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Spatial Mapping of Flow-Induced Molecular Alignment in a
Noncrystalline Biopolymer Fluid Using Double Quantum Filtered
(DQF) 23Na MRI

Galina E. Pavlovskaya* and Thomas Meersmann

Sir Peter Mansfield Magnetic Resonance Centre, School of Medicine, University of Nottingham, Nottingham NG2 7RD, United
Kingdom

ABSTRACT: Flow-induced molecular alignment was observed experimentally in a non-liquid-
crystalline bioplymeric fluid during developed tubular flow. The fluid was comprised of rigid rods of
the polysaccharide xanthan and exhibited shear-thinning behavior. Without a requirement for
optical transparency or the need for an added tracer, 23Na magic angle (MA) double quantum
filtered (DQF) magnetic resonance imaging (MRI) enabled the mapping of the anisotropic
molecular arrangement under flow conditions. A regional net molecular alignment was found in
areas of high shear values in the vicinity of the tube wall. Furthermore, the xanthan molecules
resumed random orientations after the cessation of flow. The observed flow-induced molecular
alignment was correlated with the rheological properties of the fluid. The work demonstrates the
ability of 23Na MA DQF magnetic resonance to provide a valuable molecular-mechanical link.

SECTION: Glasses, Colloids, Polymers, and Soft Matter

R heology of many non-Newtonian fluids is determined by
the existence of short-range specific molecular arrange-

ments that define nano- or microstructures of fluids.1 Molecular
arrangements in fluids may be created at different length scales
by various interactions between macromolecules, for example,
hydrogen bonding, electrostatic interactions, and dispersion
interactions, often resulting in the intermolecular chain overlap
or chain cross-links in solutions of polymers. Many small
molecules are also known to self-assemble into microstructured
mesophases of specific length scales, affecting bulk mechanical
properties of fluids.2 Stable microstructures are also known to
form in a flow field.3 These flow-induced structures, widely
reported for solutions of wormlike micelles and liquid-
crystalline solutions of synthetic polymers and biopolymers,
are usually temporary and disintegrate upon flow cessation;4

however, they alter bulk rheology of fluids, resulting in their
shear-banding, shear-thinning, shear-thickening, and nonlinear
viscoelastic behavior.1 Therefore, it is important to characterize
these flow-induced structures at the molecular level in order to
correlate these structures with macroscopic rheological
behavior.
To probe the formation of flow-induced microstructure in

fluids, one needs to detect and to characterize short-range
molecular order.1 Contemporary methods that are suited the
most for this purpose are small-angle X-ray scattering (SAXS)
or small neutron scattering (SANS). Although these methods
have been successfully applied to probe short-range molecular
order in situ,4 X-ray transparency of microfluidic devices is
required (SAXS methods), or specific fluid manipulation is
needed to incorporate tracer particles (SANS methods). Rheo-
optical methods necessitate optical transparency of fluids.
Rheo-NMR methods5 offer a great opportunity to detect

molecular order created during deformation of a material within

optically opaque media. A small deuterated tracer molecule is
usually introduced to the material of interest, and the changes
in the quadrupolar coupling constant of deuterium (2H) with
shear allow one to deduce the required molecular properties.6

To date, this approach is probably the most efficient in
establishing a molecular-mechanical link in materials studies.
Unfortunately, because of the necessity of 2H label incorpo-
ration at a fairly high concentration, this method is not readily
applicable for biorheological applications, including tissue
engineering and in vivo studies.
In this Letter, we propose the use of sodium ions naturally

