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ABSTRACT

We propose the combination of dense Histogram of Oriented Gradi-

ents (HOG) features with Active Appearance Models (AAMs). We

employ the efficient Inverse Compositional optimization technique

and show results for the task of face fitting. By taking advantage

of the descriptive characteristics of HOG features, we build robust

and accurate AAMs that generalize well to unseen faces with illu-

mination, identity, pose and occlusion variations. Our experiments

on challenging in-the-wild databases show that HOG AAMs signif-

icantly outperfrom current state-of-the-art results of discriminative

methods trained on larger databases.

Index Terms— Active Appearance Models, Histogram of Ori-

ented Gradients, Inverse Compositional optizimation

1. INTRODUCTION

Active Appearance Models (AAMs) are generative parametric de-

formable statistical models of the shape and appearance variation of

an object that are widely used in various tasks of Human-Computer

Interaction and Image and Video Processing. They have been used in

numerous applications such as face fitting, facial expressions recog-

nition and medical imaging. They were initially proposed in [1] and

they are descendants of Active Contour Models [2] and Active Shape

Models [3]. The fitting process of an AAM aims to bring a test im-

age into registration with a reference template, even if the test image

is a deformed instance of the template. The most common choise

for fitting an AAM is the Inverse Compositional (IC) optimization

techique [4, 5, 6], though other methodologies have been used, such

as regression [1, 7]. IC is a non-linear gradient descent optimiza-

tion algorithm that attempts to minimize the discrepancy between a

warped input image and a parametric model instance with respect to

the shape and appearance parameters.

Since IC is a gradient descent method, the alignment is sensitive

to initialization and to large appearance variations in terms of illumi-

nation, expressions, occlusion and identity. Especially, in the case of

intensities-based AAMs with the Project-Out IC algorithm [4], the

model is incapable of adequately generalizing in order to be robust

to outliers. This is the main reason why AAMs have been criticized

of being able to perform well only in person specific applications

and not generic ones. In this paper, we show that the combination of

the IC framework with a powerful and descriptive features descriptor

results in a generic deformable model with remarkable performance.

The concept of dense feature-based image representation is

also adopted in [8], where the authors use correspondences be-

tween densely computed SIFT descriptors. However it is applied
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on scene alignment and face recognition and not on deformable

models fitting. There are several attempts in recent bibliography

to build a feature-based AAM framework. The authors in [9] use

novel features based on the orientations of gradients to represent

edge structure within a regression framework. Similar features are

employed in [6] to create a robust similarity optimization criterion.

In [10] a combination of grayscale intensities, hue channel and edge

magnitude is used to build the appearance model. Moreover, the

work in [11] applies the IC optimization algorithm in the Fourier

domain using Gabor responses. In [12] a new appearance repre-

sentation is introduced for AAMs by combining Gabor wavelet and

Local Binary Pattern descriptor. The authors in [13] employ Gabor

magnitude features summed over either orientations or scales or

both to build an appearance model. Similarly, the authors in [14]

model the characteristic functions of Gabor magnitude and phase

by using lognormal and Gaussian density functions respectively and

utilize the mean of the characteristics over orientations and scales.

In this paper, we employ densely-sampled Histogram of Ori-

ented Gradients (HOG) features [15] to train the AAM appearance

model. To the best of our knowledge, this is the first time that

a generic feature-based AAM is developped using dense HOGs.

We perform cross-database experiments on in-the-wild images us-

ing two IC algorithms: Alternating IC (AIC) [5] and Project-Out

IC (POIC) [4]. Finally, we show that our HOG AAMs greatly

outperform state-of-the-art methods in facial alignment, which are

discriminatively trained on much more data than our approach.

2. HISTOGRAMS OF ORIENTED GRADIENTS

We extract dense HOG descriptors at each pixel of an image, based

on the method introduced in [15]. This means that given an input

image of size H × W , the densely-sampled multichannel features

image has size H ×W × D. Let us denote the HOG features ex-

traction function asH and an input image in vectorial form as t with

length LT . Then the HOG image in vectorial form is

h = H(t) (1)

where H : R
LT×1 −→ R

LTD×1. The HOG extraction func-

tion clusters gradient orientations in different bins for localized sub-

windows of the input image. Specifically, we first compute the im-

age gradient and in the case of an RGB image, we keep the gradient

with the largest norm between the gradients of the three channels.

