neighbor windows. Finally, multipliers are generated based on the average values. The 

multipliers are interpolated for each pixel so that all intensities vary around a base intensity. Zou 

[95] proposed a geodesic shadow-removal algorithm to remove the pavement shadows while 

preserving the cracks in images. 

Another issue related to distress detection in pavement images is the presence of lane-marking on 

the images. Nguyen et al. [96] detect lane-marking regions and do not consider these regions for 

the distress detection. First, a binary image is obtained by applying a threshold. Second, the 

probabilistic Hough Transform is used to detect lines on this binary image. Lane-markings are 

detected based on the orientations and dimensions of these lines. 

A range of techniques are applied to eliminate noise or for image enhancement. Lokeshwor [97] 

and Radopoulou [98] use median filtering and morphological operations (erosion, dilation, 
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opening, closing). Li [99] applies Gaussian smoothing for further denoising. Varadharajan [93] 

calculates the blur magnitude in the images and considers for assessment only images for which 

the blur-score is below a certain threshold. In some cases it might also be beneficial to compress 

the images to reduce the size and computation time, as done by Salman [100]. 

 

3.4.2. Defect detection 

Several methods have been proposed, which are capable of detecting different types of distress in 

pavement images. Zhou et al. [101] use wavelet transform to decompose an image into 

approximation and detail coefficients. The detail coefficients represent distress in the pavement 

images. Zhou also proposed three statistical criteria and a norm of pavement distress 

quantification, which can be used as an index for pavement distress evaluation. Lokeshwor et al. 

[102] developed an algorithm which applies segmentation of distress pixels from the background 

pixels using an adaptive thresholding technique. User defined decision logic based on the area 

covered by the distress pixels categorizes video frames as frames with distress or frames without 

distress. Most detection methods are developed for a specific type of distress. Some of the 

methods are presented below. 

 

Cracks 

As cracks are the most common distress type, a plenty of crack detection algorithms have been 

developed and presented. In particular, methods for real time crack analysis [103] [104], crack 

classification [105] crack depth estimation from vision [106], and automating crack sealing have 

been presented [107] [108].  

Most of the algorithms for crack detection are based on the assumption that crack pixels are 

darker than the surroundings. Based on statistical measures of the pixel intensities, thresholding 

methods that classify pixels as crack or non-crack pixels are applied. Tsai et al. [91] have made a 

critical assessment of distress segmentation methods, in particular statistical thresholding, Canny 

edge detection, multiscale wavelets, crack seed verification, iterative clipping methods, and 

dynamic optimization based methods. Koutsopoulos et al. [109] developed an algorithm for crack 

image segmentation based on a model that describes the statistical properties of pavement images. 

Huang et al. [104] also proposed a classification method. An image is divided into cells. 

Depending on the contrast of each cell to its neighbor, the cells are classified as crack or non-

crack cells. However, a limitation of the method is that it is hard to find a universal contrast 

threshold [91]. 

Salman et al. [100] proposed an algorithm which uses a Gabor filter. The preprocessed pavement 

image is convolved with the filter and the real component of the result image is thresholded to 

generate the binary image. Binary images resulting from differently oriented filters are combined 

and an output image is produced. The output image contains detected crack segments. 

Moussa and Hussain [110] presented an approach for automatic crack detection, classification 

and parameter estimation based on machine learning. They apply Graph Cut segmentation to 

segment an image into crack and background pixels. A binary vector is created after 
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segmentation. Seven features are extracted from the vector for classification purposes. Then, a 

Support Vector Machine is used to classify the crack type in transverse cracking, longitudinal 

cracking, block cracking or alligator cracking. Moussa and Hussain also presented an approach to 

compute the crack extent and severity based on the length and the width of the crack in the image 

[110]. 

Varadharajan et al. [93] also use machine learning. They assume input images which can contain 

background, such as cars, traffic signs and buildings. First, the ground plane is segmented out 

from the rest of the image. After that, feature descriptors are computed based on the color and 

texture of the preprocessed pixels. A total of nine features and data obtained from human 

annotators are used to train a Support Vector Machine which classifies the images. 

Li et al. [99] partition the image into crack regions and regions without cracks using the 

difference value between the maximum and the minimum grayscales of an image region. Then, 

the foreground is separated from the background by segmenting with Otsu’s method and the 
images are classified using binary trees and back propagation neural networks. 

