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 12 

We demonstrate that useful bio-based amphiphilic polymers can be produced enzymatically at a 13 

mild temperature, in a solvent-free system and using renewably sourced monomers, by exploiting 14 

the unique properties of supercritical CO2 (scCO2). We present the use of a novel near-ambient 15 

temperature approach to prepare renewable amphiphilic ABA copolymers in scCO2. Bio-based 16 

commercially available monomers have been polymerised to prepare chains with targeted molecular 17 

weight. The amphiphilic materials were prepared by end-capping the synthesised polymers with 18 

methoxy poly(ethylene glycol) (MPEG) chains in a one-pot high pressure reaction utilising 19 

Candida Antarctica Lipase B (CaLB) as a catalyst at a temperature as low as 35 °C. 20 

The block copolymers are characterised by 
1
H-NMR, GPC and DSC in order to carefully assess 21 

their structural and thermal properties. These polymers form self-assembled aggregates in aqueous 22 

environment and these nanostructures are studied through DLS, TEM and UV-Vis. Highly 23 

hydrophobic Coumarin-6 was used as a model to prove dispersion in water of lipophilic molecules. 24 

Maximum bubble pressure tests demonstrate the reduction in surface tension of these polymers and 25 

comparisons are made directly to commercial polymeric non-ionic surfactants.  26 

 27 

 28 

1 Introduction 29 

 30 

 31 

The large-scale production of amphiphilic block copolymers began in the 1950s, and these 32 

interesting macromolecules continue to attract considerable attention.
1-5

 Amphiphilic block 33 



copolymers form nanostructures (e.g. micelles and vesicles) that can find application as drug 34 

encapsulation and delivery systems and also in formulations as wetting agents, compatibilisers, 35 

emulsifiers and detergents.
1-3, 5-14

 For example, polymeric micelles are characterised by a core-shell 36 

structure and have emerged as potential carriers for highly hydrophobic molecules because these 37 

can be encapsulated in the lipophilic core of the micelles.
1, 11

 Polymeric vesicles (or polymersomes) 38 

are hollow spherical aggregates that contain an aqueous environment in the core surrounded by a bi-39 

layer membrane. The core of the polymersome can be utilised to encapsulate hydrophilic molecules, 40 

whilst the membrane can contain lipophilic molecules within its hydrophobic core.
14

 41 

The hydrophilic segment of amphiphilic copolymers is responsible for stabilisation of the self-42 

assembled nanostructures in aqueous environments and is normally made of poly(ethylene glycol) 43 

(PEG),
1, 4, 5, 10, 15

 which has many advantages, such as high hydrophilicity, flexibility and 44 

biocompatibility.
15

 In addition to this, in recent years green routes for the production of bio-based 45 

PEGs have been reported.
16, 17

 Thus, making this polymer not only a safe and biocompatible 46 

material but also a green and sustainable choice.
18, 19

 Furthermore, PEGs with molecular weight 47 

lower than 4000 g mol
-1

 were found to be biodegraded by many bacteria so they do not accumulate 48 

in the environment.
20

 49 

The hydrophobic segment is made of lipophilic polymers, such as poly(propylene glycol) (PPG), 50 

and multiblock copolymers containing PPG and PEG (commercially known as Pluronics®) can 51 

spontaneously organise in micelles and, hence, have been widely investigated for medical 52 

applications.
3
 Nonetheless, Pluronics display slow biodegradability under physiological conditions 53 

and they can accumulate in the body.
21

 For this reason, an important prerequisite for a non-54 

degradable or poorly degradable polymer, to be used as a drug carrier, is a molecular weight 55 

sufficiently low to allow for excretion via the renal route.
22

 Furthermore, Pluronics are generally 56 

characterised by a fairly high (0.01-10% wt) critical aggregation concentration (CAC) due to the 57 

weak hydrophobicity of the PPG block: this means that the nanostructures are highly unstable and 58 

the micelles are likely to dissociate upon dilution (i.e. after injection in the body).
1, 21

 On the 59 

contrary, a low CAC ensures that the self-assembled structure is retained in the bloodstream. 60 

For these reasons, biodegradable polyesters such as poly(lactic acid) (PLA) and poly(caprolactone) 61 

(PCL) have been investigated extensively as hydrophobic segments in combination with PEG for 62 

the preparation of amphiphilic polymers that can be more easily eliminated from the body. These 63 

materials also show a higher CAC as a result of the increased hydrophobicity of PLA and PCL 64 

compared to that of PPG.
4, 6, 9, 15, 21

 Moreover, the incorporation of a hydrolytically degradable block 65 

in the structure ensures a faster elimination from the body upon degradation of the polyester 66 

segment.
21

 67 



To sum up, the ideal amphiphilic copolymer, to satisfy societal need for drug delivery and medical 68 

applications through to detergents and surfactants for home and personal care, must meet specific 69 

fundamental requirements. In particular, low toxicity, biodegradability and biocompatibility, whilst 70 

also having the desired amphiphilic characteristics and an appropriate CAC. 71 

In addition to all these needs, there has been an increasing focus on sustainable synthetic 72 

approaches and the use renewable raw materials. This arises not only from future supply constraints 73 

for fossil-base resources, but also as a response to a strong market and customer demand to increase 74 

the overall sustainability of materials and processes and to lower carbon footprint.
5
 75 

There is no doubt that the use of green monomers to replace non-renewable and fossil-based raw 76 

materials is an important research focus of modern polymer science, both in academia and 77 

industry.
23, 24

 Naturally occurring and bio-derived molecules are fundamental resources that can be 78 

employed to achieve a more sustainable plastic industry and lead to polymers that are intrinsically 79 

biodegradable (e.g. polyesters).
24

 80 

Another important focus of modern polymer chemistry is the replacement of organic solvents with 81 

greener alternatives, and the design of new sustainable synthetic processes.
19, 25

