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ABSTRACT

We investigate classification of non-linguistic vocalisations with a

novel audiovisual approach and Long Short-Term Memory (LSTM)

Recurrent Neural Networks as highly successful dynamic sequence

classifiers. As database of evaluation serves this year’s Paralinguistic

Challenge’s Audiovisual Interest Corpus of human-to-human natu-

ral conversation. For video-based analysis we compare shape and

appearance based features. These are fused in an early manner with

typical audio descriptors. The results show significant improvements

of LSTM networks over a static approach based on Support Vector

Machines. More important, we can show a significant gain in per-

formance when fusing audio and visual shape features.

Index Terms— Non-linguistic Vocalisations, Laughter, Audio-

visual Processing, Long Short-Term Memory

1. INTRODUCTION

Although cognitive scientists were unable to identify a set of vocal

cues that reliably discriminate among affective states and attitudes,

listeners seem to be rather accurate in decoding some non-basic

affective states such as distress, anxiety, boredom, and sexual inter-

est from non-linguistic vocalisations like laughs, cries, sighs, and

yawns. This finding instigated the research on automatic analysis

of vocal non-linguistic expressions. More generally, these vocal

episodes are highly relevant behavioral patterns for recognition

of human affect, social signals, and personality traits [1] and, in

turn, they play an important role to a multiplicity of applications

including Automatic Speech Recognition (to avoid substitutions

with in-vocabulary linguistic events), affective and socially-aware

computing, and future communication and media retrieval systems.

While a growing number of efforts towards automatic recognition

of non-linguistic vocal outbursts is recently reported, most of these

are based only on audio signals and aimed at automatic laughter

recognition [2–4]. Laughter is a highly variable acoustic signal [5,6]

which is accompanied by a facial expression. Therefore lately,

promising successes are observed by audiovisual assessment. Since

it has been shown by several experimental studies in either psychol-

ogy or signal processing that integrating the information from audio

and video leads to an improved performance of human behaviour
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recognition, few pioneering efforts towards audiovisual recogni-

tion of non-linguistic vocal outbursts have been recently reported

including mainly automatic classification of audiovisual laughter

episodes [7–9] but also audiovisual analysis of cries [10].

A major challenge in studying laughter and related vocal non-

linguistic outbursts, especially in an audiovisual way, is the lack of

data. Since laughter and its like usually occur in social situations,

when people are in groups, it is not easy to obtain clear recording

of individual spontaneous and natural expressions. Consequently,

meeting corpora are commonly used which are different in each

work and as a result direct comparability of findings is usually very

limited.

Similar audio features as for speech recognition, like MFCC,

PLP or RASTA-PLP, [8, 9, 11] are popular, but different features

like spectral power, entropy [12], and modulation spectrum features

[13] have also been considered. In terms of visual features, mostly

shape features have been employed [8, 9, 11], since the use of spon-

taneous data from meetings with large head movements and non-

frontal poses makes it difficult to apply appearance features. Differ-

ent types of visual features have also been considered, like face and

body movement features [13].

Many research challenges are yet to be investigated including

handling continuous stream of audiovisual data to be analysed for

presence of target vocal outbursts, dealing with presence of noise,

(dynamic) reverberation, and package loss in transmission, and han-

dling recordings of multiple speakers captured by a single or limited

sensor(s).

In this contribution, we want to face in particular natural con-

versational behaviour and investigate the gain by audiovisual fusion

stemming from a slightly broadened basis of audio descriptors and

considering shape and appearance based video features. These are

fused early and we further introduce the Long-Short-Term Memory

(LSTM) paradigm for their classification under context exploita-

tion. The targets of interest include conversational consent and

hesitation—which to our knowledge have not been pursued in an

audiovisual manner, yet—and laugher as opposed to ‘garbage’ in

the sense of speech and other vocalisation as breathing or coughing.

The remainder of this paper is structured as follows: we first in-

troduce our methodology in Sec. 2, experimental protocol and results

in Sec. 3 before drawing our conclusions in Sec. 4.

2. AUDIOVISUAL VOCAL OUTBURST CLASSIFICATION

This section describes the proposed approach for multimodal clas-

sification of non-linguistic vocalisations using Long Short-Term



Fig. 1: Original frame (left) with tracked facial points and warped

frontal face example (right). TUM AVIC corpus.

Memory Recurrent Neural Networks (RNN). In order to perform

multimodal fusion of audio and video cues, we use the concept of

early fusion, that is, feature level fusion where visual and acous-

tic features are concatenated for every frame. In the following we

first describe the video and audio related features. Next, we give a

short introduction to the concept of LSTM as used for contextual

modelling on a frame-level.

