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Abstract:

To ensure the safety and the serviceability of civil infrastructugegssential to visually inspect

and assess its physical and functional condition. This review paper presentgehe state of
practice of assessing the visual condition of vertical and horizontal ioivdstructure; in
particular of reinforced concrete bridges, precast concrete tunnels, undergrouradecpipes,

and asphalt pavements. Since the rate of creation and deployment of computer vision methods for
civil engineering applications has been exponentially increasing, the main part phgee
presents a comprehensive synthesis of the state of the art in computer visondegect
detection and condition assessment related to concrete and asphalt civil infrastructure. Finally, the
current achievements and limitations of existing methods as well as open resebedgehare
outlined to assist both the civil engineering and the computer science lnesearmunity in

setting an agenda for future research.

Keywords:

Computer Vision, Infrastructure, Condition assessment, Defect detection, Ufrasdr
monitoring

Research Highlights:

e Visual inspection of civil infrastructure is essential for condition assessment.

o We focus on concrete bridges, tunnels, underground pipes, and asphalt pavements.
e Accordingly, we review the latest computer vision based defect detection methods.
e Using computer vision most relevant types of defects can be automatically detected.
e Automatic defect properties retrieval and assessment has not been achieved yet.
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1. INTRODUCTION

Manual visual inspection is currently the main form of assessing the physical aridrfah
conditions of civil infrastructure at regular intervals in order to ensuranfrastructure still
meets its expected service requirements. However, there are still a nurabeidents that are
related to insufficient inspection and condition assessment. For example, adtaofrdhe
collapse of the 1-35W Highway Bridge in Minneapolis (Minnesota, USA) in 2007 13 peeple di
and 145 people were injured [1]. In the final accident report the Nationadpidation Safety
Board identified major safety issues including, besides others, the latpettion guidance for
conditions of gusset plate distortion; and inadequate use of technologsxfoately assessing
the condition of gusset plates on deck truss bridges. A different, bgis gxample is the
accident of a freight train in the Rebunhama Tunnel in Japan in 1999 tha¢desufeople
losing the trust in the safety and durability of tunnels. According taH&]failure to detect shear
cracks had resulted in five pieces of concrete blocks, as large as several tentinoéters,
which had fallen onto the track causing the train to derail.

In order to prevent these kinds of accidents it is essential to continunsgct and assess the
physical and functional condition of civil infrastructure to ensure its saifetly serviceability.

Typically, condition assessment procedures are performed manually by certified inspedtors and

structural engineers, either at regular intervals (routine inspecti@fieordisasters (post-disaster
inspection). This process includes the detection of the defects and damage (cegpeklimgy,
defective joints, corrosion, potholes, etc.) existing on civil infrastractlements, such as
buildings, bridges, tunnels, pipes and roaad the defects’ magnitude (number, width, length,
etc.). The visual inspection and assessment results help agencies to predict futtimnsotali
support investment planning, and to allocate limited maintenance and repair resandcéhus
ensure the civil infrastructure still meets its service requirements.

This review paper starts with the description of the current practices egsags the visual
condition of vertical and horizontal civil infrastructure, in particulérreinforced concrete
bridges (horizontal: decks, girders, vertical: columns), precast concrete tuhpglsorital:
segmental lining), underground concrete pipes (horizontal) (wastewater infrastyuand
asphalt pavements (horizontal). In order to motivate the potential of compsitar, whis part
focuses on answering the following questions: 1) what are the common visual tefectuse
damage to civil infrastructure; 2) what are the typical manual procedurestt thetse defects;
3) what are the limitations of manual defect detection; 4) how are thesdefeasured; and 5)
what tools and metrics are used to assess the condition of each infrastructure element.

Due to the availability of low cost, high quality and e&syse visual sensing technologies (e.g.
digital cameras), the rate of creation and deployment of computer vision methodsilfor ci
engineering applications has been exponentially increasing over the last decadeeCuaigipat

modules, for example, are becoming an integral component of modern Structural Health

Monitoring (SHM) frameworks [3]. In this regards, the second and largest pare qiagher
presents a comprehensive synthesis of the state of the art in computer visondefect
detection and condition assessment of civil infrastructure. In this respect, thexplarhs and

3
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tries to categorize several state-of-the-art computer vision methodolodiehy are used to
automate the process of defect and damage detection. Basically, these methods @perbui
common image processing techniques, such as template matching, histogram transforms,
background subtraction, filtering, edge and boundary detection, region growing, texture
recognition, and so forth. It is shown, how these techniques have been used, tested and evaluated
to identify different defect and damage patterns in remote and closeagesnof concrete
bridges, precast concrete tunnels, underground concrete pipes and asphalt pavements.
The third part summarizes the current achievements and limitations of comgsiter far
infrastructure condition assessment. Based on that, open research challengesadetoattisist
both the civil engineering and the computer science research community in setigenda for
future research.

2. STATE OF PRACTICE IN VISUAL CONDITION ASSESSMENT

This section presents the state of practice in visual condition assessment of reinforaté concr
bridges, precast concrete tunnels, underground concrete pipes and asphalt pavements.

2.1 Reinforced concrete bridges

As per US Federal Highway Administration (FHWA)’s recent bridge element inspection manual

[4], during a routine inspection of a reinforced concrete (RC) bridge, it is ntapdatidentify,
measure (if necessary) and record information related to damage and defects, such as
delamination/spall/patched area, exposed rebar, efflorescence/rust stainingjngcrack
abrasion/wear, distortion, settlement and scouring. While this list aftdefemprises the overall

list for common RC bridge element categories, such as decks and slabs, railings;usiipe,
substructure, culverts and approach ways, not all defects are applicable to all components.

<insert table 1 here>

Table 1 highlights which defects are applicable to which components and hence need to be
checked for each type of component on a bridge. While some of the stated defects dye visual
detected, some others of them may require physical measurements for accurate docnmentatio
and assessment. The size of the defect plays an important factor in deciding if it is nécegsary
beyond the visual approach.

In addition to the list of defects stated above, FHWA also mandates that all bearingsbghou
checked during inspection, irrespective of the material type and functigrealofythe bridge.

Some of the relevant defects for bearings are corrosion, connection problemsivexces
movement, misalignment, bulging, splitting and tearing, loss of beariray arel damage.
Furthermore, for seals and joints, inspectors focus on a specific set of defelstasdeakage,
adhesion loss, seal damage, seal cracking, debris impaction, poor condition of adjacemdieck
metal deterioration or damage. While most of these defects can be detected visualyngsse
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severity of the defects however needs close-up examination and measurements withaalgable t
and equipment.

All of the existing defects on a bridge are categorized on a scale of letach eorresponding to

the condition state of a particular element (1-Good, 2-Fair, 3-Poor, and 4-Sewereprilition

state is an implicit function of severity and extent of a defect on a component.hTHocigy
categorization of condition states provides uniformity for each component anis effiecactual
assessment that results in such categorization can be subjective. Table 2 pmuElexamples

of guidelines provided in [4] for categorization of the condition statelfferent defects. Please

refer to Appendix D2.3 in [4] for the complete list of guidelines for all defects.

There are typically three ways to perform manual inspection for concrete letielgents: visual,
physical and advanced. A combination of these methods is required depending on the condition
of the bridge member under consideration. During visual inspection, an inspeunisedon

surface deficiencies, such as cracking, spalling, rusting, distortion, misaligafrtesdrings and
excessive deflection. Usually, the inspector can visually detect most otlthent defects,
provided there is suitable access to the bridge element. Visual inspectitnisiatipe adequate
during the assessment of specific defect. For example, an inspector can identify visually that there
is delamination when looking at a patch of concrete, but would not be able to gawyéetite

and depth of it accurately by just visual inspection. Visual inspections, witlitizsition of any

other inspection techniques, are also known to be subjective which mightinesulkeliable

results [5] [6].

<insert table 2 here>

In contrast to the visual inspection, efforts during physical inspections areynaimhrds
guantifying the defects once they are identified visually. For example, to detedaiamination

areas in a pier or concrete deck, physical methods, namely, hammer sounding or chain drag may
be used [7]. Measurements concerning expansion joint openings and bearing positidss are a
essential during the inspection and evaluation of a bridge. In some cases, advanc#idrinspe
methods like those based on strength, sonic, ultrasonic, magnetic, electrical, , nuclear
thermography, radar and radiography, are used to detect sub-surface defectgreciser
measurements of even surface defects.