Zou et al. [95] analyze the intensity difference in regions of the image to determine whether the 

pixels belong to cracks or not. After that, using tensor voting, a crack map is produced. In the 

crack map the probability of the pixels that are likely to be located along long crack curves is 

enhanced. The cracks in the image may sometimes be disconnected, so Zou et al. connect the 

crack parts with the help of an edge pruning algorithm. 

 

Potholes 

Usually, potholes also differ significantly from the background surface. Current computer vision 

research efforts in automating the detection of potholes can be divided into 3D reconstruction-

based, 2D vision-based methods. Detection methods that are based on a 3D reconstruction of the 

pavement surface rely on 3D point clouds provided by stereo-vision algorithms using a pair of 

video cameras. Also there are hybrid systems available that use digital cameras to capture 

consecutive images of lines projected by infrared lasers [111]. A stereo-vision based surface 

model for comprehensive pavement conditioning has been proposed by Wang [112] and Hou et 

al. [113]. With the availability of a 3D point cloud, Chang et al. [114] have presented a clustering 

approach that can quantitate the severity and coverage of potholes and Jiaqiu et al. [115] have 

created a method for identifying, locating, classifying and measuring sag deformations like 

potholes and depression. The drawbacks of stereo-vision-based approaches are that they require a 

complete 3D reconstruction of the pavement surface and that the procedure of matching points 

between the two views is quite challenging due to the very irregular texture and color of the 

pavement surface. 

Karuppuswamy et al. [116] integrated a vision and motion system to detect simulated potholes. 

Their approach detects potholes in the center of a lane. However, it relies on computer generated 

(simulated) potholes that are larger than 2 feet in diameter and white in color. The latter are 

simplified assumptions that do not reflect realistic pavement conditions. Jahanshahi et al. [117] 

used a depth sensor to detect and quantify defects in pavements. Based on the depth values of the 
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pixels, pixels are classified as deep or flat using thresholding. Then, the maximum depth of the 

defective regions is computed. However, the limitation of the proposed approach is that the data 

acquisition system, which is the Kinect sensor, is designed for indoor use. As a result, all the 

captured depth values are zero when the Kinect is exposed to direct sunlight. 

Koch et al. [118] also presented a computer vision based approach for pothole detection in asphalt 

images. Based on surrounding shadows, elliptic shape and grain surface texture, the method 

identifies potholes in images. Image segmentation, shape approximation, and texture comparison 

are performed in this order. The image is divided into defect and non-defect pavement regions 

using histogram shape based thresholding and the triangle algorithm proposed by Zack et al.  

[119]. The shape of the pothole is approximated by applying morphological thinning and elliptic 

regression. Finally, the surface texture of the pothole candidate region is compared to the non-

defect pavement region using spot filter responses. The region is determined as a pothole if the 

region inside the pothole candidate is coarser and grainer than the one outside. Koch et al. 

extended the method with video processing [120]. Using the described pothole detection method, 

potholes in a sequence of pavement images are counted. 

 

Patches 

Cafiso et al. [121] observed that pixels which belong to patches have different gray levels from 

the pixels which belong to the background. They use a clustering method to analyze the image 

with respect to patches. 

Radopoulou et al. [98] detect patches in pavement images by applying morphological operations. 

Patch regions are segmented based on the assumption that patch pixels have greater intensities 

than pixels belonging to the background. Then, texture information is utilized and four different 

filters are applied. Subsequently, feature vectors of both intact and patch regions are constructed 

and compared after the convolution of the image with the filters. 

4. ACHIEVEMENTS AND CHALLENGES 

This section summarizes the current achievement and open challenges of computer vision for 

infrastructure condition assessment. A corresponding overview regarding the level of automation 

in defect detection and condition assessment is presented in table 5. 

 

4.1 Achievements 

When looking at defect detection and condition assessment of reinforced concrete bridges – 

classified as both vertical and horizontal civil infrastructure – it can be concluded that the current 

state-of-the-art computer vision based methods contribute successfully to the automation of 

detection and measurements of defects. The detection, localization and properties retrieval of both 

concrete cracks and concrete spalling is to a very large degree automated. Spalling defects can 

even be quantified and to some extend be mapped to condition ratings. Other important 

achievements include the ability of computer vision based methods to successfully support the 

detection of connectivity losses between composite sections, changes in boundary conditions, 
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changes in substructure settlements and deflection of structural members. The accuracy of vision 

based deflection detection can even compete with methods employing high accurate laser 

scanners. 