2.1. Video features

In this contribution, we use both shape and appearance features. Ini-

tially, we track 20 facial points using the Patras-Pantic particle filter-

ing tracking scheme [14]. These points are the corners of the eye-

brows (2 points), the eyes (4 points), the nose (3 points), the mouth

(4 points), and the chin (1 point)—for an example refer to Fig. 1. For

each video segment containing K frames, we obtain a set of K vec-

tors containing 2D coordinates of the 20 points. Employing a Point

Distribution Model (PDM), by applying PCA to the matrix of these

K vectors, head movement can be decoupled from facial expression.

Using the approach proposed in [15], the facial expression move-

ments are encoded by the projection of the tracking points’ coordi-

nates to the N principal components (PCs) of the PDM which corre-

spond to facial expressions. So our shape features are the projection

of the 20 points to the 6 PCs which were found to correspond to fa-

cial expressions (PCs 5 to 10), and are extracted at the video frame

rate, i. e., 25 fps. Further details of the feature extraction procedure

can be found in [15]. This set is referred to as ‘Shape’ in the ongoing.

We further consider appearance features obtained as follows:

First, we registered and cropped all faces from all subjects. More

specifically, from the set of 20 tracked facial fiducial points, we se-

lected 5 points corresponding to the 4 eye corners and the tip of the

nose which remain relatively stable and invariant to facial deforma-

tions (see Fig. 1). We then employ the coordinates of these tracked

points as well as the coordinates of these points in a reference co-

ordinate system to solve for an affine transformation. We utilise the

estimated transform to warp each face to the reference frame. Fi-

nally, all faces are re-sampled to dimension 64 × 64. Once all faces

are warped, we obtain appearance features by applying PCA to im-

age gradients [16] and keeping the first 30 dimensions. This set is

referred to as ‘Appear’ in the ongoing. An example is shown in Fig.

1. The actual frame, with the head rotated, can be seen on the left.

On the right, the warped face, which is now frontal, is shown. There

is evidence in psychological literature that changes in the upper face

appearance are present particularly in laughter [17], therefore we

keep the entire face region when extracting appearance features.

2.2. Audio features

We decided for a compact set of 9 acoustic low-level descriptors,

which are commonly used for related tasks such as emotion recog-

nition and speech recognition (cf. Table 1) and their respective first

and second order delta regression coefficients. We chose to use only

Perceptual Linear Prediction Cepstral Coefficients (PLP-CC) 1–5 in-

stead of coefficient 1–12 as is usual for automatic speech recognition

applications in order to keep the dimensionality of the acoustic fea-

ture set similar to the shape based set and as it is known that these

suffice for non-linguistic assessment.

Acoustic features have been calculated using our open-source

extractor openSMILE [18] at 100 fps. The full set is 27 dimensional

after addition of first and second order delta regression coefficients

and will be referred to as ‘Audio’ in the ongoing.

Acoustic Low-level Descriptors (9)

Perceptual Linear Prediction Cepstral Coefficients (PLP-CC) 1–5

Logarithmic Energy

Loudness

Fundamental Frequency (F0)

Probability of Voicing

Table 1: Set of 9 acoustic low-level descriptors.

2.3. Long Short-Term Memory Recurrent Neural Networks

We will only briefly describe the theory of LSTM networks and mo-

tivate their use for non-linguistic vocalisations recognition. For a

detailed discussion of the LSTM concept and network architecture,

we refer to [19].

In principle LSTM networks are an extension of recurrent neural

networks, which in turn are standard neural networks with recurrent

(feed-back) connections. However, they are equipped with an en-

hanced memory feature. RNNs consist of one input, one output and

one or more hidden layer(s). The recurrent connections allow the

network theoretically to map from the entire history of previous in-

puts to an output. They form a kind of memory, which allows input

values to persist in the hidden layer(s) and influence the network

output in the future. Although by that RNNs have access to all past

information in theory, the actual range of context is limited to a few

frames due to the vanishing gradient problem: The influence of an

input value decays or blows up exponentially over time.

To overcome this deficiency, the LSTM concept was introduced:

In an LSTM hidden layer, the non-linear units are extended to LSTM

memory blocks. Each block contains one or more linear memory

units, whose internal state is maintained by a recurrent connection

with constant weight 1.0, enabling the unit to store information over

arbitrary periods of time. The input, output, and internal state of the

memory units are controlled by multiplicative gate units, which cor-

respond to write, read, and reset operations. The gates are connected

to the input layer as well as recurrently to the output layer. During

network training, the weights for all connections, including the gate

units, are optimised such that the network—ideally—automatically

learns when to store, use, or discard information acquired from pre-

vious inputs or outputs. This makes LSTM RNN useful for many

connected sequence classification tasks where context is important

but exact nature of the dependencies is unknown a priori. LSTM

RNN have been successfully used for a great variety of applica-

tions often outperforming more traditional sequence classifiers such

as Hidden Markov Models.