2.2 Precast concretetunnels

Precast concrete tunnels are one example of civil infrastructure components thatoarmdpe
increasingly important when developing modern traffic concepts worldwide. Howivisr
commonly known that numerous tunnels, for example inXBeare more than 50 years old and

are beginning to show signs of deterioration, in particular due to wéteation [8]. In order to
support owners in operating, maintaining, inspecting and evaluating tunnels, the US Federal
Highway Administration (FHWA), for example, has provided a Tunnel Operations, éviaimte,
Inspection and Evaluation (TOMIE) Manual [8] and a Highway and Rail Transit Tunnel

5
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Inspection Manual [9] that promote uniform and consistent guidelines. In additiorRiBestes
documents summarize the similarities and differences of tunnel inspection pesceauong
different US federal states and transportation agencies [10].

There are different types of tunnel inspections: initial, routine, damage pih-dé&d special
inspections [8]. Routine inspections usually follow an initial inspectioa e#gular interval of

five years for new tunnels and two years for older tunnels, depending oniaroradid age.
According to [9], inspections should always be accomplished by a tearspelctors, consisting

of registered professional engineers with expertise in civil/structural, meahamnd electrical
engineers, as both structural elements and functional systems have to be assesseast, the
focus of this review is on civil and structural condition assessment of pawagete tunnels.
Accessing the various structural elements for up-close visual inspectiorreseqiecific
equipment and tools. Commonly, dedicated inspection vehicles, such as Aerialttuaisetind
rail-mounted vehicles, equipped with, for example, cameras (used for documentitipping
hammers (used to sound concrete), crack comparator gauges (used to measurdttiscland
inspection forms (used to document stations, dates, liner types, defect locations andnconditi
codes), are driven through the tunnel and permit the inspectors to gain an up-close, hands-on view
of most of the structural elements.

More recently, integrated and vehicle-mounted scanning systems have entered theFRuoarket
example, the Pavemetrics Laser Tunnel Scanning System (LTSS) uses multiple high-gpeed las
scanners to acquire both 2D images and high-resolution 3D profiles of tuimgs at a speed of

20 km/h [11]. Once digitized the tunnel data can be viewed and analyzed offline byperat
using multi-resolution 3D viewing and analysis software that allows for pigbision
measurement of virtually any tunnel feature. A different system is théthitriel scanner that is
manually moved through the tunnel [12]. It provides an actual comprehensive arsdial
geometrical image of the recorded tunnel surface. The corresponding tunnel swmitwere
allows easy, quick and versatile data evaluations to visualize the inspected tuhnsraually
assess its condition.

According to [9], visual inspection must be made on all exposed surfaces of ubkiratr
(concrete) elements (e.g. precast segmental liners, placed concrete, slurry wakd),nated

defects have to be documented for location and measured to determine the scale of severity
(Table 3).

<insert table 3 here>

Based on the amount, type, size, and location of defects found on the structural elemdrasas wel
the extent to which the element retains its original structural capacity, eleanentslividually
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rated using a numerical rating system of 0 to 9, 0 being the worst condition I(cstticeture is
closed and beyond repair) and 9 being the best condition (new construction) [9].

2.3 Underground concr ete pipes
There is a great deal of buried infrastructure in modern cities, most cf &ppears to be out-of-
sight and out-of-mind. Thus, whereas the number of cracks or depths of potholes inaasphalt
concrete pavements may very well be the subject of water-cooler conversation, est inter
an awareness of the state of underground sewage pipes is quite far removi fp@mception
of most citizens.
However there are two key attributes that motivate attention to underground infrastructu

1. Being buried, the infrastructure is challenging to inspect

2. Being buried, the infrastructure is very expensive to fix or replace.
Indeed, the costs associated with sewage infrastructure modernization or replacement are
staggering, with dollar figures quoted in the range of one or more trillion dollars [13].
There is, however, a strong incentive to undertake research and to develop sophisticated method
for underground concrete pipe inspection, due to the huge cost gap between trenchless approaches
and the far more expensive digging up and replacement. The North American Saciety fo
Trenchless Technology and corresponding No-Dig conferences worldwide demonstrate the
widespread interest in this strategy, dating back many years [14].
Direct human inspection, which is possible, at least in principle, for above-grounde@&xpos
infrastructure such as tunnels and road surfaces, is simply not possible for sewaeqapes
of their relatively small size and buried state. Thus there has long been interésdtdoimated
approaches, normally a small remotely-controlled vehicle with a camera.
A sewage pipe would normally be classified [16] into anticipated structures,

¢ Undamaged pipe

¢ Pipe joints (connections between pipe segments)

o Pipe laterals (connections to other pipes)
and some number of unanticipated problem classes:

e Cracks

o Mushroom cracks (networks of multiple, intersecting cracks, a precursor to collapse)

e Holes

e Damaged / eroded laterals or joints

¢ Root intrusion

e Pipe collapse
In common with other forms of infrastructure, the primary challenge to seuipgénspection is
the tedium of manual examination of many hours of camera data, exacerbated by the sheer
physical extent of the infrastructure which, in the case of sewer pipegdsx2€0,000 km in
each of the UK, Japan, Germany, andWisd17]. There are, however, a few attributes unique to
sewage pipe inspection:
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e Lighting is typically poor, since the only light available is that providethieyinspecting
vehicle, and any forward-looking camera sees a well-lit pipe at the tsaesstioning to
completely dark ahead.

e Sewage pipes are subject to extensive staining and background patterning that can appear
as very sudden changes in color or shade, giving the appearance of a crack.

Since the focus of this paper is on the computer vision analysis techniqueillitvisng
overview of data acquisition is brief, and the reader is referredlistantial review papers [15]
[17] [18] [19]. Closed circuit television (CCTV) [15] [17] [20] [1819] [21] [22] [23] [24] is the
most widespread approach to data collection for sewage pipe inspection; neveitiectesger
infrastructure which has been imaged amounts only to a miniscule fraction of parlieyws
percent [19]. Because the most common approach is to have a forward-looking camara looki
down the pipe, the CCTV method suffers from drawbacks of geometric distortion, a significa
drawback in automated analysis.

Sewer scanner and evaluation technology (SSET) [15] [16] [25] [26] [19] repressigtaficant

step above CCTV imaging. The pipe is scanned in a circular fashion, such that an image of a
flattened pipe is produced with very few distortions and is unifoithiyinated. Laser profiling

[17] [27] [28] [20] is similar to the SSET approach, in that a lasmms the pipe surface
circularly, with an offset camera observing the laser spot and allowinthtbe-dimensional
surface geometry of the pipe to be constructed via triangulation.

There are a few further strategies, albeit less common, for sewemppeetion. A SONAR
approach [15] [28] [19] has been proposed for water-filled pipes, where imoat &pproaches

will fail, particularly if the water is not clear. Ultrasound methods [29] [3Q] [17], widely used

to assess cracks in above-ground pipes, have been proposed to allow an assessment of crack
depth, which is difficult to infer from visual images. Infrared Therrapgy [15] [17] [19] relies

on the fact that holes, cracks, or water intrusion may affect the therhalitweof the pipe and
therefore be revealed as a thermal signature. Finally, ground penetrating radav][Bipws

the buried pipe to be studied from the surface, without the clutter and chaldémiyrsng robots

in buried pipes, but at a very significant reduction in resolution and contrast.

Because of rather substantial cost associated with data acquisitisewef pipes, there is
significant interest in maximizing the use of data. Prediction methods33p[|34] [35] develop
statistical, neural, or expert system deterioration models to predict pipeos&tdime, on the
basis of earlier observations.

2.4 Asphalt pavements

As reported by the American Society of Civil Engineers (ASCE), pavement deflsttdknown

as pavement distress, cost US motorists $67 billion a year for repairs [36]. Therefore, road surface
should be evaluated and defects should be detected timely to ensure tfaffic Gandition
assessment of asphalt pavements is essential to road maintenance.

There exist several technigues to detect distress in asphalt pavements. These tecHeigumes di

the pavement data which is being collected and in the way this datacesped. Sensor-based

8
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techniques utilize devices to measure parameters of the pavement surfacé-badsda
techniques make use of observations of the pavement surface to identifyiesdhalindicate
distress. Depending on the way of processing data, techniques are classified asmauouely
semi-automated or automated [37]. Manual processing is entirely performed btsewtele
semi-automated and automated techniques require little or no human intervention.

