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A unifying approach to moment-based shape

orientation and symmetry classification
Georgios Tzimiropoulos, Nikolaos Mitianoudis and Tania Stathaki

Abstract— In this work, the problem of moment-based shape
orientation and symmetry classification is jointly considered.
A generalization and modification of current state-of-the-art
geometric moment-based functions is introduced. The properties
of these functions are investigated thoroughly using Fourier series
analysis and several observations and closed-form solutions are
derived. We demonstrate the connection between the results
presented in this work and symmetry detection principles sug-
gested from previous complex moment-based formulations. The
proposed analysis offers a unifying framework for shape orienta-
tion/symmetry detection. In the context of symmetry classification
and matching, the second part of this work presents a frequency
domain method, aiming at computing a robust moment-based
feature set based on a true polar Fourier representation of
image complex gradients and a novel periodicity detection scheme
using subspace analysis. The proposed approach removes the
requirement for accurate shape centroid estimation, which is
the main limitation of moment-based methods, operating in the
image spatial domain. The proposed framework demonstrated
improved performance, compared to state-of-the-art methods.

Index Terms— geometric moments, complex moments, shape
orientation, symmetry classification, polar Fourier transform,
SVD

EDICS Category: SRE-LOWR

I. INTRODUCTION

THERE is strong evidence that shape orientation iden-

tification is an important task, performed during the

pre-attentive stage of the human visual processing system,

which activates object-oriented mechanisms and helps in scene

interpretation [1]. Shape orientation is also an important object

visual attribute useful in many image processing and computer

vision applications, such as shape analysis and representation,

image retrieval, image normalization and object recognition.

Over the past years, significant effort has been made by the

computer vision community to develop robust and efficient

algorithms which aim at defining and computing the orienta-

tion of a 2D shape. Unfortunately, the large shape variability

hinders the formulation of a common approach for all possible

shapes.

It seems reasonable that efficient orientation estimation

techniques for machine vision applications should possess the

following favorable properties:

1) Reasonable geometric interpretation.

2) Robustness to noise/outliers.

3) Low computational complexity.

Mr G. Tzimiropoulos’ funding for this work is provided by the Systems
Engineering for Autonomous Systems (SEAS) Defence Technology Centre
established by the UK Ministry of Defence.

4) Flexibility in a sense that important parameters should

be automatically computed in a blind environment.

5) Robust performance for a large number of shapes.

In this work, moment-based shape orientation methods are

pursued, as they offer a good compromise among the above

requirements. Unlike any other methods (see [2],[3] for a

detailed review), a moment-based formulation appears to be

the only one which provides a complete solution to the shape

orientation problem. Additionally, moments are useful features

that can be employed to other pattern analysis tasks, such as

recognition.

It was shown in [4] that the traditional approach to defining

a pattern’s orientation based on second-order central geometric

moments [5] will fail for all shapes which are rotationally

symmetric of order n with n > 2. Defining and computing

the orientation of symmetric shapes is the main scope of

this work. More specifically, we jointly consider the problem

of shape orientation and symmetry detection/classification.

Such an approach appears to have a reasonable geometrical

interpretation and, therefore, it may be useful for higher level

processing such as pattern analysis and classification [6].

In contrast, moment-based methods which compute a single

orientation for symmetric patterns [7], [8], [9], [10], [11], [12],

[13] have no clear geometric meaning and therefore their use

is mainly limited to image normalization tasks.

In the first part of this work, the focus is on the shape orien-

tation/symmetry classification problem based on a geometric

moment-based approach. In particular, we introduce a novel

modification and generalization of the objective functions

proposed in [4],[6], such that a reflection symmetry criterion

is satisfied. The properties of these functions are thoroughly

investigated using Fourier series analysis which simplifies

mathematical manipulations and enables the derivation of

closed-form solutions. Furthermore, we demonstrate that shape

orientation principles suggested in previous complex moment

formulations [2], [14] can be naturally extended to the case of

the proposed geometric moment-based functions. In the light

of the presented analysis, moment-based shape orientation can

be unified in a single framework.

In the context of moment-based symmetry classification and

matching, in the second part of this work, a novel scheme is

proposed, aiming at computing moment features in a more

stable and robust way than the currently considered state-

of-the-art method given in [2]. The core of our method is

based on the computation of a moment-based feature set in the

image Fourier domain; an approach motivated by the recent

development of a fast and accurate algorithm for computing

a true polar Fourier representation [15]. The shift invariance
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property of the Fourier transform removes completely the

requirement for the accurate shape centroid estimation, which

is the main limitation of the method in [2]. Further robustness

is achieved by considering the edge map of the original pattern

solely and employing a novel periodicity detection scheme

based on subspace analysis.

This work is organized as follows. In the next section,

the necessary definitions, that are used throughout in this

work, are provided. A brief introduction to the methods which

constitute the basis of our approach is presented in section III.

In section IV, a detailed description of the proposed novel

unifying approach is provided. Section V introduces the novel

polar frequency domain moment-based formulation. In section

VI, the performance of the proposed framework is evaluated.

Finally, section VII outlines the contributions and offerings of

this work.

II. DEFINITIONS

A. Types of symmetry

Definition 1. An image I(x), x = [x, y]T ∈ R2 is

rotationally symmetric of order n (or n−fold rotationally

symmetric) about the symmetry center x0 = [x0, y0]
T if:

I(x) = I(D(δλ)(x − x0)) (II.1)

where δλ = 2(λ− 1)π/n, λ = 1, . . . , n and D is the rotation

matrix operator:

D(δ) =

[
cos(δ) sin(δ)
− sin(δ) cos(δ)

]
(II.2)

Given a polar representation of I with respect to the symmetry

center x0, (II.1) takes the form:

I(r, θ − δλ) = I(r, θ), λ = 1, . . . , n. (II.3)

Additionally, the pattern can be expressed as a repetition of

one fold as follows:

I(r1, θλ), λ = 1, . . . , n (II.4)

where I(r1, θ1) represents one fold of the pattern and θλ =
θ1 + 2(λ − 1)π/n, λ = 1, . . . , n.

Definition 2. An image I is reflection symmetric about a

line y = tan α(x − x0) + y0 that passes through x0 if:

I(x) = I(L(α)(x − x0)) (II.5)

where L is the reflection matrix operator:

L(α) =

[
cos(2α) sin(2α)
sin(2α) − cos(2α)

]
(II.6)

Equivalently, in polar coordinates, it holds:

I(r, α + θ) = I(r, α − θ) (II.7)

An image I is both n−fold rotationally and reflection symmet-

ric about x0, if there exist n lines αλ = α0+(λ−1)π/n, λ =
1, . . . , n satisfying Eq. (II.5).

B. Optimal axes for shape orientation

Given a 2D pattern, its orientation can be naturally defined

from the direction angle of one or more half lines originating

from the pattern’s centroid.

Definition 3. Let φi, i = 1, . . . , l be the direction angles

of a set of half lines originating from the pattern’s centroid.

Then, the set {φi} can be used to define the orientation of the

pattern optimally, if it possesses the following two properties:

1) the set can be detected independently of the coordinate

system [14].

2) the set is not redundant.

