

Ibrahim, Delveen and Dodd, Christine and Stekel, Dov J. and Ramsden, S.J. and Hobman, Jon L. (2016) Multi drug and extended spectrum beta-lactamase resistant Escherichia coli isolated from a dairy farm. FEMS Microbiology Ecology . pp. 1-37. ISSN 1574-6941

Access from the University of Nottingham repository:

http://eprints.nottingham.ac.uk/31623/1/Ibrahim%20et%20al%202016.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

FEMS Microbiology Ecology

http://mc.manuscriptcentral.com/fems

Multi drug and extended spectrum beta-lactamase resistant *Escherichia coli* isolated from a dairy farm.

Journal:	FEMS Microbiology Ecology
Manuscript ID	FEMSEC-15-07-0359.R2
Manuscript Type:	Research article
Date Submitted by the Author:	n/a
Complete List of Authors:	Ibrahim, Delveen ; University of Nottingham, School of Biosciences Dodd, Christine; University of Nottingham, Food Sciences Stekel, Dov; University of Nottingham, School of Biosciences Ramsden, Stephen; University of Nottingham, United Kingdom, School of Biosciences; University of Nottingham, School of Biosciences Hobman, Jon; University of Nottingham, United Kingdom, School of Biosciences
Keywords:	cattle slurry, <i>Escherichia coli</i> , extended spectrum beta lactamase, multidrug resistance

1	
2	Multi drug and extended spectrum beta-lactamase resistant
3	Escherichia coli isolated from a dairy farm.
4	
5	Delveen R. Ibrahim, Christine E.R. Dodd, Dov J. Stekel, Stephen J. Ramsden and Jon L. Hobman
6	School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington,
7	Loughborough, Leicestershire LE12 5RD, United Kingdom.
8	
9	Correspondence: Jon L. Hobman, School of Biosciences, The University of Nottingham, Sutton
10	Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom. Tel: (+44) 115 951
11	6166; fax (+44) 115 951 6162; e-mail: Jon.hobman@nottingham.ac.uk
12	
13	Keywords: Cattle slurry, Escherichia coli, extended spectrum beta-lactamase resistance, multidrug
14	resistance
15	Running title: Multi drug and ESBL resistant <i>E. coli</i> from a dairy farm
16	
17	
18	
19	
20	
21	
22	
23	
24	

25	
26	ABSTRACT
27	Escherichia coli strains were isolated from a single dairy farm as a sentinel organism for the
28	persistence of antibiotic resistance genes in the farm environment. Selective microbiological media
29	were used to isolate 126 <i>E. coli</i> isolates from slurry and faeces samples from different farm areas.
30	Antibiotic resistance profiling for 17 antibiotics (seven antibiotic classes), showed 57.9% of the
31	isolates were resistant to between 3 and 15 antibiotics. The highest frequency of resistance was to
32	ampicillin (56.3%), and the lowest to imipenem (1.6%), which appeared to be an unstable phenotype
33	and was subsequently lost. Extended spectrum beta-lactamase resistance (ESBL) was detected in 53
34	isolates and bla_{CTX-M} , bla_{TEM} and bla_{OXA} genes were detected by PCR in twelve, four and two strains,
35	respectively. Phenotypically most isolates showing resistance to cephalosporins were AmpC rather
36	than ESBL, a number of isolates having both activities. Phenotypic resistance patterns suggested co-
37	acquisition of some resistance genes within subsets of the isolates. Genotyping using ERIC PCR
38	demonstrated these were not clonal, and therefore co-resistance may be associated with mobile
39	genetic elements. These data show a snapshot of diverse resistance genes present in the E. coli
40	population reservoir, including resistance to historically used antibiotics as well as cephalosporins in
41	contemporary use.
42	
43	
44	
45	
46	
47	

48 INTRODUCTION

49	The use of antibiotics in agriculture and animal husbandry is increasingly being considered a global
50	health issue, both from the animal health and welfare aspect, and because of the development of
51	antibiotic resistance in animal pathogens (Davies 2013; O'Neill 2015). In the UK from 2006-2011,
52	(after the EU ban on antibiotic use as a growth promoter), about 400 tonnes of antibiotics were used
53	annually in treatment of food-producing animals (Wellington et al. 2013) which is more than the
54	amount used in humans. Animal manure is a major source of antimicrobial resistant bacteria
55	entering the environment, especially the soil (Aarestrup et al. 1996; Binh et al. 2007; Ghosh and
56	LaPara 2007), and it has been estimated that annually about 70 million tonnes of animal manure are
57	used as fertilizer on agricultural land in the UK (Hutchison et al. 2004). Much of this will contain low
58	levels of antibiotics or antibiotic metabolites/conjugates, and antimicrobial resistant bacteria.
59	Escherichia coli serves as a sentinel organism for antimicrobial resistance development in different
60	types of animals, because it is a common enteric commensal, can be a pathogen, and easily acquires
61	resistance and therefore can act as a reservoir which can transfer resistance to other
62	species/pathogens (Aarestrup <i>et al.</i> 1998; van den Bogaard <i>et al.</i> 2000; Allen <i>et al.</i> 2010; Ashbolt <i>et</i>
63	al. 2013). Cephalosporin antibiotics are commonly used in dairy veterinary medicine because they
64	are effective in treating environmental mastitis caused largely by <i>E. coli</i> strains (Shpigel <i>et al.</i> 1997).
65	Of particular concern has been the emergence and spread of extended spectrum beta lactamase
66	(ESBL) producing <i>E. coli</i> associated with cattle and other farm animals (Bush and Jacoby 2010; Pfeifer
67	et al. 2010). Both ESBL and AmpC ß-Lactamases can confer resistance to third generation
68	cephalosporins, penicillins and monobactams. These two groups of enzymes are very distinct and
69	can mainly be differentiated by different susceptibility patterns against β -lactam site-specific
70	inhibitors such as clavulanic acid, their differences in activity against fourth generation
71	cephalosporins such as cefepime, and cephamycins such as cefoxitin (Moritz and Carson 1986;
72	Livermore et al. 2001; Bush and Jacoby 2010; CLSI 2013a). To date, more than 220 TEM, 190 SHV,

FEMS Microbiology Ecology

and 160 CTX-M ESBL enzyme variants, have been described, and more than 230 variants from the
different plasmid AmpC families are known, 136 of which belong to the CMY family (www.lahey.org/
studies).

In the dairy farm studied, cephalosporins were used for treatment of environmental mastitis caused
by *E. coli*, and mastitic milk was discarded into the slurry tank, which may potentially select for *E. coli*strains carrying ESBL. The aim of this study was to determine the prevalence and range of ESBL
resistance in *E. coli* within the farm, to understand the diversity of resistance to β-lactam antibiotics,
and to determine if co-carriage of other antimicrobial resistance (AMR) was associated with ESBL
resistance. This would allow a better understanding of the contributions that farms and farm waste
may make to persistence of AMR in the environment, and the reservoir of resistance in agriculture.

84 Materials and Methods

85 Dairy Farm Unit

The farm has a herd of approximately 200 dairy cows. The animals are milked using an automated milking system, and consequently the milking cows are housed for the majority of the year inside barns. Each cow produces 60-70 kg of waste per day, which is automatically scraped into a sump, daily. Slurry solids are mechanically separated and deposited into a trailer, where it goes to a heap or is directly used as a fertilizer. The remaining liquid slurry, containing approximately 5% solids, is pumped into an on-site slurry tank and stored for field spreading. The slurry tank has a capacity of 3 million litres and is generally emptied after circa 90 days, either into a slurry lagoon by means of a pipeline, or is pumped into a tanker and taken directly to fields for spreading. The major use of antibiotics on the farm is to treat mastitis infections, which occur at a rate of ~100 incidences per year, i.e. approximately one every 3 days. At the time of this study, these infections were treated

with cephalosporin antibiotics (Cefquinome- 4th generation cephalosporin- veterinary use only) through intramammary infusion directly into the infected quarter; the withheld milk was disposed of into the slurry tank, alongside waste footbath contents, washing water and other cleaning solutions and disinfectants used in the dairy unit. Cefquinome was also used as a prophylactic to prevent mastitis when cows were dried off before entering another lactation cycle. Other antibiotics had been used on the farm for treatment of other bacterial infections common to dairy cattle including: ceftiofur (3rd generation cephalosporin- veterinary use only), cephalexin (1st generation cephalosporin), oxytetracycline, penicillins, aminoglycosides and aminocoumarin antibiotics.

105 Samples

Slurry samples were collected from different areas in the dairy unit in December 2012 and March 2014. In all cases samples were kept at 4°C and isolation of *E. coli* started within 48 h of collection. Three biological replicates were taken from each sample and individually serially diluted in maximum recovery diluent (MRD; Oxoid, UK), and duplicate 100 μ L samples spread onto selective media. In the preliminary study in 2012, samples were taken from the slurry tank (n=2), separated solid slurry (n=1), cow faeces solid (n=1) and liquid exudate (n=1) and *E. coli* isolated by plating on tryptone bile X-glucuronide agar (TBX agar; Merck) with overnight incubation at 37°C. In the 2014 study, samples from liquid slurry taken from the slurry tank (n=3), separated solid slurry (n=3), and cow faeces from animal housing (n=3) were plated on TBX agar, TBX containing cefotaxime (CTX; 2 mg L⁻¹) and CHROMagar ESBL (BioConnections, UK). All plates were incubated overnight at 37°C. E. coli NCTC 13353 and *E. coli* ATCC 25922 were used as ESBL positive and negative control strains, respectively. In general, for each sample five colonies were picked from each of the TBX and TBX + CTX plates, and most of the pink colonies from the CHROMagar ESBL plates and were purified using LB agar (Fisher Scientific, USA). In total 155 colonies were selected from different media: in 2012 25 colonies from TBX; in 2014 35 colonies were selected from CHROMagar ESBL, 47 colonies from TBX and 48 colonies

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

2	
3	
4	
5	
6	
7	
0	
ð	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
11	
11	
42	
43	
44	
45	
46	
17	
41	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	
60	

from TBX+CTX. All isolates were tested for indole production (Collins *et al.* 2004) and oxidase activity (Oxidase Detection sticks, Oxoid); and indole positive, oxidase negative strains were considered as *E. coli*. API 20E tests (BioMerieux, France) were used to confirm identification for selected isolates. All confirmed isolates were immediately stored as Microbank (Pro-Lab Diagnotics UK) bead stocks at -80°C, and were grown from frozen stocks for each subsequent characterization.