 In recent years 82 

interest in the use of compressed CO2 as a reaction medium or plasticiser for polymer synthesis and 83 

processing has increased.
26-29

 High-pressure CO2 has been exploited as a solvent for 84 

polymerisations,
30, 31

 as a foaming agent,
26, 32

 for precipitation/separation,
33

 particle formation
34, 35

 85 

and encapsulation.
36

 86 

ScCO2 is a poor solvent for most of the polymers (with rare exceptions, such as fluoro-polymers, 87 

silicones and few vinyl esters polymers/copolymers),
28, 31

 but by contrast is very effective at 88 

penetrating and dissolving into polymeric materials; plasticising and effectively liquefying many 89 

polymers at temperatures well below their normal ambient pressure glass transition temperature (Tg) 90 

and melting point (Tm).
35, 37-40

 This has opened up a range of new approaches to green 91 

polymerisation. 92 

Under normal pressure conditions, polycondensations and melt-polymerisations require high 93 

temperatures (normally greater than 160 °C for polycondensations) to work effectively.
41-45

 The 94 

higher temperatures are normally required in order to lower the viscosity of the growing polymeric 95 

materials and to activate the conventional catalysts. By necessity metal-based catalysts are used that 96 

are potentially toxic
46-48

 and expensive. Enzymes could not normally function effectively at 97 

temperatures higher than 100 °C. For instance, the activity of the lipase CaLB is vastly reduced 98 

above 90 °C.
49, 50

 99 



We previously exploited scCO2 to prepare a range of green functional materials with targeted 100 

degree of polymerisation (DP) through enzymatic syntheses at near-room-temperature conditions 101 

and without pre-modification of the monomers.
51

 102 

In this paper we synthesise specific end-functionalised novel green amphiphilic copolymers based 103 

on azelaic acid, 1,6-hexanediol and PEG in scCO2 (Figure 1). Azelaic acid is a naturally occurring 104 

saturated dicarboxylic acid with antibacterial and anti-inflammatory properties.
52, 53

 Azelaic acid 105 

shows a small solubility in scCO2 and is characterised by a high Tm (~110 °C).
54

 It is found in 106 

wheat, rye and barley,
55

 but it can also be produced through ozonolysis of oleic acid.
54, 56

 This 107 

diacid is not soluble in apolar solvents, and hence normally requires end-group modification to form 108 

the ester to convey solubility, lower the Tm, and allow for further processing. In fact, the only 109 

polymerisations shown in the literature of this diacid were performed in the melt with the aid of 110 

metal catalysts at temperatures as high as 230 °C.
57, 58

 111 

 112 

 113 

Figure 1 - Azelaic acid, 1,6-hexanediol and methoxy poly(ethylene glycol) have been used as building blocks for 114 

the preparation of amphiphilic polyesters. 115 

 116 

However, because of its unusual properties and availability from renewable sources, azelaic acid 117 

could represent an important building block for the design of amphiphilic polymeric materials and 118 

other applications. Therefore, we have exploited the use of scCO2 to allow low temperature 119 

enzymatic polycondensations, without pre-modification of the diacid, with a renewable diol,
59-61

 120 

and targeting the molecular weight of the chains by using end-cappers of methoxy poly(ethylene 121 

glycol) (MPEG) with two different molecular weight (350 and 550 g mol
-1

 respectively). 122 

Amphiphilic copolymers were prepared directly from the diacid and characterised through 
1
H and 123 

13
C NMR and differential scanning calorimetry (DSC) to assess the structural and thermal 124 

properties. Their self-assembly in water was investigated through dynamic light scattering (DLS), 125 

transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV-Vis) showing 126 

that the polymer can form nanostructured aggregates and the properties can be tuned carefully by 127 

choosing the length of the hydrophilic and hydrophobic segments. 128 

 129 

 130 

 131 



2 Experimental 132 

 133 

 134 

2.1 Materials 135 

 136 

Azelaic acid (98%) was purchased from Alfa Aesar (UK) and dried for 24 h under vacuum (100 137 

mbar) at 50 °C before use; 1,6-hexanediol (97%) was purchased from Sigma Aldrich (UK) and 138 

dried at RT for 24 h under vacuum (100 mbar) before use. MPEG550 (Mn~550 g mol
-1

) and 139 

MPEG350 (Mn~350 g mol
-1

) were purchased from Sigma Aldrich (UK) and stored over fresh 140 

molecular sieves (4Å, particle size 1.6-2.5 mm). Tween® 20 (PEG sorbitan monolaurate, Mn~1200 141 

g mol
-1

) and Pluronic® L-121 (PEG-b-PPG-b-PEG, Mn~4500 g mol
-1

) were used as received. 142 

Coumarin-6 (98%) and 1,6-diphenyl-1,3,5-hexatriene (98%) were purchased from Sigma Aldrich 143 

(UK) stored in the dark and used as received. 144 

Novozym 435 (CaLB immobilised on cross-linked acrylic resin beads) was kindly donated by 145 

Novozymes (Denmark) stored at 4 °C and dried for 24 h under vacuum (100 mbar) at room 146 

temperature (RT) before use. All the solvents were of analytical grade, or Chromasolv® were 147 

specified, purchased from Sigma Aldrich (UK) and used as received. Millipore water (18.2 MΩ.cm, 148 

<5 ppb TOC) dispensed through a 0.22 µm filter was used for the preparation of all the polymer 149 

dispersions in water. 150 

Supercritical Fluid Chromatography (SFC) grade 4.0 CO2 (minimum purity 99.99%) was purchased 151 

from BOC Special Gases (UK) and used as received. 152 

 153 

 154 

2.2 Methods 155 

 156 

Enzymatic synthesis MPEG-b-PHAz-b-MPEG. In a typical procedure the diacid (3.40 mmol, 640 157 

mg), diol (DP6: 2.91 mmol, 344 mg; DP3: 2.55 mmol, 301 mg) and MPEG550 or MPEG350 (DP6: 158 

