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Abstract 

The response of back-supported buffer plates comprising a solid face sheet and foam 

core backing impacted by a column of high velocity particles (sand slug) is 

investigated via a lumped parameter model and coupled discrete/continuum 

simulations.  The buffer plate is either resting (unattached) or attached to a rigid 

stationary foundation.  The lumped parameter model is used to construct maps of the 

regimes of behaviour with axes of the ratio of the height of the sand slug to core 

thickness and the normalised core strength.  Four regimes of behaviour are identified 

based on whether the core compression ends prior to the densification of the sand slug 

or vice versa.  Coupled discrete/continuum simulations are also reported and 

compared with the lumped parameter model.  While the model predicted regimes of 

behaviour are in excellent agreement with numerical simulations, the lumped 

parameter model is unable to predict the momentum transmitted to the supports as it 

neglects the role of elasticity in both the buffer plate and the sand slug.  The 

numerical calculations show that the momentum transfer is minimised for 

intermediate values of the core strength when the so-called “soft-catch” mechanism is 

at play.  In this regime the bounce-back of the sand slug is minimised which reduces 

the momentum transfer.  For high values of the core strength, the response of the 

buffer plate resembles a rigid plate with nearly no impulse mitigation while at low 

values of core strength, a slap event occurs when the face sheet impinges against the 

foundation due to full densification of the foam core.  This slap event results in a 

significant enhancement of the momentum transfer to the foundation.  The results 

demonstrate that appropriately designed buffer plates have potential as impulse 

mitigators in landmine loading situations. 
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1. Introduction 

The air and water blast resistance of structures has recently received increased 

attention with the overall aim of designing lightweight, blast resistant structures.  

Several recent theoretical studies have shown that sandwich structures subjected to 

water blast outperform monolithic structures of equal mass, see for example Fleck and 

Deshpande [1] and Xue and Hutchinson [2].  Experiments reported by Wadley et al [3] 

and Wei et al [4] have confirmed these predictions.  The enhanced performance is 

mainly due to fluid-structure interaction effects such that a smaller fraction of the 

impulse is transmitted into sandwich structures compared to their monolithic 

counterparts.  By contrast, under air blast, sandwich structures provide smaller 

benefits over monolithic structures as fluid-structure interaction effects are more 

difficult to exploit [5].  The extension of these ideas to the design of structures against 

soil impact from say a landmine explosion (see Fig. 1) requires better insight into the 

dynamic interaction of soil with structures; the development of such a fundamental 

understanding is the focus of this article. 

 

Significant understanding of fluid-structure interactions effects for underwater and air 

blast loading has been obtained via one-dimensional calculations.  For example, 

following the classical work of Taylor [6] which quantified the underwater fluid-

structure interaction effects for a free-standing rigid plate, Deshpande and Fleck [7] 

extended these ideas to sandwich plates.  Deshpande and Fleck [7] predicted 

significant reductions in the momentum transfer to sandwich plates compared to 

monolithic plates of equal mass.  These predictions were verified via simulated 

underwater blast experiments [8, 9] that involved the detonation of an underwater 

charge.  Analogous predictions were also reported for air explosions by Kambouchev 

et al. [5] and Hutchinson [10] and subsequently investigated experimentally in [11,12].  

Given the insight that has been gleaned from these studies, we develop here an 

analogous model to investigate the fluid-structure interaction between an impacting 

column of particles (representing the ejecta of a landmine) and a back-supported 

buffer plate. 

 

A time sequence of the ejecta from a buried explosion is shown in Fig. 2a. It can be 

seen that the initially ejected soil forms a circular column with an approximately 

planar leading edge. Wadley and co-workers
1
 have recently investigated the response 

of back-supported sandwich structures impacted by model explosively accelerated 

“planar leading edge” sand columns.  The experimental set-up used in their 

experiments is sketched in Fig. 2b and involves: (i) a sandwich panel bolted to a 

vertical pendulum at a stand-off S  from the ground and (ii) a planar explosive sheet 

buried a depth h  under a granular medium comprising water saturated mono-sized 

glass spheres.  Detonation of the explosive results in a column of granular media with 

a planar front rising and impacting the sandwich panel.  The experiments measure the 

permanent core compression of the sandwich panel and the momentum transferred by 

the panel into the underlying foundation via the rise of the vertical pendulum.   

 

In order to gain fundamental insight into these experiments we have devised the one-

dimensional model problem as sketched in Fig. 3a.  In this model problem, a column 

of particles, all travelling at the same velocity, impact a back-supported buffer plate.  

The column of particles is constrained from expanding laterally thereby making this a 

                                                
1
 Unpublished work. 
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quasi one-dimensional problem.  The model problem of course neglects a range of 

complicated phenomena that are at play in the experiments including: (i) edge effects 

due to the lateral flow of the granular media; (ii) interaction of the high velocity 

granular media with the surrounding air and (iii) velocity and density gradients within 

the impacting sand column.  However, we restrict attention to this simplified model 

problem in order to gain an understanding of the key physical phenomena at play. 

 

Numerical methods to solve fluid/structure interaction problems have typically 

focussed on a coupled Eulerian/Lagrangian approach wherein the granular media is 

represented within an Eulerian setting and the structure within a Lagrangian setting.  

However, the successful implementation of this coupled Eulerian-Lagrangian 

computational framework has been elusive due to computational problems associated 

with the analysis of low density particle sprays; see for example Wang et al. [13] for a 

discussion of these numerical issues.  An alternative modelling strategy has recently 

been employed by Borvik et al. [14] and Pingle et al. [15].  In this approach the low 

density soil is treated as an aggregate of particles with the contact law between 

particles dictating the overall aggregate behaviour.  On the other hand, the structure is 

treated as a continuum within a Lagrangian finite element (FE) setting.  The media 

described by the discrete and continuum approaches are coupled via an explicit 

scheme.  This approach has several advantages: (i) there is no need to make a-priori 

assumptions about the constitutive response of the aggregate (this becomes an 

outcome of the simulations), (ii) it provides a fundamental tool to study the essential 

physics of the sand-structure interaction and (iii) given that the sand is represented by 

a discrete set of particles we do not face the usual numerical problems associated with 

solving the equations associated with the equivalent continuum descriptions.  Pingle 

et al. [15] have recently investigated the response of a rigid target to impact by a 

column of particles while in a parallel study, Borvik et al. [14] analysed the response 

of monolithic plates to a spherically-expanding sand shell and compared their 

predictions with measurements.  More recently Liu et al. [16,17] have used this 

technique to investigate the response of clamped beams and plates subject to impact 

by a column of particles.  In this investigation we employ the coupled 

discrete/continuum approach of Liu et al. [16] to investigate the problem described 

above. 

 

1.1 Approach and scope 

Our aim is to develop overall fundamental understanding of the fluid-structure 

interaction between columns of granular media and back-supported buffer plates with 

foam cores.  We first develop a semi-analytical lumped parameter for the problem and 

use the model to construct mechanism regime maps.  Next we describe the numerical 

methods developed for the discrete particle calculations, and the Lagrangian finite 

element (FE) simulations.  The numerical results are then presented and comparisons 

made with the lumped parameter model in terms regimes of behaviour, core 

compression and momentum transfer. By using both approaches we are able to 

identify the physical phenomena governing momentum transfer and the effect of a 

foam backing on this process. 

 

 

2. Regimes of behaviour  

In order to develop a fundamental understanding of the response of the back-

supported buffer plate investigated by Wadley and co-workers (Fig. 2b); we consider 
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the idealised boundary value problem sketched in Fig. 3a.  Consider a compound 

buffer plate of width W  with a front face sheet of thickness h  with a material density 

fρ  and a cellular core of thickness c  and and density 
 
ρ

c
, as shown in Fig. 3b.  The 

plate rests on a rigid foundation.  We consider two limiting attachment conditions of 

the buffer plate: 

(i) The plate rests on but is not attached to the rigid foundation so that only 

compressive stresses may be transmitted into the foundation.  We shall subsequently 

refer to this case as the unattached buffer plate. 

(ii) The buffer plate is bonded to the rigid foundation so that tensile stresses may 

be transmitted into the foundation with no failure of the interface between the buffer 

and foundation.  We shall subsequently refer to this as the attached buffer plate case. 

 

A sand slug of height H  impacts the front face of the buffer plate.  The slug has a 

uniform spatial distribution of sand particles all travelling with an initial velocity 
o
v  

in the negative 
2
x  direction.  The sand slug has an initial relative density ρ  and 

comprises particles made from a solid with density 
 
ρ

S
.  As sketched in Fig. 3a we 

constrain the slug from spreading laterally and it impacts the sandwich plate over its 

entire span at time   t = 0 .  The constraint against lateral spreading is representative of 

the situation near the centre of a sandwich panel loaded by a sand spray with zero 

obliquity.  In such a situation, the sand at the periphery constrains the lateral flow of 

the sand at the centre.  With the sandwich properties assumed to be invariant in the 
1
x  

direction, the boundary value problem reduces to a quasi one-dimensional (1D) 

problem for panel widths   W  D , where  D  is the representative size of the sand 

particles. 

 

2.1 A lumped parameter model 

Before presenting full numerical simulations for the response of the buffer plates 

impacted by the sand slug as illustrated in Fig. 3a, we develop a simplified semi-

analytical approach to understand the response over a wide range of parameters.  This 

semi-analytical model is analogous to the one-dimensional “lumped parameter” 

model developed by Deshpande and Fleck [7] for the water blast response of free-

standing sandwich plates and is based on idealised one-dimensional responses for the 

sandwich core, face sheets and the impacting sand. 