126

127 Antibiotic sensitivity tests

128 The disc diffusion antibiotic sensitivity tests were carried out according to the National Committee 129 for Clinical Laboratory Standards (NCCLS) and Clinical and Laboratory Standards Institute (CLSI) 130 guidelines with some modifications (NCCLS 2002 ; CLSI 2012). Four or five bacterial colonies were 131 taken from LB plates which had been inoculated and incubated overnight at 37°C. The colonies were 132 suspended in 5 mL of Muller-Hinton broth (Oxoid, UK) and incubated for 16 h at 37°C. Each sample 133 was diluted with sterile water until it reached a 0.5 McFarland standard concentration. Then, 100 µL 134 of the culture was pipetted onto the surface of a 25 mL Muller-Hinton agar plate (Oxoid, UK), and 135 the inoculum was distributed by spreading using an L-shaped spreader. The plates were left to dry 136 at room temperature (for no more than 15 min), and the antibiotic discs were placed on to the plate 137 surface, with 4-5 antibiotic discs on each plate. The plates were then incubated at 37°C for 18-24 h, 138 and the results recorded by measuring the inhibition zone diameter across the disc and then 139 interpreted according to standard measurement tables (CLSI 2013a, b). All antibiotics used in the 140 tests are listed in Table 1; all discs were supplied by Oxoid (UK), except for Cefquinome 141 (Bioconnection, UK): the quality control strains used were E. coli ATCC 25922 (ESBL negative) and E. 142 coli NCTC 13353 (ESBL positive CTX-M-15). 143

144

60

2 3	145	Phenotypic confirmation of ESBL/AmpC-producing E. coli
5	146	Phenotypic detection of ESBLs can be obscured by AmpC-producing bacteria. All isolates that gave
7 8	147	an inhibition zone indicating resistance or intermediate resistance to cefotaxime, and/or ceftazidime
9 10	148	using standard antibiotic discs were further tested using the Total ESBL Confirm Kit (Rosco
11 12	149	Diagnostica, France; product code 98014) containing a combination of cefotaxime (CTX), ceftazidime
13 14 15	150	(CAZ), and cefepime (FEP) discs (30 μg of each antibiotic) alone and in combination with clavulanic
16 17	151	acid (CA). The test was performed in accordance with the guidelines of the manufacturer. An
18 19	152	increase in the diameter of the zone of clearing around the disc by \geq 5-mm for either antimicrobial
20 21	153	agent tested in combination with CA vs the diameter of the zone of clearing around a disc containing
22 23	154	the agent when tested alone, indicated ESBL presence (CLSI 2013a; EUCAST 2013). The total ESBL kit
24 25	155	is composed of 6 discs, the first 4 are recommended to be used by CLSI while the other two (FEP and
26 27 28	156	FEP+C) are further recommended by EUCAST to confirm that resistance is due to ESBL, and not
20 29 30	157	chromosomal AmpC, as chromosomal AmpC does not confer resistance to cefepime.
31 32	158	In addition, a cefoxitin (FOX) disc (30 μ g, Oxoid, UK) was added to the test, to detect AmpC
33 34	159	phenotypes, as it is known that AmpC producers are resistant to cefoxitin, one of the cephamycin
35 36	160	group.
37 38	161	The presence of hyper-produced and de-repressed/plasmid mediated AmpC beta-lactamase was
39 40	162	detected using the AmpC Confirm Kit (Rosco Diagnostica; product code 98007), where a \geq 5-mm
41 42 43	163	increase in the inhibition zone diameter of cefotaxime 30 μ g + cloxacillin (CTXCX) or ceftazidime 30
44 45	164	μg + cloxacillin (CAZCX) compared with the inhibition zone for the antibiotics alone indicated the
46 47	165	presence of de-repressed/plasmid encoded AmpC, inhibited by cloxacillin. Control strains used were
48 49	166	E. coli ATCC 29522 (ESBL negative control), E. coli NCTC13353 (ESBL positive) and Enterobacter
50 51	167	cloacae NCTC 13406 (AmpC β -lactamase de-repressed).
52 53	168	
55 56 57 58 59	169	Clustering of resistance profiles

FEMS Microbiology Ecology

2
2
3
4
5
6
7
<i>'</i>
8
9
10
11
10
12
13
14
15
16
17
17
18
19
20
21
21
22
23
24
25
20
20
27
28
29
30
30
31
32
33
34
25
35
36
37
38
30
39
40
41
42
43
11
44
45
46
47
48
40
49
50
51
52
52
55
54
55
56
57
50
00
59
60

170	For consistency, antibiotic resistance scores of less than 6 (nominal disc size in mm) were replaced
171	with 6 as a minimum score. Clustering of antibiotic sensitivity profiles was carried out using the
172	heatmap.2 function in the gplots library (version 2.17.0) in the R software package (version 3.2.0).
173	Euclidean distance was used for both row (bacterial strain) and column (antibiotic) dissimilarity.
174	Clustering used complete linkage. Clustering was used for data visualization, so no formal statistics
175	were run.
176	
177	Genotyping of isolates
178	DNA extraction
179	Bacterial DNA was extracted by dispersing one colony of <i>E. coli</i> from an overnight culture on LB agar
180	into 100 μL of sterile 1 x TE buffer (10 mM Tris-Cl, 1 mM EDTA buffer, pH 7.6). The suspension was
181	heated to 100°C for 30 min to rupture bacterial cells (Eppendorf Thermomixer Comfort, Germany)
182	and then centrifuged (Heraeus Pico17 centrifuge, UK) at 13 000 $x g$ for 15 min. The crude DNA in the
183	supernatants was transferred into sterile microcentrifuge tubes and stored at -20 °C until use (total
184	DNA).
185	
186	PCR detection of ESBL genes
187	All phenotypically ESBL isolates were screened for bla_{SHV} , bla_{TEM} , bla_{OXA-1} , bla_{OXA-2} and bla_{CTX-M} genes

- 188 $\,$ using PCR as described by Dierikx and co-workers (2012). Total DNA (2 $\mu L)$ was used in a 25 μL
- 189 reaction mixture which contained 12.5 μL of DreamTaq Green PCR master mix (2X) (ThermoFisher
- 190 Scientific, UK) (containing DreamTaq[™] DNA polymerase, optimized DreamTaq Green buffer, 0.4 mM
- 191 of each of the dNTPs, 4 mM MgCl₂), 8.5 μ L of nuclease free water, and 1 μ L (10 μ M) of each primer.
- 192 The primers and expected PCR product sizes are given in Table 2. *E. coli* NCTC 13353 was used as

positive control for CTX, *E. coli* NCTC 13352 was used as a positive control for TEM, and *Klebsiella pneumoniae* NCTC 13368 was used as a positive control for SHV. *E. coli* ATCC 25922 was used as a
 negative control for PCR.

All oligonucleotides were synthesized by Eurofins MWG Operon, Germany. A programmable
C1000TM Thermal cycler (Bio-Rad, UK) was used to carry out the reactions under the following
conditions: one cycle of denaturation for 5 min at 94°C followed by 30 cycles of 30 s at 94°C, 30 s at
55°C and 60 s at 72°C, with a final extension of 7 min at 72°C. The PCR product (7 µL) was loaded
onto a 2% w/v agarose gel, containing ethidium bromide (0.4 µg mL⁻¹) in 1x TAE running buffer (40
mM Tris-acetate, 1 mM EDTA) and electrophoresed at 120 V for 1 h. A 100 bp DNA size marker
(Invitrogen, UK) was used in each gel.

204 PCR detection for plasmid *ampC*

A multiplex PCR assay was carried out as described in Dallenne et al. (2010) to detect plasmid ampC genes from six families: ACC, FOX, MOX, DHA, EBC and CIT. The PCR reactions were carried out in a 50 μL PCR mixture including 25 μL of DreamTag Green PCR master mix (2X), 1 μL of each forward and reverse primer for all families, except for FOX and DHA where 2.5 µL of each of the forward and reverse primers were used, 5 μ L of nuclease free water and 2 μ L of DNA. The PCR cycle started with an initial denaturing step of 10 min at 94°C and then 30 cycles of 94°C (40 s), 60°C (40 s) and 72°C (60 s). The PCR reaction ended with a final extension step of 72°C for 7 min. All primers are listed in Table 2.

214 ERIC PCR

Page 11 of 37

1 2

FEMS Microbiology Ecology

3
4
5
6
7
0
0
9
10
11
12
13
1/
14
15
16
17
18
19
20
20
Z I
22
23
24
25
26
27
21
28
29
30
31
32
33
22
34
35
36
37
38
30
40
40
41
42
43
44
45
46
40
41
48
49
50
51
52
53
55
04
55
56
57
58
59
60
ou

215	Genotypes were investigated using the ERIC-PCR method (Versalovic et al. 1991). The PCR mixture
216	(25 μ L) contained 12.5 μ L of DreamTaq Green PCR master mix (2X), 9.5 μ L nuclease free water, 1 μ L
217	DNA and 1 μL (10 μM) of each primer: ERIC1 (forward) and ERIC2 (reverse) (Eurofins MWG Operon,
218	Germany) (Table 2). A programmable C1000 [™] Thermal cycler was used to carry out the reactions,
219	using the following conditions: one cycle for 3 min at 94°C, 35 cycles of: 30 s at 94°C, 1 min at 52°C,
220	and 4 min at 65°C. The final cycle was for 8 min at 65°C. The PCR product (7 μ L) was loaded onto a
221	2% w/v agarose gel, as described above and electrophoresed at 120 V for 2 h. A 1 kb plus DNA size
222	marker (Invitrogen, UK) was included on every gel to allow cross gel comparison. After
223	electrophoresis, the gel was imaged using a Gel-Doc XR system (Bio-Rad, UK) and the image analysed
224	using FPQuest gel analysis software V4.5 (Bio-Rad, UK). A dendrogram was obtained from the
225	comparison of ERIC-PCR profiles, using the Dice coefficient, and clustered by the unweighted pair
226	group method with arithmetic averages (UPGMA) with 1.5% of optimization and 1.5% of tolerance
227	to display the dendrogram. Molecular variance framework (AMOVA; Excoffier et al. 1992) was used
228	to analyse the confidence of the selected similarity threshold and the significance of clusters. The
229	AMOVA calculation was carried out using GenAlEx v 6.5b5 software (Peakall and Smouse 2006). The
230	significance was examined with the calculation of ΦPT , a measure of population differentiation that
231	suppresses intra-individual variation. In the case of AMOVA, the null hypothesis (H0; ΦPT = 0) meant
232	that there was no genetic difference among the populations and the alternative hypothesis (H1; Φ PT
233	>0) meant there are genetic differences amongst the populations.

234

235 **Results**

236 Samples

237 *E. coli* strains were isolated from all of the farm samples using the different selective media; 126 out 238 of 155 isolates were confirmed as *E. coli*. Many of the colonies isolated on the ESBL CHROMagarTM

gave typical colony characteristics for *E. coli*, but the confirmation tests did not confirm this
identification and they were excluded from further analysis. Strain numbering is indicative of source
and medium of isolation: A designates a 2012 strain isolated on TBX; B designates 2014 isolates: BL
liquid slurry, BS slurry solids, BC cattle faeces from the cow barn; a further suffix C designates CTX
agar, suffix E is CHROMagar ESBL, no suffix is TBX without antibiotic selection. For the 2012 strains,
numbers following A indicate sampling site: 1 and 2 designate the slurry tank, 3 solid cow faeces, 4
liquid exudates from solid faeces, and 5 separated solid slurry.