The first property ensures that the set {φi} will be invariant if

the pattern is translated or scaled, while rotation of the pattern

by an angle β will result in a set {φi+β}. The second property

ensures that the orientation of the pattern is unique, that is

rotation of the pattern by any φi will normalize the pattern to

the same position. The second property also implies that the

set of angles {φi} must be equally-spaced over the interval

[0, 2π).
Figure 1 shows an example which demonstrates the con-

nection between reflection symmetry identification and shape

orientation considered in this work. In Fig. 1 (a), the axes of

reflection symmetry for a symmetric pattern of order 6 are

sketched. For the same pattern, the optimal axes are shown in

Fig. 1 (b). It can be observed that the set of axes in Fig. 1 (b)

is a subset of the reflection symmetry directions in Fig. 1 (a).

For the rotationally symmetric shape of Fig. 1 (c), reflection

symmetry does not exist, nevertheless optimal axes may well

be defined.

(a) (b) (c)

Fig. 1. Identification of reflection symmetry and detection of optimal axes.
(a): 6 lines indicate the reflection symmetry directions. (b), (c): 6 half-lines
define the optimal axes.

C. Geometric and complex moments

The Geometric and Complex moments, that will be used in

the analysis, are defined in this section:

Definition 4. The geometric central moments of an image

I are defined as:

µpq =

∫

x

∫

y

(x − µ10)
p(y − µ01)

qI(x, y)dydx (II.8)

where µpq =
∫

x

∫
y
xpyqI(x, y)dydx. In the remaining of this

paper, we will assume that the pattern’s centroid is used as

the origin of the coordinate system and consequently µpq ≡
µpq. Of particular interest in this work is the moment-based

objective function obtained by rotating I by δ ∈ [0, 2π] and

evaluating µpq as follows:

Mpq(δ) =

∫

x

∫

y

xpyqI(D(δ)x)dydx (II.9)
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A change of variables yields:

Mpq(δ) =

∫

x

∫

y

dx(δ)pdy(δ)qI(x, y)dydx (II.10)

where [
dx(δ)
dy(δ)

]
=

[
x cos δ − y sin δ
x sin δ + y cos δ

]
(II.11)

The function Mpq is said to be degenerate, if Mpq(δ) =
constant, ∀δ ∈ [0, 2π). Assuming K samples of I , we may

estimate (II.10) as follows:

M̃pq(δ) =

K∑

i=1

dxi

p(δ)dyi

q(δ)I(xi, yi) (II.12)

Definition 5. The complex moments of an image I are defined

in the polar domain as:

cpq =

∫ ∞

r=0

∫ 2π

θ=0

rp+1ejqθI(r, θ)dθdr (II.13)

We estimate (II.13) as follows:

c̃pq =

K∑

i=1

rp+1
i ejqθiI(ri, θi) (II.14)

III. MOMENT-BASED SHAPE ORIENTATION: A BRIEF

REVIEW

In this section, the main results of [2], [4],[5],[6],[14] are

summarized, constituting the basis of our work. For most

irregular patterns (including patterns with a single axis of re-

flection symmetry and 2−fold rotationally symmetric shapes),

orientation can be naturally derived from the direction of

the pattern’s axis of elongation. The principal axis method

[5] estimates this direction by seeking the minima of the

second-order moment-based function M02. It can be shown

that if M02 is non-degenerate, the minimization problem has

two solutions, namely φpa and φpa + π. Note that with

the exception of 2−fold rotationally symmetric shapes, the

set {φpa, φpa + π}, provides a sub-optimal solution to the

orientation problem, since the second property of Def. 3 is

not satisfied.

For n−fold (n > 2) rotationally symmetric shapes, it can be

proved that M02 is degenerate [4], [6]. More specifically, it was

shown that the moment function M0N will be non-degenerate

only if N ≥ n. In this case, minimizing M0n yields n
generalized principal axis solutions uniformly distributed over

[0, 2π), namely φgpa
λ = φgpa +2(λ− 1)π/n, λ = 1, . . . , n. It

can be seen that the set {φgpa
λ } provides an optimal solution to

the shape orientation problem, by associating each fold with a

unique half line. It was additionally shown in [6], that in the

case that n is odd, the set {φgpa
λ } will not coincide with the

directions of reflection symmetry if those exist. The authors

showed that, in this case, minimizing M0N with N > n even

is likely to provide a solution to this problem.

In addition to geometric moments, complex moments have

also been employed as useful features to define the orientation

of symmetric patterns. The authors in [10] showed that for

an n−fold rotationally symmetric shape the complex moment

cq−1q will be non-zero only if q is an integer multiple of the

fold number, that is q = sn, s ∈ N ∗ 1. If qmin is the smallest

integer such that cq−1q 6= 0 and φupa = ∠cqmin−1qmin , the

universal principal axes [14] are defined as φupa
λ = (φupa +

2(λ − 1)π)/qmin, λ = 1, . . . , qmin. Note that the set of

{φupa
λ } is optimal only if qmin = n.

The framework given in [2] is a generalization of the univer-

sal principal axes method and is considered state-of-the-art in

moment-based shape orientation and symmetry classification.

First, a method for the automatic selection of the order p
is presented in [2]. Then, it is shown that classification of

both rotational and reflection symmetry can be performed by

considering all non-zero complex moments cpqi , i = 1, 2, . . . .

The phase of each non-zero generalized complex moment

φgcm
i = ∠cpqi is used to define a set of directions φgcm

i,λ =
(φgcm

i +(λ−1)π)/qi, λ = 1, . . . , qi. The reflection symmetry

axes are obtained from the intersection of the axis sets {φgcm
i,λ }.

Additionally, the fold number is estimated as the biggest

common factor of the orders qi. Optimal axes are obtained

by solving a simple linear programming problem.

IV. A UNIFYING FRAMEWORK FOR SHAPE ORIENTATION

In this section, a novel methodology is presented that

extends previous work on geometric moment-based functions

and attempts to unify most of the results of the methods

described above in a single framework and perspective.

Two modifications to the geometric moment-based approach

presented in [4] are introduced. Firstly, an one-to-one mapping

f : R → R which operates on the distance r of each point

from the origin is introduced:

f(r) = f
(√

x2 + y2
)

= f

(√
dx

2(δ) + dy
2(δ)

)
(IV.1)

It should be noted that the above mapping does not modify the

angle distribution θ. Then, a modified moment-based function

Wpq can be defined, as follows:

Wpq(δ) =

∫

x

∫

y

{f

(√
dx

2(δ) + dy
2(δ)

)

dx
p(δ)dy

q(δ)I(x, y)dydx} (IV.2)

Since f is an one-to-one function and operates only on r,

inferring symmetry from either Mpq or Wpq is equivalent.

Secondly, moment-based functions of order p + q larger

than n are examined. Such an attempt was also made in

[6]; however, the presented approach neither guarantees the

detection of possible reflection symmetry axes nor provides a

closed-form solution. In general, optimizing Wpq for arbitrary

p, q does not result in reflection symmetry identification [6].

Nevertheless, the orders p, q can be selected such that Wpq

satisfies a reflection symmetry criterion. Indeed, if we set

p = N1 = 2i1 + 1, q = N2 = 2i2 + 1, where i1, i2 ∈ N ,

then for a reflection symmetric pattern of order n, WN1N2

will necessarily have at least 2n zero-crossing points equally

spaced over the interval [0, 2π). The estimated zero-crossing

points in this case will indicate the reflection symmetry

directions.