0.97 mmol, 534 mg ; DP3: 1.70 mmol, 935 mg) were added to the stainless steel reaction autoclave 159 

(20 mL),
29, 31

 along with enzyme and fresh molecular sieves (3 Å, particle size 1.6-2.5 nm) (10% by 160 

weight of enzyme beads and 25% of molecular sieves relative to the total amount of monomers and 161 

MPEG). An excess of diacid was used to ensure the synthesis of diacid terminated PHAz blocks 162 

(since the MPEG chains can react only with the carboxylic acid moieties). The vessel was then 163 

sealed and pressurised up to 50 bar. The temperature was then raised to 35 °C, the pressure 164 



stabilised at 275 bar and the reaction left to run for 24 h while stirring at 100 rpm. To avoid polymer 165 

foaming and consequent tubing blockages,
62

 the reactions were stopped by cooling the vessel in a 166 

water/ice bath (0 °C) and the CO2 was vented when the pressure went below 20 bar. Finally, the 167 

product was dissolved in 6 mL of toluene (gently heating at 40 °C to melt any residual unreacted 168 

1,6-hexanediol and, thus, retain information on conversion) and filtered to remove the enzyme and 169 

sieves. Filtered solutions were dried at 40 °C under reduced pressure leaving white solid-waxy 170 

polymeric products. Product yield was calculated dividing the dry product mass by the theoretical 171 

mass (
1
H-NMR analyses showed that the amount of unreacted species was negligible).

63-65
 172 

The nomenclature used in this paper is detailed in (Table 1). 173 

 174 

Table 1 – Nomenclature and letter scheme of the ABA copolymers presented in this study. The variables are the 175 

length of the MPEG block used for end-capping and the targeted molecular weight of the PHAz synthesised 176 

during the enzymatic polymerisation. 177 

 
Structure 

Mn
MPEG

 

(g mol
-1

)
a
 

Mn
PHAz 

(g mol
-1

)
b
 

 

(a) MPEG12-PHAz3-MPEG12 550 967  

(b) MPEG12-PHAz6-MPEG12 550 1778  

(c) MPEG7-PHAz3-MPEG7 350 967  

(d) MPEG7-PHAz6-MPEG7 350 1778  

a
Declared by supplier; 

b
Theoretical targeted Mn. 178 

 179 

The reaction scheme is shown below (Figure 2). 180 

 181 

 182 

Figure 2 – Lipase-catalysed synthesis from azelaic acid, 1,6-hexandiol and MPEG to MPEG-b-PHAz-b-MPEG in 183 

scCO2. An excess of azelaic acid was used in order to obtain an ABA-type block copolymer (since the MPEG 184 

chains are able to react only with the diacid moieties). 185 

 186 



1
H and 

13
C-NMR analysis. NMR analyses were conducted on a Bruker Avance III 500 spectrometer 187 

in CDCl3 or D2O (20 mg mL
-1

). The number of scans was 16 for 
1
H (500 MHz) and 4096 for 

13
C 188 

(125 MHz). Conversion and chain length were analysed through monomer peak and end-group 189 

analysis. The chemical shifts were reported in part per million (ppm) with respect to residual 190 

solvent peaks (7.26 ppm for 
1
H and 77.36 ppm for 

13
C in CDCl3, 4.80 ppm for 

1
H in D2O).

66
 191 

 192 

Gel permeation chromatography (GPC). The molecular weight distributions of the samples were 193 

analysed using a Polymer Laboratories GPC 50 with a refractive index detector and calibrated with 194 

poly(styrene) standards in the range of 100 g mol
-1

 – 500 kg mol
-1

 (poly(styrene) standards were 195 

chosen for the good agreement with the results obtained by 
1
H-NMR). The machine was equipped 196 

with a PL PLgel guard (8µm) column followed by two PL PLgel Mixed-D (8 µm) columns. The 197 

samples were run in CHCl3 Chromasolv® (5 mg mL
-1

) at a flow rate of 1 mL min
-1

. Cirrus software 198 

was used for analysis. 199 

 200 

Differential scanning calorimetry (DSC). DSC analyses were performed using a TA Instruments 201 

(USA) TA-Q2000 DSC calibrated with sapphire and indium standards. In a standard experiment, 202 

the sample (2.00 ± 0.10 mg) was melted with a first heating scan up to 100 °C (10 °C min
-1

) and 203 

cooled down to -90 °C (10 °C min
-1

). A second heating scan up to 100 °C, with the same heating 204 

rate, was then carried out to detect the melting point. Isothermal 5-minute segments were performed 205 

at the conclusion of each ramp. The experiments were carried out under a N2 flow (50 mL min
-1

). 206 

The Tm was taken as the maximum of the endothermic peak. Each experiment was repeated three 207 

times (on three different portions of the sample) and the results are shown as the average ± 1 208 

standard deviation. 209 

 210 

Preparation of polymer nanoparticles. The polymeric nanostructures were prepared through 211 

nanoprecipitation from THF Chromasolv®. The appropriate amount of polymer was dissolved in 212 

THF (1 mL) and this solution was added dropwise (100 µL, 30 seconds) to water (4 mL) whilst 213 

stirring at 1500 rpm. The THF was left to evaporate for 1 hour whilst stirring at ambient pressure, 214 

and then under reduced pressure (75 mbar) for 30 minutes at room temperature. 215 

 216 

Dynamic light scattering (DLS). DLS analyses were performed using a Malvern Zetasizer Nano ZS 217 

system in order to determine the hydrodynamic diameter of the polymeric particles in water. 218 