Visual-based techniques consist in manually inspecting the road surface or empligytaig

images and computing devices to assess the pavement condition. In case of manuannspecti
trained personnel walks over the road shoulder and rates the pavement condition aazording t
distress identification manuals. The disadvantage of this technique is thaibjdstise despite

the use of manuals and it depends on the experience of the personnel. Also, the parsonnel
exposed to traffic and weather, which makes the inspection procedure hazardous. idsogher
related to the manual inspection of the road service is the time required to perform it.

To speed up the assessment process, pavement images are analyzed instead of walking on the
roads. Pavement images are obtained using downward-looking video cameras mounted on
sophisticated vehicles. When the images and data are analyzed by human experts, the process of
assessing the pavement condition is semi-automated. However, the rating of the pavkment sti
depends on the experience of the analyzer and the subjectivity issue remains.

Most distress detection techniques, regardless of whether they are manual, saméitezlior
automated, depend on the pavement distress type. Pavement distress varies in itsdatrseand
Commonly, distress is characterized as alligator cracking, bleeding, block cratdqmgssion,
longitudinal or transverse cracking, patches, potholes, rutting, ravelinga@med The U.S. Army

Corps of Engineers, for example, distinguishes between 19 types of distress [38].

Distress types and measurements are defined in visual pavement distress identifiaatials.

Some of these measurements and indices vary between different countries, and faderal st
Table 4 presents examples of defect assessment measurements and condition indécem defin
such manuals [39] [40] [41] [42] [43]. As can be seen, severity and extent are mesest of

the manuals. The common procedure to obtain the extent value is to count the occurrences of the
different severity levels for each type of distress for the whole segmenbanelt the amount of
distress into distress percentage.

<insert table 4 here>

Condition assessment indices are calculated based on the distress measurements. Several
pavement condition assessment indices have been developed and the procedures of their
calculation are described in visual distress identification manuals. For instaacpavement
condition index (PCI) is widely used. The pavement condition index is a statistical mefathiere
pavement condition developed by tH& Army Corps of Engineers [38]. It is a numerical value

that ranges from 0 to 100, where 0 indicates the worst possible condition angrEd@mes the

best possible condition. A verbal description of the pavement condition cafitedddepending
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on the PCI value. This description is referred to as pavement condition rating. (PCR
classifies the pavement condition as failed, serious, very poor, poor, fair, satisfactory or good.

3. COMPUTER VISION METHODS FOR DEFECT DETECTION AND ASSESSMENT

This section presents a comprehensive synthesis of the state of the art in coisjoumdraged

defect detection and assessment of civil infrastructure. In this respsgiathiexplains and tries

to categorize several state-of-the-art computer vision methodologies, whiokeat to automate

the process of defect and damage detection as well as assessment. Figuratésithe general
computer vision pipeline starting from low-level processing up to high-level piogg$sg. 1

top). Correspondingly, the bottom part of Figure 1 categorizes specific metindte fietection,
classification and assessment of defects on civil infrastructure intprgeessing methods,
feature-based methods, model-based methods, pattern-based methods, and 3D reconstruction.
These methods, however, cannot be considered fully separately. Rather they byjledbesach

other. For example, extracted features are learned to support the classificadass fin pattern-

based methods.

Subsequently, it is shown, how these methodologies have been used, tested and evaluated to
identify different defect and damage patterns in remote and close-up images efecbnidges,

precast concrete tunnels, underground concrete pipes and asphalt pavements.

<insert figure 1 here>

3.1 Reinfor ced concrete bridges

Much of the research in defect detection and assessment using computer vibmots fat RC

bridges have largely focused on cracks, and to some extent on spalling/delaminationiragnd rust
Many of these research studies targeted and contributed successfully to the antahati
detection and measurement of defects. More studies need to be done to improve the methods
used for automatic assessment as they are currently based on several assumptions.

In addition to cracks, there are also other defects that are essential tocheddsmtd assessed in
relation to a RC bridge. Being able to detect, assess and document all defadispasdent

entities is paramount to provide a comprehensive approach for bridge inspection.

Currently, some of the other categories of defects are being inherently detected or assessed as part
of other major dominating defects present at the using computer vision metho@safle,

some methods detect abrasion as part of the crack [44]. In other cases, suchtas distbr
misalignment of bearings etc., no automated method exists for detecting and afisessifidis

clearly indicates that more research needs to be done in the direction of autdheatetection

and assessment of various defects. To be able to perform automatic assessment @ condi
rating assignment, as a first step, it is necessary to identify the relsf@at parameters to
accurately and comprehensively represent the defect information.

10
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Below we will present the synthesis of the research done so far in the computer visiamfdomai
various types of defects.

3.1.1 Cracking

Previously, Jahanshabhi et al. [45] reviewed automatic defect detection approachescdfety,

Rose et al. [46] reviewed existing crack detection and assessment algorithorecfetec bridges

and classified them broadly as edge detection, segmentation and percolation, neaching |
methods, morphology operations, ground and aerial robot photography, template matching, and
other techniques. Building on this categorization, we reviewed and discussed some ofitfe exist
algorithms below.

Abdel-Qader et al. [47] compared various edge detection algorithms and found the Habat Wav
method to be the most reliable among them, for the purpose of crack detecticveldctive
performance of edge detection algorithms on noisy image data is questionable, andteame is
case with morphological operation based methods [48]. Yamaguchi et alsgt®Ecalable local
percolation-based image processing techniques and they proved to be efficient arid aceara

for large surface images [50]. Abdel-Qader et al. [51] used a Principle Component Analysis based
algorithm to detect cracks on a bridge surface. In this case, the accuracy efvasatt with
camera pose and distance from where images are taken. Prasanna et al. [52] developed a
histogram-based classification algorithm and used it along with Support \Meidtines to

detect cracks on a concrete deck surface. The results of this algorithm onidgal data
highlighted the need for improving the accuracy. Nevertheless, trainitag fiban various
locations on the bridge could be used to build the classifier and testing could be done on data
from a different location of similar structural composition. Simylatlattanzi and Miller [53]
developed an automatic clustering method for segmentation based on Canny and K-Means to
achieve greater accuracy of crack detection under various environmental coratitogseater

speed. Lattanzi and Miller's work is significant, especially if training datgpgses images from
different locations because it is important to offset the environment vayiadsiociated with
variable lighting and shading conditions at different locations on the bridge, wghaften the

case with real world bridges. Some researchers also combined image-based 3D scene
constructions with other techniques, in order to obtain depth perception that a 2Ddokag¢o

support automatic crack detecti] [55].

While the above algorithms demonstrated capabilities to detect cracks, it imptstant in a

bridge inspection to understand the crack properties such as location, width, length and
orientation, because condition ratings for bridge elements are assigned basedmorties.

As outputs of the process of extracting properties from images are igsaiitils imperative that
images are mapped to the global coordinate system. This requirement stems fiiketliltioed

that images are collected on field with varying configurations i.e. resolutionsjopssi
orientations etc., over different inspections, which is primarily due to difficulreplicating the

same image capture configuration as well as a result of rapid advances ia tacheplogies

over relatively shorter time periods. Towards normalizing different imagasi¢ovorld scale,
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different researchers used techniques such as 3D pose estimation, multiplstitoaigg or by
making measurements relative to the host structural element. In relation ,tcdivet data
acquisition systems used by researchers also had 3D pose control feature. These kghktems i
comprised surface-based (ground-based, water-based, bridge surface crawler) ookadsal r
which can either, have pre-configured settings or can log accurate image captigeraioor
dynamically.

Targeting to achieve the goal of going beyond mere crack detection, YU®f]aleveloped a
graph-based search method to extract crack properties for further assessnusetdamdround-

based robot for collecting images; however, this method needed manual input of semtand
points of crack [50]. Later, Oh et al. [57] demonstrated a technique impieagantomatic two-

step: crack detection and crack tracing algorithm to be able to detectlassvidgntify crack
properties, such as width and length, and tested the developed algorithm on algealTtrey
collected images with a ground-based robotic system that had controlled pan and#hisras,

and used median filter for smoothening in the pre-processing stage, then isolated theecandidat
crack points and applied morphological operations such as dilation and thinning taimeiack
segment connectivity. As part of their study, they compared their restiid-ujita, Sobel and
Canny’s method. The performance of the algorithm proposed by Oh et al. [57] matched the othe

three methods in terms of eliminating shaded regions and detecting major créadks, w
outperforming them in the case of thinner cracks.