 

The front face of the buffer plate is treated as rigid with an areal mass f fm hρ≡  

while the core is modelled as a rigid ideally-plastic foam-like solid.  It compresses at a 

constant strength 
c

σ  with no lateral expansion up to a densification strain 
D

ε  beyond 

which it is rigid; see Fig. 4a.  This type of constitutive law is representative of foams 

[18, 19] and other stacked, periodic cellular cores such as the prismatic diamond and 

stacked pyramidal cores [20]. It is commonly referred to as the rigid, perfectly plastic 

locking (rppl) solid.  The rppl solid was first introduced by Reid and Peng [21] and is 

properly interpreted as the limit of an elastic-hardening solid with elastic modulus 

tending to infinity and the plastic modulus tending to zero.  The neglect of elastic 

deformation of the core is justified when the time for multiple elastic wave reflections 

in the core is much less that the time for plastic wave propagation through the core.  

This is expected to be true for most cellular solids since the elastic wave speeds in 

these solids are much higher than the plastic wave speed.  Similarly, the assumption 
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of a rigid face sheet is acceptable when the transit time for multiple elastic wave 

reflections in the face sheets is much less than the time for wave propagation in the 

core.  This is an acceptable approximation in most cellular core sandwich structures 

where the faces are much thinner than the core. 

 

Recall that the impacting sand slug comprises a spatially uniform relative density ρ  

of particles all travelling at an initial velocity 
o
v  in the negative 

2
x  direction.  Since 

the lateral expansion of this slug is constrained, the notional quasi-static compressive 

stress versus nominal compressive strain response of the slug can be idealised by the 

curve sketched in Fig. 4b. In this case the slug compresses up to its densification 

strain 
S

ε  at zero stress whereupon the particles come into contact.  In this simplified 

analysis, we specify that the slug behaves in a rigid manner beyond this densification 

strain.  Thus, the form of the quasi-static responses of the sand slug and the core are 

similar with the main difference being that prior to densification, the core has a 

strength 
 
σ

c
 while the sand slug has no strength prior to its densification.  

 

The key simplification in this model is that elasticity is neglected both in the buffer 

plate and the sand slug.  This assumption implies that the predictions of this model for 

both the attached and unattached boundary conditions mentioned above are identical.  

The numerical calculations discussed in Section 3 include the effects of elasticity in 

both the buffer plate and the sand slug; these numerical calculations will be 

subsequently employed to understand the limitations of this lumped parameter model.  

We now proceed to analyse this simplified one-dimensional problem. 

 

At 0t =  the buffer plate is stationary while the sand slug has a uniform velocity 
o
v  in 

the negative 
2
x  direction.  Two distinct cases exist:  

Case (I): a plastic shock wave propagates into the core after the impact of the sand 

slug; and  

Case (II): no plastic shock wave is initiated in the core.   

 

We shall consider each case in turn and then derive conditions for their applicability. 

 

2.1.1 Case (I):  A plastic shock wave propagates into the core 

After impact, a plastic shock wave is initiated both in the core and the sand slug.  

These plastic shocks travel at Lagrangian speeds fc  and 
s
c  in the negative and 

positive 
2
x  directions within the foam core and the sand slug, respectively as 

indicated in Fig. 4c.  After time t , these shock fronts have travelled a distance fs  and 

s
s  (as measured in the undeformed configuration) within the core and sand slug, 

respectively.  The plastic shocks compress the foam core to its densification strain 
D

ε  

while the sand is also densified by the shock to a strain 
S

ε .  The rigid nature of the 

responses of the core and the sand slug after densification implies that at time t  the 

portions of the sand slug and core that are engulfed by the plastic shock as well as the 

front face sheet have a common velocity v ; the remainder of the sand slug is 

undeformed and has its initial velocity 
o
v  in the negative 

2
x  direction while the core 

downstream from shock is also undeformed and at rest. 
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Let the interfacial pressure between the sand slug and the front face of the buffer plate 

be p  while fσ  and 
S

σ  are the stresses immediately downstream from the shocks in 

the core and sand slug, respectively.  Recalling that the densified core and sand slugs 

behave as rigid bodies, the equations of motion for the common velocity v  are given 

as 

   
(m

f
+ ρ

c
s

f
) v = p −σ

f
   (2.1) 

and 

    
  
ρρ

S
s

S
v =σ

S
− p     (2.2) 

 

  

where the overdot denotes differentiation with respect to time.  Conservation of 

momentum across the plastic shocks in the core and the sand slug dictate that the 

downstream stresses fσ  and 
S

σ  are related to the shock speeds via the relations 

f c c fc vσ σ ρ= +     (2.3) 

and 

    ( )
S S S o

c v vσ ρρ= − ,    (2.4) 

respectively.  Mass conservation across the shocks gives the plastic shock velocities 

in the core and the sand slug as 

    

  

c
f
≡ s

f
=

v

ε
D

     (2.5) 

and 

    

  

c
S
≡ s

S
=

v
o
− v

ε
S

,    (2.6) 

respectively.  Equations (2.1)-(2.6) are a set of coupled ordinary differential equations 

(ODEs) for the quantities v , fs  and 
S
s  that can be solved numerically with initial 

conditions 0f Sv s s= = =  in order to get the responses of both the buffer plate and 

sand slug.   

 

We proceed to analyse this further by first presenting the equations in non-

dimensional form.  Introduce the non-dimensional loading parameters 

  

σ
c
≡

σ
c
ε

S

ρρ
S
v

o

2
 and  

 

ψ ≡
ρρ

S
H

m
f

  (2.7) 

where 
c

σ  is the ratio of the strength of the core to the pressure exerted by the sand on 

a rigid-stationary structure [15] while ψ  is analogous to the Taylor [6] fluid-structure 

interaction parameter in water blast and is the ratio of the areal mass of the sand to the 

areal mass of the face sheet of the buffer plate.  The buffer plate is characterised by 

the non-dimensional groups 

H
H

c
≡  and 

f

c

m
m

cρ
≡   (2.8) 

Introducing a non-dimensional time /
o

t tv H≡  and a non-dimensional velocity 

/
o

v v v≡  we can simplify and re-write Eqs. (2.1) to (2.6) in non-dimensional form as 



 7 

    

   

v =
ψmε

D
(1− v )2

− Hε
S
v 2

−σ
c
ψmε

D

Hε
D
ε

S
s

f
+ψmε

D
ε

S
s

s
+ mε

D
ε

S

 (2.9) 

     

  

s
f
=

v

ε
D

    (2.10) 

and 

     

   

s
S
=

1− v

ε
S

    (2.11) 

where the overdot now denotes differentiation with respect to the non-dimensional 

time t  while /f fs s c≡  and /
S S
s s H≡ .  These three coupled ODEs with initial 

conditions 0f Sv s s= = =  at time 0t =  are solved numerically
2
 to obtain the average 

through-thickness core compression c f Dsε ε≡  as a function of t .  The equations 

presented in this section are valid for a core that is sufficiently weak to initiate a 

plastic shock wave.  Employing the initial condition that    v > 0  at   t = 0
+

 we see from 

Eq. (2.9) that the condition for a plastic shock wave initiation is 1
c

σ < . 

 

The above set of equations is valid if 1
c

σ <  and until one of the following events 

occur: 

Event (i):  The plastic shock wave in the core reaches the rear end of the core (i.e. 

1fs = ) resulting in full densification of the core. 

Event (ii):  The plastic shock within the sand slug reaches the top free surface of the 

slug (i.e. 1
S
s = ) resulting in the complete densification of the sand slug. 

We note in passing that with 1
c

σ < , plastic shocks cannot arrest in either the core or 

the sand slug prior to the occurrence of one of the two events above.  This is 

rationalised as follows: 

(a) The condition for the shock to arrest within the core is    v = v = 0 .  Substituting 

0v =  in Eq. (2.9) and recalling that 1
c

σ <  we observe that    v > 0  when 0v = .  Thus, 

the shock cannot arrest within the core while Eqs. (2.9) to (2.11) are valid. 

(b) The conditions that must be met for the shock to arrest within the sand slug are 

1v =  with    v = 0 .  Substituting 1v =  in Eq. (2.9), we observe that    v < 0  indicating 

that the shock cannot arrest within the sand slug while Eqs. (2.9) to (2.11) are valid. 

 

We shall now consider each of the above two events in turn. 

 

2.1.2 Event (i):  Governing equations after full densification of the core 

Consider Event (i) described above such that a plastic shock reaches the rear end of 

the core at time 
0

t t=  when 
0
1

S S
s s= < , i.e. the sand slug has not yet fully densified.  

With elasticity in the core and the face sheet neglected in this model we assume that 

the front face sheet is instantaneously brought to rest at time 
0

t t=  and the buffer 

plate now behaves as a rigid body, i.e. 0v =  with only plastic shock wave 

propagation within the sand slug.  With 0v = , Eqs.  (2.2), (2.4) and (2.6) reduce to 

                                                
2
 The MATLAB function ode23 based on an automatic step-size Runga-Kutta-Fehlberg integration 

method was employed. 
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2

o
S S

S

v
p σ ρρ

ε
= =    (2.12) 

This equation is valid until the sand slug fully densifies at time 
0 0(1 ) /

S o
t t H s v= + −  

whereupon the pressure 0p = .  

 

2.1.3 Event (ii): Governing equations after full densification of the sand slug. 

Consider Event (ii) described above such that complete densification of the sand slug 

occurs at time 
1

t t=  while the plastic shock wave is still propagating within the core.  

At time 
1
t  the shock wave within the core is located at 

1
1f fs s= <  and the common 

velocity upstream from the shock is 
1
v .  For times 

1
t t> , we assume that the 

densified sand slug behaves as a rigid mass attached to the front face of the buffer 

plate.  The equations governing the response of the buffer plate as given in Section 

2.1.1 can then be simplified by not accounting for plastic shock wave propagation 

within the sand slug, i.e. Eqs. (2.1), (2.3) and (2.5) remain unchanged and Eq. (2.2) 

reduces to 

  
ρρ

S
H v = − p     (2.13) 

with 0
S S
cσ = = .  In non-dimensional form the overall governing equations for the 

response of the buffer plate are then give as 

   

(m+ψm+ Hs
f
) v = −(

σ
c
mψ

ε
S

+ s
f
Hv )  (2.14) 

and 

     

  

s
f
=

v

ε
D

    (2.15) 

with initial conditions 
1f fs s=  and 

1
v v=  at time 

1
t  when the sand slug was fully 

densified.  Here again the overdot denotes differentiation with respect to the non-

dimensional time t .  Equations (2.14) and (2.15) are valid until one of the two 

following events occur: 

Event (ii-a):  The plastic shock arrests within the core, i.e. 
   
s

f
= 0  with 1fs < .  At this 

instant the deformation ends with all components having been brought to rest. 