Polystyrene disposable cuvettes were used and the samples were not filtered to retain information 219 

on the possible presence of microscopic aggregates. The analyses were performed at 25 °C on a 1 220 



mL sample collecting the scattered light at 173°. Typically, three separate experiments of 10-15 221 

runs (chosen by the instrument depending on the optical quality of the dispersions) were performed 222 

for each sample to check upon data significance and reliability. 223 

For the size-temperature study, 5 minutes were allowed after each temperature step in order for the 224 

sample to reach thermal equilibrium before collection of the data. 225 

 226 

Transmission electron microscopy (TEM). TEM analyses were carried out to obtain a visual 227 

observation of the nanostructures on a JEOL 2000-FX microscope. Typically, 30 µL of the polymer 228 

dispersions (0.10% in water) was dropped on holey carbon coated TEM grids (EMResolutions, 229 

UK). After drying of the water, 15 µL of 1% by weight aqueous uranyl acetate (UA) solution were 230 

added to each grid and dried with filter paper after 1 minute to obtain negative background staining. 231 

Before addition, the UA solution was passed through a 0.22 µm filter to remove any UA acetate 232 

crystals from the solution. 233 

 234 

Coumarin-6 (C6) incorporation. The incorporation of C6 has been studied to test the ability of the 235 

polymers to act as nanocarriers for the encapsulation and stabilisation of hydrophobic molecules in 236 

water. To ensure the presence of one phase in the polymer/C6 solution, dichloromethane (DCM) 237 

was used as a solvent for the nanoprecipitation. A stock solution of C6 dissolved in DCM (2.5% 238 

w/v) was prepared and 50 µL of this solution was added to 500 µL of a DCM 2% w/v polymer 239 

solution. This final solution (550 µL) was added dropwise (110 µL, 30 seconds) to 10 mL of water 240 

whilst stirring at 1500 rpm obtaining a final solution 0.1% wt of polymer in water. The DCM was 241 

left to evaporate for 1 hour while stirring at ambient pressure, and then under reduced pressure (75 242 

mbar) for 30 minutes at room temperature. The solutions were filtered through membrane syringe 243 

filter (0.22 µm, Millex.LG, Millipore Co., USA) to exclude larger aggregates and undissolved C6. 244 

Aliquots of the filtered solutions were used for UV-Vis analyses (at 25 °C) to quantify the amount 245 

of C6 dispersed by each polymer. 246 

 247 

UV-Vis quantification of C6 incorporation. The ability of the synthesised polymers to act as 248 

systems to encapsulate C6 was determined through UV-Vis in THF using a Perkin Elmer Lambda 249 

25 spectrometer with a matched pair of Hellma® 6030-UV quartz cuvettes (pathlength 10.00±0.05 250 

mm). For a typical experiment, 0.3 mL of polymer dispersion in water with incorporated C6 251 

(prepared as described previously) were added to 2.7 mL of THF. The absorption was recorded 252 

between 550 and 350 nm (480 nm min
-1

, slit width 1 nm, data interval 1 nm). 253 



The amount of dispersed C6 for each polymer sample was determined through comparison with the 254 

absorbance of standard solutions of C6 in 9:1 THF:water with known concentration (y=70.1x; 255 

R
2
>0.99) considering the absorbance value at 452 nm. Each experiment was run in duplicate to 256 

check upon reproducibility. 257 

 258 

Critical aggregation concentration (CAC) determination. The CAC of the synthesised polymers 259 

was determined through UV-Vis in water using a Perkin Elmer Lambda 25 spectrometer with a 260 

matched pair of Hellma® 6030-UV quartz cuvettes (pathlength 10.00±0.05 mm) at 25 °C. Aqueous 261 

dispersions with different concentrations (typically from 0.1% to 0.0001% wt) were prepared for 262 

each polymer using the nanoprecipitation methodology (from THF). A small aliquot of methanolic 263 

1,6-diphenyl-1,3,5-hexatriene (DPH) (0.4 mM) was added to each polymer dispersion (10 µL mL
-1

) 264 

and equilibrated overnight on a orbital shaker (400 rpm). The absorption spectra were recorded 265 

from 390 to 330 nm (480 nm min
-1

, slit width 1 nm, data interval 1 nm). Dispersions with the same 266 

polymer concentration, but without DPH, were used as reference for each measure. Each 267 

experiment was run in duplicate to check reproducibility. Because of the cloudiness of some of the 268 

polymer dispersions at high content of polymer, 0.05% wt was the highest analysed concentration 269 

and some of the spectra were fairly noisy, due to the lower light intensity passing through both the 270 

reference and the sample (consistent background absorption). The CAC was determined by the two 271 

extrapolated lines of the absorbance at 362 nm at low and high concentration regions.
67

 272 

 273 

Maximum bubble pressure test. The surface tension of the polymer dispersions in water (0.2% wt, 274 

20 mL) was determined by using a SITA t100 Bubble Pressure tensiometer. The MPEG-PHAz-275 

MPEG copolymers were compared to two commercial surfactants (Tween 20 and Pluronic L121). 276 

A sample containing only water was analysed as a control. The tests were run at 20 °C. 277 

 278 

 279 

3 Results and discussion 280 

 281 

3.1 Copolymers synthesis and characterisation 282 

 283 

Azelaic acid is a commercially available bio-based monomer with antibacterial and anti-284 

inflammatory properties,
52, 53

 which we have exploited for green polyester synthesis using an 285 

enzyme and scCO2 at near-ambient temperature (35 °C). The polymers were prepared in one pot by 286 



adding together the monomers and end-cappers, with enzyme supported on cross-linked acrylic 287 

beads into the reaction autoclave. The reactions targeted specific the molecular weights by carefully 288 

controlling monomer and end-capper feed ratios. Once the autoclave was vented, yellowish waxy 289 

products were collected. After separation of the enzyme/molecular sieves and drying, light 290 

yellow/white waxy polymers were obtained in very good yields (Table 2). 291 

 292 

Table 2 - Molecular weight distribution (from NMR and GPC), isolated yield and conversion of the synthesised 293 