1N ∗ is the set of non-negative integers
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In the remaining of this section, an analysis of the functions

WN1N2 based on Fourier series decomposition is introduced.

Using the proposed formulation all symmetry information

(fold number estimation, axes of reflection symmetry/optimal

axes for shape orientation and type of symmetry) can be

extracted from WN1N2 , and via straightforward mathematical

manipulations, one can employ solely closed-form solutions

and formulas to tackle these tasks. Proposition 1 provides a

way to estimate the order of symmetry. Proposition 2 is related

to the proper selection of the orders N1 and N2. Finally,

proposition 3 proposes a method to estimate the possible axes

of reflection symmetry and identify the type of symmetry.

Proposition 1. Let WN1N2 be a non-degenerate moment-

based function derived from a rotationally symmetric pattern

of order n and let ŴN1N2(l), l = 1, 2, . . . , be the correspond-

ing Fourier series coefficients. Then, n can be estimated as the

frequency bin of the first-non zero coefficient, or alternatively,

as the biggest common factor of the bins corresponding to all

non-zero coefficients.

The above proposition proposes a viable method to estimate

the fold number n of rotationally symmetric patterns from the

Fourier expansion of the non-degenerate geometric moment-

based function WN1N2 (for a proof of this proposition, please

see Appendix A). Proposition 1 bares in mind the fold number

estimation principles suggested in [2],[14].

Assume now that we are given K = mn samples of I in

polar coordinates as follows:

I(rk, θkλ), κ = 1, . . . , m, λ = 1, . . . , n (IV.3)

where m is the total number of points in one fold. Let p, q
be non-negative integers such that pmax = N1−1

2 and qmax =
N2−1

2 . Let also, for a fixed s = ln, l ∈ N ∗, ps,i, qs,i be

the integers which satisfy the conditions 2(p − q) = sn or

2(p + q + 1) = sn. Finally, we denote g the function g(r) =
f(r)rN1+N2 . Then, it can be shown (see Appendix B) that

the Fourier series expansion ŴN1N2(s) of the non-degenerate

moment-based function WN1N2 is given by:

ŴN1N2(s) = πejπ/2{BN1N2(s)
m∑

κ=1

I(rk, θκ1)g(rκ)ejsnθκ1}, s = ln

(IV.4)

where BN1,N2(s) =
∑

i(−1)qs,iA(N1−1
2 , ps,i)A(N2−1

2 , qs,i)
and A(a, b) is a weighting coefficient depending solely on

a, b.

In the case that N1 + N2 < n, a slightly modified version

of the theorem given in [4], [6] can be proposed (for proof

see Appendix C), as follows:

Proposition 2. Let WN1N2 be a moment-based function

derived from a rotationally symmetric pattern of order n. In

the case that N1 + N2 < n, then WN1N2 will be degenerate .

For N1 + N2 > n, WN1N2
will be degenerate only in

the case that {BN1N2(s)}
smax
s=1 = 0, where smax = ⌊(N1 +

N2)/n⌋. Nonetheless, a thorough investigation of this scenario

is out of the scope of this work.

Summarizing the results of this section so far, we have

provided a methodology to estimate the order of symmetry

through the Fourier series expansion of geometric moment-

based functions of appropriate order. Analytical expressions

for the Fourier coefficients are provided by (IV.4). Next, the

focus is on reflection symmetry identification. This problem

is closely related to the determination of the zero-crossing

points of the cosine terms defined by ŴN1N2(s) in (IV.4).

To tackle this task, WN1N2 is expressed as the superposition

of the cosine terms (Fourier series) defined by ŴN1N2
(s), as

follows:

WN1N2(δ) =

smax∑

s=1

2|ŴN1N2(s)| cos[snδ + ∠ŴN1N2(s)]

(IV.5)

We also denote ΞN1N2
(s, δ) = 2|ŴN1N2

(s)| cos[snδ +

∠ŴN1N2(s)] and ξ(s, δ) = ΞN1N2(s, δ)/πBN1N2(s). The

zero-crossing points of ΞN1N2(s, ; ) and ξ(s, ; ) are given by:

zs,λ =
π/2 − ∠ŴN1N2(s) + (λ − 1)π

sn
,

=
π − ∠ŵ(s) + (λ − 1)π

sn
, λ = 1, . . . , 2sn

(IV.6)

where ŵ(s) is defined as the normalized Fourier coefficient:

ŵ(s) =
ŴN1N2(s)

πe−jπ/2BN1N2(s)
=

m∑

κ=1

I(rk, θκ1)g(rκ)ejsnθκ1

(IV.7)

Proposition 3. Let ŴN1N2(s), s = 1, 2, . . . be the

non-zero Fourier Coefficients of the moment-based functions

WN1N2 with N1 = 2i1+1, N2 = 2i2+1, i1, i2 ∈ N , computed

from a reflection symmetric pattern of order n. Then, the cosine

terms defined from ŴN1N2(s), ΞN1N2(s, ; ) and WN1N2 will

necessarily have the same subset of 2n zero-crossing points.

Thus, reflection symmetry can be derived from the identi-

fication of the subset {zi} in {zs,λ} (for proof of Proposition

3, see Appendix D). More specifically, the axes of reflection

symmetry will be included in the set of directions:

αs,λ =
π

sn
− zs,λ

=
∠ŵ(s) − (λ − 1)π

sn
, λ = 1, . . . , sn (IV.8)

In addition, the observation that WN1N2 will necessarily

include the same subset of a total of 2n zeros independently of

the order selection (see Appendix D) is not valid for n−fold

rotationally symmetric patterns with no reflection symmetry.

Therefore, considering the derived Fourier series expansion of

WN1N2 enables us to apply the reflection symmetry identifi-

cation principle, suggested in [2], in the proposed framework.

Similarly to [14], if |ŵ(1)| 6= 0, a set of optimal axes can

be defined as:

φoa
λ =

∠ŵ(1) − 2(λ − 1)π

sn
, λ = 1, . . . , n (IV.9)

In the rare case that |ŵ(1)| vanishes, then optimal axes can be

obtained by solving the linear programming problem given in

[2].

Equations (IV.8) and (IV.9) suggest that both problems of

reflection symmetry identification and shape orientation reduce
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to the computation of the normalized Fourier coefficient ŵ(s).
This establishes a more clear connection of the proposed

approach with the methods given in [2],[14]. It should be noted

that ŵ(s) is computed using only the points contained in one

fold of the pattern2. Knowledge of the number of points in one

fold implicitly assumes knowledge of the fold number. This

dependency can be alleviated by averaging over all points as

follows:

ŵav(s) =

K∑

i=1

I(ri, θi)g(ri)e
jsnθi , s = 1, 2, . . . (IV.10)

Let us now consider the term:

q̂(l) =

K∑

i=1

I(ri, θi)g(ri)e
jlθi , l = 1, 2, . . . (IV.11)

Clearly, for l = sn, the term q̂(l) ≡ ŵav(s). Now for l 6= sn,

using the methodology presented in [10], it can be shown that

q̂(l) = 0. Thus, evaluating q̂(l), l = 1, 2, . . . and finding

q̂(l) 6= 0 is equivalent to computing the Fourier transform of

all non-degenerate moment-based functions and picking the

non-zero normalized Fourier coefficients ŵav(s) in one step.