3. EXPERIMENTS AND RESULTS

3.1. Data and Protocol

We prepared a data set based on the TUM Audio-Visual Interest

Corpus (TUM AVIC). It consists of 3 901 turns of natural human-

to-human conversational speech of a product presentation, spoken

by 21 subjects (10 of them female). The total recording time for

males resembles 5:14:30 h with 1 907 turns, for females 5:08:00 h

with 1 994 turns, respectively. The spoken content, including non-

linguistic vocalisations, is transcribed on the word level. For a de-

tailed description of TUM AVIC we refer to [20].

We follow the official partitioning of the corpus as was used

for the INTERSPEECH 2010 Paralinguistic Challenge [21]. By

that, there are 718 non-linguistic vocalisations in the evaluation set,

and 1 573 non-linguistic vocalisations in the training set with more

than 3 frames (instances with less than 3 video frames (120 ms)

were discarded to avoid processing problems). These numbers ex-

clude the class “breath”, i. e., they include the classes (instances per

train/evaluation): GAR BAGE (420 / 161), CON SENT (218 / 91),

HES ITATION (731 / 403), LAU GHTER (204 / 63).

In the experiments presented here we consider isolated non-

linguistic vocalisations as in [22]. At being we thus do not consider

detection of non-linguistic vocalisations within continuous utter-

ances in order to properly assess the discriminative abilities of

LSTM RNN and the feasibility of audiovisual fusion for the task.

However, as discussed below, the LSTM RNN approach is in princi-

ple also capable of detecting events in continuous utterances through

a slight modification of the network output representation.

For this task of isolated non-linguistic vocalisations classifica-

tion we investigate—as stated—the performance of visual shape de-

scriptors, visual appearance based features, and audio low-level de-

scriptors individually as well as in all possible combinations using

feature-level fusion. Audio and visual features are extracted at dif-

ferent frame rates, 100 fps and 25 fps, respectively, so visual features

are upsampled simply by copying each feature vector 4 times in or-

der to match the audio frame rate. We compare dynamic, frame-wise

classification with LSTM RNN followed by weighted majority vot-

ing to a static classification approach where low-level descriptor con-

tours are mapped to a fixed length vector via functionals and Support

Vector Machines are employed in a subsequent classification step

for reference. For all experiments the classifier of choice has been

trained on the joint data from the TUM AVIC training and devel-

opment set, which we will refer to as training data in the ongoing.

Evaluations have been conducted on the TUM AVIC evaluation set.

We tested several LSTM configurations and topologies by train-

ing on the TUM AVIC training set and evaluating on the develop-

ment set. We found the best configuration to have a single hidden

layer with 125 LSTM memory blocks with one cell each. The

networks used in this paper have an input layer with Ni linear sum-

mation input units, a hidden layer with 125 LSTM blocks with one

memory cell each, and a soft-max output layer with 4 outputs. In

our case we require the 4 outputs for the 4 classes we wish to detect.

Due to the soft-max constraint the sum of all the outputs in the

output layer always equals 1, thus the values of the 4 outputs can be

regarded as probabilities that a certain frame belongs to the respec-

tive class. An alternative way is not to use a soft-max output layer,

but a standard sigmoid layer. In this case we require only 3 output

units, one for each class, except the GARBAGE class. GARBAGE is

represented (under ideal circumstances) as all outputs being 0. To

effectively discriminate between GARBAGE and one of the 3 other

classes in this case, we have to apply a detection threshold to the

Functionals (7)

Extremes (maximum, minimum value)

Range (maximum – minimum value)

Arithmetic mean

Standard deviation

Skewness, Kurtosis

Table 2: Set of 7 functionals used to convert low-level feature con-

tours of variable length to a fixed length vector for static classifica-

tion with SVM.

outputs and then choose the output with the maximum value above

the threshold. If no output is above this threshold, no non-linguistic

vocalisation is detected. This approach is suitable for detecting

non-linguistic vocalisations in continuously spoken utterances and

will be investigated in follow-up work.