247 Antibiotic Resistance

248	One hundred and twenty six (2012/14) confirmed <i>E. coli</i> isolates from TBX, TBX + CTX and
249	CHROMagar ESBL were tested against 17 antibiotics (representing seven antibiotic groups) using
250	standard disc diffusion antibiotic sensitivity tests (Table 1). Only 7.9% of isolated strains were
251	sensitive to all antibiotics whereas 92% showed resistance to at least 1 antibiotic of which 27.8%,
252	(35) of the isolates were isolated on TBX and showed resistance to at least one antibiotic. 57.9% (73)
253	of the isolates were multidrug resistant (MDR- as defined in Magiorakos et al. 2012) and showed
254	resistance to three or more antibiotics from three different antibiotic groups. The resistance profile
255	of MDR strains ranged from 3-15 antibiotics Figure 1 and 2). The isolate with the highest number of
256	resistances (BCC2) (Figure 3) was sensitive only to imipenem and ceftazidime. The highest
257	percentages for MDR isolates were from solid slurry, 26.1% (33 isolates); then cow accommodation
258	slurry, 19.8% (25 isolates) and from liquid slurry 11.9% (15 isolates).
259	With regard to the prevalence of resistance to each antibiotic, Figure 2 shows the percentage of
260	strains resistant to each tested antibiotic. Amongst the strains tested, the highest percentage
261	resistance was to ampicillin (56.3%), followed by oxytetracycline, streptomycin, and sulphonamide
262	(41.1%, 39.6%, and 37.3% respectively). Dihydrofolate reductase inhibitors, such as trimethoprim

FEMS Microbiology Ecology

263	were tested in combination with sulfamethoxazole and 12.6% of the <i>E. coli</i> isolates were resistant to
264	this combination, while the resistance to chloramphenicol and nitrofurantoin was 8.7% for both. It is
265	worth noting that ampicillin was one of the most widely used antibiotics for veterinary use in the UK
266	between 2006-2011, as well as tetracycline and trimethoprim/sulphonamides (DEFRA 2012).
267	Furthermore, the isolates showed a range of resistance to different antibiotics from the
268	cephalosporin family: 38%, 14.2% and 23% were resistant to cefotaxime, ceftazidime and ceftiofur,
269	respectively, which are all third generation cephalosporins, while 11.1% of the isolates were
270	resistant to cefquinome, which is a fourth generation cephalosporin. This is not surprising as
271	approximately 48% (59 isolates were from selective media: 15 from CHROMagar ESBL and 44 from
272	TBX+CTX) of the isolates were directly selected on media containing beta-lactam antibiotic
273	supplements. Quinolone antibiotics were still largely effective against these strains, with only 3.1%
274	of the <i>E. coli</i> isolates resistant to both ciprofloxacin (CIP) and enrofloxacin (ENR). 1.6% (2) of the <i>E.</i>
275	coli isolates were phenotypically resistant to imipenem (IMP), with 3.2% (4) showing intermediate
276	sensitivity, but subsequent characterization of the imipenem resistant strains showed this resistance
277	was not stable. The highest intermediate resistance was against streptomycin (S10) (36.5%) and
278	aztreonam (ATM) (23.8%).
279	
280	Clustering of Antibiotic Sensitivity
281	When the antibiotic resistance profile of each <i>E. coli</i> strain was clustered (Figure 3) using the

- heatmap.2 function of the R statistical package, the analysis showed that, with some exceptions, the
- 283 isolates mainly clustered together based on the selective medium which was used to isolate them.
- 284 The strains isolated on TBX medium and then tested for antibiotic resistance were more diverse in
- their resistance patterns than those isolated on TBX+CTX. The latter clustered in two groups with the
- 286 majority of isolates showing clustered resistance to ampicillin (AMP), streptomycin (S10),
- 287 oxytetracycline (OT) amoxicillin-clavulanic acid (AMC) and sulphonamide (S300). The majority of

FEMS Microbiology Ecology

288	those isolated on CHROMagar ESBL formed a closely related resistance cluster, with ESBL resistance
289	to cefquinome (CFQ), ceftiofur (EFT), ceftazidime (CAZ), cefotaxime (CTX) and aztreonam (ATM)
290	(Figure 3). Several strains that were isolated on TBX +CTX (BCC1, BSC22) or TBX (BS9) clustered with
291	the CHROMagar isolates, and showed this same cluster of resistances while some CHROMagar ESBL
292	isolates which clustered in the TBX cluster (BSE1, 7, 3, 5, 9, 4) lacked them.
293	
294	Phenotyping and PCR typing of ESBL resistances and genes
295	ESBL/AmpC phenotypes were tested in the 53 strains that were found to be resistant to cefotaxime/
296	ceftazidime in the initial antibiotic sensitivity assays (Table 3). These tests showed that 25/53
297	(47.1%) strains were phenotypically ESBL using the confirmatory test kits. The strains were also
298	tested by PCR for the presence of bla_{CTX-M} , bla_{TEM} , bla_{OXA1} and $_{OXA2}$, or bla_{SHV} beta lactamases. No bla_{SHV}
299	beta-lactamases were detected, but <i>bla</i> _{CTX-M} (22.6%; 12 positive) and <i>bla</i> _{TEM} (7.5%; 4 positive) were
300	both detected in the ESBL isolates, including examples of both in the same isolate (BCE3 and BCC2),
301	<i>bla</i> _{OXA1} was present in two (3.7%) isolates, but not in the ESBL isolates, as well as two of the isolates
302	that were positive for TEM but were not phenotypically ESBL: BS7 and A2.5 (Figure 3).
303	Phenotypic AmpC resistance was identified in 36 isolates, initially by the lack of activity of cefepime
304	against these strains. This was further confirmed when the cefoxitin disc assay showed no activity
305	against the strain. However, cefoxitin resistance can be due to decreased cell wall permeability
306	(Brenwald et al. 2005); so full confirmation was if the inhibition zone diameter for CTX and CAZ discs
307	compared to CTX + cloxacillin, and CAZ + cloxacillin was \geq 5-mm larger than in the discs containing
308	antibiotic alone, as AmpC activity against cephalosporins is inhibited by cloxacillin. Eight isolates
309	(15.0%) had both ESBL and AmpC activity; those strains were BCC12, BCC7, BLC5, BSC14, BSC19,
310	BSC3, BSC4 and BSC9 (Figure 4 and Table 3). PCR tests for the presence of plasmid <i>ampC</i> genes from
311	the six major families: ACC, FOX, MOX, DHA, EBC and CIT, were negative for all 36 of the

.

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

312	phenotypically AmpC strains, suggesting that the AmpC phenotype in the farm <i>E. coli</i> isolates was
313	chromosomal gene hyperproduction.
314	
315	Genotyping of <i>E. coli</i> strains using ERIC PCR
316	The similarity of the ERIC-PCR profiles of the <i>E. coli</i> isolates from different sampling sites was
317	analysed, and cluster analysis divided strains into six main groups at a 50% similarity threshold which
318	cluster significance analysis demonstrated were non-overlapping and hence genomically
319	independent groups (cluster significance ΦPT=0.48; P<0.001). There was no significant association of
320	clusters with source of isolation, with most groups containing isolates from all three sources: cow
321	barns, slurry tank and solid slurry. Some solid slurry isolates did associate closely in separate
322	clusters in groups IV and V, suggesting this distinct genotype may be partitioning with the solids.
323	Noticeably there was little correspondence of ERIC clusters with the clusters generated in the
324	antibiotic resistance heat map (Figures 3 and 5). Groups of strains with identical ERIC profiles such
325	as BC12, BC14, BC15, BC7, BL15, BLC4, BS10, BS9, were widely dispersed in the resistance
326	dendrogram. Similarly strains showing close similarity in their resistance profile were not always
327	related at the genomic level. Hence the multidrug resistant strains that were resistant to AMP, S10,
328	OT, S300 and AMC do not represent a genomically clonal group. This suggests that this co-resistance
329	may be due to a mobile genetic element which has transferred between multiple strains. A further
330	example is seen in strains BSC7, BSC18, BSC20, all from solid slurry samples and all with the same
331	ERIC profile; strain BSC20 is sulphonamide-trimethoprim (SXT) resistant, which the other two strains
332	are not and could demonstrate gene acquisition e.g. through a resistance plasmid. There were many
333	similar examples of strains with identical (ie 100%S) ERIC profiles showing variability in their
334	resistances. This suggests that in this environment there is a genomically variable <i>E. coli</i> population
335	in which there is conservation of antimicrobial resistance carrying genetic elements. This was
336	further substantiated by comparison of the 2014 isolates with the 20 E. coli strains from the

preliminary study in 2012. In comparison to the 2014 isolates, the ERIC profiles of the 2012 isolates (A-strains) partitioned them into a separate group on the dendrogram (Figure 5), showing them to be a quite distinct genetic population; all these strains were isolated on TBX agar without antibiotic selection, and whilst there was some subclustering of this group of isolates on the resistance heat map (Figure 3), not all isolates clustered together. Strain A2.5 from 2012 (VI group) isolated from the slurry tank showed multiresistance to 11 antibiotics including the AMP, S10, OT, S300 and AMC multiresistance phenotype seen amongst the 2014 strains and this isolate clustered together with these 2014 strains on the resistance heat map (Figure 3). This again is suggestive of conservation of the genetic determinant(s) over 2 years, rather than conservation of a clonal line.

Discussion

Escherichia coli is a common enteric commensal, specific strains of which can cause human and animal disease. It is one of the group of seven species that the WHO has highlighted as of key AMR concern and serves as a sentinel organism for antimicrobial resistance development. Of particular concern has been the emergence and spread of ESBL producing E. coli associated with cattle and other farm animals (Liebana et al. 2013). The recent report of transferable colistin resistance in commensal E. coli from farm animals and the presence of the same resistance genes in isolates from meat and E. coli and Klebsiella pneumoniae from patients has highlighted the threat that resistance genes originating in animals can subsequently be spread to humans (Liu et al. 2015). In this study we determined the antibiotic resistance pattern of *E. coli* strains isolated from different cattle slurry sources in a dairy farm unit, with a focus on ESBL mediated resistance. On this farm (as will be the case in others worldwide) different types of antibiotics are being given to treat the cattle,

among different species of bacteria. To our knowledge, similar studies on MDR *E. coli* from cattle

FEMS Microbiology Ecology

3
4
т Б
0
0
1
8
9
10
11
12
13
14
15
16
10
1/
18
19
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
50
51
52 50
53
54
55
56
57
58
59
60

361	slurry within one dairy farm have not been performed, or have been performed with different
362	methodology or materials, such as the antibiotics that were used to challenge the strains.
363	Comparison with other studies would not necessarily give the same patterns of resistance, as each
364	farm has a different management regime regarding housing the cattle, the type of cattle, their
365	nutrition and veterinary treatments, disposal of antibiotic-contaminated mastitic milk, use of
366	disinfectants and other antimicrobials, and slurry handling. Studying resistance to different groups of
367	antibiotics in a sentinel species (<i>E. coli</i>) has given us an indication of the reservoir of resistance that
368	is present in the farm bacterial population. It is worth mentioning that the source of the isolates is a
369	well-managed farm with complete records of the antibiotics that are being used for disease
370	treatment.
371	This study showed that MDR <i>E. coli</i> were present in all samples. However, the faecal samples from
372	the barns and the solid slurry carried more resistant isolates compared to samples from the liquid
373	slurry. This might be due to the dilution that happens to the bacterial levels contained in the slurry
374	tank, as wastewater from cleaning the barns and the milking equipment is disposed of into the slurry
375	tank, and the slurry tank is open-topped and receives rain water.
376	The total percentage of MDR strains resistant to 3 or more antibiotics was 57.9% (73 isolates)
777	(including ECDL registrance and registrance to other antibiotics) of which 42 6% (EE isolates) were

(including ESBL resistance and resistance to other antibiotics) of which 43.6% (55 isolates) were 377 378 strains that were isolated using extend spectrum cephalosporin ESC selective media (TBX + CTX and 379 CHROMagar ESBL), whilst the percentage of MDR E. coli isolated on TBX without antibiotic selection 380 was 14.2% (18 isolates) (to all tested antibiotics). This difference will reflect the effectiveness of the 381 direct selection method, and may also be due to the difference in prevalence of MDR E. coli between 382 different sampling times. This was in line with another study which found that ESBL-producing E. coli 383 can be isolated from cattle farms more than twice as often using selective enrichment procedures 384 (Schmid et al. 2013). What was surprising was that the different isolation media isolated different 385 subpopulations of resistant E. coli from the same samples. The same multiple antibiotic resistances

were more frequently seen when an extended spectrum cephalosporin antibiotic (ESC) was used forselective isolation.