With regard to very long horizontal civil infrastructure, such as precast concrete tunnels, 

underground concrete pipes and asphalt road networks, it is found that respective data collection 

technologies are fully automated. Moreover, available computer vision based algorithms 

successfully support the automation of detecting and localizing defects, such as cracks and joint 

spalling in concrete tunnels; cracks, holes and joint damage in concrete pipes; and cracks, 

potholes and patches in asphalt pavements. In case of bridge and tunnel inspection, computer 

vision based visualization methods (e.g. image stitching) successfully assist in defect detection 

and assessment as they improve the defect detection results due to better resolution. Concerning 

asphalt pavements, the crack properties retrieval procedure (type, with, length) is fully automated 

and some computer vision based distress quantification measures have the potential to be 

converted to indexes for distress assessment. 

 

4.2 Challenges  

Concerning computer vision supported concrete bridge inspection, it has to be mentioned that the 

process of image and video data collection is not yet fully automated. In terms of crack detection 

and assessment, existing methods need to be improved as performances on noisy data are 

questionable and accuracies vary with camera pose, camera distance and environmental 

conditions (lighting and shading at different locations). Moreover, several methods still require a 

significant amount of manual user input. In general, most of the methods assume images from 

simple flat and curved concrete surfaces, so that they may fail in cases of more complex 

geometries and material, such as joints, seals and bearings. Accordingly, there are currently no 

methods available that support the detection and assessment of bearing distortion and 

misalignment. 

When looking at underground civil infrastructure, such as tunnels and pipes, it is concluded that 

poor lighting conditions, irregularly patterned background and contrast as well as limited data 

quality and quantity impose the most significant problems when dealing with computer vision 

based approaches to defect detection and assessment. With respect to lighting, common methods 

either use prior knowledge, thus can hardly be generalized or they rely on some degree of manual 

input and therefore do not scale well. More recent methods that use machine learning strongly 

rely on training data to create robust classifiers. Usually, the training process is based on 

supervised learning concepts (manual labeling) and is therefore labor-intensive and error prone. 

With regard to pipe inspection, the limited amount of data for machine learning and the lack of 

standardization on defect patterns prevent those methods to perform reasonably well. In addition, 

detection models with few parameters have limited generalizability, whereas models with many 

parameters fail in environments with a wide range of background pattern and texture due to the 

poor convergence of inherent non-linear optimization problems.  
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With respect to asphalt pavement monitoring, natural weather conditions and the daytime 

determine the success of available computer vision based defect detection and assessment 

methods. Shadows from trees, for example are very natural and prevent several methods, which 

usually work well in good lighting conditions, to perform reasonably well in real environments. 

Moreover, many algorithms endeavor to perform real-time and therefore are based on some kind 

of thresholding. However, these methods are not robust enough for image data with average 

image quality in practice as it is hard to find universal thresholds. Consequently, fully automated 

and comprehensive pavement distress detection and classification in a real-time environment has 

remained a challenge. Also, there is no comprehensive and robust method available to determine 

the severity level of distress for defect and condition assessment of asphalt pavements.  

In general, reliable defect detection and condition assessment of civil infrastructure must be based 

not only on visual inspection methods. First, computer vision methods work under the principle 

“What you see is what you can analyze.” This means, that scenes under observation have to be 
sufficiently illuminated to make computer vision methods work. Visible shadows, for example, 

might have a significant impact on the capability of CV methods. In case of pothole detection 

shadows support the process, where in cases of 3D reconstruction they hinder the procedure. 

Moreover, the internal condition of infrastructure components cannot be captured, thus neither 

assessed using visual methods. On top of visual assessment techniques (whether manual or CV-

supported), other advanced in-depth inspection methods (so-called Non-destructive evaluation 

(NDE) methods) are required to assess the overall condition, such as  sonic, ultrasonic, magnetic, 

electrical, nuclear, thermography, radar technologies. However, defects on the surface are good 

indicators of the overall condition as they are part of many visual condition assessment manuals. 

Second, the data quality plays an important role in terms of noise, distance and perspective to the 

object of interest and the corresponding image resolution. For instance, if one wants to detect a 

crack of 1 millimeter width, he or she has to make sure that this 1 millimeter is mapped to a least 

1 image pixel. Third, a number of safety risks are associated with working at certain heights and 

under heavy traffic. In this case, however, emerging remote-controlled unmanned aerial vehicles 

(UAV) might be a good practical solution for this issue. Forth, the operation of cameras always 

has to face privacy issues when monitoring public scenes, such as bridges and roads. Thus, it is 

recommended avoiding people in image and video data. 