MPEG-PHAz-MPEG copolymers. 294 

Product 
Mn

th 

(g mol
-1

)
a
 

Mn
NMR 

(g mol
-1

)
b
 

Mn
GPC 

(g mol
-1

) 

Đ 

 

ABA structure 

(%)
c
 

Yield 

(%)
d
 

(a) MPEG12-PHAz3-MPEG12 2084 2500 2200 2.04 98 87 

(b) MPEG12-PHAz6-MPEG12 2896 3000 3200 2.24 93 84 

(c) MPEG7-PHAz3-MPEG7 1644 1800 1700 2.18 85 82 

(d) MPEG7-PHAz6-MPEG7 2455 2700 2400 1.83 93 91 

a
Calculated according to the reagents ratios; 

b
Determined through 

1
H-NMR from the ratio 295 

between the integrals of the peaks of the polymer backbone and the end-group peak; 296 

c
Percentage of polymer with ABA structure determined through 

1
H-NMR analyses (peak at 297 

4.22 ppm); 
d
Yield= weight of collected product/theoretical weight. 298 

 299 

Exact conversions could not be estimated due to overlap of the peak assigned to the protons 300 

adjacent the alcohol group (3.65 ppm) in the HD monomer and the -CH2- peak of the MPEG 301 

backbone (3.64 ppm). However, from the value expected for the peak of the MPEG backbone, the 302 

conversion approached 90% for all the polymers. 303 

As a general example, the 
1
H-NMR spectrum of (a) MPEG12-PHAz6- MPEG12 (Figure 3) shows 304 

integrals of the peaks at 3.38 ppm (terminal methoxy group in each of the MPEG blocks) and at 305 

4.05, 2.28, 1.63 and 1.38-1.32 ppm (PHAz backbone protons) and these were used to calculate the 306 

mass average molecular weight (Mn
NMR

). The results show a very good agreement with expected 307 

molecular weights, thus indicating successful controlled polymerisation (Table 2). Furthermore, the 308 

normalised ratio between the integrals of the peaks at 4.22 and 3.38 ppm indicates that 98% of the 309 

detected MPEG is attached to the PHAz backbone for this copolymer; similar results were observed 310 

also for the other copolymers (see 
1
H-NMR in the SI; no correlation between the presence of free 311 

MPEG residues and aggregation or CAC was found, as shown later from DLS, TEM and UV-Vis 312 

studies). This shows a high yield of end-capping and thus an efficient polymerisation to form ABA 313 

block copolymers via an enzymatic low-temperature approach. It is important to remark that only 314 

for practical reasons dissolution in toluene was used to physically separate the enzyme beads from 315 



the product at the end of the reaction; however, our group previously demonstrated that it is also 316 

possible to completely avoid the use of conventional solvents by exploiting the plasticising effects 317 

of CO2 to separate the enzyme beads from the polymer product.
62

 318 

 319 

 320 

Figure 3 - 
1
H-NMR of polymer (a) MPEG12-PHAz3-MPEG12. Integrals of the peak at 3.38 ppm (terminal 321 

methoxy group) and 4.05, 2.28, 1.63 and 1.38-1.32 ppm (PHAz backbone) can be used to estimate the average 322 

molar mass of the polymer. The peak b (3.64 ppm) is assigned to the -CH2- in the MPEG backbone, while the 323 

peak b* (3.55 ppm) is assigned to the -CH2- protons directly attached to the terminal methoxy group (-O-CH3).
8
 324 

1
H-NMR spectra for the other copolymers are available in the SI. 325 

 326 

To obtain additional information about molecular weight and dispersity, GPC measurements were 327 

performed with CHCl3 as eluent and show good agreement with the molecular weights calculated 328 

by 
1
H-NMR and predicted (Table 2). Furthermore, a dispersity value around 2 was found for all the 329 

polymers, as expected for linear polymers synthesised by polycondensation at high conversions.
64, 68

 330 

The obtained MPEG-PHAz-MPEG polymers were semicrystalline with low Tm (Table 3). 331 

Furthermore, two melting points could be identified for the copolymers (a) and (b), as expected for 332 

separate crystallisation of the polyester segment and the MPEG blocks that in this case were long 333 

enough to crystallise.
69, 70

 Nonetheless, the higher Tm – attributed to the PHAz segment – was the 334 

bigger and sharper peak for all the polymers (see SI for DSC traces). 335 

 336 

 337 

 338 



Table 3 – Thermal properties of the ABA copolymers obtained from DSC analyses (2
nd

 heating scan). The values 339 

are shown as the average between 3 different measurements ± 1 standard deviation. 340 

Product 
Tm

a
 

(°C) 

ΔHm 

(kJ mol
-1

)
b
 

(a) MPEG12-PHAz3-MPEG12 32.9 ± 1.1 33.3 ±0.9 

(b) MPEG12-PHAz6-MPEG12 38.6 ±0.4 55.8 ±0.6 

(c) MPEG7-PHAz3-MPEG7 30.7 ±0.9 40.2 ±0.3 

(d) MPEG7-PHAz6-MPEG7 39.4 ±0.6 68.6 ±0.4 

a
Main Tm peak observed in the DSC trace 341 

 342 

It is clear how a longer PHAz backbone (polymer (b) and (d)) results in a higher Tm and enthalpy of 343 

fusion (ΔHm). This behaviour is attributed to larger crystallites that can be formed when longer 344 

polymer chains pack, and it has been observed for other polyesters at small molecular weight 345 

values.
71

 The Tg could not be detected due to equipment limitations and high crystallinity of the 346 

copolymers, but it is expected to be around -60 °C as observed previously for similar polyesters.
72