The presence of ESBL-mediated resistance in the isolates was not surprising given the use of cephalosporins for mastitis treatment in the herd. What was more unexpected was the level of resistance carriage to older antibiotics, with resistance to oxytetracycline, streptomycin and sulphonamide seen in over a third of strains. Co-acquisition of these resistance genes with ampicillin resistance was strongly indicated in TBX+CTX isolates (Figure 3) and may indicate the presence of a multi-resistance genetic element present in these isolates. Schmid et al. (2013) found ESBL E. coli from some farms which did not use β -lactam antibiotics and they suggested that the presence of such isolates is due to using other classes of antibiotics that can select for ESBLs as well. In a previous study of *E. coli* strains isolated from cattle, most strains were resistant to ampicillin (64%), tetracycline (74%), streptomycin (60%), sulphonamide (76%) with low occurrence (1%) of enrofloxacin resistance (EMEA 1999). In a later study by Nováková et al. (2009), all the E. coli isolates from dairy calves and lambs showed multi-resistance to tetracycline, streptomycin and compound sulphonamides with less resistance to enrofloxacin (Nováková et al. 2009). The resistance patterns observed in the current study mirror these findings, and resemble a historical record of antibiotic use and development of resistance to them (Toleman and Walsh 2011), and may represent a genetic archaeology of the use of veterinary antimicrobials. According to Jacoby and Sutton (1991), resistance determinants against aminoglycosides, tetracycline, sulphonamides and cephalosporins, are often situated on the same plasmid. Metagenomics, PCR and exogenous plasmid isolation studies of cow manure have also detected diverse resistance genes (Jacoby and Sutton 1991; van Overbeek et al. 2002; Wichmann et al. 2014). Plasmids and transposons that carry multi antimicrobial resistance genes can also carry genes mediating resistance to toxic metals, virulence, and metabolic functions, for example Tn1691 specifies resistance to mercury as well as to some antibiotics: streptomycin, sulphonamides,

1

FEMS Microbiology Ecology

2
3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
16
17
18
10
19
2U
21
22
23
24
25
26
27
28
20
20
21
31
32
33
34
35
36
37
38
39
40
<u>4</u> 0
41
42 40
43
44
45
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59
60

411 chloramphenicol (Barbosa and Levy 2000). This could indicate that there are factors other than 412 veterinary medicines leading to retention of antibiotic resistances within the dairy herd and the farm 413 environment.

The finding that two strains were resistant to imipenem was unexpected and of concern. 415 Confirmatory testing of these isolates showed initial retention of imipenem resistance but on further 416 retesting the strains reverted to imipenem sensitivity, a phenomenon which has been reported 417 elsewhere (Villa et al. 2013) and which can be associated with loss of plasmid carriage of genes. 418 The most frequently encountered ESBL genes in Enterobacteriaceae belong to the TEM, SHV and 419 CTX-M families (Paterson and Bonomo 2005), and the number of novel gene variants is still 420 increasing as different genes are being described (http://www.lahey.org/studies/). This study 421 showed the presence in ESBL *E. coli* in one dairy farm of *bla*_{CTX-M} (12 strains), and *bla*_{TEM} (4 strains), 422 bla_{OXA} (2 strains) but not bla_{SHV} and presence of E. coli carrying chromosomal ampC resistance. Nine 423 of the 12 *bla_{CTX-M}* positive, and one of the four *bla_{TEM}* positive *E. coli* strains were isolated on 424 CHROMagar ESBL, although six of the other strains isolated on this medium were not positive for 425 bla_{CTX-M} and bla_{TEM}. In two cases E. coli isolates (BCE3 and BCC2) were shown to carry both bla_{CTX-M}, 426 and *bla*_{TEM}. Thirty six isolates were confirmed as having resistance phenotypes consistent with 427 hyperproduction of AmpC. The phenotypic differentiation between plasmid-borne and chromosomal 428 AmpC resistance in *E. coli* is difficult. Although the AmpC β -lactamase enzyme is normally encoded 429 by a non-inducible chromosomal gene (Honore et al. 1986; Philippon et al. 2002; Jacoby and Munoz-430 Price 2005; Jacoby 2009), hyper-production can arise, either by mutations at the *ampC* attenuator or 431 promoter regions, or by gene amplification (Caroff et al. 1999; Nelson and Elisha 1999; Philippon et 432 al. 2002). In bacteria that lack chromosomal *ampC*, phenotypic differentiation is easier, as the 433 difference in beta-lactamase activity between ESBL and AmpC strains can be seen in the difference 434 in sensitivity towards cefoxitin (to which AmpC is resistant) and Beta lactamase inhibitor 435 combinations: clavulanic acid and EDTA (to which ESBL is sensitive)(Black et al. 2005; EUCAST 2013).

436	However, because no plasmid AmpC was detected in these farm isolates, resistance is likely to be
437	due to mutations in the E. coli chromosomal ampC attenuator or promoter regions. In a study which
438	used different phenotypic confirmation kits to differentiate between ESBL and AmpC, it was found
439	that, out of 66 isolates, 58 isolates showed activity against cefepime and cefepime plus clavulanate,
440	and 38 isolates showed CAZ activity; none of the AmpC strains showed activity against cefepime
441	(Hansen et al. 2012). Besides, class D (OXA-type) ESBLs are poorly inhibited by clavulanic acid and
442	therefore cannot be detected by the methods described here (Drieux <i>et al.</i> 2008; Naas <i>et al.</i> 2008).
443	Complicated ESBL gene carriage patterns have been found elsewhere. In a study performed on a
444	farm suffering from calf scour it was found that amongst <i>E. coli</i> isolates that were resistant to
445	cefotaxime, in addition to the isolates that were positive for CTX and TEM, 5/48 calf and 28/60 cow
446	isolates were bla_{CTX} and bla_{TEM} -negative, and sequence analysis confirmed that these had mutations
447	in the promoter region of the chromosomal <i>ampC</i> gene (Liebana <i>et al.</i> 2006).
448	Dissemination of CTX-M genes via the food chain may also happen. In another study, on E. coli
449	harbouring CTX-M genes and quinolone resistance genes, detected in healthy animals from a Czech
450	zoological garden, the authors imply that the reason that zoo animals are carrying these genes may
451	be due to spreading of MDR E. coli via the food chain according to their molecular analysis of the
452	isolates (Dobiasova et al. 2013). In a study carried out on E. coli from farms in the UK, it was found
453	that <i>E. coli</i> transconjugants harbouring <i>bla</i> _{CTX-M} genes from cattle, chicken and turkey isolates were
454	carrying 10, 8 and 7 other antimicrobial resistance genes respectively, and these mainly encoded
455	resistances to older antibiotics. This study suggested that chicken and cattle CTX-M E. coli represent
456	different populations (Toszeghy et al. 2012), and in a separate study, where there was the use of 3rd
457	or 4th generation cephalosporin (ceftiofur and cefquinome) in livestock for 12 months prior to the
458	analysis, <i>E. coli</i> isolates were nearly four times more likely to be ESBL positive (Snow <i>et al.</i> 2012).
459	Samples from different sources have also been used to detect only ESBL genes, in this case the
460	samples were faecal samples from pigs, cattle, chicken and sheep which were investigated at

FEMS Microbiology Ecology

461	slaughter. Only 13.7% of the bovine faeces samples showed positive ESBL producers (Geser et al.
462	2012). Each farm has different policies, which can affect the prevalence of antimicrobial resistance.
463	Watson and co-workers found that the increased prevalence of the CTX-M-15 E. coli in certain cattle
464	groups and farm environments including calving pens was related to the husbandry, antimicrobial
465	usage and hygiene (Watson et al. 2012).
466	ERIC PCR has been used as a reliable method to differentiate between different genotypes of <i>E. coli</i>
467	(Duan et al. 2009). There was no absolute distinction between isolate sources using ERIC PCR, as
468	different isolates from different sources are found in most of the ERIC groups, except for group II
469	and V and subgroup A of group IV that do not include any isolates from the slurry tank (Figure 5).
470	This result is not surprising as all tested materials ultimately originated from the same source i.e. the
471	cows. However, there was a significant difference (P \leq 0.001 using the AMOVA test) between the
472	isolates from different sampling times, i.e. between group VI (2012) and the others (2014). Previous
473	studies of <i>E. coli</i> from cattle faeces and farm environments showed strains were clonally related and
474	carried the same CTX-M genes which were also seen in cultivated soil that was amended with
475	manure one year before (Hartmann et al. 2012). In the current study genotyping showed that there
476	was genomic diversity in the multi-resistant <i>E.coli</i> isolates with no evidence of clonal lines. In
477	addition identical genotypes had different antibiotic resistance profiles. Both these findings suggest
478	the presence of mobile resistance determinants in the population.
479	In conclusion the data from our study reflect a complex picture of resistance gene carriage within
480	the farm <i>E. coli</i> population with evidence of multiple antibiotic resistance gene carriage and ESBL
481	activity caused by different beta-lactamases, of which there are examples of co-carriage in individual
482	strains. There are common antibiotic resistance patterns with resistance to AMP, S10, OT, S300 and
483	AMC, and a subgroup of ESBL producing strains are also present. The strains we have isolated
484	represent a snapshot of the reservoir of resistance genes within the dairy herd and the farm
485	environment, carried in one species of Enterobacteriaceae (E. coli) on one farm. The resistance

profile of the isolates may reflect a historical accumulation of resistance genes, and represents the antibiotic "resistome" present as an environmental reservoir of bacteria, mobile elements and genes. This may aid the understanding of the environmental drivers which lead to the retention of a reservoir of resistance genes in the commensal bacterial population and hence control their spread. Further studies on the molecular basis of resistance amongst those isolates and the mobility of them are now needed. Acknowledgements This research has been funded by the University of Nottingham and the Kurdistan Regional Government by a KRG-HCDP scholarship to D.I. References Aarestrup FM, Ahrens P, Madsen M, Pallesen LV, Poulsen RL & Westh H (1996) Glycopeptide susceptibility among Danish Enterococcus faecium and Enterococcus faecalis isolates of animal and human origin and PCR identification of genes within the VanA cluster. Antimicrob Agents Chemother : 1938-1940. Aarestrup FM, Bager F, Jensen N, Madsen M, Meyling A & Wegener HC (1998) Resistance to antimicrobial agents used for animal therapy in pathogenic-, zoonotic-and indicator bacteria isolated from different food animals in Denmark: a baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP). Apmis 106: 745-770. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J & Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. *Nature Reviews Microbiology* 8: 251-259. Ashbolt N J, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze W. H & Heberer T (2013) Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect 121: 993-1001. Barbosa TM & Levy SB (2000) The impact of antibiotic use on resistance development and persistence. Drug Resist Update 3: 303-311.