Event (ii-b):  The plastic shock wave impinges on the foundation, i.e. 1fs =  with 

   
s

f
> 0 .  In line with the assumptions detailed in Section 2.1.2 we neglect any 

subsequent rebounding of the buffer plate and assume all components are instantly 

brought to rest when the plastic shock wave in the core reaches the rear end of the 

core. 

 

2.1.4 Case (II):  No plastic shock wave is initiated in the core 

When 1
c

σ < , no plastic shock wave is initiated in the core and the sand slug exerts 

the pressure given by Eq. (2.12) from 0t =  until densification of the slug at time 

1t = , whereupon the pressure drops to zero. 

 

2.2 Regime maps 

The main application of the lumped parameter model is to predict the regimes of 

behaviour for the response of buffer plates impacted by sand slugs as well as the core 
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compression.  The analysis of Section 2.1 suggests four regimes of behaviour based 

on the sequence of the compression of the core and the sand slug: 

(i) Regime I:  Densification of the core followed by densification of the sand slug. 

(ii) Regime II:  Densification of the sand slug followed by densification of the core.  

(iii) Regime III:  Densification of the sand slug followed by end of core 

compression without complete densification of the core, (i.e. the plastic shock 

wave arrests within the core and does not reach the rear face). 

(iv) Regime IV:  Densification of the sand slug with no shock wave initiated in the 

core. 

The final (or maximum) average through-thickness core compressive strain in the 

core max

Dc
ε ε=  in regimes I and II while max

0
c

ε =  in regime IV.  The maximum core 

compression varies over the range max
0

c D
ε ε≤ ≤  in regime III. 

 

Consider a buffer plate with 1m = , impacted by a sand slug with relative density 

0.2ρ = .  Maps illustrating these regimes of behaviour with axes of non-dimensional 

core strength 
c

σ  and slug height H  are plotted in Figs. 5a and 5b for the choices of 

the fluid-structure interaction parameter 0.7ψ =  and 10, respectively.  In plotting 

these maps we assumed that the core densification strain 0.8
D

ε =  while the 

densification strain for the sand is given as 

max

1
s

ρ
ε

ρ
= −     (2.16) 

where 
max

ρ  is the maximum packing density of the sand particles.  Here we take 

max
0.9ρ =  so as to match the maximum packing density of an array of identical discs 

or cylinders; such discs are used in the numerical calculations reported in Section 3.  

The main effect of increasing the value of ψ  from 0.7 to 10 is the area of the map 

occupied by regimes II and III shrinks with regime I now dominating the map.  For a 

fixed face sheet mass per unit area, a higher value of ψ  implies that the amount of 

sand impacting the plate increases, i.e. the length of the sand slug increases.  This 

longer sand slug takes more time to fully densify and thus core compression is 

completed before densification of the sand slug over a larger portion of the map.   

 

In order to illustrate the core compression behaviour predicted by the lumped 

parameter model, we now consider the map in Fig. 5a and select four representative 

geometries in regimes I to IV, we shall refer to these as geometries G-I, G-II, G-III 

and G-IV, respectively.  These geometries are marked by open circles in Fig. 5a.  The 

predicted evolution of the normalised average through-thickness core compression 

/
Dc

ε ε  with normalised time t  is plotted in Fig. 6a.  Geometries G-II and G-III have 

approximately equal initial compression rates but geometry G-III attains a maximum 

value max
/ 0.35

c D
εε ≈  while core compression in geometry G-II continues until there 

is complete densification of the core with max
/ 1

c D
ε ε = .  The higher value of H  for 

geometry G-I means that G-I undergoes a higher initial compression rate with core 

compression ending when max
/ 1

c D
ε ε = .  Contours of the normalised core 

compression max
/

Dc
ε ε  are included in regime III in Fig. 5(recall that max

/ 1
c D

ε ε =  in 

regimes I and II and max
/ 0

c D
ε ε =  in regime IV) and indicate that max

c
ε  varies 
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smoothly from  max
0

c
ε =  at the regime III and IV boundary to max

/ 1
c D

ε ε =  at the 

boundaries between regimes III and regimes I and II. 

 

In order to illustrate the effect of core strength on core compression more clearly, we 

plot the core compression max
/

Dc
ε ε  as a function of 

c
σ  by taking three slices through 

the map in Fig. 5a at H = 0.2 , 1 and 10.  These slices are included in Fig. 6b and 

indicate that while the transition from no compression ( max
/ 0

c D
ε ε = ) to full core 

compression (
  
ε

c

max
/ ε

D
= 1) occurs rather abruptly when 

 
σ

c
 decreases from 1 to 0.8 

for the H = 10  case.  By contrast, the transition is much more gradual for the lower 

values of  H .  This arises becasue intermediate values of core compression occur only 

in Regime III and this regime is expanded by decreasing  H ; see Fig. 5a. 

 

2.3 Momentum transfer 

With elasticity in both the buffer plate and the sand slug neglected in the lumped 

parameter model we assume that no bounce-back of the buffer plate or sand slug 

occurs even for the unattached buffer plates.  Thus, the model predicts the total areal 

momentum total

t
I  transferred to the foundation equals the momentum 

o S o
I Hvρρ=

 
 of 

the incoming sand slug, i.e. total
/ 1

t o
I I =  in all cases.  This is a major drawback of the 

lumped parameter model and we now develop coupled discrete/continuum 

simulations where elasticity effects in both the buffer plate and sand slug are included. 

 

 

3. Coupled discrete particle/finite element calculations 

The simplified lumped parameter model presented in Section 2 gives a broad 

overview of the response of back-supported buffer plates and makes predictions of the 

core compression.  However, there are a number of simplifying assumptions in the 

model which include: 

(i) Elasticity of the face sheet, core and densified sand aggregate is 

neglected.  This implies that the model predicts that the momentum 

transmitted into the foundation is equal to the initial momentum of the sand 

slug over all values of the parameters in the problem. 

(ii) The model cannot differentiate between the attached and unattached 

boundary conditions of the buffer plate. 

 

In this section we present two-dimensional (2D) calculations where the sand slug is 

modelled by a large number of discrete identical cylindrical particles, while the buffer 

plate is modelled as a 2D continuum with an elastic face sheet and a foam core.  

These 2D calculations have the required level of sophistication to account for bounce-

back effects of the buffer plate and the sand slug and thus provide an indication of the 

fidelity of the lumped parameter model and the regimes within which that simplified 

model provides accurate predictions. 

 

3.1 Summary of the numerical procedure 

The sand slug was modelled as an aggregate of 2D discrete identical cylindrical 

particles (or discs) using the GRANULAR package in the multi-purpose molecular 

dynamics code LAMMPS [22] while the buffer plate was modelled using a 2D finite 
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strain Lagrangian finite element framework.  We shall briefly describe each of these 

methodologies followed by details of the coupling of these two techniques. 

 

Discrete particle calculations:  The granular medium was modelled by a random 

array of 2D cylindrical particles, each of diameter D  lying in the 
1 2
x x−  plane (unit 

thickness in the 
3
x -direction); see Fig. 3a.  The granular package in LAMMPS is 

based on the soft-particle contact model as introduced by Cundall and Strack [23] and 

extended to large scale simulations by Campbell and co-workers [24,25].  This soft-

particle contact model idealises the deformation of two contacting particles, each of 

mass 
p

m , as depicted in Fig. 7.  The contact law comprises: 

(i) a linear spring 
n
K  and a linear dashpot of damping constant 

n
γ  in parallel, 

governing the normal motion and 

(ii) a linear spring 
s
K  and a Coulomb friction element of coefficient µ , in 

series, governing the tangential motion during contact.   

 

The contact forces in the normal and tangential directions are now specified as 

follows.  Write r  as the separation of particle centres and 
n
r Dδ = −  as the 

interpenetration.  During active contact ( )0
n

δ < ,  the normal force is given by 

  
F

n
= K

n
δ

n
+ m

eff
γ

n
δ

n
    (3.1) 

where 
effm  is the effective or reduced mass of the two contacting bodies.  We take 

/ 2eff pm m=  for impacts between particles, and 
 
m

eff
= m

p
 for impacts between a 

particle and the plate.   

 

The tangential force 
s
F  only exists during active contact, and opposes sliding.  It is 

limited in magnitude to | | | |
s n
F Fµ<  as follows.  Define 

  
δ

s
 as the tangential 

displacement rate between the contacting particles.  Then, 
s
F  is given by an “elastic-

plastic” relation of Coulomb type; 

   

   

F
s
=

K
s

δ
s

if | F
s
|< µ | F

n
| or F

s

δ
s
< 0

0 otherwise

⎧
⎨
⎪

⎩⎪  

 (3.2) 

 

The value of damping constant 
n

γ  dictates the loss of energy during normal collision 

and is directly related to the coefficient of restitution e  according to  

   

1/2

2

8
exp 1n

n p

K
e

m
π

γ

−⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

.    (3.3) 

The collision time for individual binary collisions 
e
t  follows from (3.1) as 

    
2ln( )

e

n

e
t

γ
= − .     (3.4) 

Thus, in the limit of plastic collisions with 0→e , the contact time is ∞→
e
t .    

 

The calculations with the above contact model were performed using the 

GRANULAR package within the molecular dynamics code LAMMPS.  The 
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translational and rotational motions of the particles were obtained by integration of 

the accelerations using a Verlet time-integration scheme (i.e. Newmark-Beta with 

 
β = 0 ).  The time-step within LAMMPS was typically taken to be /10

e
t  in order to 

ensure accurate integration of the contact relations, Eqs. (3.1)-(3.2), and this value 

was also used to define the time steps for the finite element calculations, as described 

below. 