Finally, it can be observed that, in the special case where

g(r) = rl and g(r) = rp+1, we obtain q̂(l) ≡ c̃l−1l and

q̂(l) ≡ c̃pl respectively. Thus, the methods in [14] and [2] can

be derived as special cases of the general approach presented

in the section.

V. ROBUST FEATURE SELECTION IN THE POLAR

FREQUENCY DOMAIN

An important conclusion that can be drawn from the analy-

sis presented in the previous section is that the performance

of moment-based shape orientation largely depends on a

feature set where the difference between the zero and non-

zero coefficients is emphasized as much as possible. It should

also be noted that the same feature set can be additionally

used for further pattern analysis tasks, such as classification.

Thus, the aim of this section is to introduce a robust moment-

based feature extraction methodology for symmetric patterns,

that can be used for several pattern analysis tasks.

In general, moments are global features that appear to

be quite insensitive to uniform distortions of the symmetric

pattern. In the context of shape orientation and complex

moments, this was experimentally verified in [12], where the

boundaries of shapes were contaminated by Gaussian noise.

Nevertheless, the accurate computation of the moment-based

feature set and consequently the identification of non-zero

coefficients in a stable and robust manner strongly depends

on the accurate computation of the shape centroid. Inaccurate

calculation of the symmetry center results in a non-uniform

change of the angular distribution θ, thus rendering the values

of zero and non-zero coefficients comparable. Errors in center

estimation may be caused due to digitization errors, non-

uniform illumination conditions, poor segmentation or partial

occlusion. Although the symmetric patterns are assumed to

2This result also establishes a connection of our approach with the method
discussed in [7].

be already segmented in this work, such distortion cases may

well be encountered.

To alleviate the aforementioned problem of erroneous cen-

troid estimation, the core of the approach is based on the

computation of a feature set from the image Fourier domain.

Let Î(k), k = [kx, ky]T ∈ R2 be the 2D Fourier transform of

I and M be the magnitude of Î , that is M(k) = |Î(k)|. The

following lemmas are directly derived from the properties of

the Fourier transform of symmetric images:

Lemma A. If I satisfies (II.1), then M will be also

rotationally symmetric of order n or 2n around the origin,

if n is even or odd respectively.

Lemma B. If I satisfies (II.5), then M will also be reflection

symmetric about the line y = tan αx.

Thus, (IV.11) in the image Fourier domain takes the form:

q̂M (l) =
∑

kr,kθ

M(kr, kθ)g(kr)e
jlkθ , l = 1, 2, . . . (V.1)

where M(kr, kθ) is the polar representation of M . Lemmas

A and B suggest that a feature set computed from the image

Fourier domain may well be used for symmetry classification.

Additionally, the computation of the features does not employ

the estimation of the pattern’s centroid, due to the shift

invariant property of the Fourier transform. In the remaining of

this section, we provide a detailed description of the proposed

method based on the above principles.

The proposed approach starts with computing a gray level

edge map G of the given image I , which retains both magni-

tude and phase information, as follows:

G = Gx + jGy (V.2)

where Gx = ∇xI and Gy = ∇yI are the gradients along

the horizontal and vertical direction respectively. This step

provides the location, magnitude and orientation of the image

high-activity structures which can be used as salient features

to characterize symmetry. Areas of constant intensity level

also provide symmetry information, nevertheless such areas

are very sensitive to possible uneven lighting conditions. At

the same time, low spatial frequency components inherent

to the low pass nature of images will be filtered out as

well. For real images, in most cases, the contribution of low

spatial frequencies rather shadows the existence of periodicity

than facilitates the symmetry detection process. Additionally,

it should be noted that a band-pass filtered version of the

original image, as suggested by the use of practical differential

operators, eliminates possible noise and aliasing effects [16].

The next step is to compute the Fourier transform of G, Ĝ,

and consider its magnitude solely. In this case, we have:

Ĝ(k) = jkxÎ(k) − ky Î(k) (V.3)

Thus, for the magnitude MG we get:

MG(k) =
√

(k2
x + k2

y)M(k) = krM(k) (V.4)

which shows that MG retains all the symmetric properties of

M . In the remaining of this paper, we denote M the magnitude

of the Fourier transform computed from either I or G, to

simplify notation.
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Equation (V.1) indicates the use of a polar representation.

A traditional approach to obtain such a representation is

to evaluate the Fourier Transform of the image over the

Cartesian grid using the standard FFT and then interpolate the

outcome over a polar grid. In general, this method is unstable

and sensitive to interpolation errors due to possible image

noise [17]. Additionally, in the context of moment-based

orientation and matching, such an approach will be biased

towards moments that are largely affected by the Cartesian

structure of the original FFT. More specifically, moments of

order multiple of two or four are expected to have relatively

significant values regardless of the real order of symmetry.

The last observations emphasize the importance of using a

true polar Fourier representation. Therefore, in this work, we

adopt a fast and accurate polar Fourier transform recently

proposed in [15]. The method is algebraically stable while

the algorithm’s computational complexity is on the order of

the standard Cartesian FFT.

To improve the robustness of the proposed method, a noise

reduction scheme is also employed, based on the classical sin-

gular value decomposition (SVD) of the polar representation

M(kr, kθ) in a set of eigenimages [18]. More specifically, the

magnitude of the polar Fourier transform M is decomposed

to the following matrices:

M = USV T =

R∑

j=1

sjMj (V.5)

where the columns of U and V are the eigenvectors of the

subspace spanned by the columns and rows of M respectively

and S is a diagonal matrix containing the corresponding

eigenvalues. Mj = ujvT
j is the jth eigenimage, sj is the

corresponding eigenvalue and R is the rank of M . Observing

that {vj}
R
j=1 is the subspace spanned by the rows of M , the

following lemmas are given without proof:

Lemma C. Let M be the polar representation of a ro-

tationally symmetric image of order n and let Mj be the

corresponding jth eigenimage. Then, Mj will be rotationally

symmetric of order sn, s ∈ N ∗.

Lemma D. If M is reflection symmetric about a line y =
tan ax, then Mj will also be reflection symmetric about the

same line.

Evaluating (V.1) using Mj only yields:

q̂Mj (l) =
∑

kr,kθ

Mj(kr, kθ)g(kr)e
jlkθ

=
∑

kr

uj(kr)g(kr)
∑

kθ

vj(kθ)e
jlkθ , l = 1, 2, . . .

(V.6)

The above equation suggests that the computation of the coef-

ficients q̂Mj (l), l = 1, . . . simply reduces to the computation

of the DFT of vj(kθ).
In the context of this work, the scheme suggested above can

be interpreted as follows. Firstly, the estimation of each eigen-

vector combines all symmetry information provided by the

rows of M . In contrast to simple averaging schemes [9],[19],

where a periodic pattern is constructed by averaging the polar

representation over r, the estimation in our case will be biased

towards the rows of M , that capture periodic components of

large magnitude. This comes directly from the fact that SVD

projects the input image on eigenimages that minimize the

mean squared reconstruction error. This property is favorable

since such components are likely to provide more robust

estimations of the true periodicity. Secondly, it is suggested in

[20] that SVD-based processing of an image results in noise

filtering along the image vertical and horizontal lines. This

is also a favorable property in our case, since symmetry is

inferred solely from the rows of M .