Page 23 of 37

FEMS Microbiology Ecology

2		
3	513	Binh CT, Heuer H, Gomes NC, Kotzerke, A, Fulle, M, Wilke, BM, Schloter, M & Smalla, K (2007) Short-
4 5	514	term effects of amoxicillin on bacterial communities in manured soil. FEMS Microbiol Ecol 62: 290-
6 7	515	302.
8 9	516	Black JA, Moland ES & Thomson KS (2005) AmpC disk test for detection of plasmid-mediated AmpC
10 11	517	β -Lactamases in Enterobacteriaceae lacking chromosomal AmpC β -Lactamases. J Clin Microbiol 43 :
12 13	518	3110-3113.
14	519	Brenwald NP, Jevons G, Andrews J, Ang L & Fraise AP (2005) Disc methods for detecting AmpC eta -
16	520	lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae. J Antimicrob
17 18 19	521	Chemother 56 : 600-601.
20	522	Bush K & Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents
21 22 23	523	Chemother 54 : 969-976.
24 25	524	Caroff N, Espaze E, Berard I, Richet H & Reynaud A (1999) Mutations in the ampC promoter of
26	525	Escherichia coli isolates resistant to oxyimino-cephalosporins without extended spectrum beta-
27 28 29	526	lactamase production. FEMS Microbiol Lett 173: 459-465.
30	527	CLSI (2012) Performance standards for antimicrobial disk susceptibility tests; approved standard—
31 32 33	528	Eleventh Edition. Document M02-A11. Clinical and Laboratory Standards Institute, Wayne, PA, USA.
34	529	CLSI (2013a) Performance standards for antimicrobial susceptibility testing; Twenty-third
35 36 37	530	Informational Supplement. CLSI document M100-S23.
38	531	CLSI (2013b) (M31-A4) Performance standards for antimicrobial disk and dilution susceptibility tests
39 40	532	for bacteria isolated from animals; draft, 2013, and M31-S2 (2nd Informational Supplement),
41 42	533	provided by NEO-SENSITABS™ Document: 9.1.0 Veterinary practice according to CLSI breakpoints.
43 44	534	Collins C, Lyne P, Grange J & Falkinham J (2004) Identification methods. Collins and Lyne's
45 46 47	535	Microbiological Methods. 8th ed. Arnold.
47 48	536	Dallenne C, Da Costa A, Decre D, Favier C & Arlet G (2010) Development of a set of multiplex PCR
49 50	537	assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J
51 52	538	Antimicrob Chemother 65 : 490-495.
53 54	539	Davies S (2013) Annual report of the Chief Medical Officer, Volume Two, 2011, Infections and the
55 56 57 58 59	540	rise of antimicrobial resistance. Department of Health, London.

541	DEFRA (2012) Sales of antimicrobial products authorised for use as veterinary medicines in the UK in
542	2011. URL http://www.vmd.defra.gov.uk/pdf/salesanti11.pdf.
543	Dierikx CM, Van Duijkeren E, Schoormans AH, Van Essen-Zandbergen A, Veldman K, Kant A,
544	Huijsdens XW, Van Der Zwaluw K, Wagenaar JA & Mevius DJ (2012) Occurrence and characteristics
545	of extended-spectrum-beta-lactamase- and AmpC-producing clinical isolates derived from
546	companion animals and horses. J Antimicrob Chemother 67: 1368-1374.
547	Dobiasova H, Dolejska M, Jamborova I, Brhelova E, Blazkova L, Papousek I, Kozlova M, Klimes J, Cizek
548	A & Literak I (2013) Extended spectrum beta-lactamase and fluoroquinolone resistance genes and
549	plasmids among <i>Escherichia coli</i> isolates from zoo animals, Czech Republic. <i>FEMS Microbiol Ecol</i> 85:
550	604-611.
551	Drieux L, Brossier F, Sougakoff W & Jarlier V (2008) Phenotypic detection of extended-spectrum
552	beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 14
553	Suppl 1: 90-103.
554	Duan H, Chai T, Liu J, Zhang X, Qi C, Gao J, Wang Y, Cai Y, Miao Z, Yao M & Schlenker G. (2009)
555	Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and
556	REP-PCR. Environ Res 109: 511-517.
557	EMEA (1999) Antibiotic resistance in the European Union associated with the therapeutic use of
558	veterinary medicines. European Agency for the Evaluation of Medicinal Products. Report
559	EMEA/CVMP/342/99-Final. Veterinary Medicines Evaluation Unit, London.
560	EUCAST (2013) EUCAST guidelines for detection of resistance mechanisms and specific resistances of
561	clinical and/or epidemiological importance. EUCAST, Basel, Switzerland: http://www. eucast.
562	org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resista
563	nce_mechanisms_v1. 0_20131211. pdf.
564	Excoffier L, Smouse PE & Quattro JM (1992) Analysis of molecular variance inferred from metric
565	distances among DNA haplotypes: application to human mitochondrial DNA restriction data.
566	Genetics 131 : 479-491.
567	Geser N, Stephan R & Hachler H (2012) Occurrence and characteristics of extended-spectrum beta-
568	lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw
569	milk. <i>BMC Vet Res</i> 8 : 21.

FEMS Microbiology Ecology

2	F 7 0	
3	570	Ghosh S & LaPara TM (2007) The effects of subtherapeutic antibiotic use in farm animals on the
5	571	proliferation and persistence of antibiotic resistance among soil bacteria. <i>ISME J</i> 1: 191-203.
7	572	Hansen F, Hammerum AM, Skov RL, Giske CG, Sundsfjord A & Samuelsen O (2012) Evaluation of
9	573	ROSCO Neo-Sensitabs for phenotypic detection and subgrouping of ESBL-, AmpC- and
10 11	574	carbapenemase-producing Enterobacteriaceae. APMIS 120: 724-732.
12	575	Hartmann A, Locatelli A, Amoureux L, Depret G, Jolivet C, Gueneau E & Neuwirth C (2012)
14 15	576	Occurrence of CTX-M producing Escherichia coli in soils, cattle, and farm environment in France
16 17	577	(Burgundy Region). Front Microbiol 3 : 83.
18 19	578	Honore N, Nicolas MH & Cole ST (1986) Inducible cephalosporinase production in clinical isolates of
20	579	Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli.
21 22 23	580	EMBO J 5 : 3709-3714.
24	581	Hutchison ML, Walters LD, Moore A, Crookes KM & Avery SM (2004) Effect of length of time before
25 26	582	incorporation on survival of pathogenic bacteria present in livestock wastes applied to agricultural
27 28 20	583	soil. Appl Environ Microbiol 70 : 5111-5118.
30 31	584	Jacoby GA (2009) AmpC beta-lactamases. <i>Clin Microbiol Rev</i> 22 : 161-182.
32 33	585	Jacoby GA & Sutton L (1991) Properties of plasmids responsible for production of extended-
34 35	586	spectrum beta-lactamases. Antimicrobi Agents Chemother 35 : 164-169.
36 37 38	587	Jacoby GA & Munoz-Price LS (2005) The New β -Lactamases. <i>New England J Med</i> 352 : 380-391.
39	588	Liebana E, Batchelor M, Hopkins KL, Clifton-Hadley FA, Teale CJ, Foster A, Barker L, Threlfall EJ &
40 41	589	Davies RH (2006) Longitudinal farm study of Extended-Spectrum β -Lactamase-Mediated Resistance.
42 43	590	J Clin Microbiol 44 : 1630-1634.
44 45	591	Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D, Peixe L, Poirel L,
46	592	Schuepbach-Regula G, Torneke K, Torren-Edo J, Torres C & Threlfall J (2013) Public health risks of
47 48	593	enterobacterial isolates producing extended-spectrum beta-lactamases or AmpC beta-lactamases in
49	594	food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk
50 51 52	595	factors, and control options. Clin Infect Dis 56: 1030-1037.
53 54	596	Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu L-F, Gu D,
55	597	Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu J-H & Shen J (2015) Emergence of plasmid-mediated
56 57	598	colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and
58	599	molecular biological study. The Lancet Infect Dis, DOI: 10.1016/S1473-3099(15)00424-7.
59 60		24

~	
3	
4	
5	
6	
7	
0	
ð	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
22	
30	
37	
38	
39	
40	
11	
41	
42	
43	
44	
45	
46	
17	
41	
40	
49	
50	
51	
52	
53	
50	
54	
55	
56	
57	
58	
59	
60	

Livermore DM, Winstanley TG & Shannon KP (2001) Interpretative reading: recognizing the unusual
and inferring resistance mechanisms from resistance phenotypes. *J Antimicrob Chemother* 48 Suppl
1: 87-102.

Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, Harbarth S, Hindler J, Kahlmeter
 G & Olsson-Liljequist B (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant
 bacteria: an international expert proposal for interim standard definitions for acquired resistance.
 Clin Microbiol Infect 18: 268-281.

607 Moritz VA & Carson PB (1986) Cefoxitin sensitivity as a marker for inducible beta-lactamases. *J Med*608 *Microbiol* 21: 203-207.

Naas T, Poirel L & Nordmann P (2008) Minor extended-spectrum beta-lactamases. *Clin Microbiol Infect* 14 Suppl 1: 42-52.

- 611 NCCLS (2002) Performance standards for antimicrobial disk and dilution susceptibility tests for
- 612 bacteria isolated from animals; approved standard, 2nd ed. NCCLS document M31-A2. National
- 613 Committee for Clinical Laboratory Standards.Wayne,USA.
- 614 Nelson EC & Elisha BG (1999) Molecular basis of AmpC hyperproduction in clinical isolates of
 615 *Escherichia coli. Antimicrob Agents Chemother* 43: 957-959.
- 616 Nováková I, Kačániová M, Haščík P, Pavličová S & Hleba L (2009) The resistance to antibiotics in
- 617 strains of *E. coli* and *Enterococcus* sp. isolated from rectal swabs of lambs and calves. *Scientific*
- 618 Papers Animal Science and Biotechnologies **42**: 322-326.
- 619 O'Neill J (2015) Antimicrobials in agriculture and the environment: reducing unnecessary use and 620 waste. *Rev Antimicrob Resist*. http://amr-review.org/
 - 621 Paterson DL & Bonomo RA (2005) Extended-spectrum beta-lactamases: a clinical update. *Clin*622 *Microbiol Rev* 18: 657-686.
- 623 Peakall ROD & Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software
 624 for teaching and research. *Mol Ecol Notes* 6: 288-295.
- 625 Peter-Getzlaff S, Polsfuss S, Poledica M, Hombach M, Giger J, Böttger E, Zbinden R & Bloemberg G
- 626 (2011) Detection of AmpC beta-lactamase in *Escherichia coli*: comparison of three phenotypic
- 627 confirmation assays and genetic analysis. *J Clin Microbiol*. **49**: 2924-2932.