occurring in many biofluids, solutions of biopolymers, and
micelles to probe for ordered molecular domains that may be
created in these fluids during flow. Due to the nuclear electric
quadrupole moment of the isotope 23Na (nuclear spin I = 3/2,
100% natural abundance), sodium ions will experience strong
nuclear electric quadrupolar interactions at molecular adsorp-
tion sites. However, rapid intra- and intermolecular exchange
between different sites and the free solution state will lead to
time averaging of the associated quadrupolar couplings. In a
biopolymeric solution where molecules will usually assume
random orientations, the resulting net quadrupolar coupling
vanishes. However, in the anisotropic environment within
oriented structural domains, 23Na+ will experience a non-
vanishing net nuclear electric quadrupolar coupling. Although
the presence of such coupling can readily be seen in single
quantum (SQ) 23Na NMR spectra of the liquid-crystalline
phase,7 the weak quadrupolar couplings in flow-aligned
molecular domains of biomolecular noncrystalline solutions
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are masked by heterogeneous line broadening. However, magic
angle (MA) double quantum filtered (DQF) 23Na NMR
spectroscopy, developed by Navon and co-workers, can be
employed for the detection of the unresolved couplings.8 The
method has been shown previously to detect 23Na signal from
ordered domains in mostly solid-like structures such as
cartilages,9 pressed blood cells,10,11 animal cells,12 and gels
formed by polysaccharides.13 The underlying concept is based
on the indirect detection of the second-rank, first-order
coherence term T2,±1. Unlike the T3,±1 term (third-rank, first-
order) that can be generated through multiexponential
relaxation in the isotropic phase, as discovered by Bodenhausen
and co-workers,14 the T2,±1 term is a clear indicator for the
presence of coherent evolution. Coherent evolution requires a
quadrupolar coupling that is not time-averaged to zero, and the
T2,±1 term is therefore indicative of an anisotropic environment
experienced by the sodium ions. The coherence pathway and
the detection scheme are described in Figure 1a and b,
respectively.

23Na MA DQF spectroscopy and MRI were applied to
characterize and image the orientational molecular micro-
structure created in a flowing model biopolymer solution that
does not have an explicit liquid-crystalline phase. This particular
model system underlines the potentially higher impact of this
technique as many biologically relevant fluids (for example,

synovial fluid, blood, and polysaccharide solutions that are used
in drug delivery) contain naturally present Na+ cations and do
not have an explicit liquid-crystalline phase but still manifest
flow-dependent viscosity in a shear field.16 Therefore, their
mechanical properties are most likely to be governed by hidden
microstructural arrangements17 present at rest and induced by
flow. The nature and character of these microstructures are
determined by macromolecules and particles that comprise
biofluids.
For example, solutions of microbal polysaccharide xanthan

exhibit viscoelastic properties in a wide range of concentrations
of the dissolved biopolymer18 in the absence of the liquid-
crystalline phase. The structure of the xanthan repeating unit is
displayed in Figure 2. Xanthan consists of a cellulose backbone

with a cellobiose as the repeating unit.16 Xanthan molecules
undergo disorder−order conformational change depending on
the salt concentration in the solution.19 At a 0.5% (w/w)
biopolymer concentration and an excess of salt (0.1 M
phosphate buffer, pH = 7.0), as also used in the current
work, the xanthan molecules will adapt a rigid rod
conformation.18 The fluid appears to be structured in the
absence or presence of small deformations, as confirmed by the
results of dynamical mechanical analysis (DMA) displayed in
Figure 3a. The solid-like structure is already detected at this low
biopolymer concentration and persists up to strain values below
γc = 2.54. When fluid deformation reaches %γc > 200, the
viscous behavior dominates. With increased shear rate, the fluid
exhibits shear-thinning behavior, as shown in Figure 3b. The
alignment of polymer rods in a flow field is a plausible
explanation for the effect of shear-thinning.1

Although bulk rheological data point to the existence of a
solid-like structure in the absence of shear (as shown in Figure
3a), this “static structure” is transformed when fluid flows. In
principle, new structural domains with net orientation are
formed as fluid molecules try to adapt to a flow field, as shown
in Figure 4. SQ sodium spectra produced from a static and
flowing fluid are very similar, though they originate from
different structures formed in this fluid at the molecular level.
Hence, the transformation from rest to flow is undetectable
from SQ acquisition. In the presence of MA DQF pulses, these
structural differences are highlighted, as is evident from the
23Na MA DQF spectra displayed in Figure 4. The static
structure produces no net order of molecular orientation,
resulting in the absence of a 23Na MA DQF signal, while the
flowing sample shows a strong and distinctive 23Na MA DQF
signal originating only from the ordered domains created in this
fluid by flow.