Elementary matrix approximation theory suggests that the

best approximation M̃ of the matrix M , in terms of mini-

mizing the mean squared error and under the constraint that

rank(M̃) = L, is given by reconstructing M using the L
most significant eigenvectors according to (V.5). In our case,

we are not interested in optimal compact representations and,

given the L most important eigenvectors, we wish to estimate

their fundamental frequency which is equal to the order of

symmetry. Assuming that the image is corrupted by white

noise isotropically distributed in all signal dimensions, the

signal-to-noise ratio for the jth eigenvector will be equal to

sj/σ2, where σ2 is the power of noise. In this case, the first

eigenvector is guaranteed to be the least noisy periodic pattern

achieving the highest signal-to-noise ratio. Any combination

of eigenvectors will result in a more noisy periodic pattern and

therefore in less reliable estimates of the pattern’s periodicity.

For cluttered images (for example images where the sym-

metric pattern is embedded in a complex background) which

result in cluttered Fourier transforms, noise is not white and

the above analysis does not hold. Assuming that there exists a

range of values of kr, such that the corresponding rows of M
are strong periodic patterns with dominant frequency equal to

the order of symmetry, it is still expected that this periodicity

will be captured by one of the most important eigenvectors.

In particular, when the amount of clutter is not large, the

periodic signal will be captured by the first eigenvector.

Experimentation suggested that the remaining eigenvectors are

noisy and therefore do not constitute a positive contribution

to the order estimation process.

As the amount of distortion increases, there might be a

case that the first eigenvector captures the effect of clutter

(in most cases this is a pattern with strong very low frequency

components) and the desired periodic pattern appears as one of

the remaining eigenvectors. In this case, considering the first

L eigenvectors, as described in the algorithm given below,

equips the proposed scheme with further robustness at the

cost of additional computational complexity. Note that if the

desired periodic pattern does not appear as one of the very

first few most significant eigenvectors, then the assumption

for the existence of a strong periodic pattern along the rows

of the M probably does not hold and the method is likely to

fail. Therefore, one should check only for small values of L;

however, we note that we have not devised an algorithm for

the automatic selection of the exact number of the eigenvectors

to be examined.

In the following, the basic steps of the proposed frequency

domain moment-based symmetry detection algorithm are

described in detail. An image registration technique is used to
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resolve the order ambiguity induced by the frequency domain

formulation. If more than one eigenvectors are considered,

the same method is employed to recover the true order of

symmetry. In general, image registration methods can provide

the basis of a brute force approach for symmetry detection,

since we can always rotate the input image by 2π/l, l ∈ N ∗

and check if the original image and its rotated version can

be registered successfully. Once the order has been identified,

the center of symmetry can be estimated using the approach

suggested in [3],[19]. The method is based on the observation

that symmetric images of order n, when rotated by 2π/n,

are related to each other by a pure translation. Once the

translation is recovered, a simple geometric inspection reveals

that both the distance and the direction of the center of

symmetry with respect to the image center can be easily

computed. Finally, the frequency domain formulation also

induces a further ambiguity when the pattern’s orientation

axes are to be computed, as described in the last step of our

algorithm. To resolve the problem, an additional moment

feature computed from the image spatial domain is used. The

same feature is also used to classify the pattern as rotationally

or reflection symmetric. We note that, at this point, both the

symmetry order and center are available, and therefore the

particular feature can be computed with good accuracy.

Frequency domain moment-based symmetry detection

algorithm

Inputs: The image I , the number L of eigenvectors to

be considered and the value of a threshold ǫ. I(δ) is the

image obtained from the input image after rotation by δ.

Step 1. Using any image registration technique [21], check

if the registration process between the input image I and its

rotated version I(π) provides a valid solution. If this is the

case, then the order of symmetry is even, otherwise it is odd.

Step 2. Compute the polar Fourier representation of the

complex gradient edge map G, and keep its magnitude

M(kr, kθ). Perform3 the SVD of M and keep the L most

important eigenvectors vj(kθ), j = 1, . . . L.

Step 3. Compute v̂j(l) = DFT{vj(kθ)}. Obtain a set of

possible solutions n′
j = argl max |v̂j(l)|, j = 1, . . . L. Set

nj ← n′
j or nj ← n′

j/2, if n is even or odd respectively.

Recover the true order of symmetry n by checking if

I(2π/nj) can be registered with I . Denote vn the eigenvector

which corresponds to the correct solution.

Step 4. For the correct solution of Step 3, use the approach

suggested in [3],[19], to estimate the center of symmetry.

Step 5. Use the phase ∠v̂n(n′) to obtain a set of n′ direction

angles φa
λ, λ = 1, . . . , n′ according to (IV.9). Note that if n

is odd, a total of 2n solutions is obtained, since n′ = 2n.

In this case, denote {φa,1
λ }, λ odd and {φa,2

λ }, λ even the

two possible subsets. Compute the phase ∠wav(n) from the

image spatial domain according to (IV.10) and obtain a set of

n direction angles φb
λ, λ = 1, . . . , n. Compute the difference

∆ = |φa
λ − φb

λ| if n is even and similarly ∆1 = |φa,1
λ − φb

λ|
and ∆2 = |φa,2

λ − φb
λ| if n is odd. Define the pattern’s

3each row of M is normalized to zero mean to remove the local DC bias.

orientation from the set {φa} if n is even and from the

subset {φa,k}, where k = argi min ∆i, if n is odd. Finally, if

∆ < ǫ and similarly ∆k < ǫ, classify the pattern as reflection

symmetric.

For the image registration method used in our scheme, we

suggest the use of fast FFT-based correlation schemes [16].

The values of L and ǫ should be adjusted depending on the

application. Note that the very last step of the algorithm can

be modified such that no threshold selection is employed at the

cost of additional computational complexity. This can be done

by computing a reflected version of the input image about any

of the axes which define the pattern’s orientation. Then, one

needs to check if the original image and its reflected version

can be registered successfully.

VI. RESULTS

The main target of this section is to draw a comparison

between Shen’s complex moment formulation which operates

on the image spatial domain [2] and the frequency domain

moment-based approach proposed in section V. For this

purpose we have considered more than 150 patterns taken

from two different databases used in [3] and in [2],[12]. A

representative sample of the images used is shown in Fig.

2. The section is organized in a way such that performance

is assessed for progressively increased shape distortions and

more challenging situations.

A. A study of the effect of erroneous symmetry center estima-

tion

In this part of the experimental section, we study the

performance of moment-based symmetry detection methods

in the case where no shape distortion exists, but the shape

centroid is artificially displaced. Let us first denote by {F} any

moment-based feature set computed from a symmetric pattern

of order n, that is {F} = {cpq}, {q̂}, {q̂M} or {v̂1}. We also

write {F} = {Fnz}∪{Fz}, where {Fnz} and {Fz} is the set

of the expected non-zero and zero coefficients respectively 4.

For example, given a 5−fold rotationally symmetric pattern,

the set {Fnz} includes the moment features which correspond

to moment orders multiples of 5, while all the remaining

moments are gathered in the set {Fz}.