FEMS Microbiology Ecology

3	628	Pfeifer Y, Cullik A & Witte W (2010) Resistance to cephalosporins and carbapenems in Gram-negative
4 5	629	bacterial pathogens. Int J Med Microbiol 300: 371-379.
6		
7 8	630	Philippon A, Arlet G & Jacoby GA (2002) Plasmid-determined AmpC-type beta-lactamases.
9	631	Antimicrob Agents Chemother 46 : 1-11.
10	632	Schmid A, Hörmansdorfer S, Messelhäusser U, Käsbohrer A, Sauter-Louis C & Mansfeld R (2013)
12 13	633	Prevalence of Extended-Spectrum β-Lactamase-Producing <i>Escherichia coli</i> on Bavarian dairy and
14	634	beef cattle farms. Appl Environ Microbiol 79 : 3027-3032.
15 16		
17	635	Shpigel N, Levin D, Winkler M, Saran A, Ziv G & Böttner A (1997) Efficacy of cefquinome for
18 19	636	treatment of cows with mastitis experimentally induced using Escherichia coli. J Dairy Sci 80: 318-
20 21	637	323.
22	638	Snow LC, Warner RG, Cheney T, Wearing H, Stokes M, Harris K, Teale CJ & Coldham NG. (2012) Risk
23 24	639	factors associated with extended spectrum beta-lactamase <i>Escherichia coli</i> (CTX-M) on dairy farms in
25 26	640	North West England and North Wales. Prev Vet Med 106: 225-234.
27	~ • •	
28 29	641	Toleman MA & Walsh TR (2011) Combinatorial events of insertion sequences and ICE in Gram-
30 31	642	negative bacteria. FEMS Microbiol Rev 35: 912-935.
32	643	Toszeghy M, Phillips N, Reeves H, Wu G, Teale C, Coldham N & Randall L (2012) Molecular and
33 34	644	phenotypic characterisation of extended spectrum beta-lactamase CTX-M Escherichia coli from farm
35 36	645	animals in Great Britain. Res Vet Sci 93: 1142-1150.
37 38	646	van den Bogaard AEJM, London N & Stobberingh EE (2000) Antimicrobial resistance in pig faecal
39 40	647	samples from The Netherlands (five abattoirs) and Sweden. J Antimicrob Chemother 45 : 663-671.
40 41		
42	648	van Overbeek LS, Wellington EM, Egan S, Egan S, Smalla K, Heuer H, Collard JM, Guillaume G,
43 44	649	Karagouni AD, Nikolakopoulou TL & van Elsas JD (2002) Prevalence of streptomycin-resistance genes
45 46	650	in bacterial populations in European habitats. FEMS Micro Ecol 42: 277-288.
47	651	Versalovic J. Koeuth T & Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and
48 49	652	application to fingerprinting of bacterial genomes. <i>Nucleic Acids Res</i> 19 : 6823-6831.
50 51		
52	653	Villa L, Capone A, Fortini D, Dolejska M, Rodriguez I, Taglietti F, De Paolis P, Petrosillo N & Carattoli A
53 54	654	(2013) Reversion to susceptibility of a carbapenem-resistant clinical isolate of Klebsiella pneumoniae
55	655	producing KPC-3. <i>J Antimicrob Chemother</i> 68 : 2482-2486.
56 57		
58 59		
59		

656	Watson E, Jeckel S, Snow	., Stubbs R, Teale C	, Wearing H, Horton R,	Toszeghy M, Tearne O, Ellis-
-----	--------------------------	----------------------	------------------------	------------------------------

- Iversen J & Coldham N (2012) Epidemiology of extended spectrum beta-lactamase E. coli (CTX-M-
- 15) on a commercial dairy farm. Vet Microbiol 154: 339-346.
- Wellington EMH, Boxall ABA, Cross P, Feil EJ, Gaze WH, Hawkey, PM, Johnson-Rollings AS, Jones DL,
- Lee NM, Otten W, Thomas CM. & Williams AP (2013) The role of the natural environment in the
- emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infect Dis 13: 155-165.
- Wichmann F, Udikovic-Kolic N, Andrew S & Handelsman J (2014) Diverse antibiotic resistance genes
- in dairy cow manure. *MBio* **5**: e01017-01013.

Multidrug and extended spectrum beta-lactamase resistant *Escherichia coli* isolated from a dairy farm.

Figure 1. Percentages of MDR *E.coli* resistant to different numbers of antibiotics.

Figure 2. Percentage sensitivity to 17 antibiotics for 126 E. coli farm isolates.

Blue bar indicates sensitive, red bar indicates intermediate sensitivity, green bar indicates lack of sensitivity, using CLSI (2013a,b) definitions. The Y axis represents the percentage of isolates.

Figure 3. Heatmap representation of zone of growth inhibition surrounding antibiotic assay discs to 17 antibiotics for 126 *E. coli* isolates.

The size of the zone of clearing around the antibiotic discs is represented by the colour spectrum in the diagram, with red representing no zone of clearing (not sensitive), red through to orange (resistant- zone of clearing 10-22mm depending on antibiotic), orange to yellow (sensitive-zone of clearing 17-27mm depending on antibiotic) and yellow to white representing a zone of clearing of 30-37mm). A zone of >37mm indicates highly sensitive -white. Presence of bla_{CTX-M} or bla_{TEM} or bla_{OXA} is indicated by solid black lines, dotted blue lines, or solid red lines respectively. Notation of the antibiotics is as described in Table 1. The strain designation is described in the text. TBX, TBX + CTX (cefotaxime) and CHROMagar ESBL represent the media used to isolate the strains. Strain numbers in blue typeface indicate strains which were not isolated on the same medium as other strains in the cluster.

Figure 4. Percentages for ESBL and AmpC phenotypes amongst *E. coli* isolates resistant to cefotaxime.

Figure 5. Dendogram of ERIC PCR profiles using Dice similarity coefficient and UPGMA cluster analysis for *E. coli* isolates.

Clustering of ERIC-PCR profiles for *E. coli* isolates from the same farm using the Dice coefficient and UPGMA as described in Methods. Clusters I-VI were formed at 50% similarity as designated using AMOVA analysis. Subclusters A, B and C of cluster IV were designated at 60%. Strain designation is described in the text. Antibiotic notation is as in Table 1.The horizontal blue line divides each main group I-VI which clustered at 50% similarity threshold, which is indicated by the vertical blue line. The red line subdivides group IV into its subclusters.

Table 1: Antibiotic assay discs, abbreviations, and amount of antibiotic contained in each disc.