In summary, the authors conclude that more studies need to be conducted to improve the methods 

and algorithms for integrated condition assessment. It is currently not possible to detect, measure 

assess and document all different defects as independent entities to provide an integrated and 

comprehensive approach for bridge, tunnel, pipe and asphalt inspections. This is mainly due to 

the unsolved problem of identifying and assessing multiple interacting defects at the same 

location and the lack of standardization in identifying relevant defect parameters to 

comprehensively represent defect information. Moreover, no publically available large datasets 

exist to leverage supervised learning methods for the robust detection and classification of several 

infrastructure defect types. 
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The following listing highlights the key research questions that have to be addressed by future 

research both in the civil engineering and computer science community in order to take the 

quality of computer vision based defect detection and condition assessment of civil infrastructure 

to the next level:  

 How can we comprehensively detect, measure and assess interacting defect patterns at 

the same location to support integrated condition assessment of civil infrastructure, 

 How can we generalize available detection models to adequately and universally address 

realistic environmental conditions, such as noisy image and video data, varying lighting 

conditions, different surface geometries and materials, and different camera poses and 

distances? 

 How can we limit the amount of manual user input to improve the level of automation 

from poor defect detection to sophisticated defect and condition assessment? 

 How can we create sufficiently large, publically available and standardized datasets to 

leverage the power of existing supervised machine learning methods for detection, 

classification and assessment of defects? 

 How can we create unsupervised machine learning methods (online learning) for efficient 

training and on-demand updating of model parameters in defect detection and assessment 

models? 

 

5. SUMMARY 

To ensure the safety and serviceability of civil infrastructure it is essential to visually inspect and 

assess its physical and functional condition, either at regular intervals (routine inspection) or after 

disasters (post-disaster inspection). Typically, such condition assessment procedures are 

performed manually by certified inspectors and/or structural engineers. This process includes the 

detection of the defects and damage (cracking, spalling, defective joints, corrosion, potholes, etc.) 

existing on civil infrastructure elements, such as buildings, bridges, roads, pipes and tunnels, and 

the defects’ magnitude (number, width, length, etc.). The condition assessment results are used to 
predict future conditions, to support investment planning, and to allocate limited maintenance and 

repair resources. 

This paper has presented the current practices of assessing the visual condition of vertical and 

horizontal civil infrastructure, in particular of reinforced concrete bridges (horizontal: decks, 

girders, vertical: columns), precast concrete tunnels (horizontal: segmental lining), underground 

concrete pipes (horizontal) (wastewater infrastructure), and asphalt pavements (horizontal). 

Following this, the second and largest part of the paper has focused on a comprehensive synthesis 

of the state of the art in computer vision based defect detection and condition assessment of civil 

infrastructure. Several methodologies have been described and categorized, and literature on 

respective tests and evaluations on the current performances to detect and measure different 

defect and damage pattern in remote and close-up images of buildings, bridges, roads, pipes and 

tunnels has been presented. In the third part of this paper the current achievements and limitations 
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of computer vision for infrastructure condition assessment have been summarized. Finally, open 

research challenges have been outlined to assist both the civil engineering and the computer 

science research community in setting an agenda for future research. 

 

<insert table 5 here> 
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Element Name Del/Spall
Exp 

Rebar
Eff/Rust Crack Abr/Wr Distor Settle Scour Damage

Deck

Top Flange

Slab

Bridge Railing

Closed Web/Box girder

Girder Beam

Stringer

Arch

Floor Beam

Column

Pier wall

Abutment

Pile cap/Footing

Pile

Pier cap

Culvert

Approach Slab

Table 1: Defects related to general bridge elements (Grey: Required; White: Not 

Required)[4] 

 

*Del/Spall- Delamination/Spall/Patched area; Exp Rebar- Exposed Rebar; Eff/Rust- Efflorescence/Rust Staining; 

Crack- Cracking; Abr/Wr- Abrasion/Wear; Distor- Distortion; Settle- Settlement; Scour- Scouring 

 
  