For each tested pattern, we assume that the symmetry order

is known. Given that the total energy of {F} is normalized

to one, that is
∑

i=1 |Fi|
2 = 1, the evaluation is based on

computing the following metric:

R =
∑

nz

|Fnz|
2 (VI.1)

The above simple metric can be used to measure the effect

caused by deviations from perfect symmetry on the various

moment-based symmetry detection methods. For example, for

perfect symmetries, it is expected that the set {Fz} contains

negligible values and therefore R ≃ 1. As the amount of

symmetry distortion increases, the moments included in the

4The indices nz and z here stand for non-zero and zero respectively.
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(a) (b) (c) (d) (e)

Fig. 2. A sample of the patterns used in our experiments taken from the database used in [3].

set {Fz} will no longer be zero, and therefore the value of R
is expected to decrease. The amount of decrease reflects the

robustness of each method in relation to the type of symmetry

distortion.

We study the performance of Shen’s method [2] which

operates on the image spatial domain and therefore it is

affected by the erroneous symmetry center estimation. We

have examined displacements ∆r from the real symmetry

center of size up to 3 pixels. More specifically, for a fixed

∆r, we define ∆x = ∆r cos(γ) and ∆y = ∆r sin(γ), where

γ is uniformly distributed over [0, 2π]. We then compute a

polar representation of the image using c′x(∆r, γ) = cx + ∆x

and c′y(∆r, γ) = cy + ∆y, where cx, cy are the standard

estimates of the pattern’s centroid coordinates. Finally, we

compute R(∆r) = (1/Nγ)
∑

γ R(∆r, γ), where Nγ is the

number of angles used.

The method in [2] is compared with the proposed frequency

domain moment-based scheme with L = 1 which does not

employ any centroid estimation. Figure 3 shows a qualitative

comparison of the two methods by plotting the distribution of

the ratio R(∆r), for ∆r = {1, 2, 3} in the same histogram.

The width of each histogram bin is 0.1 units, while its center

is indicated by the numbering of the x−axis in each plot. It

can be seen that the performance of the method in [2] rapidly

deteriorates with respect to increasing values of ∆r.

B. Classification accuracy for the case of local distortions and

noise

The main purpose of this section is to draw a comparison

between the performance of Shen’s method and that of the

proposed scheme in the presence of controlled local distortions

and noise. To generate the corrupted test images, we have used

a linear degradation model [5]:

Ic = (1 − WG)I + n (VI.2)

where I and Ic is the original and the corrupted image

respectively. The image I is assumed to be normalized in

the range [0, 1], while the image domain is supposed to be

[-1/2, 1/2]x[-1/2, 1/2]. WG = e−|x−xc|
2/2σ2

c is a 2D Gaussian

function of standard deviation σc centered at the point xc =
[xc, yc]

T of the image plane, while n is zero mean white

Gaussian noise.

The term 1−WG models local shape distortions controlled

by the parameter σc. For small values of σc, very local and

relatively abrupt changes of the image intensity values around

the point xc are modeled. As σc increases, the number of pixels

affected also increases but the change in the intensity values

becomes smoother. Fig. 4 (a),(b) and (c) shows three corrupted

images for three representative values of σc = 0.2, 0.5 and 1
respectively. It can be observed that the term 1−WG attempts

to model the effect of inefficient image segmentation.

Since the effect of the local distortion model will be

generally different for each pattern, we have chosen a set of

5 representative shapes (shown in Fig. 2 (a)-(e)) of various

symmetry orders and we present classification results for each

pattern separately. Figures 2 (a),(d) and (e) illustrate examples

of doughnut-like, disk-like and garland-like symmetric pat-

terns. Figure 2 (b) shows a radial shape, while the pattern in

Fig. 2 (c) represents more typical examples of symmetry. For

each pattern, a set of test images is generated as follows. Given

a fixed value of σc and signal-to-noise ratio (SNR), a point on

the pattern’s boundary is randomly selected and used as the

center of WG. Boundary points are considered solely, since the

outer part of the shape is more likely to be corrupted by local

distortions such as segmentation errors. The term (1 − WG)I
is computed and then white Gaussian noise of fixed power

is added to the result to obtain Ic. The power of noise is

calculated according to the given SNR value and the energy of

the original image I . Finally, for each σc and SNR, to assure

the validity of the classification results, a total of 100 test

images is generated. We have considered σc = 0.2, 0.5 and 1
and SNRs in the range [−6, 12] dBs (see Fig. 4 (d) and (f) for

an example).

Classification results are presented for 4 different cases.

The first is the proposed scheme based on the first eigen-

vector solely. The classification is said to be correct if the

symmetry order is given by argl max |v̂1(l)|. The second is

the proposed scheme based on the combination of the first

and second eigenvectors. In this case, the classification is

said to be correct if any of n′
j = argl max |v̂j(l)|, j = 1, 2

coincides with the expected symmetry order. The third is a

simple averaging scheme suggested as part of the works in

[9],[19]. More specifically, we replace SVD with averaging

over kr, that is we compute a(kθ) =
∑

kr
M(kr, kθ) and

its spectrum â = DFT(a). Similarly, the pattern is classified

correctly if the order of symmetry is argl max |â(l)|. Since

two possible solutions are examined by our combined scheme,

we also consider the second largest peak for a more balanced

comparison. Finally, in a similar spirit, the performance of

Shen’s method is evaluated.

The classification rate for each method and pattern is illus-

trated in Fig. 5. Each row of the figure gives the classification

rate for each pattern for σc = 0.2, 0.5 and 1 respectively. The
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Fig. 3. (a)-(c): The distributions of R(1), R(2) and R(3) respectively plotted together with the distribution of R evaluated with our method. Blue colour:
proposed method, red colour: Shen’s method [2].

(a) (b) (c) (d) (e)

Fig. 4. (a)-(c): An example of locally distorted patterns for σc = 0.2, 0.5 and 1 respectively. (d)-(f): The pattern in Fig. 4 (b) for SNR=12 and 0 dB
respectively.

robustness of the proposed combined scheme is evident. For

σc = 0.2 and for SNR as low as -3 dB, the classification rate

is higher than 0.8 for all patterns. For σc = 0.5 and SNR =

3 dB, the method achieves a minimum classification rate of

0.9. Good performance for most patterns is achieved for SNR

in the range [3, 12] dB and σc = 1, with the exception of the

fourth pattern (Fig. 5 (l)) where the method fails. With few

exceptions, the scheme based on the first eigenvector solely,

outperforms the rest of the methods examined. A characteristic

case where the scheme fails is for the second pattern and

σc = 0.5 (Fig. 5 (e)). It can be observed that using the second

eigenvector, in this case, is highly beneficial. The scheme

based on averaging is, in general, unstable. For the first and

fifth pattern, the method achieves relatively good performance,

while for the second and third pattern, the classification rate

is very low for all values of σc. The method in [2] fails

badly for the majority of the cases examined. Finally, the

proposed scheme was also tested for the case of the first three

eigenvectors. The gain in performance was not significant (for

example, the method still fails for the the fourth pattern and

σc = 1). For simplicity, the obtained results are omitted.

In addition to classification accuracy, Fig. 6 shows the

mean value of the orientation error in degrees defined as

e = |φ1 − φ′
1|, where {φλ} and {φ′

λ} is the set of orientation

axes computed from the noisy and noise-free versions of each

pattern respectively. It can be observed that, in most cases, the

proposed scheme achieves the smallest error.