 

2D finite element calculations:  The 2D plane strain calculations were performed 

using an updated Lagrangian finite element (FE) scheme with the current 

configuration at time t serving as the reference.  The co-ordinate 
i
x  denotes the 

position of a material point in the current configuration with respect to a fixed 

Cartesian frame, and 
i
v  is the velocity of that material point.  For the plane strain 

problem under consideration, the principle of virtual power (neglecting effects of 

gravity) for a volume V  and surface S  is written in the form 

  
σ

ij
δ ε

ij
dV = T

i
δ v

i
dS −

S
T
∫V∫ ρδ v

i
δ v

iV∫ dV   (3.5) 

where 
ij

σ  is the Cauchy stress, 
   
ε

ij
≡ 0.5 v

i, j
+ v

j ,i( )  is the strain rate, 
i
T  the tractions 

on the surface 
T
S S∈  due to the impacts of the particles while ρ  is the material 

density in the current configuration.  The symbol δ  denotes arbitrary virtual 

variations in the respectively quantities.  A finite element discretisation based on 

linear, plane strain three node triangular elements (i.e. constant strain triangles) is 

employed.  When the finite element discretisation of the displacement field is 

substituted into the principle of virtual power (3.5) and the integrations are carried out, 

the discretised equations of motion are obtained as  
2

2
t

∂
=

∂

U
M F     (3.6) 

where U  is the vector of nodal displacements, M  is the mass matrix and F  is the 

nodal force vector.  An explicit time integration scheme based on the Newmark β-

method with 0β =  was used to integrate Eq. (3.6) to obtain the nodal velocities and 

the nodal displacements.  A lumped mass matrix is used in (3.6) instead of a 

consistent mass matrix, since this is preferable for explicit time integration procedures, 

for both accuracy and computational efficiency. 

 

Coupling of the discrete and finite element calculations:  At time t , contact between 

the particles and the plate in its current configuration was detected.  The displacement 

n
δ  is defined as the / 2

n
r Dδ = − , where r  is the distance between the particle 

centre and the contact point on the plate.  The rates 
  

δ
n
 and 

  

δ
s
 are calculated as the 

relative velocities of the particle and the point of contact on the plate surface.  (The 

velocity of any point on the plate is calculated by interpolating the nodal velocities 

using the shape functions of the constant strain triangle elements.)  The normal and 

tangential contact forces are then calculated using Eqs. (3.1) - (3.2) and transformed 

to the global co-ordinate system.  This gives a vector of equivalent nodal forces for 

each element on the surface of the plate.  These vectors of elemental nodal forces are 

inserted into the vector of global nodal forces F  in Eq. (3.5).  Subsequently, the 

discrete and finite element equations were integrated as described above and the new 
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positions and velocities of the particles in the discrete calculations and material points 

in the finite element calculations determined at time t t+Δ . 

 

3.2 Boundary value problem and material properties 

In the numerical calculations we analysed the impact of the sand slug on the buffer 

plate comprising an elastic face sheet and a foam core as well as a reference elastic 

block as sketched in Figs. 3b and 3c, respectively.  The calculations are carried out in 

a 2D setting with deformations of the plates occurring in the 
1 2
x x−  plane shown and 

unit thickness in the 
3
x -direction. 

 

Two boundary conditions are considered for both the elastic block and the buffer plate:  

(i) In the unattached case the structures (i.e. the elastic blocks or buffer 

plates) were assumed to rest on the rigid foundation with no penetration 

permitted into the foundation.  However, the structures could loose contact 

with the foundation as the interface between the structures and the foundation 

was assumed to sustain no tensile stresses. 

(ii) In the attached case the bottom surface of the elastic block as well as 

the buffer plate were fixed to the foundation, i.e. displacements 
2
0u =  in the 

2
x  direction, were specified over the bottom surfaces of the structures. 

 

The elastic block and buffer plate of width W  (unit thickness in the 
3
x  direction) are 

impacted by a sand slug also of width W  and height H  as shown in Fig. 3a.  The 

slug comprises an initial spatially uniform relative density ρ  of cylindrical particles 

and is constrained against lateral expansion by two rigid walls located at 
1 (0, )x W=  

as shown in Fig. 3a.  Also consistent with this no lateral spreading constraint of the 

sand slug, we also prevent lateral expansion of the plates by imposing the 

displacement boundary condition 
1
0u =  on 

1 (0, )x W=  for both the plate types.   

 

Material properties:  The sand slug comprised identical cylindrical particles of 

diameter 200µmD =  and unit thickness in the 
  
x

3
 all travelling with an initial 

velocity 1
400ms

o
v

−
=  in the negative 

2
x  direction.  The sand particles are made from 

a solid material of density -32700kgm
s

ρ = .  The normal stiffness between the 

particles was taken to be -1
7300 kNm

n
K =  and the co-efficient of restitution for both 

impacts between the particles and the particles and the plates was taken to be 0.7e =  

(i.e. the value of 
n

γ  for inter-particle contacts was twice that for impacts between the 

particles and the walls).  Following Silbert et al. [26] we fixed the ratio / 2 / 7
s n
K K =  

and the reference value of the friction co-efficient was assumed to be 0.7µ = .  We 

note in passing that similar to the findings of Pingle et al. [15] for the impact of sand 

slugs against rigid targets, the results reported subsequently for impact of sand slugs 

against the buffer plates are also not sensitive to the choice of these inter-particle 

contact properties.  Unless otherwise specified, the sand slug had a spatially uniform 

initial relative density 0.2ρ = .  

 

We proceed now to detail the properties of the elastic block and the buffer plate.  The 

elastic block was assumed was assumed to be made from an elastic solid with density 
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38000 kgm
m

ρ −
= , Young’s modulus 210GPaE =  and Poisson’s ratio 0.3ν =  which 

is representative of steel.  The thickness 
b
c  of the block and the height H  of the sand 

slug were varied in the parametric study reported in Section 3.3.  The numerical 

calculations for the sand impact against the buffer plate were designed keeping in 

mind the regime maps presented in Section 2.  In particular, in all the calculations 

reported here we kept 
 
ψ = 0.7 ,   m = 1  and 

 
ρ = 0.2  fixed and varied the non-

dimensional core height  H  and the core strength 
c

σ  varied over a wide range.  This 

was achieved by varying the parameters H , c , 
c

ρ  and 
c

σ  which will be specified on 

a case by case basis.  We now proceed to detail the properties that remain fixed in all 

the calculations reported. 

 

The buffer plate comprises a front face sheet of thickness 
  
h = 10 mm  made from the 

same material as the elastic block described above, i.e. an elastic material with density 
38000 kgm

m
ρ −

= , Young’s modulus 210GPaE =  and Poisson’s ratio 0.3ν = , i.e. 

  
m

f
= 8 kgm-2

.  The core of density 
c

ρ  is modelled as a homogeneous compressible 

visco-plastic orthotropic foam-like material following Tilbrook et al. [27].  Assume 

the orthotropic axes 
i
x  of the core are aligned with the axes of the buffer plate as 

sketched in Fig. 3a, i.e 
1
x  and 

2
x  are aligned with the longitudinal and transverse 

directions, respectively.  Introduce the stress and plastic strain matrices in the usual 

way as 
TT ),,,,,(),,,,,( 122313332211654321 σσσσσσσσσσσσ ≡=σ ,  (3.7) 

and 
TppppppTppppppp ),,,,,(),,,,,( 122313332211654321 εεεεεεεεεεεε ≡=ε ,  (3.8) 

respectively.  Assume complete decoupling of material response between the 

orthogonal material directions and define the plastic strain rate p

i
ε  via an overstress 

relation as  

   

⎪
⎩

⎪
⎨

⎧
>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

otherwise,0

)(||if
)(|| p

iii

p
iii

p
i

Y
Y

εσ
η

εσ
ε   (3.9) 

where the yield strength )( p

iiY ε  is a function only of the plastic strain p

i
ε  and the 

material viscosity η  is taken to be a constant.  The total strain rate 
i

ε  is obtained by 

supplementing the above anisotropic plasticity model with isotropic elasticity such 

that 

)over summation ()(sign jL i

p

ijiji σεσε  += . (3.10) 

In the case of isotropic elasticity, the compliance matrix 
ijL  of the core material is 

specified in terms of the Young’s modulus 
c
E  and Poisson’s ratio 

c
ν as 
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We employ an isotropic elastic response for simplicity; this suffices as the core 

response of dictated by the plastic branch.  The above elastic-plastic constitutive 

relation is expected to be adequate to model sandwich cores such as the square-

honeycomb core or the corrugated core; see for example Xue et al. [28].   

 

In all the calculations reported here we assume an isotropic plastic response in the 

sense that the all the strengths 
i
Y  are assumed to be equal and strain hardening is 

neglected in all directions other than the transverse direction.  The transverse strength 

σ
c
= Y

2
 is assumed to be independent of the plastic strain p

2
ε  up to a nominal 

densification strain 
D

ε : beyond densification a linear hardening behaviour is assumed 

with a very large tangent modulus EEt 1.0= .  In all the calculations reported here the 

modulus and Poisson’s ratio of the core were fixed at 20GPa
c
E =  and 0.25

c
ν = , 

respectively and independent of the core density 
c

ρ .  Further, consistent with the 

lumped parameter model calculations presented in Section 2 we assume that the 

densification strain is independent of the foam core density with 0.8
D

ε = .  Finally, 

we note that the viscosity η  of the core was chosen such that the shock width 

(Radford et al., 2005) 

oc

D

v
l

ρ

ηε
= ,    (3.12) 

equals 10/c , with 
o
v  interpreted as the initial impact velocity of the sand particles.  

This prescription ensures that the shock width is always much less than the core depth 

yet is larger than the mesh size.  Note that large gradients in stress and strain occur 

over the shock width and thus a mesh size smaller than l  is required to resolve these 

gradients accurately. 

