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AN AFFINE INVARIANT FUNCTION USING PCA BASES WITH AN APPLICATION TO

WITHIN-CLASS OBJECT RECOGNITION

Georgios Tzimiropoulos, Nikolaos Mitianoudis and Tania Stathaki

Imperial College, Exhibition Road, SW7 2AZ London, UK

ABSTRACT

The problem of shape-based recognition of objects under affine

transformations is considered. We focus on the construction

of a robust and highly discriminative affine invariant func-

tion that can be used for within-class object recognition ap-

plications. Using the boundaries of the objects of interest,

a training scheme, based on Principal Component Analysis

(PCA), is proposed to derive a set of basis functions with de-

sired properties. The derived bases are then used for the con-

struction of a novel affine invariant function. The proposed

invariant function is evaluated for the problem of aircraft sil-

houette identification and appears to achieve comparable per-

formance to a popular wavelet-based affine invariant function.

At the same time, the proposed framework is much simpler

than that based on wavelet analysis.

Index Terms— affine transformation, shape-based object

recognition, PCA bases

1. INTRODUCTION

Shape information, extracted from objects’ boundaries, as de-

picted in 2D images, has played a crucial role in pattern recog-

nition applications in computer vision. An important prob-

lem, related to all methods involving shape analysis, arises

from the fact that the shape of an object varies due to arbitrary

camera viewpoint positions. In all cases, the shape variation

can be modeled by the perspective transformation. However,

when the object is far from the camera, the shape distortion

can be approximately described by the affine transformation

which is linear. The affine transformation models possible

scaling, rotation, translation and shearing.

A number of methods have been proposed, which com-

pute descriptors from the boundary representation that remain

invariant under affine transformation. Recently, methods based

on wavelet analysis have become popular in shape represen-

tation and matching, since they appear to outperform tradi-

tion techniques such as Fourier analysis and moments. The

main idea is to analyze the object boundary using the dyadic

wavelet transform. The decomposition yields to the approx-

imation and detail signals which uniquely characterize the
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boundary. These signals are then used to construct affine in-

variant functions. The choice of the signals, the decomposi-

tion levels and the wavelet functions used, have all resulted in

a number of different approaches [1], [2], [3], [4], [5].

In this work, we propose a linear generative model and

Principal Component Analysis (PCA) to derive kernels (bases)

that can be used for shape analysis in within-class object recog-

nition applications. The bases are obtained by a simple train-

ing process using the boundaries of the objects of interest.

They can be used to analyze the boundary locally similarly to

the wavelet analysis. In contrary to the wavelet-based meth-

ods, our approach does not require a thorough investigation

of the parameters used (for example the choice of the mother

wavelet and the dyadic levels) to optimize performance for a

specific application. The significance of the obtained analysis

kernels is naturally derived from the training process. Based

on the theory of invariants and PCA bases analysis, an affine

invariant function is constructed, that can be used for the recog-

nition of the objects of interest under affine transformation.

2. BACKROUND

Let c(t) = [x(t), y(t)]T denote a parametric closed curve in

2D space, where t is an arbitrary parameter used for curve

parameterization (e.g. the arc length). If the curve has under-

gone an affine transformation, then it can be described by the

following parametric equation:

c′(t′) = Ac(t) + b (1)

where c′(t′) = [x′(t′), y′(t′)]T is the affine transformed curve,

A is a 2 × 2 nonsingular matrix and b is a 2 × 1 vector. The

matrix A can be decomposed as follows:

A =

[

a11 a12

a21 a22

]

= s

[

cos θ − sin θ
sin θ cos θ

] [

1 α
0 1

]

(2)

where s ∈ R+ models global scaling, θ ∈ [0, 2π) models

rotation and α ∈ R is the shearing parameter. The vector

b represents translation. The transformed parameter t′ is, in

general, a function of t.
To preserve the linearity of the affine transformation, the

object boundary must be parameterized using a parameter,

which transforms linearly under affine transformations [1]. In



this work, we will assume t′ ≈ t + t0, where t is the arc

length parameter and t0 represents a shift between the starting

points of the two contours, and we will consider the parameter

transformation problem as an additional factor which deterio-

rates the performance of the matching process [5]. The effect

of translation is also eliminated by setting the origin of the

coordinate system to the centroid of the object contour (i.e.

b = 0). Taking the above into consideration and ignoring, for

the time being, the effect of t0, Eq. (1) reduces to:

c′(t) = Ac(t) (3)

Let I be a quantity computed from c and I ′ be the same

quantity computed from c′. If I is an affine invariant, then it

is related to I ′ as follows:

I ′ = µI (4)

where µ 6= 0 is a constant. If µ = 1, then I is called an

absolute invariant, otherwise I is called a relative invariant.