For each pixel of the image, we use two spatial neighbourhoods:

cells and blocks. A cell is a small rectangular sub-window of size

Ncell pixels in height and width, from which we create a histogram

of the gradient orientations weighted by the gradient magnitude of

each pixel. This orientation binning procedure reveals the non-linear

nature of the HOG descriptors. Each histogram has Nbins and we

apply trilinear interpolation between the votes of neighbouring bin



(a) Original image (b) Ncell = 8, Nblock = 2 (c) Ncell = 4, Nblock = 2 (d) Ncell = 8, Nblock = 1 (e) Ncell = 4, Nblock = 1

Fig. 1. Example of dense HOG features. Ncell denotes the cell height and width in pixels and Nblock denotes the number of cells that consist

a block. Thus, (b) and (c) have D = 36 channels whereas (d) and (f) have D = 9 channels. We visualize the sum over all the D channels.

centres with respect to orientation and position. A block is a larger

spatial neighbourhood that consists of Nblock × Nblock cells. After

applying contrast normalization at each block, the final descriptor

vector at each image pixel is constructed by concatenating the his-

tograms of the cells, thus it has length D = NbinsN
2
block.

The local contrast normalization adopted at each block is es-

sential as it makes the features image invariant to illumination and

foreground-background intense differences. Thus, HOG features

have great advantages, such as invariance to geometric and photo-

metric variations, which are important for building robust generic

deformable models. We altered the code provided by [16] in order

to extract dense HOG features. We use Nbins = 9 histogram bins

and experiment with the cell size (Ncell ∈ {4, 8}) and the block

normalization (Nblock ∈ {1, 2}). Figure 1 shows indicative HOG

images by summing over all their channels.

3. HOG ACTIVE APPEARANCE MODELS

3.1. Training

Let us denote a shape instance of LS landmark points as s =
[x1, y1, . . . , xLS

, yLS
]T . The shape model is constructed by align-

ing a set of training shapes {si} using Genaralized Procrustes

Analysis and applying Principal Component Analysis (PCA) on the

aligned shapes to end up with an orthonormal basis of NS eigen-

vectors US ∈ R
2LS×NS and the mean shape s̄. The first four

eigenshapes correspond to the similarity transform parameters that

control the global rotation, scaling and translation. A shape instance

is generated as sp = s̄ + USp, where p is the NS × 1 vector of

shape parameters. The motion model consists of the warp function

W(p), which maps the points within a source shape to their corre-

sponding coordinates in a target shape. We employ the Piecewise

Affine Warp, which performs the mapping based on the barycentric

coordinates of the corresponding triangles between the two shapes

that are extracted using Delaunay Triangulation.

Given a set of training annotated images {ti}, we compute their

HOG features {hi} (Eq. 1) and warp them into the mean shape s̄,

ending up with a set of aligned vectors. Each vector has length

LA, i.e. the number of pixels that lay inside the mean shape. Then

we apply PCA to find an appearance subspace UA ∈ R
LA×NA

of NA eigentextures and the mean appearance vector ā. Synthe-

sis is achieved through linear combination of the eigentextures as

aλ = ā + UAλ, where λ is the NA × 1 appearance parameters

vector.

3.2. Inverse Compositional Optimization

The aim of AAM fitting is to minimize the ℓ2-norm between an in-

put vectorized HOG image h and the HOG appearance model with

respect to the shape and appearance parameters, i.e.

argminp,λ‖h(W(p))− ā−UAλ‖
2

(2)

In general, the IC optimization introduces an incremental warp that

is applied on the residual term as

argmin∆p,λ‖h(W(p))− ā(W(∆p))−UA(W(∆p))λ‖2

This problem is solved by performing a first order Taylor expansion

on the residual term with respect to the parameters increment ∆p

and composing the current warp with the incremental warp at each

iteration asW(p)←W(p) ◦W(∆p)−1. The linearization is

ā(W(∆p)) +UA(W(∆p))λ ≈ ā+UAλ+ J|p=0∆p

where J|p=0 = ∇(ā + UAλ)
∂W
∂p

∣

∣

∣

p=0
is the Jacobian. Note that

the appearance model is based on the HOG representation of Eq. 1.

Hence, in the partial derivative of the Jacobian, we make the assump-

tion that ∂H
∂t
∇t ≈ ∇H(t), which means that we neglect the partial

derivative ofH and deal withH(t) as a multichannel image. In this

work, we use the Alternating and Project-Out IC algorithms.