Figure 1. (a) Coherence pathway and (b) MA DQF pulse sequence.
23Na NMR excitation creates coherence described by the tensor
element T1,±1 (i.e., in-phase, SQ coherence). In the presence of a net
quadrupolar coupling, the coherence will evolve into higher-rank terms
during the two time periods τ/2. Using the appropriate 36-step phase
cycling,9,15 two 54.7° pulses will, via the double quantum (DQ) term
T2,±2, enable only for T2,±1 coherence to pass the DQ filter. This
second-rank (antiphase) coherence term is by itself not directly
observable, but it evolves under the net quadrupolar coupling back
into detectable T1,±1 coherence. The presence of a detectable signal
after MA DQF provides therefore evidence for coherent quadrupolar
evolution that originates from oriented structural domains in the
solution. (c) 23Na MA DQF MRI sequence using standard phase and
frequency encoding gradients. An echo time τ/2 = τmax/2 is used to
produce maximum T2,±1 buildup. The gradient echo (GE) is also
timed to coincide with maximum T2,±1 buildup.

Figure 2. Repeat unit of the polyelectrolyte molecule of xanthan. Na+

cations interact with the polysaccharide molecule but are also in rapid
exchange with free Na+ in the solution and will exchange intra- and
intermolecularly with other repeat units.
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The 23Na MA DQF signal evolution as a function of the echo
time τ at different flow rates is displayed in Figure 5a. A strong
23Na MA DQF signal s(τ,ωQ) was observed for all the three Re
numbers studied. The time dependence of the 23Na MA DQF

is characterized by the residual quadrupolar coupling constant,
ωQ and the relaxation rate, 1/T2f

15
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where C is the scaling constant and θ = 54.7° is the tilt angle
(i.e., the MA) used for the third and fourth radio frequency
pulses shown in Figure 1b. Larger values of ωQ are indicative of
the increased molecular order created. Figure 5b illustrates that
ωQ increases with rising Re, indicating increased molecular
alignment at higher shear. Furthermore, the relaxation rate 1/
T2f accelerated with the growing shear, suggesting a reduced
molecular mobility in areas with shear-induced alignment.20

Biexponential relaxation studies14 should provide further
insights into this dynamics but are beyond the scope of this
work.
Although 23Na MA DQF spectroscopy identifies the

formation of flow-induced structures, it is important to localize
them in a flow field. To visualize the spatial occurrence of flow-
induced molecular alignments, 23Na MA DQF was incorpo-
rated into a gradient echo (GE) imaging sequence, as shown in
Figure 1c. In this work, the τ/2 time associated with the
maximum T2,±1 generation, that is, τmax/2, was identified
through 23Na MA DQF spectroscopy (Figure 5a) and used for
the MRI sequence. In addition, the length of the frequency
encoding gradient was adjusted such as the GE was formed at
approximately τmax/2 to generate the MA DQF image with the
optimal signal-to-noise ratio (SNR). The resulting 23Na MA
DQF image is displayed together with SQ 23Na GE (without

Figure 3. Rheology of 0.5% xanthan in a 0.1 M phosphate buffer, pH =
7.0: (a) Storage G′ (red) and loss G″ (blue) moduli at different strains.
At lower deformations, elastic behavior dominates up to strain γc =
2.54. At deformations above 200%, viscous behavior becomes
dominant. (b) Viscosity of the fluid at different shear rates. The
fluid exhibits characteristic shear-thinning behavior with viscosity
rapidly decreasing with the applied shear rate. Power law model
analysis predicts a flow consistency index of K = 3.89 Pa·s and the flow
behavior index n = 0.19.

Figure 4. Cartoon of transformation of the xanthan solution structure
upon the commencement of flow with alignment created close to the
tube wall.1The SQ spectrum is the same for the static (blue) and the
flowing (red and green) sample. The small quadrupolar coupling from
the aligned phase is masked by the line broadening of the resulting SQ
spectra. However, the presence of a net quadrupolar coupling during
flow is demonstrated by the MA DQF NMR spectrum. No 23Na MA
DQF signal is observed in the absence of flow.