  347 

 348 

3.2 Aqueous self-assembly and surface tension studies 349 

 350 

3.2.1 NMR studies 351 

 352 

Effective aggregation in water, with a structure where the lipophilic block has restricted motion, 353 

was confirmed by comparison of 
13

C-NMR spectra collected in D2O and CDCl3. Chloroform is a 354 

good solvent for the MPEG and PHAz blocks, while water is a good solvent only for PEG. For 355 

these reasons, in CDCl3 the peaks of the MPEG and PHAz moieties are clearly observed, whereas 356 

in D2O only the resonances attributed to PEG are detected (Figure 4). This implies that in CDCl3 357 

there is fast molecular motion of each block, while in D2O the motion of the PHAz is restricted and, 358 

consequently, its resonances are collapsed and broadened.
7, 73

 The same effect was also observed in 359 

the 
1
H-NMR spectrum acquired in D2O (see SI). Here again, the peaks attributed to the PHAz block 360 

are small and significantly broadened, clearly demonstrating that an aggregated structure with an 361 

external MPEG shell and an internal PHAz portion with restricted motion is formed in water (e.g. 362 

micelles, vesicles).
22

 363 

 364 

 365 



 366 

Figure 4 - 
13

C-NMR spectra of (b) MPEG12-PHAz6-MPEG12 in CDCl3 (top) and D2O (bottom) (20 mg mL
-1

). All 367 

the peaks are clearly detected in chloroform, whilst the PHAz resonances (red dotted rectangles) are strongly 368 

suppressed in heavy water. In particular, the carbonyl peak (around 174 ppm) is almost undetectable in D2O. 369 

This confirms the formation of aggregates with a rigid PHAz portion in aqueous environment. 370 

 371 

3.2.2 DLS and TEM studies 372 

 373 

In order to use a copolymer as a drug delivery vehicle or as an effective micellar system, it is 374 

essential to investigate the nature of its self-assembly in aqueous environment and determine the 375 

characteristic size of the self-assembled structures. 376 

The nano-precipitation methodology has been previously shown as a successful way to prepare 377 

empty and drug/dye loaded polymeric particles.
2, 5

 For this reason, we chose to use this method to 378 

prepare MPEG-PHAz-MPEG nanoparticles. In our process the desired amount of copolymer was 379 



first dissolved in a non-selective water-miscible solvent (i.e. THF) and this solution was added 380 

dropwise to water while stirring, to allow for the THF excess to evaporate and the copolymers to 381 

assembly. Complete removal of the organic solvent was achieved by applying reduced pressure (75 382 

mbar) at ambient temperature. 383 

The diameter and size distribution of the structures formed was determined by DLS (Figure 5 384 

upper). The DLS data for polymers (a), (c) and (d) displayed the presence of structures that are 385 

clearly quite large and likely indicate formation of aggregated structures or vesicles rather than 386 

spherical micelles. 387 

To investigate this in more depth, TEM analyses (with negative background staining using uranyl 388 

acetate (UA)) were performed. The size determined through TEM analyses showed excellent 389 

agreement with the distribution by number obtained by DLS (Figure 5 lower). However, the DLS 390 

results were always slightly higher than the size observed in the TEM pictures, since they represent 391 

the hydrodynamic diameter of the solvated particles and those are necessarily bigger than the 392 

diameter of the dry aggregates observed through TEM. Furthermore, the intensity and size 393 

distribution obtained through DLS showed an overestimation of the dimension: because of the 394 

dependency on size of these type of distributions that leads to a size overestimation for non-395 

monodisperse systems such as these polymeric nanoparticles (see SI for all the DLS distribution 396 

plots).  397 

The TEM analyses confirmed the presence of spherical micelles for polymer (b), whilst the 398 

micrographs of polymers (a), (c) and (d) showed the presence of diverse structures. In more detail 399 

aggregated micelles and wormlike micelles could be identified for polymer (a) and (c), whilst 400 

aggregated micelles and possible vesicles were detected in polymer (d) (see SI for additional TEM 401 

micrographs), factors which may well also explain the larger sizes detected from DLS 402 

measurements. 403 

 404 



 405 

Figure 5 - Size distribution (by number) obtained through DLS analyses and TEM images of the copolymers 406 

(0.1% wt in water): (a) MPEG12-PHAz3-MPEG12, (b) MPEG12-PHAz6-MPEG12, (c) MPEG7-PHAz3-MPEG7, (d) 407 

MPEG7-PHAz3-MPEG7. The peak size is shown in each DLS plot. Discrete spherical micelles are observed for 408 

polymer (b). Images were taken with UA negative background staining. 409 

 410 

It is well known that several parameters (such as the block-length ratio of the hydrophilic to the 411 

hydrophobic block, hydrophobicity of the apolar block, molecular weight etc.) influence the type 412 

and size of the nanostructure formed upon self-assembly. For instance, MPEG blocks with higher 413 

DP generally result in smaller micelles, as observed for other amphiphilic copolymers when 414 

increasing the size of the hydrophilic block.
2, 73

 Short hydrophilic blocks can result in the formation 415 

of large structures upon hierarchical aggregation of smaller micelles.
74

 416 

Furthermore, the length and crystallinity of the hydrophobic block (in this case the PHAz) can also 417 

influence the micellar size. For example, for PEG-PCL spherical micelles a smaller size was 418 

observed with increasing PCL molecular weight: this was attributed to the ability of the 419 

hydrophobic core to pack tightly in crystalline regions.
75

 Besides, the degree of crystallinity of the 420 

core can also affect the morphology of the aggregates.
76

 For instance, for a given PCL length a 421 

change in the crystallinity of the core of PEG-PCL block copolymers has been observed to shift the 422 

morphology from rods to spherical micelles.
77

 423 



Therefore, in this case a particular balance between the PHAz core crystallinity and the PEG weight 424 

fraction might explain the formation of spherical micelles for polymer (b) and the different self-425 

assembly/aggregation observed for the other copolymers. Further investigations are certainly 426 

required to understand thoroughly the self-assembly of these PHAz-based amphiphilic copolymers 427 

and unveil to role of the crystallinity, hydrophobic/hydrophilic ratio and interaction parameter of 428 

the PHAz block with water upon the aggregated nanostructures formed in aqueous environment. 429 