Other researchers targeted developing crack maps. Jahanshahi et al. [58] proposed a crack
detection system to extract a complete crack map using 3D scene reconstruction, morphologica
operations and machine learning classifiers, and followed it up with a robust phaotwrgm

based approach to compensate for camera perspective errors [59]. In another rec8hti ese,

al. [60] proposed a novel method involving thinning of the crack maps and subsequent
measurement of each crack skeleton point to the crack boundary to automatically extra
necessary crack parameters [50]. More recently, Lim et al. [61] proposed a Lapla@eussian

(LoG) based algorithm to perform crack detection and mapping on an RC bridge deck, and uses
mobile robotic system that can traverse a deck surface to capture images. Theorelsothe

spatial locations of image capture and uses robot coordinate system to tranefarimége
coordinate system to global coordinate system.

The results presented in most of these cases were based on applicatiomuéttieds on bridge

deck surface, or in some cases image data of the beams and columns were considered. Generally
speaking, most of the images used in these studies were images from &inplel fcurved
surfaces. However, the joints, seals, bearings and other connections present more complex
geometry, often comprise of many sub-components and generally have varying material
composition. Thus, these conditions render it hard to distinguish cracks from true/Adsigeas

bridge inspectors commonly look out for connection related defects, algorithms shoetieoe t

on images from these components.
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3.1.2 Delamination/ Spalling
Only recently, there have been developments in the detection and assessmentngf @palli

concrete surface and these works seem to have drawn inspiration from rusting detection and

assessment [50]. German et al. [62] considered a combination of segmentation,etemplat

matching and morphological pre-processing, both for spall detection and assessment on concrete

columns. They identified length of spalled region along longitudinal direction estance

between exposed reinforcement bars in the transverse direction and developed an approach for

assessing the cumulative severity of the spalling based on different enumeration-|éyels
spalling of concrete cover without exposing reinforcement, (ii) spalling exptsngitudinal
reinforcement and that of core concrete. The results obtained for the test indigated spall
detection with a precision of 81.1% and a recall of 80.2% for a set of 70 inkémesver, they
indicated that more work is needed to achieve more detailed categorization gbrepelty
result, with particular focus on spalling that exposes transverse reinforcement.

Adhikhari et al. [63] presented a novel approach based on orthogonal transforogtigrghape
preserving algorithms such as affine and projective transformation, to ovepeogpective and
parallax errors of a camera during data collection that can result in inacaefet
guantification. They could determine if spalling had occurred,iasgalling was present, they
could retrieve spall properties automatically. Their research also used Bridgeidohuiex
(BCI) after quantifying the defects to map them to condition ratings. Whnéle could achieve
reasonably accurate results (85% accuracy) for automatic procedures, thdfinralgould not
completely address automatic identification and assessment in situations wheyke mefects
(e.g. spall and crack) interact at the same spatial location.

Though work on spalling detection and assessment started only recently, the prodaess so
very promising. The algorithms have been tested with images from decks and columms. Like
the case of cracks, even spalling needs to be checked for at concrete jointard haatiding
images from those locations will be valuable for better detection and ass¢gsriormance of
the algorithms.

3.1.3 Other damage scenarios

Zaurin et al. [3] used video imagery and bridge responses collected bygstugies and fused
them together to detect loss of connectivity between different composite sections, areichang
boundary conditions. In the process, unit influence line of the bridge is extractechtistocait
outlier detection is done to differentiate damage state from the baselinel biatenethod was
tested using a four span experimental bridge belonging to University of CentrdaFhsahikari

et al. [64] presented an change detection approach based on fourier transfornthBdmages,

which could useful for detecting subtle defects such as periodic and sudden settlement of

substructure. The review of the paper also suggests no proper basis for threshaldlitigg
results vary depending on the chosen threshold limit chosen. However, this nethod
significant improvement over traditional change detection approach using the difference,
and can be used to quickly do a temporal comparison of different images. Uhl et al. [65]
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developed a method to detect deflection in structural members by applying homography mapping.
Specifically, they implemented an automatic shape filter and a corner detectoruiateathe
deflection using homography mapping between the two views. They implemented thith@gori

on an experimental set up in a lab, and also on a real bridge, and verified their riélsuhe w
deflection calculated using a laser scanner. The results seem to be very acthirthie svierage
difference between both the measurements being less than 0.5%. Though therdésleésing
calculated accurately, it did not address the problem of damage localization assmasde
Kohut et al. [66]extended Uhl et al.’s work [65] to include damage localization and assessment
using a wavelet transform based analysis method to do irregularity detection.

Various algorithms, related to detection and assessment of cracking, spallisgna@ damage
scenarios in RC bridges, have been discussed above, and our focus was ogréss jof the
computer vision research in terms of automation in detection and assessment of these defects.

3.2 Precast concretetunnels

In contrast to concrete bridge inspection, the image and video data acquired ingideldst

much different in terms of artificial lighting and camera distance. Frompgspective, it is
interesting to review the current state-of-the-art computer vision algorithms fot defection in

tunnel image data. According to Chaiyasarno [67], automated tunnel inspection sysiems t
cover both defect detection and condition assessment can be grouped into the following themes
detection, visualization and interpretation.

3.2.1 Defect detection

In analogy to concrete bridges, the most sought after defects are cracks asg tieypaimary
indicator of deterioration patterns, which are due to other severe causes that beddrther
analyzed [68]. Yu et al. [56] also highlight that cracks are of qudati concern as they most
significantly affect the state of the concrete within a tunneling environment.

Computer vision methods for crack detection generally involve a pre-processingdsteprank
identification step. First, in the pre-processing step image processing technigjegmpléed to
extract potential crack features, such as edges (threshold-based approaches). Second, the
identification step usually applies crack modelling (eldshsed approaches) and/or pattern
recognition techniques (pattern-based approaches) in order to clagsiéy éktracted features
belong to crack regions. Next to methods described in the previous section, mentionable
contributions that are applicable to crack detection during tunnel inspectictheaidescribed
below.

Threshold-based approaches

Miyamoto et al. [69] calculate the difference in intensity between each gixkkthe average
intensity of each row in an image. A pixel that differs considerably from the aviersaiel to be
a crack pixel. Fujita et al. [70] use a line filter based on the Hessian nmeixphasize line
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structures associated with cracks before they apply thresholding to eepesaks from
background.

The major drawback of threshold-based approaches is the question on how to choose a suitable
threshold for extracting crack features. The described algorithms seleeslaotdrbased on prior
knowledge. However, such methods can hardly be generalized and may be inapplicable to the
imaging conditions found in real tunnel images. Moreover, they are prone to inaccauvseyl

by shadows as the intensities of shadow pixels tend to have a similar brightness @¢dmpare
crack pixels.

M odel-based approaches

Ukai [71] developed a crack detection system based on the deformation of tunnel walls. Under
this method, the model of a crack is characterized by eight quantities, such as area and Feret’s
occupancy rate. Subsequently, a filter is used to remove noise. Yamaguchi et al. [48dnodel
cracks based on the concept of percolation, which is a physical model desbbjrigehomenon

of liquid permeation. The algorithm starts by initializing a seed region andbareighboring
regions are labelled as crack regions based on the percolation process. Paar epralsdin]
crack detection algorithm based on the line tracing algorithm that assumask asca series of
short straight lines connected together. Again, the algorithm starts from acéstefblppwed by
searches for a line within the neighboring regions. Yu et al. [56] proppsmdck detection
method in conjunction with a mobile robot system for automated inspection of ecoeks in
tunnels. Their method calculates the length, thickness and orientation of conarksetloraugh

a graph search; however, it requires the crack’s start and end point to be manually provided.
Moreover, the robot is required to maintain a constant distance from the tunnai amlér to
acheve accurate measurements of the damage properties. This system claims to havallan ov
detection accuracy rate of 75-85% and a measurement error of recognized cradsstban
10%.

According to [67], model-based methods for crack detection strongly rely on npser td
initialize the seed pixels. Consequently, hairline cracks may not be detection bessrgsmay

be unable to identify the seed pixels. Due to reliance on the user input, these methodsheay
scalable.