 

The buffer plates were discretised using quadrilaterals comprising four constant strain 

triangles with elements of size   h / 5  and   c / 40  in the face sheet and core, respectively 

while the element size employed in the elastic block was 
  
c

b
/ 40 . 

 

3.3 Response of the reference elastic block 

One of the drawbacks of the lumped parameter model was that it did not include the 

effect of elasticity of the sand slug or the buffer plate and hence was unable to 

differentiate between the attached and unattached boundary conditions.  In this section 

we discuss the response of a sand slug impact both the attached and unattached elastic 

block so as to illustrate the effects of elasticity in a relatively simple setting. 

 

Dimensional analysis dictates that the spatial average pressure transmitted into the 

foundation, (for fixed sand particle contact properties) and is given by; 
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2
, , , , ,

/

S t b o m
t

s o sm

p c v
p f t

v H E

ε ρ
ρ ν

ρρ ρρ

⎡ ⎤
≡ = ⎢ ⎥

⎢ ⎥⎣ ⎦
,  (3.13) 

The spatial average pressure fp  exerted by the sand slug over the impacted face of 

the elastic block is also a function of the same non-dimensional parameters and is thus 

given as 

2
, , , , ,

/

S b o m

s o s

f

f

m

p c v
p g t

v H E

ε ρ
ρ ν

ρρ ρρ

⎡ ⎤
≡ = ⎢ ⎥

⎢ ⎥⎣ ⎦
.  (3.14) 

Here 
S

ε  is the densification strain of the sand slug and given by Eq. (2.16) to a very 

high degree of accuracy.  While t
p  is calculated directly from the reaction force R  

exerted by the plate on the foundation,
 

/
t
p R W≡  where R is the reaction force 

exerted by the block per unit thickness in the  
3
x -direction, fp  is calculated as follows.  

At any time t , there are M  sand particles in contact with the elastic block and fp  is 

given as 

2

1( )

M
i

i
f

F

p t
W

=
=

∑
    (3.15) 

where 
2

i
F  is the contact force (per unit depth in the 

3
x  direction) in the 

2
x  direction 

between the i
th

 sand particle and elastic block. 

 

The normalisations for the pressures in Eqs. (3.13) and (3.14) have been chosen so 

that 1f tp p= ≈  over the duration 0 1
S

t ε≤ ≤  for impact of the slug against a rigid 

plate (recall that Pingle et al. [15] established that the steady-state pressure exerted by 

the sand slug on a rigid stationary target is approximately 2
/

s o S
vρρ ε  and is exerted 

until the densification front reaches the distal end of the sand slug at time 

/
S o

t H vε= ).  All results here are for a sand slug of height 
  
H = 10 mm  impacting the 

elastic block with material properties detailed in Section 3.2.   

 

First consider the unattached case.  The predicted variation of the normalised 

pressures fp  and t
p  versus the normalised time 

S
t ε  are plotted in Figs. 8a and 8b 

for the choices 
  
c

b
/ H = 0.4  and 50, respectively and a sand impact velocity 

1
400ms

o
v

−
=  (i.e. 

  
v

o
/ E / ρ

m
= 0.08 ).  As will be clarified subsequently, the 

  
c

b
/ H = 0.4  and 50 cases represent two limiting scenarios for the given sand slug 

loading.  In the 
  
c

b
/ H = 0.4  case, both fp  and t

p  drop to zero at times 1
S

t ε > .  

Over the period 0 1
S

t ε≤ ≤ , fp  and t
p  have an oscillatory response (the oscillations 

are larger in fp ) but the mean values of both these pressure are approximately equal 

such that 1tfp p≈ ≈
3
.  These results indicate that 

  
c

b
/ H = 0.4  block behaves 

                                                
3
 These oscillations are a result of elastic wave reflections within the elastic block: when the 

elastic wave arrives at the sand/elastic block interface it partially reflects and causes a change 
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approximately like a rigid body with multiple elastic wave reflections between the 

front and the rear end of the block resulting in approximate equilibrium conditions 

being attained, i.e. tfp p≈ .  Thus, the 
  
c

b
/ H = 0.4  case represents the limit where the 

loading time of the sand slug is much larger than the transit time for the elastic waves 

through the block.  In this limit the elastic block may be approximated as a rigid body.  

Next consider the 
  
c

b
/ H = 50  case.  Again, 1fp ≈  over the 0 1

S
t ε≤ ≤  whereafter 

the pressure exerted by the sand slug reduces significantly.  However, over this entire 

duration the transmitted pressure 0
t
p =  as the elastic wave that initiates after the 

sand slug impacts the block at 0t =  has not yet reached the rear end of the block at 

time 1
S

t ε = .  Infact, the elastic wave reaches the rear end of the block at time 

  
t ε

S
≈ 5 , i.e. well after the sand slug has densified and bounced off the elastic block.  

This elastic wave then reflects from the block/foundation interface and thereby 

transmitting a pressure into the foundation equal to twice fp .  The duration of this 

transmitted pressure is equal to the time taken for the sand slug to densify, i.e. the 

duration is approximately given by /
oS

H vε .  Hence over this period , /
oS

H vε ,  the 

momentum transmitted into the foundation is  twice the momentum transferred by the 

sand slug into the elastic block.  The reflected compressive wave then travels towards 

the front end of the elastic block and reflects as a tensile wave from the free surface.  

Upon reaching the rear of the block, the tensile wave results in loss of contact 

between the block and the foundation with the block “bouncing-off” the foundation 

(recall no tensile stresses can be transmitted across that interface in this unattached 

case).  The final momentum transmitted into the supports is thus twice the momentum 

of the incoming sand slug, with the additional transferred momentum accounted for 

by the bounce-off of the elastic block.  Thus, the 
  
c

b
/ H = 50  case represents the limit 

where the loading time of the sand slug is much less than the transit time for the 

elastic waves through the block.  In this limit the loading may be approximated as 

impulsive and results in a significant rebound of the elastic block. 

 

Now consider the attached case.  The temporal predictions of fp  and t
p  are included 

in Figs. 9a and 9b for the 
  
c

b
/ H = 0.4  and 50, respectively.  Consistent with the fact 

that the 
  
c

b
/ H = 0.4  behaves similar to a rigid block, the predictions of the pressures 

fp  and 
 
p

t
 are nearly identical over the time period of the sand slug loading, i.e. 

0 1
S

t ε≤ ≤ .  Subsequently, fp  drops to zero as the sand slug bounces off the elastic 

block.  However, elastic waves continue to reflect within the elastic block resulting in 

alternating compressive and tensile forces being transmitted into the support resulting 

in the oscillatory nature of the 
 
p

t
 response for 

  
t ε

S
>1 as seen in Fig. 9a.  Of course 

these oscillatory t
p  do not on average result in any additional momentum being 

transmitted into the support for 
  
t ε

S
>1.  The differences between the attached and 

unattached cases become more apparent for the 
  
c

b
/ H = 50 .  The responses of the 

                                                                                                                                       
in velocity of that interface and hence a change in the contact pressure between the sand 

particle and the elastic block. 
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attached and unattached cases are similar up to 
  
t ε

S
≈15 .  At this point the tensile 

stress wave impinges on the interface between the block and the support.  In the 

unattached case this resulted in loss of contact between the block and the support with 

the block bouncing off the support.  However, in the attached case the interface can 

sustain tension which results in a rectangular negative 
 
p

t
 pulse with a magnitude and 

duration equal to the earlier compressive pulse.  This pulse thus cancels out the 

momentum that was transmitted by that earlier compressive pulse resulting in the net 

momentum transmitted into the support temporarily reducing to zero just after the end 

of this tensile pulse.  However, with no dispersion of the wave within the elastic block, 

the tensile and compressive pulses continue to get alternatively transmitted into the 

foundation. 

 

The predictions of transmitted areal momentum  

0

( )

t

t tI t p dt= ∫      (3.16) 

normalised by the incoming momentum 
o
I  (

  
I

t
≡ I

t
/ I

o
) of the sand slug are included 

in Figs. 10a and 10b for the 
  
c

b
/ H = 0.4  and 50 cases respectively for both the 

attached and unattached cases.  Consistent with the transmitted pressure histories 

plotted in Figs. 8a and 9a for the 
  
c

b
/ H = 0.4  case, 

t
I  increases monotonically and 

plateaus-out at / 1
t o
I I ≈  with the extra 5% transmitted momentum due to rebound of 

the sand particles as discussed by Pingle et al. [15].  Further, the results are nearly 

identical for the attached and unattached cases expect for the small oscillations in the 

attached case about the steady-state value 
  
I

t
/ I

o
 due to the fact that t

p  oscillates 

between positive and negative values due to internal reflections of elastic waves as 

seen in Fig. 9a.  By contrast, the build-up of momentum 
t
I  in the attached and 

unattached c
b
/H = 50  blocks are markedly different.  The /

ot
I I  curves are identical 

until the tensile elastic reflection discussed above reaches the rear end of the block at 

  
t ε

S
≈15 .  Thereafter the unattached block loses contact with the foundation and the 

momentum transferred into the foundation remains constant at / 2
t o
I I ≈ .  However, 

in the attached case the transmitted pressure is now tensile which results in a 

reduction in 
t
I  to zero.  The transmitted momentum /

ot
I I  then oscillates periodically 

between 0 and 2 in-sync with the compressive and tensile elastic wave reflections 

within the elastic block.   

 

We define 
 
I

t

avg  as the time-averaged transmitted momentum (where we average over 

10 oscillations in the 
t
I  versus time curves).  Predictions of 

  
I

t

avg
≡ I

t

avg
/ I

o
 are plotted 

in Fig.  11 as a function of the quantity 

S

b o m

H E

c v

ε
τ

ρ
≡ .    (3.17) 

Here τ  the ratio of the time taken for the sand slug to densify (i.e. the time over 

which the sand slug exerts a pressure) to the time taken for an elastic wave to travel 

from the front to the rear end of the elastic block.  The discussion above suggests that 

this ratio of time-scales is the key parameter that governs the momentum transferred 
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into the foundation, especially in the unattached case.  Results are included in Fig. 11 

for two values of the normalised sand impact velocity 
  
v

o
/ E / ρ

m
= 0.04  and 0.08 

corresponding to 
  
v

o
= 400 ms

−1  and 1
200ms

− , respectively for both the attached and 

unattached cases.   