Nonetheless these preliminary studies showed that all the copolymers formed self-assembled 430 

aggregates with sizes suitable for drug delivery, since nanoparticles smaller than 200 nm can avoid 431 

recognition from the reticuloendothelial system (RES).
75

  432 

Structures with characteristic dimensions below 30 nm are highly desirable for pharmaceutical 433 

formulations.
2
 Hence, the copolymer (b) MPEG12-PHAz6-MPEG12 is particularly interesting, since 434 

this formed micelles with diameter around 20 nm. For this reason, the micellar size of this polymer 435 

was investigated further as a function of temperature (Figure 6). 436 

 437 

 438 

Figure 6 – Diameter of (b) MPEG12-PHAz6-MPEG12 micelles vs temperature (0.1% wt in water). The size is 439 

stable between 25 and 35 °C. A significant increase of the peak value is observed at 45 °C. The size showed is the 440 

peak value of the number distribution ± 1 standard deviation of the distribution (obtained from DLS). 441 

 442 

The peak value of the distribution was almost constant in the temperature range between 25 and 35 443 

°C, with a small increase at 40 °C and a more significant change (+78% compared to the starting 444 

value) at 45 °C. The standard deviation also increased, meaning that a broader particle distribution 445 

was obtained, indicating formation of micellar aggregates at higher temperatures.
67

 However, these 446 

results do show that this polymer could prove to be an interesting drug delivery vehicle since the 447 

average micellar size is still below 30 nm at body temperatures. 448 

 449 



3.2.3 C6 incorporation 450 

 451 

Coumarin-6 (C6) is a highly hydrophobic fluorescent dye that can be used to model the behaviour 452 

of lipophilic drugs for studies involving drug delivery and drug release.
78

 For this reason, C6-loaded 453 

nanoparticles were prepared through nanoprecipitation. The MPEG-PHAz-MPEG copolymers were 454 

compared to Tween 20 and Pluronic L121, two commercially available amphiphilic copolymers 455 

used for stabilisation and encapsulation of hydrophobic molecules.
2, 79-83

 Visual observation of 456 

filtered C6-loaded nanoparticle dispersions (plus a control sample of water without copolymer) 457 

gave a direct insight into the ability of some of the synthesised copolymers for encapsulating and 458 

stabilising C6 in water (Figure 7). 459 

 460 

 461 

Figure 7 - Picture of the formulations for the synthesised copolymers (a) MPEG12-PHAz3-MPEG12, (b) MPEG12-462 

PHAz6-MPEG12, (c) MPEG7-PHAz3-MPEG7, (d) MPEG7-PHAz3-MPEG7 compared to Tween 20 and Pluronic 463 

L121 under normal light (upper) and UV light (lower; λ=365 nm). No polymer was used in the control vial. 464 

 465 

At first glance, it is clear that the MPEG-PHAz-MPEG polymers with longer hydrophilic segments 466 

(i.e. (a) MPEG12-PHAz3-MPEG12 and (b) MPEG12-PHAz6-MPEG12) were able to disperse the 467 

highest amount of C6 in the polar medium, with the latter displaying the strongest emission under 468 

UV light. The amount of C6 stabilised and dispersed in water was quantified through UV-Vis 469 



analyses, by diluting small aliquots of these aqueous dispersions in THF and comparing the results 470 

with known C6 concentrations (Figure 8). 471 

 472 

 473 

Figure 8 - C6 dispersed in the different formulations (µg of dye per mL of water). The synthesised copolymers 474 

(a) MPEG12-PHAz3-MPEG12, (b) MPEG12-PHAz6-MPEG12, (c) MPEG7-PHAz3-MPEG7, (d) MPEG7-PHAz3-475 

MPEG7 are compared to Tween 20 and Pluronic L121. No polymer was used in the control sample. The 476 

copolymer (b) MPEG12-PHAz6-MPEG12 showed the highest amount of C6 encapsulated and dispersed in water. 477 

 478 

The UV-Vis results confirmed the visual observations and showed that the copolymer (a) had 479 

loading comparable to Tween 20 since around 3 µg mL
-1

 of dye were dispersed in water, whilst the 480 

copolymer (b) showed the highest loading with more than 10 µg mL
-1

 dispersed in water: three 481 

times higher than commercial Tween 20 and around 35 times the measured native solubility of C6 482 

in H2O (0.29 µg mL
-1

). These data could be attributed to the different packing of the micellar core 483 

in the small micelles formed by this polymer. Furthermore, all of the dispersions were passed 484 

through 0.22 µm syringe filters to eliminate undissolved C6 and mimic the clearance by the RES,
75

 485 

so it is possible that some of the particles in the other formulations could have been removed during 486 

this step. 487 

However, these preliminary results clearly demonstrate the ability of amphiphilic copolymers based 488 

on azelaic acid and 1,6-hexanediol to act as potential drug delivery vehicles. 489 

 490 

3.2.4 CAC determination 491 

 492 

Incorporation of the hydrophobic dye 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to obtain the 493 

CAC of the copolymers. DPH is highly lipophilic and has a significantly lower intensity of 494 



absorption at 330-380 nm in water compared with that in a lipophilic system. Thus as micelles or 495 

vesicles form, the dye is preferentially partitioned in the hydrophobic regions, leading to increased 496 

absorption.
6, 67

 The dramatic change in absorbance gives information on the polymeric 497 

nanostructure formation and, hence, the CAC. As an example, the UV-Vis spectra obtained for the 498 

copolymer (b) MPEG12-PHAz6-MPEG12 and the extrapolation of its CAC from the absorbance at 499 

362 nm are shown (Figure 9). 500 

 501 

 502 

 503 

Figure 9 – CAC analysis of copolymer (b) MPEG12-PHAz6-MPEG12 at 25 °C. The absorbance between 330 and 504 