Patter n-based appr oaches

Liu et al. [73] apply a Support Vector Machine (SVM) classifier to deterrifioeack features

appear in an image patch. Potential crack features are pre-defined basedsiy.iftiedelqader

et al. [51] use a Principal Component Principles (PCA) algorithm that retheedmensions of

feature vectors based on eigenvalues, and extracts cracks from concrete imageag&beare

first pre-processed by line filters in three directions: vertical zbatal and oblique; then further
processed by the PCA algorithm and classified based on the nearest neighbor algorithm.
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Methods based on pattern recognition considerably rely on training data in oseéufo robust
classifiers. Training and validation data are usually performed by manual lal{slipgrvised
learning), which is a labor-intensive and error-prone procedure.

3.2.2 Visualization

The main goal of visualization is to visually organize large image and vatacsdts to enhance
inspection. Image stitching or image mosaicing is a common method to combine and visualize
collection of images. In the domain of tunnel inspection, Chaiyasarn et aprg8gnt a system
that constructs a mosaic image of the tunnel surface with little distortieir. §ystem obtains a
sparse 3D model of the tunnel by multi-view reconstruction [75]. Then, the Suppcidr Ve
Machine (SVM) classifier is applied in order to separate image featuresolyitige cylindrical
surface from those of the non-surface. The reconstructed 3D points are reprojectedgeto
for accurate cylindrical surface estimation. Jahanshahi et al. [76] ttateed images of
structural systems from a specialized camera that can tilt and pan. The methad rdistsiog
parts, such as bolts, when comparing images taken at different times for the jpfirgtosetural
health monitoring (SHM). The method applies a machine-vision algorithpetform image
registration to rectify images so that they are in the same coordinate frame.

In general, image stitching provides a feasible way of increasing tbeofigiew that cannot be
achieved by a single image. Consequently, a wide-angle or stitched imagmpnaye defect
detection results, in particular in case of hairline cracks, since the gdtitclage provides a
higher resolution of defects, e.g. cracks.

3.2.3 Change monitoring

Apart from detecting cracks, classifying crack patterns and associated sigegs$ential to
observe if cracks in tunnel liners have changed over time and how quickly theyTdusskind
of information helps determine the deterioration rate of the structumatltcomponents [67].
Lim et al. [77] propose a system for change monitoring of cracks from teoiperal images.
Their system is based on a 2D projective transformation that can accdettsimine the crack
size, which is then monitored in consecutive images as the crack propagdtesigilthis
system that can cope with images taken from different viewpoints, it requirésitexger input
for the control points, which makes the system unscalable for a large number of images. Chen and
Hutchinson [78] propose a framework for concrete surface crack monitoring and iqatorif
Their method is based on optical flow in order to track the movement of crackevetowurrent
solutions related to monitoring cracks or anomalies rely greatly on some degrser ahput
[67].

3.3 Underground concr ete pipes

Deplorably, on the basis of a search of sewage pipe inspection methods currently offered by
North American contractors, most buried pipe inspection continues to be manual and CCTV
based, implying a slow inspection process subject to operator fatigue and boredom. Although this
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limitation is frustrating, it strongly motivates continued researorkven machine intelligence
and computer vision in this application, and is the driving motivation for this sedtlwre have
been significant with computer vision contributions to pipe inspection, in whodgrated
systems such as PIRAT [28] [18], KARO [18], and AIMP [18] [79], and the mappiag t
underworld (MTU) project [19].

The computer vision analysis of underground concrete sewer pipes has much in coitmon w
other forms of infrastructure. In particular, all of the parallel sections indpisrgliscuss aspects
of crack detection, hole detection, and the classification of cracks into differens or degrees

of severity: multiple cracks, networked cracks etc. The forms of concreteodation in
different parts of infrastructure do, after all, share a great deal in common.

As discussed in Section 2.3 and in review articles [15] [17] [18] [19], an unusudyvariety

of possible imaging modalities has been developed for buried pipe inspectioermndf the
role of computer vision, we will focus our discussion on the most widespread methods, whi
have seen the most attention in the literature, namely the CCTV, SSET, and tdidieg pr

methods. Other approaches, such as SONAR, ultrasonics, and ground penetrating radar do

produce image-like data, but of a too specialized nature to consider here.
The analysis of buried sewage pipes possesses certain unique aspects wheckceinthe
associated computer vision strategy:

e Lighting: The pipes are buried, dark and, depending on the modality of imaging, there
may be constraints on the lighting possible, particularly in the case of CCTV imaging.

o Patterned background and contrast: Sewage pipes suffer from significant degrees of
deposits and staining, which may be dark, affecting image contrast, or may beahighly
irregularly patterned, looking very much like any of a number of sewage failureslass
holes, single cracks, networks of cracks, root intrusion etc.

e Limited quality and quantity of data: The slow, expensive approach to data collection
strongly limits the total amount of data available for machine learning hdfarore the
lack of standardization varied methodologies of imaging, machine standards, concrete
pipe standards, concrete pipe contents and staiingke it challenging to learn broadly
applicable approaches.

The methods of image analysis in the literature mostly involve feature extractimodeling,
both of which are widely used in computer vision and machine learning. Feataretiert[80]
is the crucial bridge between a raw image and an information-rich feattie that can be used
for classification. The related problems of image modeling fall into thagegaries in the
context of pipe inspection, from the most specific to the most abstract: ofgtacahexplicit
models, morphology / shape-based models, and implicit / black-box models.

3.3.1 Feature Extraction

Methods of pattern recognition and classification, such as a support vectuinenac nearest
neighbor classifier [80], expect to be given a vector of values describing jbet ¢ be

classified. An image, containing thousands to millions of pixels, represents dataoio dalute
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a form to be classified, since computation time and training data requiremertgoanential in
the number of dimensions. Feature extraction is essentially dimensionalityioedirctthe
context of analyzing images, computer vision has developed a vast range of appfoache
extracting salient features.

Because buried concrete pipes are patterned and poorly lit, robust featureoexisaan
essential step and appears throughout the pipe inspection literature. ddlé@tblude edge
detection [25] [22] or the Hough transform [22] for edge/line detectinage segmentation [26]
and background subtracti¢h8] for foreground object extraction, methods of image registration
[18] and optical flow [24] for the tracking and association of objects in ssimeevideo frames,
particularly relevant in CCTV imaging. More advanced methods include textugd-behods,
including co-occurrence [21] and histograms of oriented gradients [23], andrasolution or
wavelet-based approaches [29] [17]. Not all of these methods can be described here, and the
reader is referred to a comprehensive review [81].

3.3.2 Parametric models

In principle, any object which we can recognize in an image, such as a crackyrhoiet, can

be modeled parametrically, with parameters explicitly describing propsuitésas width, length,
radius, color etc. The strength of parametric models lies in their explicienating relatively

easy to understand and diagnose, however their limitation lies in theediggneralizability: in
practice, any special case for which a given model is unprepared leads to atendkieniwith a

newly revised model addressing that case, and after repeated such iterations leading to ugly
clunky models containing a variety of exceptions.

Given an explicit model, the most fundamental, albeit slow, approach to detectingpfecth in

an image is using a generalized Hough transform [82] [83]. Essentially tighH@ansform is a
matched filter, placing the model in all possible parametric permutationgpatrah in the image

and asking regarding degree of fit. If the number of parameters is suljidiew; say two
parameters describing the position plus one or two parameters describing size anthehiipe,

Hough approach may be possible, but given five or more parameters the Hough search space
becomes far too large to search densely, and optimization approaches are needed.

Significant challenges for parametric approaches arise, by definition, for thasgsobjhich

cannot be well modeled. So whereas a joint (line) or lateral (circle) is relatively simp@ekascr

more challenging but may be modeled as a set of connected line segments, but a model to
describe the wide range of appearances of root intrusions is very diffigldst parametric
computer vision models focus on crack detection, such as modeling a crack as being darker or
having a higher variance than its immediate surroundings [25] or as a set of segments [22].

3.3.3 Morphology

Image morphology represents image shape on the basis of mathematical operations speh as sh
erosion (shrinking) and dilation (growing). The morphological approaches are miteg lthan
parametric ones since, in principle, a parametric model can encode any imaginable behavior
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however the strength of morphological approaches is their elegance and oparatingainer
similar to humans.