 

First consider the attached case.  The transmitted momentum 
  
I

t

avg
/ I

o
≈1 over the 

entire parameter range considered here, i.e. 
  
I

t

avg
/ I

o
is independent of τ  and 

/ /
o m
v E ρ .  Next consider the unattached case.  Here 

  
I

t

avg
/ I

o
 displays a strong 

dependence on τ  and the two limits discussed above are clearly seen:  10τ >  

corresponds to the rigid block limit with 
  
I

t

avg
/ I

o
≈1 while the 1τ <  limit is impulsive 

limit with 
  
I

t

avg
/ I

o
≈ 2 .  At intermediate values of τ , 

  
I

t

avg
/ I

o
 increases with 

decreasing τ .  Again, there is only a mild dependence on / /
o m
v E ρ .  Detailed 

numerical calculations were performed to confirm that 
  
I

t

avg
/ I

o
 is only dependent on 

the boundary conditions (viz. attached or unattached) and the ratio of time-scales τ  

but reasonably independent of all the other non-dimensional groups in Eqs. (3.13) and 

(3.14).  We note in passing here that while 
  
I

t

avg
/ I

o
 differ for the attached and 

unattached cases in the 1τ <  limit the maximum transmitted transient momentum are 

equal in both these cases with 
  
I

t

max
/ I

o
≈ 2 . 

 

3.4 Selected numerical results for the buffer plate in the four regimes 

We proceed to illustrate the responses of both the attached and unattached buffer 

plates by first presenting numerical calculations for the four geometries labelled G-I 

through G-IV in Fig. 5a, i.e. 0.2ρ = , 0.7ψ =  and 1m =  the parameters are held 

fixed.  In these calculations the sand slugs have a height 
  
H =ψm

f
/ (ρρ

s
) = 10 mm  

while the values of the parameters c , 
c

ρ  and 
c

σ  for geometries G-I through G-IV are 

chosen to achieve the appropriate values of 
 
σ

c
 and  H .  All calculations were 

performed for a sand impact velocity 
  
v

o
= 400 ms

−1 . 

 

We characterise the responses of buffer plates in terms of the following five quantities:  

(i) the core compression defined as /
c

c cε ≡ Δ , where cΔ  is the reduction in 

the overall thickness of the core;  

(ii) the pressure t
p  at the interface between the foam core and the foundation;  

(iii) the pressure fp  exerted by the sand slug on the front face of the sandwich 

plate; and 

(iv) the momentum 
t
I  transferred into the foundation. 

 

The core compression predictions for both the attached and unattached cases are 

nearly indistinguishable and hence only predictions of the temporal evolution of 
c

ε  

for the unattached buffer plates are included in Fig. 6a along with the predictions of 

the lumped parameter model.  Note that the FE calculations predict no permanent core 

compression for geometry G-IV (only a small transient elastic compression of the 
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core).  Hence results for geometry G-IV are not included in Fig. 6a.  We now discuss 

in detail in responses of the unattached buffer plates and then subsequently illustrate 

the key differences that occur when the buffer plates are attached to the foundation. 

 

Geometry G-I in regime I:  The temporal variation of the normalised pressures 

  
p

t
≡ p

t
ε

s
/ (ρρ

s
v

o

2 )  and 
  
p

f
≡ p

f
ε

s
/ (ρρ

s
v

o

2 )  are plotted in Fig. 12a for the unattached 

case, while snapshots showing the deformation of the buffer plate and sand slug at 

four selected values of time t  are included in Fig. 12b.  For  times   t < 0.3 , both fp  

and t
p  are approximately constant.  During this time a densification wave traverses 

through the core and hence the buffer plate only transmits a stress 
  
p

t
≈σ

c
 p

f
 into 

the foundation.  Further, the pressure fp  exerted by the sand on the buffer plate is 

also approximately constant with 2( ) / sf s op vρρ ε≈  as the front face acquires a rather 

small velocity.  At   t ≈ 0.3 , the densification front reaches the rear resulting in the so-

called “slap” event where the front face slaps into the foundation through the now 

completely densified core.  This results in a sudden increase in t
p  to levels 

significantly above 2( ) /
s o s
vρρ ε .  An elastic compressive wave now traverses from the 

rear to the front face.  The wave then imparts a velocity in the positive 
2
x -direction to 

the front face that results in the observed sudden increase in the interfacial pressure 

fp .  This compressive wave reflects from the interface between the front face sheet 

and the sand slug as a tensile wave which upon reaching the rear face of the buffer 

plate results in the plate bouncing off the foundation. However, there is continued 

loading of the buffer plate by the sand slug which results in multiple impacts and 

rebounds of the densified buffer plate against the foundation.  This continues until 

1t ≈  when the sand slug also densifies.  Subsequently, the sand slug rebounds off the 

buffer plate and both the buffer plate and sand slug now acquire a steady-state 

velocity so that contact between the sand slug and the plate and between the plate and 

the foundation is not established again.  

 

The corresponding temporal evolution of the normalised core compression /
c D
ε ε  

and transmitted momentum /
t o
I I  are included in Figs. 6a and 13a, respectively.  We 

clearly observe that there is negligible momentum transfer prior to core densification 

at   t ≈ 0.3 .  Subsequently, 
t
I  builds-up in three distinct spurts corresponding to the 

spikes in t
p  seen in Fig. 12a, i.e. momentum transfer in geometry G-I is governed by 

the “slap” event and the subsequent impacts of the buffer plate against the foundation.  

However, the maximum momentum transferred to the foundation 
  
I

t

max
/ I

o
≈1, i.e. 

equal to the incoming momentum of the sand slug. 

 

Geometry GII in regime II:  The temporal variation of the normalised pressures 
 
p

t
 

and 
 
p

f
 are plotted in Fig. 14a while snapshots showing the deformation of the buffer 

plate and sand slug at four selected values of time t  are included in Fig. 14b.  Just 

after impact, the sand slug exerts a pressure 
  
p

f
≈1  on the buffer plate.  However, 

 
p

f
 

now reduces with increasing t  as the front face acquires a velocity fv  comparable to 
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o
v .  At 1t ≈ , the sand slug fully densifies as the densification front within the sand 

slug reaches the top of the slug and there is a sudden drop in the interfacial pressure 

 
p

f
.  The densification front within the sand slug reflects from the top end as a tensile 

front resulting in sand spalling-off the top end of the slug; see Fig. 14b.  Meanwhile, 

the densification wave initiated in the core continues to transverse towards the rear 

face resulting in continued core compression.  During this time the buffer plate 

transmits a pressure 
t c
p σ≈  to the foundation (recall that 

   
σ

c
 ρρ

S
v

0

2  that thus in 

Fig. 14b it seems as if 
  
p

t
≈ 0 ).  At 3t ≈ , the densification front within the core 

reaches the rear end resulting in a “slap” event and a sudden increase in both t
p  and 

fp  similar to that discussed for geometry G-I.  Shortly thereafter, the buffer plate 

rebounds off the foundation and a steady-state (with no contact between the buffer 

plate and the foundation or the sand slug and the buffer plate) is attained.  Unlike 

geometry G-I, multiple impacts between the buffer plate and the foundation do not 

occur as the sand slug had densified and hence stopped loading the plate prior to core 

densification.  This results in the majority of the momentum transfer to the foundation 

occurring during the single slap event that occurs at the instant of full densification; 

see Figs. 14a and 13a.  Note that the total momentum transfer is significantly higher 

compared to geometry G-I (in geometry G-II, 
  
I

t

max
/ I

o
≈1.5  compared to 

  
I

t

max
/ I

o
≈1.1 for geometry G-I).   

 

Geometry G-III in regime III:  The temporal variation of the normalised pressures 
 
p

t
 

and 
 
p

f
 are plotted in Fig. 15a while snapshots showing the deformation of the buffer 

plate and sand slug at four selected values of time t  are included in Fig. 15b.  Similar 

to geometry GII, the pressure 
 
p

f
 reduces with time as the velocity fv  increases and 

then suddenly drops to approximately zero at 1t ≈  when the densification front 

within the sand slug reaches the top end of the slug.  However, the stronger core in 

geometry G-III compared to geometry G-II, results in the deceleration of the front 

face and hence reloading of the buffer plate by the sand slug as seen in Fig. 15a.  This 

reloading however results in significantly lower pressures compared to the loading 

prior to the densification of the sand slug.  The pressure t
p  exerted by the buffer plate 

on the foundation is equal to the strength 
c

σ  of the foam core over the entire duration 

of the impact event- the densification front in the core arrests before it reaches the 

foundation and hence there is no dramatic increase in t
p  as in cases G-I and G-II. 

 

The deformation of the buffer plate without full densification (the maximum value of 

c
ε  is approximately 0.3 as seen from Fig. 3a) results in a “soft catch” mechanism 

whereby the buffer plate slowly brings the sand slug to rest.  This reduces the spalling 

of the sand so that 
  
I

t

max
/ I

o
≈1  as seen in Fig. 13a, i.e. there is effectively a perfectly 

plastic collision between the sand slug and the buffer plate.  We note in passing that 

momentum conservation dictates that 
  
I

t

max
/ I

o
≥1 and thus this geometry G-III gives 

the minimum momentum transfer to the supports for the given sand slug loading. 
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Geometry G-IV in regime IV:  This geometry has a sufficiently strong core that no 

plastic deformation initiates within the core under these impact conditions.  The 

problem thus reduces to the impact of the sand slug against an elastic plate resting on 

a rigid foundation.  Thus, 
  
p

f
≈1  until the sand slug fully densifies at 1t ≈  where-

after the pressure drops to zero (Fig. 16a).  The transmitted pressure t
p  displays large 

oscillations with time due to elastic stress waves running between the front face and 

the foundation (Fig.  16a). These elastic stress waves also get partially transmitted 

into the sand slug and cause the low amplitude oscillations seen in the fp  time traces.  