C. Experiments with real images

The last part of the experimental section illustrates some

examples where the proposed scheme is used to detect symme-

tries in real images. The patterns depicted in Fig. 7 (a),(c),(d)

and (f) are cases of non-perfect symmetries embedded in a

complex background. Figure 7 (b) shows an example of partial

occlusion, while Fig. 7 (e) gives an example of symmetry

distorted by projective distortion. In general, moment-based

methods which operate in the image spatial domain are unable

to handle such cases, since they are not robust.

For simplicity, we do not assess the effectiveness of the

image registration method employed in our scheme. The

algorithm was able to detect the correct order of symmetry for

the first five patterns. The true order was recovered from the

spectrum of the first eigenvector, with the exception of Fig. 7

(c), where the correct solution was provided by the additional

use of the second eigenvector. For each case, the spectrum of

the extracted periodic pattern is shown in Fig. 8. Depending

on the type of symmetry, Fig. 9 shows the estimated axes of

orientation and reflection symmetry.

For the last pattern in Fig. 7 (f), a visual inspection reveals

that the true order of symmetry is 3. However, it can be

observed that only a very small number of image features

indicate the existence of symmetry and, therefore, global

schemes, such as the one presented in this work, are likely

to fail.

For the example of the projective distortion, Fig. 8 (e)

shows that the extracted periodic pattern is noisy, while the

estimated axes of symmetry as sketched in Fig. 9 (e) do

not accurately match with the true axes of symmetry. In

general, for complex geometric transforms, such as affine,

the assumption for the existence of a global periodic pattern

implied by the definition of rotational symmetry is violated.

For example, affine transformations induce directionality in

the 2D space and potentially change of the order of symmetry.

To illustrate this, consider the three patterns in Fig. 10 (a)-(c)
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Fig. 5. Classification rates. Each row shows the rate for the patterns of Fig. 1 for σc = 0.2, 0.5, 1. The range of SNR is [−6, 12] dBs. Blue, diamond: first
and second eigenvectors. Green, circle: first eigenvector. Red, asterisk: averaged pattern. Cyan, square: Shen’s method.
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Fig. 6. Mean value of the orientation error in degrees. Each row shows the error for the patterns of Fig. 1 for σc = 0.2, 0.5, 1. The range of SNR is [−6, 12]
dBs. Blue, diamond: first and second eigenvectors. Red, asterisk: averaged pattern. Cyan, square: Shen’s method.
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(a) (b) (c) (d) (e) (f)

Fig. 7. The real images used in our experiments. The proposed method was able to detect the correct order of symmetry for the first five patterns (see Fig.
8). The orientation axes for each pattern are sketched in Fig. 9. The symmetric image in Fig. 7 (f) contains only a very small number of features indicating
the existence of symmetry and, therefore, global schemes, such as the one presented in this work, are likely to fail.
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Fig. 8. The Fourier spectrum of the extracted periodic pattern using the proposed scheme for the symmetric images shown in Fig. 7 (a)-(e). Up to a factor
of two, the order of symmetry is estimated as n′

j = argl max |v̂j(l)|. By checking n′

j and n′

j/2, the true order is recovered.

(a) (b) (c) (d) (e)

Fig. 9. The orientation axes obtained using the proposed scheme for the first five patterns shown in Fig. 7.

obtained by applying an affine transform to the image shown

in Fig. 7 (c). For each case, the affine transformed image IA is

related to the original I according to the following equation:

IA(x) = I(Ax) (VI.3)

where A =

[
1 s
0 1

]
and s is the skew parameter. The values

of s used were 0.1, 0.2 and 0.35. As s increases the induced

orientation that the pattern exhibits is more evident and the

deviation from rotational symmetry becomes more significant.

The algorithm was able to detect the real order of symmetry for

the first two cases for which the obtained orientation axes are

sketched in Fig. 10 (d) and (e). For s = 0.35, the examination

of the spectrum of the extracted periodic pattern (for simplicity

not shown here) revealed that the peak indicating the correct

order of symmetry was largely attenuated and the dominant

peak was located at the frequency equal to two. This is well

justified since a careful examination of Fig. 10 (c) shows

that the image depicts a well-oriented 2−fold rotationally

symmetric pattern. The pattern’s orientation axes, in this case,

are sketched in Fig. 10 (e).

Table I summarizes the results obtained by applying a

range of affine distortions to the synthetic patterns taken

from [3] and [2]. The skewness parameter was varied in the

range [0.05, 0.35] with step equal to 0.05. The percentage

of patterns for which the method was able to identify the

order of symmetry correctly for s ≤ si is defined as p(si).
The performance of the proposed scheme was evaluated for

two different scenarios: affine transformations solely (σc =
0) and affine transformations plus local distortions (σc =
0.2, 0.5 and 1). In the noise-free case and for a considerable

amount of affine distortion si = 0.2, 72% of the tested patterns

were classified correctly. For the same affine distortion and

σc = 1, the classification rate decreased by 16%. Much better

performance was observed for moderate amount of affine and

local distortions. For example, for si = 0.1 and σc = 0.5, the

algorithm detected the real order of symmetry for the 83% of

the total number of patterns considered.

In conclusion, the algorithm is capable of handling some

amount of affine distortion; nevertheless more robust per-

formance can be expected only when affine or other more

complex geometric transformations are explicitly modeled.

The example of Fig. 10 illustrates that such distortions may

change the symmetry properties of the observed objects and

algorithms designed for the detection of rotational symmetries
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(a) (b) (c) (d) (e) (f)

Fig. 10. (a)-(c): The affine transformed images obtained from the image in Fig. 7 (c) using s = 0.1, 0.2 and 0.35 respectively. (d)-(f): The orientation axes
obtained using the proposed scheme.

Skewness Parameter si

0.05 0.10 0.15 0.20 0.25 0.30 0.35

p(si)(σc = 0.0) 100% 96% 80% 72% 59% 43% 33%

p(si)(σc = 0.2) 100% 95% 78% 70% 55% 38% 30%

p(si)(σc = 0.5) 94% 83% 66% 57% 48% 34% 28%

p(si)(σc = 1.0) 85% 74% 63% 56% 45% 36% 25%

TABLE I

CLASSIFICATION RESULTS FOR THE CASE OF AFFINE TRANSFORMATIONS

AND LOCAL DISTORTIONS.

do not adapt to these changes. Note that such phenomena were

not taken into consideration for the results given in Table I.

VII. CONCLUSIONS

The problem of moment-based shape orientation and sym-

metry classification was considered. In the first part of this

work, we presented a study which attempts to unify many

popular moment-based approaches in a single framework.

In particular, we showed that results given from a complex

moment formulation also apply to the case of appropri-

ately defined geometric moment-based functions. Analytical

expressions were derived based on Fourier series analysis.