Tables



2 
 

1 2 3 4

Good Fair Poor Severe

Delamination/Spall/Patched Area None

Spall:  < 1 inch 

depth or < 6 inch 

diameter

Spall:  >1 inch &  

> 6 inch diameter; 

unsound patched 

area or if signs of 

distress

Situation worse than for 

Condition State 3 and if 

the inspector deems 

that it might affect the 

strength or 

serviceability of the 

element

Efflorescence/Rust Staining None

Surface white 

without build-up or 

leaching without 

rust staining

Heavy build up 

with rust staining

Situation worse than for 

Condition State 3 and if 

the inspector deems 

that it might affect the 

strength or 

serviceability of the 

element

Cracking
Width < 0.012 

inch or spacing 

> 3 ft

Width 0.012-0.05 

inch or spacing 1-

3 ft

Width > 0.05 inch 

or spacing < 1 ft

Situation worse than for 

Condition State 3 and if 

the inspector deems 

that it might affect the 

strength or 

serviceability of the 

element

Abrasion/Wear
No 

abrasion/wear

Abrasion or 

wearing has 

exposed coarse 

aggregate but the 

aggregate 

remains secure in 

the concrete

Coarse 

aggregate is 

loose or has 

popped out of the 

concrete matrix 

due to abrasion or 

wear

Situation worse than for 

Condition State 3 and if 

the inspector deems 

that it might affect the 

strength or 

serviceability of the 

element

Condition States

Defects

Table 2: Examples of defects and guidelines for assessment of condition states [1] 
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Table 3: Common civil/ structural defects of concrete tunnels and respective severity scales 

according to [9] 

Defect type / Severity Minor Moderate Severe 

Scaling  < 6 mm deep 6 – 25 mm deep > 25 mm deep 

Cracking < 0.80 mm 0.80 – 3.20 mm, 

or < 0.10 mm (pre-

stressed member) 

> 3.20 mm,  

or > 0.10 mm (pre-

stressed member) 

Spalling / 

Joint Spall  

< 12 mm deep or 75 – 

150 mm in diameter 

12 – 25 mm deep or 

~150 mm in diameter 

> 25 mm deep or  

> 150 mm in diameter 

Pop-Outs (holes) < 10 mm in diameter 10 – 50 mm in 

diameter 

50 – 75 mm in 

diameter  

(> 75 mm are spalls) 

Leakage Wet surface, no drops Active flow at volume 

< 30 drips per minute 

Active flow at volume 

> 30 drips per minute 
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Table 4: Examples of pavement defect assessment measurements and condition indices 

 Ohio [39] British 

Columbia 

[40] 

Washington 

[41] 

South 

Africa [42] 

Germany [43] 

Measurement Severity, 

extent 

Severity, 

density 

Severity, 

extent 

Degree, 

extent 

Extent 

Index Pavement 

condition 

rating 

Pavement 

distress 

index 

Pavement 

condition 

rating 

Visual 

condition 

index 

Substance value 

(surface) 

 

. 



* Corresponding author: Phone: +49-234-32-26174; E-mail: koch@inf.bi.rub.de 
 

Table 5. Level of automation in computer vision based defect detection and condition assessment: (+) achieved, (~) partially achieved, () 

not achieved yet 

Infrastructure 

element  
Defect type Data collection 

Defect detection 
Defect properties 

retrieval (type, 

width, length, 

etc.) 

Defect assessment 
Condition 

assessment 
Presence Location 

Reinforced 

concrete bridges 

Cracks 

~ 

+ + +/~ ~ 

 

Spalling + + +/~ ~ 

Other: Loss of 

connectivity, 

substructure 

settlements, 

member deflection 

~ ~ ~  

Precast concrete 

tunnels 

Cracks 
+ 

+ + ~ ~ 
 

Joint spalling + + ~ ~ 

Underground 

concrete pipes 

Cracks 

+ 

+ + ~ ~ 

 Holes + + ~  

Joint damage + + ~  

Asphalt pavements 

Cracks 

+ 

+ + + ~ 

 Potholes + + ~  

Patches + + ~  



* Corresponding author: Phone: +49-234-32-26174; E-mail: koch@inf.bi.rub.de 
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Figure 1: Categorizing general computer vision methods (top) and specific methods to defect 

detection, classification and assessment of civil infrastructure. 
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Figure 2: The checker shadow illusion [88]: The squares marked A and B share the same grey 

intensity (©1995, Edward H. Adelson). 

 