Figure 5. (a) Echo time τ dependence of the 23Na MA DQF signal
intensity of a 0.5% xanthan fluid for different Re numbers at 9.4 T. The
internal diameter of the tube was 19 mm. Experimental data points
(filled circles and triangles) reflect the height of the 23Na MA DQF
signal after Fourier transformation. Note the absence of the MA DQF
signal (black triangles) in the absence of flow. The τ time dependence
of the MA DQF signal enables the extraction of the net quadrupolar
coupling experienced by the sodium ions. Data fitting with eq 1 are
shown as solid lines. (b) Residual quadrupolar coupling constant ωQ

(closed blue circles) and relaxation rate 1/T2f (open green circles),
extracted from data fitting in (a), are shown as a function of Re.

The Journal of Physical Chemistry Letters Letter

dx.doi.org/10.1021/jz501075j | J. Phys. Chem. Lett. 2014, 5, 2632−26362634



MA DQF pulses and GE time optimized for the best SNR) and
23Na velocimetry (a time delay with bipolar gradients for flow
encoding is inserted right after the 90° pulse and before,
optimized for the best SNR GE) MR images in the left panel of
Figure 6. All images were acquired during xanthan fluid flow in

a tube at a Reynolds number of Re = 0.158. A uniform
distribution of Na+ ions in the xanthan fluid is observed by the
SQ 23Na image. However, the MA DQF 23Na MRI signal arises
only from domains with some degree of anisotropy. This
“telltale” of molecular alignment occurs toward the walls and is
absent in the center during flow. The corresponding 23Na
velocity image is also shown. Figure 6i depicts the overlay of the
traces extracted from the SQ 23Na image with that from the MA
DQF 23Na. In Figure 6ii, the center trace from the 23Na velocity
image is shown together with the shear profile evaluated from
the fitted velocity profile. High shear rates correlate to large
velocity differentials and, in the case of pipe flow, are associated
with the low velocities found in the vicinity of the wall, and
small shear rates are found at the higher velocities in the center.
The in situ collected data demonstrate that the most intense
MA DQF signal, and therefore the highest degree of alignments
of xanthan macromolecules, are found at the wall or in the
location of the highest shear. As the shear rate becomes smaller

toward the center of the pipe, the MA DQF signal becomes less
intense and is no longer detected in the center region. This
finding suggests that the MA DQF signal, and therefore the
flow-induced alignment, closely follow the shear profile under
fluid flow.
For a quantitatively meaningful comparison of the MA DQF

data with the observed shear, the effect of various τ/2 times
upon the MR images will need to be explored as the T±1

2

buildup rates might vary across the profile. Nevertheless, in this
proof of concept work, the shear profile calculated from the
23Na velocity profile is shown to correlate qualitatively with the
areas of alignment obtained from the in situ 23Na MA DQF
data. The data correlate well with the previous theoretical
finding predicting similar molecular order and suggesting that
the molecules will align in the direction of flow.21

Unlike bulk rheological data, the molecular-mechanical link
provided through 23Na MA DQF allows for noninvasive
experimental access to the viscosity heterogeneity in a flowing
sample. The technique shows promise for the study of
biological fluids and their functionality as the 23Na detection
in this work was conducted in the physiological range of
sodium concentration. The technique enabled observation of
spatially resolved molecular alignment in the absence of an
explicit liquid-crystalline phase. Flow-induced structural
arrangements might play a significant role in the basic fluid
function, and the appearance or absence of flow-induced
structures may be used as biomarkers for some diseases, for
example, in probing the viability of synovial fluids in joints. The
signal intensity is sufficient for MRI applications because 23Na
has a 100% natural abundance, possesses a gyromagnetic ratio
similar to that of 13C, and undergoes fast quadrupolar relaxation
that enables rapid signal averaging.
The technique is easy, straightforward to implement, and

noninvasive; therefore, it should also be efficient in providing
additional insights into the molecular-mechanical link in
systems such as wormlike micelle solutions, liquid-crystalline
polymers, colloidal suspensions, hydrogels, and other 23Na-
containing soft materials. The molecular-mechanical link is
important in many areas of science and technology, including
biomedical reseaerch, drug delivery, and tissue engineering.
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