For multimodal classification of isolated non-linguistic vocal-

isations, let each vocalisation be represented by a sequence X of

feature vectors xj . An LSTM RNN is trained as a frame-wise clas-

sifier, i. e., a target representing the ground-truth class label l of

each vocalisation X is assigned to all frames xj belonging to this

vocalisation for training of the network. During evaluation majority

voting is applied to assign a single label to the sequence: The sum

of each network output over the whole sequence is computed and

the class label corresponding to the output with the highest sum is

chosen as sequence label.

LSTM RNN are trained using resilient propagation instead of

standard gradient descent. For more details on these methods, please

refer to [19]. Batch learning is applied, i. e., the network weights are

not updated after processing every single training instance, but only

after processing the whole training data.

The static classification approach is similar to the one introduced

in [22], except that we use a different feature set and the official cor-

pus partitioning from the INTERSPEECH 2010 Paralinguistic Chal-

lenge instead of 3-fold cross validation. Moreover, for a fair com-

parison, the feature set used herein is based on the same low-level

acoustic descriptors as used for the proposed LSTM RNN approach.

Again, we consider the low-level descriptor sets Audio, Shape, Ap-

pear as well as all combinations of these. We then apply a small

set of statistical functionals (table 2) to the (fused) set of low-level

descriptors’ contours.

3.2. Experimental Results

We report weighted (WAR, i. e., accuracy) and unweighted aver-

age recall (UAR) rates for all experiments in Table 3. As can be

seen, LSTM networks perform better on unbalanced data with re-

spect to UAR. The overall best result—by fusion of audio and shape

features—is also obtained by LSTM on the frame level. Interest-

ingly, the accuracy is not raised by addition of shape features, yet

the unweighted accuracy is highly significantly boosted. Compar-

ing shape and appearance features, the latter not only clearly fall

behind, but their inclusion worsens results in any combination, as

they appear close to chance level. A possible explanation for that

is high registration errors due to out of plane rotations. This type

of rotation occurs sometimes and a fully frontal face cannot be ob-

tained by an affine transformation. Appearance features are more

sensitive to this type of errors and this may lead to inferior perfor-

mance than shape features. In addition, the extraction of appear-

ance features from the entire face, which is supported by evidence

in psychology as mentioned above (section 2.1), may also degrade

the performance. Therefore the use of appearance features extracted

only from the lower part of the face, as it is common in audiovisual



[%] LSTM SVM

Features UAR WAR UAR WAR

Appear 32.5 50.0 31.8 60.0

Shape 48.4 56.1 39.6 60.2

Shape+Appear 40.8 51.8 39.2 58.2

Audio 64.6 73.5 59.1 72.4

Audio+Appear 60.3 64.2 59.4 72.1

Audio+Shape 72.0 73.5 60.5 72.4

Audio+Shape+Appear 64.3 63.1 62.7 74.2

Table 3: Results for multimodal non-lingusitic vocalisation classifi-

cation on TUM AVIC. Low-level feature fusion of various sets: ap-

pearance based features (Appear), shape features (Shape), and audio

features (Audio). Weighted average (WAR) and unweighted average

(UAR) of class-wise recall rates. Details in the text.

[%] as → GAR CON HES LAU

GARBAGE 62.1/65.2 1.2/1.9 27.3/16.8 9.3/16.1

CONSENT 24.2/15.4 47.3/65.9 26.4/17.6 2.2/1.1

HESITATION 9.4/13.4 4.0/7.9 85.6/77.7 1.0/1.0

LAUGHTER 20.6/15.9 1.6/0.0 14.3/4.8 63.5/79.4

Table 4: Confusion Matrix for LSTMs on TUM AVIC using Audio

(left, each) and Audio+Shape (right, each) features.

speech recognition, deserves further investigation.

In Table 4 confusions are additionally shown for the audio fea-

tures and the best fusion case—audio and shape features. One ob-

serves that HESITATION is better classified by audio only, while the

other classes benefit from the fusion. Apart from the expectable

higher number of confusions of any other with the GARBAGE class,

more confusions occur between CONSENT and HESITATION, which

is explicable by their phonetically partly similar sturcture (“mhm”

vs. “hmm”).

4. CONCLUSIONS

We introduced a novel audiovisual feature-level fusion by LSTM

RNN for the computational assessment of non-linguistic vocalisa-

tions in conversational speech. In our experiments, adding shape

to audio features improved classification accuracies highly signifi-

cantly, yet, the further addition of appearance features was observed

inferior. A reference approach able to exploit suprasegmental effects

by SVM based on statistical functionals fell behind the frame-level

modelling with long-term memory. An obvious next step will be the

inclusion in an audiovisual speech recognition framework. In addi-

tion, further network topologies and bottle-neck feature architectures

will be of particular interest.
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