Snapshots showing the deformation of the sand slug included in Fig. 16b confirm that 

the situation is equivalent to the impact of the sand slug against a rigid plate. 

 

For geometry G-IV, the maximum transmitted momentum into the foundation 

  
I

t

max
/ I

o
≈1.15  (Fig. 13a), and is equal to that transmitted into a rigid foundation (i.e. 

the elasticity does not affect the total momentum transfer to any significant extent as 

G-IV is in the τ ≈1  regime).  As discussed above, the transmitted momentum is 

greater than 
o
I  due to the spalling of the sand which results in the sand slug bouncing 

off the buffer plate.  There is no permanent core compression for geometry G-IV with 

the calculations predicting only elastic core compression strains less than about 1%.  

We thus do not include the core compression predictions in Fig. 3. 

 

The main difference between the attached and unattached cases is that the attached 

buffers plates do not loose contact with the foundation and can transmit a tensile force.  

The front face pressures fp  for the four attached geometries G-I through G-IV are 

nearly identical to the unattached cases plotted in Figs. 12a, 14a, 15a and 16a.  

However, the transmitted pressures differ, with the pressures in the attached case 

becoming tensile over the time intervals where 0
t
p =  due to loss of contact between 

the buffer plate and the foundation in the unattached case.  The corresponding 

predictions of the temporal evolution of the transmitted momentum /
t o
I I  are 

included in Fig. 13b.  Unlike the unattached case (Fig. 13a), 
t
I  can decrease with 

increasing time due to the transmission of tensile forces into the foundation.  In fact, 

the steady-state situation always corresponds to an oscillating 
t
I  versus time response 

due to continued elastic wave reflections within the buffer plate after the sand slug has 

lost contact with the plate.   

 

3.5 Predictions of transmitted momentum 

We now present detailed predictions of the transmitted momentum for the buffer plate 

geometries considered in the map in Fig. 5a, viz. 0.2ρ = , 0.7ψ =  and 1m = . 

Predictions of 
  
I

t

avg
/ I

o
 as a function of the normalised core strength 

c
σ  are included 

in Figs. 17a and 17b for the unattached and attached cases, respectively.  (Recall that 

 
I

t

avg  is defined as the average momentum over 10 periodic oscillations of the 
t
I  

versus time curve.)  The limit of the sand slug impacting the rigid stationary 

foundation is also included in Fig. 17 with 
  
I

t

avg
/ I

o
≈1.1 due to the rebound of the 

sand slug. 

 

The salient observations from Figs. 17a and 17b include: 
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(i) The transmitted momentum 
  
I

t

avg
/ I

o
≥1  for both the attached and 

unattached cases.  

(ii) Typically 
  
I

t

avg
/ I

o
 is at its minimum at intermediate values of the 

normalised core strength 
c

σ .  In this regime there is incomplete densification 

of the sandwich core which results in the “soft catch” mechanism.  This 

minimises bounce-back of the sand slug and minimizes the momentum 

transfer. 

(iii) In the unattached case, for both large and small values of 
c

σ  there is 

significant bounce-back of both the buffer plate and sand slug that results in 

  
I

t

avg
/ I

o
 rising to values close to the elastic impact limit of 

  
I

t

avg
/ I

o
= 2 . 

(iv) In the attached case, for large values of 
c

σ , 
  
I

t

avg
/ I

o
 equals the rigid 

foundation limit as the buffer plate with the strong core does not deform.  On 

the other hand, for small values of 
c

σ , a slap event occurs which results in the 

sand slug bouncing back with a higher velocity as discussed above but the 

buffer plate of course remaining attached to the foundation.  Thus, 
  
I

t

avg
/ I

o
 in 

this case is lower compared to the unattached case where there is no 

transmission of tensile forces into the foundation.  However, it is worth 

mentioning here that 
  
I

t

max
/ I

o
 for both the attached and unattached cases are 

nearly identical as this transient maximum momentum transfer occurs just 

prior to the tensile reflection reaching the rear of the buffer plate. 

(v) Typically 
  
I

t

avg
/ I

o
 is higher for lower values of H  as the sand slug 

densifies before the end of core compression giving rise to a more impulsive 

load on the buffer plate.  This impulsive type load results in more bounce-back 

and hence the larger values of 
  
I

t

avg
/ I

o
. 

 

3.6 Comparison between the lumped parameter model and FE predictions 

Comparison between the lumped parameter model and predictions of the coupled 

discrete/FE calculations are made for the following metrics: (i) regime boundaries and 

the (ii) core compression 
c

ε .  We do not explicitly show comparisons of the 

transmitted momentum as the lumped parameter model predicts 
  
I

t

max
/ I

o
= I

t

avg
/ I

o
= 1 

in all cases:  the above numerical results clearly show that this is in general a poor 

prediction with the transmitted momentum depending on numerous factors including 

attachment conditions, face and core elasticity, core height etc.  This clearly 

demonstrates that the lumped parameter model is inadequate in predicting the 

transmitted momentum. 

 

The maps in Figs. 5a and 5b show the regime boundaries as predicted by the lumped 

parameter model.  We performed an extensive numerical study and conducted 

approximately 100 coupled FE/discrete calculations over each of these maps.  These 

calculations were distributed throughout the map but we chose about 40 geometries 

near the regime boundaries marked in Fig. 5.  These spot calculations near the regime 

boundaries marked in Fig. 5 demonstrated that the regime boundaries predicted by the 

lumped parameter model are nearly indistinguishable from those predicted by the 

coupled discrete/FE analysis.  Further the coupled numerical calculations predicted 

that the regime boundaries are insensitive to the attachment conditions.  Thus, for the 
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sake of clarity we only include regime boundaries as predicted by the lumped 

parameter model in all maps shown in this study.   

 

Predictions of the temporal evolution of 
c

ε  for geometries G-I through G-III are 

included in Fig. 6a using both the lumped parameter model and the coupled 

discrete/FE simulations for both the attached and unattached cases. Excellent 

agreement is observed between the lumped parameter and FE predictions.  Moreover, 

consistent with the fact that the regime boundaries are insensitive to the attachment 

conditions, the temporal evolution of the core compression is also insensitive to the 

attachment conditions (and hence the lines for the attached and unattached 

discrete/continuum predictions are indistinguishable in Fig. 6a).  Further evidence of 

the fidelity of the lumped parameter model in accurately capturing the maximum core 

compression is seen in Fig. 6b where we plot the normalised core strain max
/

Dc
ε ε  as a 

function of the normalised core strength 
c

σ  for selected values of  H  keeping 

0.2ρ = , 0.7ψ =  and 1m =  fixed, i.e. equal to those for the regime map in Fig. 5a.  

Again we observe that the lumped parameter model predictions are in excellent 

agreement with the coupled discrete/FE predictions.   

 

 

4. Concluding remarks 

The response of back-supported compound buffer plates consisting of a foam core and 

solid face sheet subjected to an impact by a column of high velocity sand particles 

(sand slug) is investigated both via a semi-analytical lumped parameter model and 

coupled discrete/continuum simulations.  The lumped model is used to construct 

deformation regime maps with axes of the normalised core strength and the ratio of 

the heights of the sand slug and the crushable core.  Four regimes of behaviour are 

identified based on the level of core compression and the sequence of events, i.e. 

whether core compression or sand slug densification occurs first.   

 

Selected discrete/continuum simulations are also reported in the four regimes 

identified by the lumped parameter model.  The discrete/continuum simulations 

confirm that the lumped parameter model accurately predicts (i) the core compression 

of the buffer plate and (ii) the regimes of behaviour.  However, the lumped parameter 

model neglects elasticity in the sand slug, the face sheets and core of the buffer plate.  

This results in the lumped parameter model not accurately predicting the momentum 

transfer into the foundation.  Moreover, the lumped parameter model cannot 

differentiate between a panel that is attached or just resting on a foundation whereas 

the simulations indicate significant differences between these two boundary 

conditions.   

 

The numerical calculations predict that the momentum transfer from the sand slug to 

the foundation is minimised for intermediate values of the core strength when the so-

called “soft-catch” mechanism is at play.  In this case, the buffer plate minimises 

bounce-back of the sand slug which in turn reduces the momentum transfer by up to 

10%.  For high values of the core strength, the response of the buffer plate resembles 

a rigid plate with nearly no impulse mitigation while at low values of core strength, a 

slap event occurs when the face sheet impinges against the foundation due to full 

densification of the foam core.  This slap event results in a significant enhancement of 

the momentum transfer to the foundation.  The results reported here demonstrate that 
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appropriately designed buffer plates have the potential as impulse mitigators in 

landmine loading situations. 
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Figure Captions 

Fig. 1: Sketch of a prototypical problem of a clamped sandwich structure loaded by a 

shallow mine explosion. 

Fig. 2:  (a) High speed photographs showing the soil ejecta resulting from the 

detonation of a landmine buried under water saturated soil.  (b) Sketch of the 

experimental set-up used to investigate the response of back-supported buffer plates 

subjected to a landmine explosion. 

 

Fig. 3:  (a) Sketch of the boundary value problem analysed for the impact of a sand 

column against the buffer plate or elastic block.  The constraint, which prevents the 

sand slug from laterally expanding, is not shown for the sake of clarity.  Sketches 

showing the leading dimensions of (b) buffer plate and (c) elastic block are also 

included. 

 

Fig. 4:  The idealised uniaxial compressive stress versus strain curves of (a) the foam 

core of the buffer plate and (b) the sand slug.  (c) Sketch of the one-dimensional 

shock propagation in the foam core and the sand slug after impact. 