390 nm increases dramatically with polymer concentration (0.00001, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1% 505 

wt) at a fixed DPH concentration (0.004 mM) (upper). The CAC was determined by extrapolated lines (black 506 

dotted lines at high and low concentrations) of the absorbance maximum at 362 nm on the lower graph (data 507 

were fitted to a logistic growth function, red solid line, R
2
>0.98). 508 

 509 



The CAC of the copolymer (b) MPEG12-PHAz6-MPEG12 was 0.0027% (27 µg mL
-1

). The same 510 

analysis was conducted for the other copolymers to obtain their CAC (Table 4). The absorbance at 511 

362 nm vs concentration for these copolymers is available in the SI. 512 

 513 

Table 4 – CAC of the synthesised MPEG-PHAz-MPEG copolymers calculated from UV-Vis by the extrapolated 514 

lines of the absorbance maximum at 362 nm. 515 

Product 
CAC

a
 

% wt µg mL
-1

 µM
b
 

(a) MPEG12-PHAz3-MPEG12 0.0047 47 18.8 

(b) MPEG12-PHAz6-MPEG12 0.0027 27 9.0 

(c) MPEG7-PHAz3-MPEG7 0.0021 21 11.7 

(d) MPEG7-PHAz6-MPEG7 0.0009 9 3.3 

a
The CAC error for each copolymer was less than 2%; 516 

b
Calculated from Mn

NMR
 517 

 518 

As expected, the copolymers containing the smallest hydrophilic segments (i.e. (c) and (d)) 519 

displayed the lowest CAC expressed in µg mL
-1

. On the other hand, taking into account the molar 520 

mass of the copolymers, (b) and (d) displayed the lowest CAC expressed in µM (since these were 521 

characterised by the highest molecular weight). For a given length of MPEG block the copolymers 522 

containing the larger PHAz segment displayed a lower CAC values, as expected and already 523 

observed for similar systems elsewhere.
22, 73

 Moreover, the CAC values determined for the 524 

copolymers (b), (c) and (d) are comparable to those of other copolymers currently used for drug 525 

delivery,
1, 10

 and are much lower than the values observed for most of the Pluronics,
1, 3

 other PEG-526 

polyester-PEG amphiphilic copolymers described in literature
6, 67

 and novel non ionic-biobased 527 

surfactants recently described elsewhere.
84

 This is likely a result of the higher hydrophobicity of the 528 

PHAz block in combination with the packing of the polymer chains into crystalline regions, which 529 

also has been already shown to strongly influence CAC value.
75

 These data clearly show that 530 

copolymers with azelaic acid and 1,6-hexanediol based backbones could be promising candidates 531 

for a new generation of renewable nano-carriers. 532 

 533 

3.2.5 Surface tension reduction 534 

 535 

Such amphiphilic polymers can also find applications in formulations for wetting agents, 536 

emulsifiers and detergents if there is a significant effect upon the surface tension.
13

 We investigated 537 



the reduction in surface tension through the maximum bubble pressure test and compared the values 538 

obtained to surface tension reduction achieved with commercial Tween 20 and Pluronic L121 539 

(Figure 10). 540 

 541 

 542 

Figure 10 - Surface tension measured through maximum bubble pressure test. The synthesised copolymers (a) 543 

MPEG12-PHAz3-MPEG12, (b) MPEG12-PHAz6-MPEG12, (c) MPEG7-PHAz3-MPEG7, (d) MPEG7-PHAz3-MPEG7 544 

are compared to Tween 20 and Pluronic L121 (0.2% wt in water). No polymer was used in the control sample. 545 

The MPEG-PHAz-MPEG copolymers showed a surface tension reduction comparable to those achieved by using 546 

commercial surfactants. 547 

 548 

In current applications a molecule (or macromolecule) that is able to reduce the surface tension to 549 

below 60 mN m
-1

 is classed as a good surfactant.
12, 13

 All the MPEG-PHAz-MPEG copolymers 550 

reduced the surface tension to around 40 mN m
-1

 and are comparable in their effects with Tween 20 551 

and Pluronic L121, demonstrating that these novel materials could certainly provide interesting 552 

opportunities for formulations where a green biodegradable surfactant is required. 553 

 554 

 555 

4 Conclusions 556 

 557 

 558 

A novel low-temperature approach to enzymatic synthesis of polyesters in scCO2 has been 559 

exploited to develop new amphiphilic block copolymers based on azelaic acid and 1,6-hexanediol 560 

as building blocks of the hydrophobic backbone. The polymerisations were carried out in a solvent-561 



free scCO2 system, using natural enzyme CaLB as a catalyst at 35 °C and achieving remarkably 562 

high yields.  563 

The structural and physical properties of the novel polymers have been confirmed by NMR, DSC 564 

and GPC showing that the synthetic route provides excellent control over the polymer molecular 565 

weight and properties. 566 

DLS, TEM, NMR and UV-Vis studies were carried out to investigate the self-assembly of these 567 

polymers in water, obtaining promising preliminary data for nanostructures formation and 568 

encapsulation. Coumarin-6 loading tests demonstrated the ability of the polymers to disperse and 569 

stabilise lipophilic molecules in aqueous environment, and the CAC of these novel MPEG-PHAz-570 

MPEG copolymers was determined by UV-Vis using 1,6-diphenyl-1,3,5-hexatriene as a probe to 571 

show high stability of the aggregated nanostructure.  572 

Finally, the surface tension reduction achieved by dispersing these novel polymers in water was 573 

determined by maximum bubble pressure test and compared to those achieved for commercially 574 

available non-ionic polymeric surfactants. The results showed a significant reduction, indicating 575 

that these new azelaic acid based copolymers might find applications also as surfactants in 576 

detergents and body-care formulations. Further analyses need to be done to investigate the self-577 

assembly of these copolymers in water more in-depth and to evaluate their real potential in drug 578 

delivery and other applications. 579 
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