Any morphological operation is described or controlled through a structeiengent, normally a
relatively simple shape, such as a line, a rectangle, or a disc, which controls théoextéoh a
given pixel in the image affects its neighbors in dilating or eroding. Manyaeks and tutorial
papers have been written [84] [85] and the interested reader is referred tdothgneater
background.

Much of pipe inspection is on the basis of binary (light/dark) prieistapes, making image
morphology a natural tool. The most basic shapes are elongated (cracks, joints) and tesind (ho
laterals), and so analysis can proceed on the basis of one or more round and one or more
rectangular structuring elements. Recent uses of morphological approaches in Ipesecapi

be found in Sinha et al. [16], Su et al. [86], and Halfawy et al. [22].

3.3.4 Neural models

There has been a huge resurgence in computer vision interest in neural-lids, padicularly

in the area of deep belief networks [87]. The key advantage of a neural approach isthgesill
of the problem- contrast enhancement, feature extraction, texture / shape analysis cealassifi
— are machine learned all at once, in an integrated fashion. If the machmegdesptimization
converges well, then the integrated approach can offer robust classification.

On the other hand the sewage pipe problem, with huge numbers of imagewidedrange of
background patterning and texture, is a very large nonlinear optimization prédlemhich
convergence may be poor. Neural-like methods are essentially black-box in nature,efocether
the actual effect or role of individual parameters is exceptionally hard to understand, in contrast t
parametric models where the researcher can understand the operations of diffesenit thart
algorithm and where, although parameters would ideally be machine learned,ciplg@rihe
parameters could be tuned by hand on the basis of an understanding of their effect.
Nevertheless, the limitations of the preceding paragraph notwithstanding, neuoalchegrhave
seen rather significant application in buried pipe inspection. In most casesuthenetwork is
preceded by computer vision approaches for feature extraction, followed by eaunaid [29]
[27] [20] [21] or neuro-fuzzy approaches [26] [88].

3.3.5 3D Reconstruction

A final contribution from computer vision relates to the three dimensi@tanstruction of a
buried pipe, as a direct geometric detection of deep cracks and holes, rather itteatlyind
through visual appearance. The computer vision literature has developed a vast nagiiped$

for 3D reconstruction, most notably shape from shading and stereo vision, baivelela
complex problems. In contrast, the instruments for pipe inspection employ a ldsgerenate

3D shape one dot at a time, a far more constrained problem and relatively simple compiared to
scene reconstruction from images.
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The use of laser reconstruction is widespread in computer vision, to ge8i2maiadels of heads,
limbs for prosthetics, or objects for 3D printing. For pipe inspection, methods for 3D
reconstruction based on laser illumination are developed in Duran et §2(2&hd Kawasue et

al. [89].

3.4 Asphalt pavements

3.4.1 Pre-processing

To automatically detect distress on pavement images, it is required to pesfmma
preprocessing of the images. A common problem is that images are taken uadentdifeather
conditions or daytime and may contain shadows of trees. As a result non-uligfiotimg is
present in the images. Many of the methods for pavement distress detection are baged on t
assumption that distress pixels are darker than the background. Wang [90] andarl.sgdigt

have concluded that such methods perform differently well according to valigiming
conditions and shadows. Figure 2 illustrates the so-called checker shadow [B2$id@quare A

looks darker than square B, but their pixel intensities are equal. This means, migtanbe

able to easily identify an asphalt crack in an image because it appearsatenkared to the

local background. Computers, however, may fail as they sometimes solely rely on global intensity
values.

<insert figure 2 here>

Several solutions to the non-uniform lighting problem have been proposed. Varadietraljan

[93] select only images that were taken during daytime and when the weather wastover
mostly cloudy, so that the lighting conditions are good. The disadvantage apgh@ach is that

the selection process is also time-consuming and all captured images must béefared
selection and processing, which results in large amounts of data that is stored.[@feng
proposed a method to convert all images to a standardized background. For that piirpose, a

is split into rectangular windows. The average light intensity of the pirelese windows is
calculated for each window. Notably low average values are then replaceddwethge value

of the neighbor windows. Finally, multipliers are generated based on the evwelags. The
multipliers are interpolated for each pixel so that all intensitieg arund a base intensity. Zou

[95] proposed a geodesic shadow-removal algorithm to remove the pavement shadows while
preserving the cracks in images.

Another issue related to distress detection in pavement images is the @@fdane-marking on

the images. Nguyen et al. [96] detect lane-marking regions and do not consideegi@se for

the distress detection. First, a binary image is obtained by applying a threshold. Sezond, th
probabilistic Hough Transform is used to detect lines on this binary image. laakegs are
detected based on the orientations and dimensions of these lines.

A range of techniques are applied to eliminate noise or for image enhancement. Lok&3hwor
and Radopoulou [98] use median filtering and morphological operations (erosiomgndilat
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opening, closing). Li [99] applies Gaussian smoothing for further denoising. Varaath{®3aj
calculates the blur magnitude in the images and considers for assessmemiagely for which
the blur-score is below a certain threshold. In some cases it might also be betoeficrapress
the images to reduce the size and computation time, as done by Salman [100].

3.4.2. Defect detection
Several methods have been proposed, which are capable of detecting different digtesssfin

pavement images. Zhou et al. [101] use wavelet transform to decompose an image into

approximation and detail coefficients. The detail coefficients represent distréss pavement
images. Zhou also proposed three statistical criteria and a norm of pavemeessdist
guantification, which can be used as an index for pavement distress evaluation. Loketshiwor
[102] developed an algorithm which applies segmentation of distress pixels from theohadkg
pixels using an adaptive thresholding technique. User defined decision logic basedavaat

covered by the distress pixels categorizes video frames as frames with distrassesmwithout

distress. Most detection methods are developed for a specific type of distress. Sttree of
methods are presented below.

Cracks

As cracks are the most common distress type, a plenty of crack detection algdrbenbeen
developed and presented. In particular, methods for real time crack analysi$1d4)3]Jcrack

classification [105] crack depth estimation from vision [106], and autometagk sealing have
been presented [107] [108].

Most of the algorithms for crack detection are based on the assumptiocrablatpixels are
darker than the surroundings. Based on statistical measures of the pixel infehsést®lding

methods that classify pixels as crack or non-crack pixels are applied. akdPa{ have made a
critical assessment of distress segmentation methods, in particuldicatatisesholding, Canny
edge detection, multiscale wavelets, crack seed verification, iterativenglippethods, and

dynamic optimization based methods. Koutsopoulos et al. [109] developed an algorithrolfor cra
image segmentation based on a model that describes the statistical properties of pavee®nt imag
Huang et al. [104] also proposed a classification method. An image is divided into cells.

Depending on the contrast of each cell to its neighbor, the cells are classifiedlasrcnon-
crack cells. However, a limitation of the method is that it is hard to findieersal contrast
threshold [91].

Salman et al. [100] proposed an algorithm which uses a Gabor filter. The preprgzassadnt
image is convolved with the filter and the real component of the result imaigestiolded to
generate the binary image. Binary images resulting from differentlytedditters are combined
and an output image is produced. The output image contains detected crack segments.

Moussa and Hussain [110] presented an approach for automatic crack detection, dlassificat
and parameter estimation based on machine learning. They apply Graph Cut segmentation to

segment an image into crack and background pixels. A binary vector is cretted af
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segmentation. Seven features are extracted from the vector for classification uffhese a
Support Vector Machine is used to classify the crack type in transverse crédokigigudinal
cracking, block cracking or alligator cracking. Moussa and Hussain also presented achappro
compute the crack extent and severity based on the length and the width of the ttradinage

[110].

Varadharajan et al. [93] also use machine learning. They assume input imagiesavhcontain
background, such as cars, traffic signs and buildings. First, the ground plane is segmented out
from the rest of the image. After that, feature descriptors are computeddrasiael color and

texture of the preprocessed pixels. A total of nine features and dataedbfaom human
annotators are used to train a Support Vector Machine which classifies the images.

Li et al. [99] partition the image into crack regions and regions without crachg tise
difference value between the maximum and the minimum grayscales of an image region. T

the foreground is separated from the background by segmenting with Otsu’s method and the

images are classified using binary trees and back propagation neural networks.