In the following section, a relative invariant function will be

derived using the proposed methodology.

3. AN AFFINE INVARIANT FUNCTION USING PCA

BASES

In literature, a number of techniques have been proposed,

which derive invariants from the boundary representation of

objects, operating in the transform domain. Fourier analy-

sis and wavelet decomposition are two well-studied examples

[6], [1], [2], [3], [4], [5]. In these cases, the bases, used for

boundary analysis, are mathematically well-defined to serve

some specific analysis tasks. However, in many applications,

it is useful to derive the transform from the data itself. A num-

ber of arbitrary bases can be obtained by a training process

using the set of the objects of interest.

Assume a collection of objects stored in our database and

let c(n) = [x(n), y(n)]T be the sampled parametric boundary

representation of any of these objects. All objects are normal-

ized to be of equal length Nc. We also denote by cs(n) =
[xs(n), ys(n)]T any segment along the curve c. Then, the

whole curve can be seen as a concatenation of curve segments

which, in this work, are chosen to be of equal length Ns. Let

rs(n) represent either xs(n) or ys(n). If we assume that rs

follows a linear generative model, then it can be written as a

linear combination of L basis functions as follows:

rs = Fus (5)

where rs is a Ns × 1 vector, F = [f1, f2, . . . , fL] is a Ns × L
matrix whose i-th column corresponds to the basis function

fi and us = [us1, us2, . . . , usL]T is a L × 1 vector whose

components are scalar constants. The matrix F represents

the synthesis kernels (bases), while the matrix G = F−1 =
[g1, g2, . . . , gL]T gathers the analysis kernels. Our main tar-

get is to compute a set of appropriate basis functions. Since

rs is of length Ns, we essentially need Ns basis functions.

In this work, a set of uncorrelated bases is obtained us-

ing Principal Component Analysis (PCA) [7]. PCA provides

an optimal solution to several signal representation problems,

making it useful for feature extraction and dimensionality re-

duction in a wide range of applications [8], [7]. Its main draw-

back is that it assumes a Gaussian distribution of the data.

However, it is not unreasonable to assume that the low-pass

nature signals, obtained from the objects’ boundaries, can fit

the Gaussian profile imposed by PCA.

Let us define by R = [rs1, rs2, . . . ] the matrix obtained

by gathering all curve segments from all objects. The PCA

bases are derived from the eigenvalue decomposition of the

covariance matrix of R, CR. Let H be the matrix containing

the eigenvectors of CR and D the diagonal matrix containing

the eigenvalues of CR, such that the i-th diagonal element

corresponds to the i-th column of H . Then, the PCA bases

are defined as the rows of the following matrix V :

V = D−1/2HT (6)

An important benefit gained from PCA analysis is that a

measure of the significance of each basis function is given by

the corresponding eigenvalue. One can discard the functions

corresponding to the smallest eigenvalues to obtain a reduced

set of L bases Ṽ . This reduced set can be used for a com-

pact data representation. The function corresponding to the

largest eigenvalue is discarded as well, since it represents a

DC component, i.e. a change in signal level.

In this work, we are interested in boundary analysis rather

than compact representations. Likewise, the most significant

bases will be used to capture most of the signals structure

and, at the same time, to perform significant noise reduction.

Similarly to the wavelet transform, the object contour is an-

alyzed locally, using a series of bandpass filters. The eight

most important PCA bases, for the application of aircraft con-

tour identification (considered in the following section), along

with their frequency content can be seen in Fig. 1. However,

in our case, there is no need for an exhaustive investigation to

identify the wavelet or the decomposition levels which should

be used for optimum performance. Such a procedure is de-

scribed in detail in [1]. Instead, the analysis functions are

directly provided by the data itself, together with a measure

which indicates their significance. The boundary is analyzed

using the analysis kernels and a set of coefficients is gener-

ated, which are used for the construction of an affine invariant

function.

Let P is be the coefficients obtained by projecting the sig-

nal s to the i-th analysis kernel. Since the transform lacks the

shift-invariance property, a sliding window approach should

be followed. By applying the transform to both parts of Eq.