Alternating: The AIC algorithm, proposed in [5], deals with the

problem of Eq. 2, by solving two separate minimization problems,

one for the shape and one for the appearance optimal parameters, in

an alternating manner. The two cost functions are

{

argmin∆p‖h(W(p))− aλ(W(∆p))‖2
I−UAUT

A

argmin∆λ
‖h(W(p))− aλ+∆λ(W(∆p))‖2

(3)

The minimization in every iteration is achieved by first using a fixed

estimate of λ to compute the current estimate of ∆p and then us-

ing the fixed estimate of p to compute the increment ∆λ. More

specifically, given the current estimate of λ, the shape parameters

increment is computed from the first cost function using the orthog-

onal complement of the appearance subspace ÛA = I − UAU
T
A

as

∆p = H
−1

J
T
AIC [h(W(p))− ā−UAλ]

where JAIC = ÛA[Jā|p=0 +
∑NA

i=1 λiJui |p=0] and H−1 =

JT
AICJAIC . Then, given the current estimate of the parameters

p, AIC computes the optimal appearance parameters as the least-

squares solution of the second cost function of Eq. 3, thus

∆λ = U
T
A [h(W(p))− ā(W(∆p))−UA(W(∆p))λ]



(a) Alternating IC (a) Project-Out IC

Fig. 2. Experimental results on the LFPW testing database evaluated on 68 points mask. We use various values for the HOG parameters

(Ncell ∈ {4, 8}, Nblock ∈ {1, 2}) and also compare with the intenisities-based AAMs using both the Alternating and Project-Out algorithms.

This alternating optimization is repeated at each iteration. The ap-

pearance parameters are updated in an additive mode, i.e. λ← λ+
∆λ. Although the individual Jacobians Jui |p=0, ∀i = 1, . . . , NA

and Jā|p=0 can be precomputed, the total Jacobian JAIC and the

Hessian need to be evaluated at each iteration. Following the Hes-

sian matrix computation technique proposed in [5], which improves

the cost from O(N2
SLA) to O(N2

SN
2
A) (usually LA > N2

A), the

total cost at each iteration is O(N2
SN

2
A + (NS +NA)LA +N3

S).
Project-Out: The POIC algorithm [4] decouples shape and ap-

pearance by solving Eq. 2 in the subspace that is orthogonal to the

appearance variation. This is achieved by “projecting-out” the ap-

pearance variation, thus, similar to the first problem of Eq. 3, the

solution is computed based on the orthogonal complement of the ap-

pearance subspace ÛA = I−UAU
T
A. The difference with the AIC

case is that there is not an extra step for optimizing with respect to

the appearance parameters. The cost function of Eq. 2 takes the form

argmin∆p‖h(W(p))− ā(W(∆p))‖2
I−UAUT

A
(4)

and the first-order Taylor expansion is ā(W(∆p)) ≈ ā+Jā|p=0∆p.

The shape parameters increment is computed as

∆p = H
−1

J
T
POIC [h(W(p))− ā]

where H−1 = JT
POICJPOIC and JPOIC = ÛAJā|p=0. The ap-

pearance parameters can be retrieved at the end of the iterative oper-

ation as λ = UT
A[h(W(p))− ā] in order to reconstruct the appear-

ance vector. The POIC algorithm is faster than AIC, with compu-

tational complexity of O(NSLA + N2
S), because the Jacobian, the

Hessian matrix and its inverse are constant and can be precomputed.

4. EXPERIMENTAL RESULTS

In this section we carry out experiments on three challenging in-

the-wild databases, which consist of images downloaded from the

web that are captured in totally unconstrained conditions and exhibit

large variations in pose, identity, illumination, expressions, occlu-

sion and resolution. We train our HOG-AAM model on 811 training

images of the LFPW [17] training set (the rest of the database’s im-

ages URLs are invalid), keeping NS = 15 eigenshapes and NA =

100 eigentextures. We acquired the groundtruth annotations of 68

points from the 300 Faces In-The-Wild Challenge [18]. The fit-

ting process is initialized by computing the face’s bounding box

using the Cascade Deformable Part Models face detector [19] and

then estimating the appropriate global similarity transform that fits

the mean shape within the bounding box bounds. Note that this

initial similarity transform only involves a translation and scaling

component and not any in-plane rotation. The accuracy of the fit-

ting results is measured by the point-to-point RMS error normalized

by the face size, as proposed in [20]. Denoting the fitted and the

groundtruth shapes as sf and sg respectively and the face’s size as

sf = (maxxg
i −minxg

i +max yg
i −min yg

i )/2, then the error is

expressed as RMSE =
∑L

i=1

√

(x
f
i
−x

g
i
)2+(y

f
i
−y

g
i
)2

sfLS
.