Zou et al. [95] analyze the intensity difference in regions of the image to detewhether the

pixels belong to cracks or not. After that, using tensor voting, a crack map is protuties.

crack map the probability of the pixels that are likely to be located &mggcrack curves is
enhanced. The cracks in the image may sometimes be disconnected, so Zou et al. connect the
crack parts with the help of an edge pruning algorithm.

Potholes

Usually, potholes also differ significantly from the background surface. Curoemputer vision
research efforts in automating the detection of potholes can be divided inec@mstruction-

based, 2D vision-based methods. Detection methods that are based on a 3D reconstruction of the
pavement surface rely on 3D point clouds provided by stereo-vision algorithms usingof pair
video cameras. Also there are hybrid systems available that use digital camerasute ca
consecutive images of lines projected by infrared lasers [111]. A steren-Wiased surface
model for comprehensive pavement conditioning has been proposed by Wang [112] and Hou et
al. [113]. With the availability of a 3D point cloud, Chang et al. [114] havespted a clustering
approach that can quantitate the severity and coverage of potholes and Jiaqgili1&] diaye
created a method for identifying, locating, classifying and measuring sag deforsnéikie
potholes and depression. The drawbacks of stereo-vision-based approaches are that thay require
complete 3D reconstruction of the pavement surface and that the procedure of matching point
between the two views is quite challenging due to the very irregular textureobmdof the
pavement surface.

Karuppuswamy et al. [116] integrated a vision and motion system to detect simulated potholes
Their approach detects potholes in the center of a lane. However, ibrellesnputer generated
(simulated) potholes that are larger than 2 feet in diameter and white in Toéolatter are
simplified assumptions that do not reflect realistic pavement conditions. Bahaes al. [117]

used a depth sensor to detect and quantify defects in pavements. Based on the depthtivalues of
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pixels, pixels are classified as deep or flat using thresholding. Then atlimmom depth of the
defective regions is computed. However, the limitation of the proposed apjsdhael the data
acquisition system, which is the Kinect senssrdesigned for indoor use. As a result, all the
captured depth values are zero when the Kinect is exposed to direct sunlight.

Koch et al. [118] also presented a computer vision based approach for pothole detection in asphalt
images. Based on surrounding shadows, elliptic shape and grain surface texture, the method
identifies potholes in images. Image segmentation, shape approximation, and texture comparison
are performed in this order. The image is divided into defect and non-defect pavegiens

using histogram shape based thresholding and the triangle algorithm proposed by Zack et al.
[119]. The shape of the pothole is approximated by applying morphologicalndpiand elliptic
regression. Finally, the surface texture of the pothole candidate region is comptredon-

defect pavement region using spot filter responses. The region is determined as aifpiinole
region inside the pothole candidate is coarser and grainer than the one outside. Koch et al.
extended the method with video processing [120]. Using the described pothole detedtmoh met
potholes in a sequence of pavement images are counted.

Patches

Cafiso et al. [121] observed that pixels which belong to patches hdseenifgray levels from
the pixels which belong to the background. They use a clustering method to analynagée i
with respect to patches.

Radopoulou et al. [98] detect patches in pavement images by applying morphadpgiedions.
Patch regions are segmented based on the assumption that patch pixels havanigresitiers
than pixels belonging to the background. Then, texture information is utilizetbandifferent
filters are applied. Subsequently, feature vectors of both intact and patch @gia@mstructed
and compared after the convolution of the image with the filters.

4. ACHIEVEMENTSAND CHALLENGES

This section summarizes the current achievement and open challenges of coisprieior
infrastructure condition assessment. A corresponding overview regarding thef lawtdroation
in defect detection and condition assessment is presented in table 5.

4.1 Achievements

When looking at defect detection and condition assessment of reinforcedtedntdges—
classified as both vertical and horizontal civil infrastructurecan be concluded that the current
state-of-the-art computer vision based methods contribute successfully to the aurtoohati
detection and measurements of defects. The detection, localization and properties retrieval of both
concrete cracks and concrete spalling is to a very large degree automated. Spallisgcdefec
even be quantified and to some extend be mapped to condition ratings. Other important
achievements include the ability of computer vision based methods to successfully support the
detection of connectivity losses between composite sections, changes in boundargnspnditi
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changes in substructure settlements and deflection of structural members. The acousimy of
based deflection detection can even compete with methods employing high accurate laser
scanners.

With regard to very long horizontal civil infrastructure, such as precastrete tunnels,
underground concrete pipes and asphalt road networks, it is found that respective @ztarcoll
technologies are fully automated. Moreover, available computer vision based algorithms
successfully support the automation of detecting and localizing defects, suetkssamnd joint
spalling in concrete tunnels; cracks, holes and joint damage in concrete pipes; asd crack
potholes and patches in asphalt pavements. In case of bridge and tunnel inspection, computer
vision based visualization methods (e.g. image stitching) successfully assist indétéetion

and assessment as they improve the defect detection results due to better reSolut@ming
asphalt pavements, the crack properties retrieval procedure (type, with, lengtly)asitioinated

and some computer vision based distress quantification measures have the potdngial to
converted to indexes for distress assessment.

4.2 Challenges

Concerning computer vision supported concrete bridge inspection, it has to be mentioned that the
process of image and video data collection is not yet fully automated. In ternaglotetection

and assessment, existing methods need to be improved as performances on noisy data are
guestionable and accuracies vary with camera pose, camera distance and environmental
conditions (lighting and shading at different locations). Moreover, several methodscgtite a
significant amount of manual user input. In general, most of the methods assages iimom

simple flat and curved concrete surfaces, so that they may fail in casesr@fcomplex
geometries and material, such as joints, seals and bearings. Accordingly, thereeatéy cuy
methods available that support the detection and assessment of bearing distortion and
misalignment.

When looking at underground civil infrastructure, such as tunnels and piespiicluded that

poor lighting conditions, irregularly patterned background and contrast as well &l luhaita

guality and quantity impose the most significant problems when dealing with cmysibn

based approaches to defect detection and assessment. With respect to lightimay) awethods

either use prior knowledge, thus can hardly be generalized or they rely on some detgaaabf

input and therefore do not scale well. More recent methods that use machiieylstrongly

rely on training data to create robust classifiers. Usually, the trainiogess is based on
supervised learning concepts (manual labeling) and is therefore labor-intendieeror prone.

With regard to pipe inspection, the limited amount of data for mackareihg and the lack of
standardization on defect patterns prevent those methods to perform reasonabtyaddition,
detection models with few parameters have limited generalizability, whereas mittietsany
parameters fail in environments with a wide range of background pattern and texttwetitkie

poor convergence of inherent non-linear optimization problems.
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With respect to asphalt pavement monitoring, natural weather conditions and theedaytim
determine the success of available computer vision based defect detection and assessment
methods. Shadows from trees, for example are very natural and prevent several methods, which
usually work well in good lighting conditions, to perform reasonably welea environments.
Moreover, many algorithms endeavor to perform real-time and therefore are based omdome k
of thresholding. However, these methods are not robust enough for image data witle averag
image quality in practice as it is hard to find universal thresholds. Conglygfielly automated

and comprehensive pavement distress detection and classification in a real-time envinasment
remained a challenge. Also, there is no comprehensive and robust method available to determine
the severity level of distress for defect and condition assessment of asphalt pavements.

In general, reliable defect detection and condition assessment of civil infrastructutserhased

not only on visual inspection methods. First, computer vision methods work under thplgrinci
“What you see is what you can analyze.” This means, that scenes under observation have to be
sufficiently illuminated to make computer vision methods work. Visible shadéw example,

might have a significant impact on the capability of CV methods. In case oflealbi@ction
shadows support the process, where in cases of 3D reconstruction they hinder thegrocedu
Moreover, the internal condition of infrastructure components cannot be captured, thus neithe
assessed using visual methods. On top of visual assessment techniques (whether rtafrua
supported), other advanced in-depth inspection methods (so-called Non-destructingiceval
(NDE) methods) are required to assess the overall condition, such as dmsonid, magnetic,
electrical, nuclear, thermography, radar technologies. However, defects on the swrfgoeda
indicators of the overall condition as they are part of many visual condiggssment manuals.
Second, the data quality plays an important role in terms of noise, distanperspekctive to the
object of interest and the corresponding image resolution. For instaioece, Wants to detect a
crack of 1 millimeter width, he or she has to make sure that this 1 millimet&pped to a least

1 image pixel. Third, a number of safety risks are associated with workingaih deights and
under heavy traffic. In this case, however, emerging remote-controlled unmannededecials

(UAV) might be a good practical solution for this issue. Forth, the oparaficameras always

has to face privacy issues when monitoring public scenes, such as bridges andmosds.isT
recommended avoiding people in image and video data.