 

Fig. 5:  Deformation regime maps predicted by the lumped parameter model for the 

parameter choice (a) 0.7ψ =  and (b) ψ = 10  with m = 1  and ρ = 0.2 .  Contours of 

the normalised maximum core compression ε
c

max
/ ε

D
 are included in regime III.  In (a) 

the four reference cases analysed are marked while in (b) the regime boundaries for 

0.7ψ =  are also included. 
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Fig. 6:  Predictions of (a) time evolution of normalised core compression ε
c
/ ε

D  for 

the reference cases G-I, G-II and G-III and (b) the maximum normalised core 

compression ε
c

max
/ ε

D
 as a function of the normalised core strength σ

c
 for selected 

values of the normalised core height H  (m = 1 , ρ = 0.2  and 0.7ψ = ).  Predictions 

using both the lumped parameter and the discrete/continuum models are presented for 

both the attached and unattached cases. 

 

Fig. 7:  Sketch illustrating the contact law between two particles in the discrete 

calculations. 

 

Fig. 8:  Discrete/continuum simulation predictions of the time evolution of the 

normalised pressures fp  and t
p  for the unattached elastic block with  (a) 

  
c

b
/ H = 0.4  and (b) 

  
c

b
/ H = 50  for the normalised sand slug velocity 

  
v

o
/ E / ρ

m
= 0.08 . 

 

Fig. 9:  Discrete/continuum simulation predictions of the time evolution of the 

normalised pressures fp  and t
p  for the attached elastic block with  (a) 

  
c

b
/ H = 0.4  

and (b) 
  
c

b
/ H = 50  for the normalised sand slug velocity 

  
v

o
/ E / ρ

m
= 0.08 . 

 

Fig. 10:  Discrete/continuum simulation predictions of the time evolution of the 

normalised transmitted momentum 
 
I

t
 for the attached and unattached elastic block 

with  (a) 
  
c

b
/ H = 0.4  and (b) 

  
c

b
/ H = 50  for the normalised sand slug velocity 

  
v

o
/ E / ρ

m
= 0.08 . 

 

Fig. 11:  Discrete/continuum simulation predictions of the normalised average 

transmitted momentum 
  
I

t

avg
/ I

o
 as a function of the time-scale ratio τ  for the 

attached and unattached elastic block.  Results are presented for two values of the 

non-dimensional sand slug velocity / /
o m
v E ρ . 

 

Fig. 12:  Discrete/continuum simulation predictions for the unattached buffer plate   

G-I.  (a) Time evolution of the normalised front and transmitted pressures 
 
p

f
 and 

 
p

t
, 

respectively.  (b) Snapshots showing the deformation of the buffer plate and sand slug 

at selected normalised times  t .  The * symbol indicates loss of contact between the 

buffer plate and foundation while the buffer plate face sheets are shown with hatch 

marks. 

 

Fig. 13:  Time evolution of the normalised transmitted momentum 
 
I

t
 for the (a) 

unattached and (b) attached buffer plate geometries G-I through G-IV. 

 

Fig. 14:  Discrete/continuum simulation predictions for the unattached buffer plate   

G-II.  (a) Time evolution of the normalised front and transmitted pressures 
 
p

f
 and 

 
p

t
, 

respectively.  (b) Snapshots showing the deformation of the buffer plate and sand slug 
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at selected normalised times  t .  The * symbol indicates loss of contact between the 

buffer plate and foundation while the buffer plate face sheets are shown with hatch 

marks. 

 

Fig. 15:  Discrete/continuum simulation predictions for the unattached buffer plate   

G-III.  (a) Time evolution of the normalised front and transmitted pressures 
 
p

f
 and 

 
p

t
, respectively.  (b) Snapshots showing the deformation of the buffer plate and sand 

slug at selected normalised times  t .  The * symbol indicates loss of contact between 

the buffer plate and foundation while the buffer plate face sheets are shown with hatch 

marks. 

 

Fig. 16:  Discrete/continuum simulation predictions for the unattached buffer plate   

G-IV.  (a) Time evolution of the normalised front and transmitted pressures 
 
p

f
 and 

 
p

t
, respectively.  (b) Snapshots showing the deformation of the buffer plate and sand 

slug at selected normalised times  t .  The * symbol indicates loss of contact between 

the buffer plate and foundation while the buffer plate face sheets are shown with hatch 

marks. 

 

Fig. 17:  Discrete/continuum simulation predictions of the normalised average 

transmitted momentum 
  
I

t

avg
/ I

0
 as function of the normalised core strength 

c
σ  for 

selected values of  H   with m = 1 , ρ = 0.2  and 0.7ψ = , i.e. case considered in 

Fig. 5a.  The unattached and attached cases are shown in (a) and (b)  
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Fig. 1: Sketch of a prototypical problem of a clamped sandwich structure loaded by a 

shallow mine explosion. 
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Fig. 2:  (a) High speed photographs showing the soil ejecta resulting from the 

detonation of a landmine buried under water saturated soil.  (b) Sketch of the 

experimental set-up used to investigate the response of back-supported buffer plates 

subjected to a landmine explosion. 
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Fig. 3:  (a) Sketch of the boundary value problem analysed for the impact of a sand 

column against the buffer plate or elastic block.  The constraint, which prevents the 

sand slug from laterally expanding, is not shown for the sake of clarity.  Sketches 

showing the leading dimensions of (b) buffer plate and (c) elastic block are also 

included. 
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Fig. 4:  The idealised uniaxial compressive stress versus strain curves of (a) the foam 

core of the buffer plate and (b) the sand slug.  (c) Sketch of the one-dimensional 

shock propagation in the foam core and the sand slug after impact. 



 34 

 
 

Fig. 5:  Deformation regime maps predicted by the lumped parameter model for the 

parameter choice (a) 0.7ψ =   and (b) ψ = 10  with m = 1  and ρ = 0.2 .  Contours of 

the normalised maximum core compression ε
c

max
/ ε

D
 are included in regime III.  In 

(a) the four reference cases analysed are marked while in (b) the regime boundaries 

for 0.7ψ =  are also included. 
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Fig. 6:  Predictions of (a) time evolution of normalised core compression ε
c
/ ε

D  for 

the reference cases G-I, G-II and G-III and (b) the maximum normalised core 

compression ε
c

max
/ ε

D
 as a function of the normalised core strength σ

c
 for selected 

values of the normalised core height H  (m = 1 , ρ = 0.2  and 0.7ψ = ).  Predictions 

using both the lumped parameter and the discrete/continuum models are presented for 

both the attached and unattached cases. 
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Fig. 7:  Sketch illustrating the contact law between two particles in the discrete 

calculations. 
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Fig. 8:  Discrete/continuum simulation predictions of the time evolution of the 

normalised pressures fp  and t
p  for the unattached elastic block with  (a) 

  
c

b
/ H = 0.4  and (b) 

  
c

b
/ H = 50  for the normalised sand slug velocity 

  
v

o
/ E / ρ

m
= 0.08 . 
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Fig. 9:  Discrete/continuum simulation predictions of the time evolution of the 

normalised pressures fp  and t
p  for the attached elastic block with  (a) 

  
c

b
/ H = 0.4  

and (b) 
  
c

b
/ H = 50  for the normalised sand slug velocity 

  
v

o
/ E / ρ

m
= 0.08 . 
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Fig. 10:  Discrete/continuum simulation predictions of the time evolution of the 

normalised transmitted momentum 
 
I

t
 for the attached and unattached elastic block 

with  (a) 
  
c

b
/ H = 0.4  and (b) 

  
c

b
/ H = 50  for the normalised sand slug velocity 

  
v

o
/ E / ρ

m
= 0.08 . 
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Fig. 11:  Discrete/continuum simulation predictions of the normalised average 

transmitted momentum 
  
I

t

avg
/ I

o
 as a function of the time-scale ratio τ  for the 

attached and unattached elastic block.  Results are presented for two values of the 

non-dimensional sand slug velocity / /
o m
v E ρ . 
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Fig. 12:  Discrete/continuum simulation predictions for the unattached buffer plate   

G-I.  (a) Time evolution of the normalised front and transmitted pressures 
 
p

f
 and 

 
p

t
, 

respectively.  (b) Snapshots showing the deformation of the buffer plate and sand slug 

at selected normalised times  t .  The * symbol indicates loss of contact between the 

buffer plate and foundation while the buffer plate face sheets are shown with hatch 

marks. 
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Fig. 13:  Time evolution of the normalised transmitted momentum 
 
I

t
 for the (a) 

unattached and (b) attached buffer plate geometries G-I through G-IV. 
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Fig. 14:  Discrete/continuum simulation predictions for the unattached buffer plate   

G-II.  (a) Time evolution of the normalised front and transmitted pressures 
 
p

f
 and 

 
p

t
, 

respectively.  (b) Snapshots showing the deformation of the buffer plate and sand slug 

at selected normalised times  t .  The * symbol indicates loss of contact between the 

buffer plate and foundation while the buffer plate face sheets are shown with hatch 

marks. 



 44 

 
 

Fig. 15:  Discrete/continuum simulation predictions for the unattached buffer plate   

G-III.  (a) Time evolution of the normalised front and transmitted pressures 
 
p

f
 and 

 
p

t
, respectively.  (b) Snapshots showing the deformation of the buffer plate and sand 

slug at selected normalised times  t .  The * symbol indicates loss of contact between 

the buffer plate and foundation while the buffer plate face sheets are shown with hatch 

marks. 
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Fig. 16:  Discrete/continuum simulation predictions for the unattached buffer plate   

G-IV.  (a) Time evolution of the normalised front and transmitted pressures 
 
p

f
 and 

 
p

t
, respectively.  (b) Snapshots showing the deformation of the buffer plate and sand 

slug at selected normalised times  t .  The * symbol indicates loss of contact between 

the buffer plate and foundation while the buffer plate face sheets are shown with hatch 

marks. 
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Fig. 17:  Discrete/continuum simulation predictions of the normalised average 

transmitted momentum 
  
I

t

avg
/ I

0
 as function of the normalised core strength 

c
σ  for 

selected values of  H   with m = 1 , ρ = 0.2  and 0.7ψ = , i.e. case considered in 

Fig. 5a.  The unattached and attached cases are shown in (a) and (b)  