Comparison between HOG Features Variants: Herein, we

conduct an experiment to compare the performance of HOG AAMs

for various combinations of the parameters values presented in

Sec. 2. Specifically, we use cell size values of Ncell ∈ {4, 8} and

experiment with the employment of block normalization by setting

Nblock ∈ {1, 2}, which results in HOG images with D ∈ {9, 36}
number of channels. Moreover, we compare our HOG AAMs with

the intensities-based AAMs. The experiment is performed on the

224 images of the LFPW testing set. The results are demonstrated

in Fig. 2 in the form of Cumulative Error Distribution (CED). This

experiment proves that the block normalization has a great impact

on the fitting result, while the reduction of the cell size provokes

a small decline on the fitting accuracy. Additionally, HOG AAMs

clearly outperform the intensities-based AAMs. Especially, in the

case of HOGs wich Ncell = 8 and block normalization (D = 36),

the difference is approximately 30% and 40% in the cases of RMSE

less than 0.02 and 0.03 respectively.

Comparison with State-Of-The-Art Methods: In this cross-

database experiment, we compare the performance of our HOG

AAMs against two recently proposed state-of-the-art facial trackers:

Supervised Descent Method (SDM) [7] and Robust Discriminative

Response Map Fitting (DRMF) for CLMs [21]. We utilize the im-

plementations provided online by their authors with their pre-trained

models. Note that both these methods are trained on thousands of

images, much more than the 811 images used to train our AAMs.



(a) Helen Database (a) AFW Database

Fig. 3. Comparison of HOG AAMs with state-of-the-art methods (SDM [7], DRMF [21]) on Helen and AFW databases, evaluated on 49

points mask.

Fig. 4. Fitting examples using HOG-AIC on AFW and Helen images. Top row: Initialization from bounding box. Bottom row: Fitting result.

Method
Helen AFW

mean std mean std

HOG-AIC 0.0184 0.0058 0.0215 0.0129

SDM 0.0216 0.0059 0.0484 0.5002

HOG-POIC 0.0300 0.0140 0.0395 0.0212

DRMF 0.0280 0.0086 0.0517 0.0611

Face Detection 0.0532 0.0196 0.0635 0.0227

Table 1. Statistics (mean and standard deviation) of Figure 3 results.

We use the best performing HOG parameters from the previous ex-

periment, thus we set the cell size at 8× 8 pixels and the block size

at 2× 2 cells, ending up with HOG feature images of D = 36 chan-

nels. The testing is performed on the very challenging in-the-wild

databases of AFW [20] and Helen [22] which consist of 337 and

330 testing images respectively. Similar to the LFPW database, we

acquired the groundtruth annotations from [18]. In this experiment

we report results evaluated on 49 points shape mask instead of the 68

points of the previous one. This is because the SDM framework [7]

returns only these 49 points, which occur by removing the 17 points

of the boundary (jaw) and the 2 points from the mouth’s corners.

Thus, this evaluation framework emphasizes on the internal facial

areas (eyebrows, eyes, nose, mouth).

Figure 3 demonstrates the results on Helen and AFW databases

and Table 1 reports the corresponding statistics (mean and standard

deviation of the errors). The results indicate that HOG-AIC signifi-

cantly outperforms both DRMF and SDM and even the less accurate

HOG-POIC performs better than DRMF. Moreover, note that be-

cause the AFW database is more challenging than the Helen one,

the face detection initialization is worse and the performance of all

methods greatly decreases, apart from the HOG-AIC model that pre-

serves its accurate and robust behaviour. Figure 4 shows some in-

dicative fitting results along with the initializations. Given the in-the-

wild nature of the testing databases and the small number of training

images, we believe that this performance is remarkable.

5. CONCLUSIONS

In this paper we present a formulation of AAMs Inverse Composi-

tional fitting algorithm that employs dense HOG feature descriptors.

This allows us to take advantage of the strengths and descriptive

qualities of HOGs in order to achieve efficient, robust and accurate

performance for the task of face fitting. Our experiments on chal-

lenging in-the-wild databases show that the HOG AAMs have the

ability to generalize well to unseen faces and demonstrate invariance

to expression, pose and lighting variations. Finally, we show that our

method outperforms discriminative state-of-the-art methods trained

on thousands of images.
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