Beta-lactamsAmpicillin (AMP)10μgAmoxicillin-clavulanic acid (AMC)20/10 μgCefotaxime (CTX)30 μgCeftazidime (CAZ)30 μgAztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftofur (EFT)30 μgAminoglycoside5Streptomycin (S10)10μgQuinolones0Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulfonamide (S300)300 μgPhenicol1.25/ 23.75 μgChloramphenicol (C)30 μgPhenicol0Chloramphenicol (C)30 μgNitrofuran derivative300 μgNitrofurantoin (F)300 μg	Beta-lactamsAmpicillin (AMP)10μgAmoxicillin-clavulanic acid (AMC)20/10 μgCeftazidime (CAZ)30 μgCeftazidime (CAZ)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycoside	Beta-lactamsAmpicillin (AMP)10μgAmoxicillin-clavulanic acid (AMC)20/10 μgCefotaxime (CTX)30 μgCeftazidime (CAZ)30 μgAztreonam (ATM)30 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgCeftiofur (EFT)30 μgCeftoionees	Beta-lactamsAmpicillin (AMP)10μgAmoxicillin-clavulanic acid (AMC)20/10 μgCeftotaxime (CTX)30 μgCeftotaxime (CAZ)30 μgAxtreonam (ATM)30 μgCefquinome (CFQ)30 μgCeftofur (FT)30 μgCeftofur (FT)30 μgCeftorowne (CFQ)30 μgCeftorowne (CFQ)30 μgCeftorowne (CFQ)5 μgStreptomycin (S10)10μgQuinolones	ANTIBIOTIC Discs	Content		
Ampicillin (AMP)10μgAmpicillin-clavulanic acid (AMC)20/10 μgCefotaxime (CTX)30 μgCeftazidime (CA2)30 μgAztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiour (EFT)30 μgAminoglycoside5Streptomycin (S10)10 μgQuinolones6Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulfonamide (S300)300 μgPhenicol6Chloramphenicol (C)30 μgNitrofuran derivative300 μgNitrofurantoin (F)300 μg	Ampicillin (AMP)10μgAmpicillin-clavulanic acid (AMC)20/10 μgCeftaxime (CTX)30 μgCeftazidime (CAZ)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftidrur (EFT)30 μgAminoglycoside5Streptomycin (S10)10μgCiprofloxacin (CIP)5 μgEnrofloxacin (CIP)5 μgSulphonamide/complex1.25/23.75 μgTrimethoprim-sulfamethoxazole1.25/23.75 μgSulfonamide (S300)300 μgPhenicolChloramphenicol (C)Oxytetracycline0Oxytetracycline (OT)30 μgNitrofurantoin (F)300 μg	Ampicillin (AMP)10μgAmpicillin-clavulanic acid (AMC)20/10 μgCefotaxime (CTX)30 μgAztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycosideStreptomycin (S10)Streptomycin (CIP)5 μgEnrofloxacin (CIP)5 μgInfibenem (IMAR)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μgSulfonamide (S300)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgNitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	Ampicillin (AMP)10μgAmpicillin-clavulanic acid (AMC)20/10 μgCefotaxime (CTX)30 μgCeftazidime (CAZ)30 μgAztreonam (ATM)30 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycoside	Beta-lactams		-	
Amoxicillin-clavulanic acid (AMC)20/10 μgCefotaxime (CTX)30 μgCeftazidime (CAZ)30 μgAztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycosideStreptomycin (S10)10 μgQuinolonesCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgSulphonamide/complexTrimethoprim-sulfamethoxazole1.25/23.75 μgSulfonamide (S300)300 μgPhenicolChloramphenicol (C)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Amoxicillin-clavulanic acid (AMC)20/10 μgCefotaxime (CTX)30 μgCeftazidime (CAZ)30 μgAztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycosideStreptomycin (S10)Streptomycin (S10)10 μgQuinolonesCiprofloxacin (CIP)Ciprofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μgSulfonamide (S300)300 μgPhenicolChloramphenicol (C)Oxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	Amoxicillin-clavulanic acid (AMC)20/10 μgCeftazidime (CTX)30 μgCeftazidime (CAZ)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCettiofur (EFT)30 μgAminoglycoside5Streptomycin (S10)10 μgCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgSulphonamide/complex7Trimethoprim-sulfamethoxazole1.25/23.75 μgSulfonamide (S300)300 μgPhenicol0Chloramphenicol (C)30 μgNitrofuran derivative30 μgNitrofurantoin (F)300 μg	Amoxicillin-clavulanic acid (AMC)20/10 μgCeftazidime (CAZ)30 μgCeftazidime (CAZ)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftidiru (EFT)30 μgAminoglycoside	Ampicillin (AMP)	10ug	-	
Cefotaxime (CTX)30 µgCeftazidime (CAZ)30 µgAztreonam (ATM)30 µgImipenem (IMP)10 µgCefquinome (CFQ)30 µgCeftiofur (EFT)30 µgAminoglycoside5Streptomycin (S10)10µgQuinolones6Ciprofloxacin (CIP)5 µgEnrofloxacin (ENR)5 µgNalidixic acid (NA)30 µgSulphonamide/complex1.25/23.75 µgTrimethoprim-sulfamethoxazole1.25/23.75 µg(SXT)30 µgPhenicol6Chloramphenicol (C)30 µgNitrofuran derivative300 µgNitrofurantoin (F)300 µg	Cefotaxime (CTX)30 μgCeftazidime (CAZ)30 μgAztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycoside	Cefotaxime (CTX)30 µgCeftazidime (CAZ)30 µgAztreonam (ATM)30 µgImipenem (IMP)10 µgCefquinome (CFQ)30 µgAminoglycosideStreptomycin (S10)Streptomycin (S10)10µgQuinolonesCiprofloxacin (CIP)Ciprofloxacin (CIR)5 µgNalidixic acid (NA)30 µgSulfonamide/complex1.25/ 23.75 µgTrimethoprim-sulfamethoxazole1.25/ 23.75 µgSulfonamide (S300)300 µgPhenicolChoramphenicol (C)Oxytetracycline (OT)30 µgNitrofuran derivativeNitrofurantoin (F)Sulfonantoin (F)300 µg	Cefotaxime (CTX)30 µgCeftazidime (CAZ)30 µgAztreonam (ATM)30 µgImipenem (IMP)10 µgCefquinome (CFQ)30 µgCeftiofur (EFT)30 µgAminoglycoside	Amoxicillin-clavulanic acid (AMC)	20/10 µg		
Ceftazidime (CAZ)30 µgAztreonam (ATM)30 µgImipenem (IMP)10 µgCefquinome (CFQ)30 µgCeftiofur (EFT)30 µgAminoglycoside5Streptomycin (S10)10µgQuinolones5Ciprofloxacin (CIP)5 µgEnrofloxacin (ENR)5 µgNalidixic acid (NA)30 µgSulphonamide/complex1.25/ 23.75 µgTrimethoprim-sulfamethoxazole1.25/ 23.75 µg(SXT)300 µgPhenicolCChloramphenicol (C)30 µgNitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 µg	Ceftazidime (CA2)30 μgAztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycoside5Streptomycin (S10)10μgQuinolones6Ciprofloxacin (ENR)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complex1.25/ 23.75 μgTrimethoprim-sulfamethoxazole1.25/ 23.75 μgChloramphenicol (C)30 μgOxytetracycline0Oxytetracycline (OT)30 μgNitrofuran derivative300 μgNitrofurantoin (F)300 μg	Ceftazidime (CA2)30 μgAztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftofur (EFT)30 μgAminoglycosideStreptomycin (S10)Streptomycin (S10)10 μgQuinolonesCCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleSulfonamide (S300)300 μgPhenicolCChloramphenicol (C)30 μgNitrofuran derivativeNitrofurant derivativeNitrofurantoin (F)300 μg	Ceftazidime (CA2)30 μgAztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftoifur (EFT)30 μgAminoglycoside5Streptomycin (S10)10 μgQuinolones0Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complex1.25/23.75 μgTrimethoprim-sulfamethoxazole1.25/23.75 μgChloramphenicol (C)30 μgPhenicol0Chloramphenicol (C)30 μgNitrofuran derivativeNitrofurant derivativeNitrofurantoin (F)300 μg	Cefotaxime (CTX)	30 μg	-	
Aztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycosideStreptomycin (S10)10 μgQuinolonesCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Aztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycosideStreptomycin (S10)10 μgQuinolonesCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazole1.25/23.75 μgSulfonamide (S300)300 μgPhenicolChloramphenicol (C)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Aztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycoside	Aztreonam (ATM)30 μgImipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycoside	Ceftazidime (CAZ)	30 μg	-	
Imipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycoside9Streptomycin (S10)10μgQuinolones0Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complex1.25/ 23.75 μgTrimethoprim-sulfamethoxazole1.25/ 23.75 μg(SXT)300 μgPhenicol0Chloramphenicol (C)30 μgNitrofuran derivative300 μgNitrofurantoin (F)300 μg	Imipenem (IMP)10 μgCefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycosideStreptomycin (S10)10 μgQuinolonesCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Imipenem (IMP)10 μgCefquinome (CFQ)30 μgAminoglycoside	Imipenem (IMP)10 μgCefquinome (CFQ)30 μgAminoglycoside	Aztreonam (ATM)	30 µg	-	
Cefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycosideStreptomycin (S10)10μgQuinolonesCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)30 μgNitrofuran derivative300 μgNitrofurantoin (F)300 μg	Cefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycoside	Cefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycosideStreptomycin (S10)10μgQuinolonesCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazole1.25/ 23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Cefquinome (CFQ)30 μgCeftiofur (EFT)30 μgAminoglycoside	Imipenem (IMP)	10 µg	-	
Ceftiofur (EFT)30 μgAminoglycoside30 μgStreptomycin (S10)10μgQuinolones0Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complex1.25/ 23.75 μgTrimethoprim-sulfamethoxazole1.25/ 23.75 μgSulfonamide (S300)300 μgPhenicol0Chloramphenicol (C)30 μgNitrofuran derivative300 μgNitrofurantoin (F)300 μg	Ceftiofur (EFT)30 μgAminoglycoside30 μgStreptomycin (S10)10μgQuinolonesCiprofloxacin (CIP)Ciprofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μgSulfonamide (S300)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgNitrofuran derivative300 μgNitrofurantoin (F)300 μg	Ceftiofur (EFT)30 μgAminoglycoside10Streptomycin (S10)10μgQuinolones10μgCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complex1.25/23.75 μgTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicol100Chloramphenicol (C)30 μgNitrofuran derivative100 μgNitrofurantoin (F)300 μg	Certiofur (EFT)30 μgAminoglycoside	Cefquinome (CFQ)	30 µg	-	
AminoglycosideStreptomycin (S10)10μgQuinolonesCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)30 μgOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	AminoglycosideStreptomycin (S10)10μgQuinolonesCiprofloxacin (CIP)Ciprofloxacin (ENR)5 μgEnrofloxacin (ENR)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)Sulfonamide (S300)Sulfonamide (S300)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgNitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	AminoglycosideStreptomycin (S10)10μgQuinolonesCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)30 μgOxytetracyclineOxytetracycline (OT)300 μgNitrofurantoin (F)300 μg	AminoglycosideStreptomycin (S10)10µgQuinolonesCiprofloxacin (CIP)5 µgEnrofloxacin (ENR)5 µgNalidixic acid (NA)30 µgSulphonamide/complexTrimethoprim-sulfamethoxazole1.25/23.75 µg(SXT)300 µgPhenicolChloramphenicol (C)30 µgOxytetracyclineOxytetracycline (OT)30 µgNitrofuran derivativeNitrofurantoin (F)300 µg	Ceftiofur (EFT)	30 µg		
Streptomycin (S10)10μgQuinolonesCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)30 μgOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Streptomycin (S10)10μgQuinolones1Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complex1.25/ 23.75 μgTrimethoprim-sulfamethoxazole1.25/ 23.75 μg(SXT)300 μgPhenicol100 μgChloramphenicol (C)30 μgNitrofuran derivative300 μgNitrofurantoin (F)300 μg	Streptomycin (\$10)10μgQuinolones5Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)	Streptomycin (S10)10μgQuinolones5Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complex1.25/ 23.75 μgTrimethoprim-sulfamethoxazole1.25/ 23.75 μg(SXT)300 μgPhenicolCChloramphenicol (C)30 μgNitrofuran derivative300 μgNitrofurantoin (F)300 μg	Aminoglycoside			
QuinolonesCiprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgNitrofuran derivativeNitrofuran derivativeNitrofurantoin (F)300 μg	Quinolones10Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgNitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	Quinolones10Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgNitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	Quinolones10Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complex1.25/ 23.75 μgTrimethoprim-sulfamethoxazole1.25/ 23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)	Streptomycin (S10)	10µg		
Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complex1.25/23.75 μgTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolCChloramphenicol (C)30 μgOxytetracycline0Oxytetracycline (OT)30 μgNitrofuran derivative300 μg	Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgNitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complex1.25/23.75 μgTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolCChloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)Nitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	Ciprofloxacin (CIP)5 μgEnrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)Sulfonamide (S300)Sulfonamide (S300)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgNitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	Quinolones		-	
Enrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)Sulfonamide (S300)Sulfonamide (S300)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgNitrofuran derivativeNitrofuran derivativeNitrofurantoin (F)300 μg	Enrofloxacin (ENR)5 μgNalidixic acid (NA)30 μgSulphonamide/complexTrimethoprim-sulfamethoxazoleTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)Sulfonamide (S300)Sulfonamide (S300)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgNitrofuran derivativeNitrofuran derivativeNitrofurantoin (F)300 μg	Enrofloxacin (ENR) 5 μg Nalidixic acid (NA) 30 μg Sulphonamide/complex Trimethoprim-sulfamethoxazole Trimethoprim-sulfamethoxazole 1.25/23.75 μg (SXT) Sulfonamide (S300) Sulfonamide (S300) 300 μg Phenicol Chloramphenicol (C) Chloramphenicol (C) 30 μg Nitrofuran derivative Nitrofurantoin (F)	Enrofloxacin (ENR) 5 μg Nalidixic acid (NA) 30 μg Sulphonamide/complex Trimethoprim-sulfamethoxazole Trimethoprim-sulfamethoxazole 1.25/23.75 μg (SXT) Sulfonamide (S300) Sulfonamide (S300) 300 μg Phenicol Chloramphenicol (C) Chloramphenicol (C) 30 μg Nitrofuran derivative Nitrofurantoin (F) Nitrofurantoin (F) 300 μg	Ciprofloxacin (CIP)	5 μg	1	
Nalidixic acid (NA)30 μgSulphonamide/complex1.25/23.75 μgTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)Nitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	Nalidixic acid (NA)30 µgSulphonamide/complex1.25/ 23.75 µgTrimethoprim-sulfamethoxazole (SXT)1.25/ 23.75 µgSulfonamide (S300)300 µgPhenicolChloramphenicol (C)Chloramphenicol (C)30 µgTetracycline0Oxytetracycline (OT)30 µgNitrofuran derivative100 µgNitrofurantoin (F)300 µg	Nalidixic acid (NA)30 μgSulphonamide/complex1.25/23.75 μgTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)Oxytetracycline (OT)300 μgNitrofuran derivativeNitrofurantoin (F)	Nalidixic acid (NA) 30 µg Sulphonamide/complex 1.25/23.75 µg Trimethoprim-sulfamethoxazole 1.25/23.75 µg Sulfonamide (S300) 300 µg Phenicol Chloramphenicol (C) Chloramphenicol (C) 30 µg Nitrofuran derivative 0xytetracycline (OT) Nitrofurantoin (F) 300 µg	Enrofloxacin (ENR)	5 ug	-	
Sulphonamide/complexTrimethoprim-sulfamethoxazole (SXT)1.25/23.75 μgSulfonamide (S300)300 μgPhenicol	Sulphonamide/complexTrimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgSulfonamide (S300)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)Oxytetracycline (OT)300 μgNitrofuran derivativeNitrofurantoin (F)	Sulphonamide/complex 1.0 Trimethoprim-sulfamethoxazole 1.25/23.75 µg (SXT) 300 µg Phenicol Chloramphenicol (C) Chloramphenicol (C) 30 µg Tetracycline Oxytetracycline (OT) Nitrofuran derivative 300 µg Nitrofurantoin (F) 300 µg	Sulphonamide/complex 1.25/23.75 µg Trimethoprim-sulfamethoxazole 1.25/23.75 µg (SXT) 300 µg Phenicol Chloramphenicol (C) Chloramphenicol (C) 30 µg Tetracycline Oxytetracycline (OT) Nitrofuran derivative Nitrofurantoin (F)	Nalidixic acid (NA)	30 µg		
Trimethoprim-sulfamethoxazole (SXT)1.25/ 23.75 μgSulfonamide (S300)300 μgPhenicolChloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Trimethoprim-sulfamethoxazole (SXT)1.25/23.75 μgSulfonamide (S300)300 μgPhenicolChloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Trimethoprim-sulfamethoxazole 1.25/23.75 μg Sulfonamide (\$300) 300 μg Phenicol Chloramphenicol (C) Chloramphenicol (C) 30 μg Tetracycline Oxytetracycline (OT) Nitrofuran derivative Nitrofurantoin (F)	Trimethoprim-sulfamethoxazole1.25/23.75 μg(SXT)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)Nitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	Sulphonamide/complex			
(SXT)Sulfonamide (S300)300 μgPhenicolImage: Chloramphenicol (C)Chloramphenicol (C)30 μgTetracyclineImage: Chloramphenicol (C)Oxytetracycline (OT)30 μgNitrofuran derivativeImage: Chloramphenicol (F)Nitrofurantoin (F)300 μg	(SXT)300 μgSulfonamide (S300)300 μgPhenicolImage: Chloramphenicol (C)Chloramphenicol (C)30 μgTetracyclineImage: Chloramphenicol (C)Oxytetracycline (OT)30 μgNitrofuran derivativeImage: Chloramphenicol (F)Nitrofurantoin (F)300 μg	(SXT)300 μgSulfonamide (S300)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)Oxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	(SXT)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)Oxytetracycline (OT)300 μgNitrofuran derivativeNitrofurantoin (F)	Trimethoprim-sulfamethoxazole	1.25/ 23.75 μg	-	
Sulfonamide (\$300)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)Oxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	Sulfonamide (\$300)300 μgPhenicolChloramphenicol (C)Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)Oxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)Nitrofurantoin (F)300 μg	Sulfonamide (S300) 300 μg Phenicol Chloramphenicol (C) Chloramphenicol (C) 30 μg Tetracycline Oxytetracycline (OT) Oxytetracycline (OT) 30 μg Nitrofuran derivative Nitrofurantoin (F)	Sulfonamide (S300) 300 μg Phenicol Chloramphenicol (C) Chloramphenicol (C) 30 μg Tetracycline Oxytetracycline (OT) Oxytetracycline (OT) 30 μg Nitrofuran derivative Nitrofurantoin (F)	(SXT)			
PhenicolChloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	PhenicolChloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	PhenicolChloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Phenicol Chloramphenicol (C) 30 μg Tetracycline Oxytetracycline (OT) Oxytetracycline (OT) 30 μg Nitrofuran derivative Nitrofurantoin (F) Nitrofurantoin (F) 300 μg	Sulfonamide (S300)	300 µg	-	
Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Chloramphenicol (C)30 μgTetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Phenicol			
TetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	TetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	TetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	TetracyclineOxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Chloramphenicol (C)	30 µg		
Oxytetracycline (OT)30 μgNitrofuran derivativeNitrofurantoin (F)300 μg	Oxytetracycline (OT)30 μgNitrofuran derivative300 μg	Oxytetracycline (OT)30 μgNitrofuran derivative300 μg	Oxytetracycline (OT)30 μgNitrofuran derivative	Tetracycline			
Nitrofuran derivative Nitrofurantoin (F)	Nitrofuran derivativeNitrofurantoin (F)300 μg	Nitrofuran derivative Nitrofurantoin (F)	Nitrofuran derivative Nitrofurantoin (F)	Oxytetracycline (OT)	30 µg		
Nitrofurantoin (F) 300 μg	Nitrofurantoin (F) 300 μg	Nitrofurantoin (F) 300 μg	Nitrofurantoin (F) 300 μg	Nitrofuran derivative			
				Nitrofurantoin (F)	300 µg		