In summary, the authors conclude that more studies need to be conducted to impratbdde m
and algorithms for integrated condition assessment. It is currently not possilele¢t, measure
assess and document all different defects as independent entities to providegtehtand
comprehensive approach for bridge, tunnel, pipe and asphalt inspections. This is maitdy d

the unsolved problem of identifying and assessing multiple interacting defethe aame
location and the lack of standardization in identifying relevant defect parameters to
comprehensively represent defect information. Moreover, no publically avaitagke datasets

exist to leverage supervised learning methods for the robust detection and classificatienabf sev
infrastructure defect types.
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The following listing highlights the key research questions that have tddressed by future
research both in the civil engineering and computer science community in ortiketthe
quality of computer vision based defect detection and condition assessment ofreisituicture
to the next level:

e How can we comprehensively detect, measure and assess interacting defect giatterns
the same location to support integrated condition assessment of civil infrastructure,

¢ How can we generalize available detection models to adequately and universakbg addre
realistic environmental conditions, such as noisy image and video data, varyingglighti
conditions, different surface geometries and materials, and different camera poses and
distances?

e How can we limit the amount of manual user input to improve the level of aubomati
from poor defect detection to sophisticated defect and condition assessment?

e How can we create sufficiently large, publically available and standardizasetato
leverage the power of existing supervised machine learning methods for detection,
classification and assessment of defects?

¢ How can we create unsupervised machine learning methods (online learning) feneffici
training and on-demand updating of model parameters in defect detection and assessment
models?

5. SUMMARY

To ensure the safety and serviceability of civil infrastructure it isngiss to visually inspect and
assess its physical and functional condition, either at regular intermalsé inspection) or after
disasters (post-disaster inspection). Typically, such condition assessment meceder
performed manually by certified inspectors and/or structural engineers. Thisspirmaclades the
detection of the defects and damage (cracking, spalling, defective joints, conposimtes, etc.)
existing on civil infrastructure elements, such as buildings, bridges, ropds,aid tunnels, and

the defects’ magnitude (number, width, length, etc.). The condition assessment results are used to

predict future conditions, to support investment planning, and to allocate limited maintandnce
repair resources.

This paper has presented the current practices of assessing the visuarcofidiertical and
horizontal civil infrastructure, in particular of reinforced concrete sd¢horizontal: decks,
girders, vertical: columns), precast concrete tunnels (horizontal: segmeimig), limderground
concrete pipes (horizontal) (wastewater infrastructure), and asphalt pavemeisn{ar
Following this, the second and largest part of the paper has focused on a comprehensaie synthe
of the state of the art in computer vision based defect detection andaoadgessment of civil
infrastructure. Several methodologies have been described and categorized, ragelitmn
respective tests and evaluations on the current performances to detect and diffasemé
defect and damage pattern in remote and close-up images of buildings, bridges, roadsdpipes a
tunnels has been presented. In the third part of this paper the current achis\@rddimitations
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of computer vision for infrastructure condition assessment have been summarizidyl. dpea
research challenges have been outlined to assist both the civil engineering amnputer
science research community in setting an agenda for future research.

<insert table 5 here>
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Tables

Table 1. Defectsrelated to general bridge elements (Grey: Required; White: Not
Required)[4]

Exp

Eff/Rust | Crack | Abr/Wr | Distor | Settle Scour |Damage
Rebar

Element Name Del/Spall

Deck

Top Flange
Slab

Bridge Railing
Closed Web/Box girder
Girder Beam
Stringer

Arch

Floor Beam
Column

Pier wall
Abutment

Pile cap/Footing
Pile

Pier cap

Culvert
Approach Slab

*Del/Spall- Delamination/Spall/Patched area; Exp Rebar- Exposed RetiéRust- Efflorescence/Rust Staining;
Crack- Cracking; Abr/Wr- Abrasion/Wear; Distor- Distortion; Settle- Settlengsdur- Scouring
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Table 2: Examples of defects and guidelinesfor assessment of condition states[1]

Condition States
Defects 1 2 3 4
Good Fair Poor Severe
Situation worse than for
Spall: >1inch& [Condition State 3 and if
Spall: <1inch > 6 inch diameter; [the inspector deems
Delamination/Spall/Patched ArealNone depthor <6 inch |unsound patched |that it might affect the
diameter area or if signs of [strength or
distress serviceability of the
element
Situation worse than for
. Condition State 3 and if
Surface white .
. . . the inspector deems
Efflorescence/Rust Staining None W|thoyt bw!d—up or H_eavy bund.up that it might affect the
leaching without  |with rust staining
rust staining strength or
serviceability of the
element
Situation worse than for
Condition State 3 and if
Width<0.012 |Width 0.012-0.05 the inspector deems

Cracking

inch or spacing
>3ft

inch or spacing 1-
3ft

Width > 0.05 inch
or spacing < 1 ft

that it might affect the
strength or
serviceability of the
element

Abrasion/Wear

No
abrasion/wear

Abrasion or
wearing has
exposed coarse
aggregate but the
aggregate
remains secure in
the concrete

Coarse
aggregate is
loose or has
popped out of the
concrete matrix
due to abrasion or
wear

Situation worse than for
Condition State 3 and if
the inspector deems
that it might affect the
strength or
serviceability of the
element




Table 3: Common civil/ structural defects of concrete tunnels and respective severity scales
according to [9]

Defect type / Severity Minor Moderate Severe
Scaling < 6 mm deep 6 - 25 mm deep > 25 mm deep
Cracking < 0.80 mm 0.80— 3.20 mm, > 3.20 mm,
or < 0.10 mm (prej or > 0.10 mm (pre
stressed member) stressed member)
Spalling / <12 mmdeep or 75| 12— 25 mm deep or | >25 mm deep or
Joint Spall 150 mm in diameter | ~150 mm in diameter| > 150 mm in diamete

Pop-Outs (holes)

< 10 mm in diameter

10 — 50 mm
diameter

in

50 - 75 mm
diameter
(> 75 mm are spalls)

in

Leakage

Wet surface, no drop

Active flow at volume
< 30 drips per minute

Active flow at volume
> 30 drips per minute




Table 4: Examples of pavement defect assessment measur ements and condition indices

Ohio [39] British Washington | South Germany [43]
Columbia | [41] Africa [42]
[40]
Measurement | Severity, Severity, Severity, Degree, Extent
extent density extent extent
Index Pavement | Pavement | Pavement Visual Substance value
condition distress condition condition (surface)
rating index rating index




Table 5. Level of automation in computer vision based defect detection and condition assessment: (+) achieved, (~) partially achieved, (-)

not achieved yet

Defect detection

Infrastructure .
Defect type Data collection
element
Cracks
Spalling
Reinforced Other: Loss of
concrete bridges | connectivity,
substructure
settlements,

member deflectior|

Precast concrete | Cracks

wnnels Joint spalling
Cracks

Underground Holes

concrete pipes

Joint damage

Cracks

Asphalt pavements

Potholes

Patches

Presenced Location

" Corresponding authoPhone: +49-234-32-26174; E-mail: koch@inf.bi.rub.de

Defect propertie
retrieval (type,
width, length,

etc.)

Defect assessme

Condition
assessment
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Figures

Low-level Intermediate-level High-level
processing processing processing
Image Pre- Segmen- Feature Object
acquisition processing tation extraction recognition
General
computer
vision
methods
Pre- Feature-based Model-based
processing methods methods
SpiCigc Median Percolation-based
methods filtering wavelets models
used for :
defect Morphologic Graph-based
detection, operations transform search
classification, Histogram of Oriented |{ Generalized Hough
and assess- equalization Gradients (HoG transform
ment of civil ] ] ; :
. Image Laplacian of Gaussian Line-tracing
infrastrucure Y .
stitching algorithms

removal

LoG

Background
substraction

Multi-temporal
methods

transform

Figure 1: Categorizing general computer vision methods (top) and specific meéthdeéfect
detection, classification and assessment of civil infrastructure.



Edward H. Adelson

Figure 2: The checker shadow illusion [88]: The squares marked A and B share theeame ¢
intensity (©1995, Edward H. Adelson).