In the second part of this work, we presented a moment-

based symmetry classification and matching algorithm which

operates on the image Fourier domain and therefore does not

require the accurate estimation of the symmetry center which

is the main limitation of current approaches. Our formulation

was based on a true polar Fourier representation of the

extracted image gradients. Further robustness was achieved

by using a periodicity estimation scheme based on subspace

analysis. Simulation results demonstrated the efficiency of our

approach.
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APPENDIX

PROOFS OF PROPOSITIONS OF SECTION IV

A. Proof of Proposition 1

From the very definition of rotational symmetry, we may

observe that if the moment-based function WN1N2
is not

degenerate, then it will be periodic with period 2π/n. Let

ŴN1N2 be the Fourier series coefficients of WN1N2 :

ŴN1N2
(l) =

1

2π

∫ 2π

0

WN1N2(δ)e
−jlδdδ , l = 0, 1, 2 . . . ,

Then, ŴN1N2 will be non-zero only if l = sn, s ∈ N ∗ and

potentially for l = 0. Therefore, the order of symmetry can be

estimated as the frequency bin of the first-non zero coefficient,

or more robustly, as the biggest common factor of the bins

corresponding to all non-zero coefficients. ¤

B. Calculation of Fourier series expansion for WN1N2

Assume that we are given K = mn samples of I in polar

coordinates as follows:

I(rk, θkλ), κ = 1, . . . ,m, λ = 1, . . . , n

where m is the total number of points in one fold. Additionally,

we have:

dxi(δ) = xi cos δ − yi sin δ

≡ rκ cos θκλ cos δ − rκ sin θκλ sin δ

= rk cos[θκλ + δ]

where r =
√

x2 + y2 and θ = arctan y/x 5. Similarly, we

have dyi(δ) = rk sin[θκλ + δ]. Therefore, WN1N2(δ) can be

expressed, as follows:

WN1N2(δ) =

K∑

i=1

f(ri)dxi

N1(δ)dyi

N2(δ)I(ri, θi)

=

m∑

κ=1

g(rκ)

n∑

λ=1

I(rk, θkλ)t[θκλ + δ]

where g(r) = f(r)rN1+N2 and t(u) = cosN1 u sinN2 u.

By definition I(rk, θk1) = I(rk, θkλ), ∀λ and therefore we

have:

WN1N2(δ) =

m∑

κ=1

I(rk, θk1)g(rκ)

n∑

λ=1

t[θκλ + δ]

5arctan denotes the extended arctan function such that θ ∈ [0, 2π)
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Using Fourier series decomposition, we get:

ŴN1N2(s) =
n

2π

∫ 2π/n

0

WN1N2(δ)e
−jsnδdδ

=
n

2π
{

m∑

κ=1

I(rk, θk1)g(rκ)

n∑

λ=1

∫ 2π/n

0

t[θκλ + δ]e−jsnδdδ}

Let us consider the term IN1N2(s):

IN1N2(s) =
∑n

λ=1

∫ 2π/n

0
t[θκλ + δ]e−jsnδdδ

Changing of variables u = θκλ + δ yields:

IN1N2
(s) =

n∑

λ=1

ejsnθκλ

∫ θκλ+2π/n

θκλ

t(u)e−jsnudu

= {
n∑

λ=1

ejsnθκ1e−js(λ−1)2π

∫ θκλ+2π/n

θκλ

t(u)e−jsnudu}

= ejsnθκ1

n∑

λ=1

∫ θκλ+2π/n

θκλ

t(u)e−jsnudu

= ejsnθκ1

∫ θκ1+2π/n+2(n−1)π/n

θκ1

t(u)e−jsnudu

= ejsnθκ1

∫ 2π

0

t(u)e−jsnudu (.1)

The function t can be expanded as follows [22]:

t(u) = cosN1 u sinN2 u

= {
i1∑

p=0

A(i1, p) cos[(2p + 1)u]

i2∑

q=0

A(i2, q) sin[(2q + 1)u]}

=
1

2
{

i1∑

p=0

i2∑

q=0

(−1)qA(i1, p)A(i2, q)

(sin[2(p − q)u] − sin[2(p + q + 1)u])} (.2)

where A(a, b) is a weighting coefficient depending only on a
and b. Plugging (.2) into (.1), it is straightforward to see that,

for a fixed s, IN1N2
(s) is non-zero only for 2(p− q) = sn or

2(p + q + 1) = sn. Let, for a fixed s, ps,i, qs,i be the integers

which satisfy the above conditions6. Then, the final expression

for ŴN1N2
(s) is:

ŴN1N2(s) = πejπ/2BN1N2(s)

m∑

κ=1

I(rk, θk1)g(rκ)ejsnθκ1

where
∫ 2π

0
sin(snu)e−jsnudu = πe−jπ/2 and BN1,N2(s) =∑

i(−1)qs,iA(N1−1
2 , ps,i)A(N2−1

2 , qs,i).

6Note that, if n is odd, the coefficients ŴN1N2 (s) for s odd will not
appear in the Fourier expansion of WN1N2 , since there are no integers p, q
satisfying the above conditions. Nevertheless, it can be similarly shown, that
the odd Fourier coefficients will appear from the Fourier expansion of the
function W0N2 . The function W0N2

satisfies a reflection symmetry criterion
for n odd, while for n even, it is degenerate independently of the order N2

C. Proof of Proposition 2

By definition, the first non-zero ŴN1N2(l) is for l = n, or

equivalently for s = 1. In this case, there should exist p, q
satisfying 2(p− q) = n or 2(p + q + 1) = n. Since pmin = 0,

qmin = 0, pmax = i1, qmax = i2, we have 2(pmax − qmin) =
2i1 < N1 < n, 2(qmax − pmin) = 2i2 < N2 < n and

2(pmax+qmax+1) = 2(i1+i2+1) = N1+N2 < n. Therefore,

there are no p, q satisfying the necessary conditions. ¤

D. Proof of Proposition 3

Our proof is based on mathematical induction. First observe

that for a reflection symmetric pattern of order n, the set of

zero-crossing points of WN1N2 will necessarily include the

same subset of a total of 2n zeros {zi}
2n
i=1, independently of

the order selection. This is because the orders N1 and N2 are

chosen such that a reflection symmetry criterion is satisfied.

We have:

Step 1. Let N1 = a1,N2 = b1 be chosen such that Ŵa1b1(s) 6=
0 only for s = 1. In this case, Wa1b1 ≡ Ξa1b1(1, ; ) is a pure

sinusoidal function with 2n zeros {zi}.

Step ρ. Let N1 = aρ,N2 = bρ be chosen such that Ŵaρbρ(s) 6=
0 only for s = 1, . . . , ρ. We have:

Waρbρ(δ) =

ρ∑

s=1

Ξaρbρ(s, δ) =

ρ∑

s=1

πBaρbρ(s)ξ(s, δ)

Assume that Waρbρ and Ξaρbρ(s, ; ), s = 1, . . . , ρ have

the same subset of 2n zero-crossing points {zi}, that is

Waρbρ
(zi) = 0 and Ξaρbρ

(s, zi) = 0. This also implies that

ξ(s, zi) = 0.

Step ρ + 1. Let N1 = aρ+1,N2 = bρ+1 be chosen such that

Ŵaρ+1bρ+1(s) 6= 0 only for s = 1, . . . , ρ + 1. We have:

Waρ+1bρ+1(δ) =

ρ+1∑

s=1

Ξaρ+1bρ+1(s, δ)

=

ρ∑

s=1

Ξaρ+1bρ+1
(s, δ) + Ξaρ+1bρ+1

(ρ + 1, δ)

= S(δ) + Ξaρ+1bρ+1(ρ + 1, δ)

Now, S(zi) =
∑ρ

s=1 πBaρ+1bρ+1(s)ξ(s, zi) = 0 from step ρ.

Since Waρ+1bρ+1(zi) = 0, then necessarily Ξaρ+1bρ+1(ρ+1, zi)
= 0. ¤
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