Oligonucleotide	Sequence	Product	Reference
name		size (bp)	
CTX-M-F	ATGTGCAGYACCAGTAARGTKATGGC	529ª	(Dierikx <i>et al</i> .
CTX-M-R	TGGGTRAARTARGTSACCAGAAYSAGC GG		2012)
TEM-F	GCGGAACCCCTATTT G	964	
TEM-R	ACCAATGCTTAATCAGTGAG		
SHV-F-	TTATCTCCCTGTTAGCCACC	796	
SHV-R-	GATTTGCTGATTTCGCTCGG		
OXA-1-F-	ATGAAAAACACAATACATATCAACTTC GC	820	
OXA-1-R-	GTGTGTTTAGAATGGTGATCGCAT T		
OXA-2-F-	ACGATAGTTGTGGCAGACGAAC	601	
OXA-2-R-	ATYCTGTTTGGCGTATCRATATTC		
MultiACC-F-	CACCTCCAGCGACTTGTTAC	346	(Dallenne <i>et al</i>
MultiACC-R-	GTTAGCCAGCATCACGATCC		2010)
MultiMOX-F-	GCAACAACGACAATCCATCCT	895	
MultiMOX-R-	GGGATAGGCGTAACTCTCCCAA		
MultiDHA-F-	TGATGGCACAGCAGGATATTC	997	
MultiDHA-R-	GCTTTGACTCTTTCGGTATTCG		
MultiCIT-F-	CGAAGAGGCAATGACCAGAC	538	
MultiCIT-R-	ACGGACAGGGTTAGGATAGYb		
MultiEBC-F-	CGGTAAAGCCGATGTTGCG	683	
MultiEBC-R-	AGCCTAACCCCTGATACA		
MultiFOX-F-	CTACAGTGCGGGTGGTTT	162	
MultiFOX-R-	CTATTTGCGGCCAGGTGA		
AmpC-F-	GATCGTTCTGCCGCTGTG	271	
AmpC-R-	GGGCAGCAAATGTGGAGCAA		(Peter-Getzlaf <i>et al</i> . 2011)
ERIC-F-	ATGTAAGCTCCTGGGGATTCAC	variable	(Versalovic et
ERIC-R-	AAGTAAGTGACTGGGGTGAGCG		al. 1991)

Table 2: PCR primers used for detection of beta-lactamase genes.

^a(R is a purine; Y is a pyrimidine; S is G or C)

List of primers used in this study for detection of ESBL genes (CTX-M TEM, SHV, and OXA), plasmidmediated *ampC* (ACC, MOX, DHA, CIT, EBC and FOX). The correct PCR product sizes are shown for each primer pair. The ERIC PCR primer sequences are also shown; PCR products from amplifications using ERIC are variable in size.

FEMS Microbiology Ecology Table 3: Phenotypic ESBL resistance in *E. coli* isolates

																_
sample ID	СТХ СТ	X+C	D	CAZ	CAZ+C	D	FE	FE +C	D	СТХ	стссх	D	CAZ	CAZCX	D	FOX
BC13	20	23	3	20	25	5	30	30	0	20	26	6	20	25	5	1
BCC1	0	30	30	16	26	10	16	30	14	C	3	3	16	17	1	2
BCC11	21	21	0	19	20	1	26	30	4	22	26	4	19	26	7	1
BCC12	22	24	2	19	24	5	25	28	3	22	30	8	20	30	10	2
BCC14	24	25	1	21	24	3	30	31	1	25	31	6	22	29	7	1
BCC15	20	20	0	18	20	2	23	25	2	20	28	8	15	29	14	
BCC16	20	22	2	18	22	4	25	25	0	20	30	10	18	30	12	2
BCC2	15	28	13	25	26	1	20	30	10	15	18	3	25	28	3	
BCC3	24	20	2	21	24	2	30	20	1	24	29	2	20	25	2	
BCC5	23	25	2	20	22	2	29	29	0	23	27	5	20	29	9	
BCC6	23	25	3	20	25	5	30	31	1	22	24	2	20	20	0	
BCC7	23	24	1	20	25	5	30	30	0	23	30	7	20	30	10	
BCC8	23	24	1	20	22	1	28	28	0	25	30	5	23	29	6	
BCC9	22	24	2	19	24	5	27	28	1	23	25	2	21	25	4	1
BCE1C	0	30	30	15	30	15	18	30	12	C	3	3	15	17	2	1
BCE2	0	25	25	15	25	10	17	30	13	C	3	3	16	17	1	1
BCE3	14	25	11	23	25	2	16	28	12	14	18	4	23	27	4	2
BCE4	10	29	19	15	25	10	17	30	13	10	12	2	15	16	1	2
BCE5	11	29	18	16	25	9	15	29	14	11	15	4	16	19	3	3
BLC1	21	24	3	20	21	1	26	27	1	21	31	10	20	30	10	2
BLC2	21	23	2	18	22	4	27	29	2	21	27	6	18	25	7	1
BLC3	20	24	4	18	21	3	25	25	0	21	26	5	19	25	6	1
BLC4	28	29	1	21	28	7	25	25	0	28	28	0	21	25	4	2
BLC5	19	25	6	20	25	5	30	30	0	20	28	8	20	26	6	1
BLC6	20	20	0	18	20	2	25	25	0	20	24	4	19	27	8	2
BLC8	20	24	4	19	21	2	25	25	0	20	24	4	21	27	6	1
BLC9	21	21	20	18	21	11	25	2/	12	21	30	9	20	30	10	4
B35	22	30	20	20	20	2	20	24	15	20	20	7	20	20	10	1
BSC10	23	27	2	20	25	1	30	34	4	23	33	7	20	30	10	-
BSC13	24	20	2	20	23	2	28	28	0	20	26	4	20	26	6	1
BSC14	23	26	3	20	25	5	28	28	0	23	31	8	20	30	10	1
BSC15	22	24	2	20	20	0	28	30	2	20	25	5	18	24	6	1
BSC16	23	25	2	20	22	2	30	30	0	24	32	8	22	30	8	1
BSC17	23	24	1	20	24	4	28	28	0	23	30	7	21	28	7	1
BSC18	22	24	2	20	23	3	30	30	0	22	30	8	20	29	9	1
BSC19	20	25	5	20	24	4	26	28	2	20	30	10	20	30	10	1
BSC2	22	24	2	20	23	3	28	30	2	21	30	9	20	27	7	1
BSC20	24	27	3	20	25	5	30	30	0	25	30	5	20	29	9	1
BSC21	19	21	2	17	21	4	25	25	0	19	30	11	19	29	10	1
BSC22	10	30	20	15	21	6	22	30	8	10	12	2	15	17	2	2
BSC3	22	24	2	20	25	5	30	30	0	23	29	6	20	28	8	1
BSC4	22	25	3	20	25	5	28	31	3	24	32	8	20	31	11	1
BSC5	23	24	1	20	24	4	30	31	1	23	31	8	20	30	10	1
BSCD	22	25	3	20	24	4	30	30	0	22	27	5	20	24	4	1
BSC0	23	25	2	22	26	4	29	30	1	23	30	/	22	29	0	1
BSE7	21	30	16	20	24	11	24	20	10	1/	15	9	17	29	0	1
BSE3	14	27	10	1/	20	11	10	27	10	14	1/	1	1/	19	2	
BSE6	10	30	13	17	23	10	15	27	11	19	14	4	14	18	4	
BSE8	20	30	10	26	28	2	30	32	2	20	24	4	26	30	4	
BSE9	28	32	4	30	31	-	34	36	2	28	32	4	30	31	1	
NCTC13353	0	28	28	13	30	17	14	30	16	0	0	0	13	13	0	
E.cloacae	9	11	2	9	11	2	25	25	0	g	24	15	9	24	15	

Inhibition zone sizes for ESBL *E. coli* isolates using the ESBL (left columns: CTX to Cefepime +C) and AmpC confirm (right columns CTX to FOX) test kits. D is the difference between the 2 previous values (or the difference between antibiotic alone and antibiotic with supplement), 5 mmongreates difference for the test, which has been highlighted in red. Strain numbers in red typeface indicate strains with both ESBL and AmpC activity.

Figure 1: Percentage of MDR E.coli resistant to different numbers of antibiotics

ScholarOne Support 1-434/964-4100

Figure 2. Percentage sensitivity or resistance to 17 antibiotics for 126 *E. coli* farm isolates. (1) Beta-lactams; (2) Aminoglycoside; (3) Quinolones; (4) Sulphonamide/complex; (5) Phenicol; (6) Tetracycline, and (7) Nitrofuran derivative

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

Figure 4. Percentage of ESBL and AmpC phenotypes amongst *E. coli* isolates resistant to cefotaxime and/ or ceftazidime.

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