(3), we get:

Pix
′ = a11Piy + a12Piy

Piy
′ = a21Piy + a22Piy

(7)

Likewise, using the coefficients obtained by applying the j-th
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Fig. 1. (a) The derived PCA bases (Ns = 64) and (b) their

frequency content.
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Fig. 2. (a) Original boundary and (b) boundary under affine

transformation

analysis kernel, one can form:

[

Pix
′ Pjx

′

Piy
′ Pjy

′

]

= A

[

Pix Pjx
Piy Pjy

]

(8)

Taking the determinants in both parts yields:

I ′1(i, j) = Pix
′Pjy

′ − Pjx
′Piy

′

= det(A)(PixPjy − PjxPiy) = det(A)I1(i, j)
(9)

Therefore, the function I1 is a relative invariant with µ =
det(A). It can be made an absolute invariant by dividing it

with another relative invariant function or its maximum value

[5]. Fig. 2a and 2b show the boundary of an aircraft model

and the boundary of its affine transformed version respec-

tively. The corresponding derived invariant functions I1 and

I ′1 can be seen in Fig. 3, which demonstrates their invariance

to affine transformations.

4. RESULTS

To evaluate the algorithm performance, the method is applied

to a database of K = 20 aircraft models which can be seen

in Fig. 4. These models have also been used in [3] to test

the discriminative power of the invariant function and its abil-

ity to capture small variations. Since scale transformations
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Fig. 3. The derived invariant functions (a) I1 and (b) I ′1.

Fig. 4. The aircraft models used in the experiment.

depend on the resolution of the original image, in our exper-

iments, the effect of scaling is not investigated. Instead, to

model a 128×64 image resolution, the resolution of all model

images in Fig. 4 is such that each aircraft approximately

fits in a d1 × d2 rectangular grid, where d1d2 = 1282/2.

From these images, the aircraft contours are extracted using a

simple 8−point connectivity algorithm [9] and normalized to

have equal length Nc = 512 points. The length of the curve

segment Ns is chosen to be equal to 64 points. We also note

that, when constructing the matrix R, we allow a small over-

lap of the curve segments to ensure signal’s stationarity. The

PCA basis functions are extracted, and, for each model, the

invariant function I1 is computed using the two most signif-

icant PCA bases, as described in the previous section. For

each model image, a set of test images is generated using the

following affine parameters: θ = {0◦, 60◦, 120◦, 180◦} and

α = {0, 1/3, 2/3, 1}. Similarly, the boundaries are extracted

using the same 8−point connectivity algorithm and, for each

test boundary, the corresponding invariant function is derived.

For two invariant functions, I1,κ and I1,λ, derived from

objects κ and λ respectively, the degree of similarity is mea-

sured as the maximum value of the normalized circular cross-



correlation [3]:

S1,κ,λ(m) =

∑

m

∑

n I1,κ(n)I1,λ(n − m)
√

∑

n I1,κ(n)
2 ∑

n I1,λ(n)
2

(10)

The use of the circular cross-correlation also eliminates the

effect of the unknown shift between the starting points of the

two contours.

The performance of the proposed invariant function is eval-

uated in a noisy environment. Uniformly distributed noise is

artificially added to the x and y coordinates of each contour

point, after the extraction of the boundary from each test im-

age. The amount of noise added is controlled using the Sig-

nal to Noise Ratio (SNR) defined in [1]. We have considered

a large noise level of SNR = 20 dB. For each test image,

the experiment is repeated 100 times. The classification re-

sults are given in Table 1. In the same table, we also present

the recognition rate obtained by applying a popular wavelet-

based affine invariant function [3], denoted as I2. The invari-

ant function I2 is computed at scales (5, 6) and (6, 7) using

the quadratic B-spline wavelet which is reported to yield the

best performance [5]. As it can be observed, the proposed

algorithm features comparable performance to the standard

wavelet-based method. We further note that any linear com-

bination of invariant functions (derived using more than two

PCA bases) can be used to increase the recognition rate with

the cost of additional computational complexity.

5. CONCLUSIONS

We have presented a methodology which aims at the construc-

tion of a robust affine invariant function that can be used for

within-class object recognition applications. The proposed

framework is based on PCA basis functions trained from the

boundaries of the objects of interest. Simulation results show

that the derived function appears to have similar performance

to a popular wavelet-based affine invariant function. In ad-

dition, the developed framework is much simpler than that

based on wavelet analysis.
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