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Biolog phenotype microarrays enable simultaneous, high throughput analysis of cell cul-

tures in different environments. The output is high-density time-course data showing
redox curves (approximating growth) for each experimental condition. The software pro-

vided with the Omnilog incubator/reader summarizes each time-course as a single da-

tum, so most of the information is not used. However, the time courses can be extremely
varied and often contain detailed qualitative (shape of curve) and quantitative (values

of parameters) information. We present a novel, Bayesian approach to estimating pa-

rameters from Phenotype Microarray data, fitting growth models using Markov Chain
Monte Carlo methods to enable high throughput estimation of important information,

including length of lag phase, maximal “growth” rate and maximum output. We find

that the Baranyi model for microbial growth is useful for fitting Biolog data. More-
over, we introduce a new growth model that allows for diauxic growth with a lag phase,

which is particularly useful where Phenotype Microarrays have been applied to cells

grown in complex mixtures of substrates, for example in industrial or biotechnological
applications, such as worts in brewing. Our approach provides more useful information

from Biolog data than existing, competing methods, and allows for valuable comparisons

between data series and across different models.

Keywords: Biolog, Growth Model, Diauxic, Lag Phase, Bayesian Statistics, Phenotype

Microarrays

1. Background

Biolog Phenotype Microarrays (PMs) are unique patented commercial products for

assessment of cellular respiration of prokaryotic and eukaryotic cells in a wide range

of conditions, including metabolism using different carbon, nitrogen, phosphorous

and sulphur sources, as well as osmotic, pH, antimicrobial and metal ion stresses.

The PMs work by the reduction of a colourless tetrazolium dye in the growth me-

dia to a purple formazan by electrons from the NADH produced during cellular

respiration?. For microbial PMs, 1920 different phenotypes per organism (including

controls) can be assessed simultaneously by using the full set of 20 different 96 well

plates. As the assays are performed for 24 hours or longer, the output is high den-

sity time-course data for each well (growth condition), showing a measurement of

the quantity of dye reduced. A typical experiment can contain as many as 450,000

data points, making the output especially suitable for mathematical and statistical

modelling. The PM platform is flexible, allowing users to construct their own assays

using plates, growth media and tetrazolium dyes. Thus they have proven extremely

flexible in terms of the experiments that can be carried out with them ?. Among

other uses, Biolog OmniLog PM technology can be used in research aimed at un-

derstanding and controlling the performance of biotechnological processes, through

analysis of microbial metabolism in conditions relevant to industrial fermentations
?,?.

However, while PM technology can generate vast amounts of information about

2
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microbial growth in the form of time-series data, its usefulness is limited by a lack

of robust, easy to use and flexible data analysis tools for such data. Often, the

data (which in its raw form comprises up to several hundred data points) is being

reduced to either a binary “growth / no-growth” distinction or, at best, a single

datum, such as maximum signal reading, average signal height reading or area under

curve (AUC) ?,?. Clearly, a lot of information is lost this way.

Biolog’s own software allows rudimentary data analysis mainly focused at di-

rectly comparing two different strains grown on PM plate types. As detailed in

Bochner et al. ? - cf. Box 1 therein - this consists of plotting curves from two strains

(generally a mutant and a control strain) against each other and highlighting dif-

ferences above a certain threshold. This results in effectively a ternary distinction

between either of the strains showing higher respiration or there being no significant

difference between them. Alternatively the software can give a numerical output of

the difference in respiration rates between the two strains compared, as used for

instance in ?.

Whether average readout, area under the curve (AUC) or endpoint is used, the

use of a single value to represent a time-series comprising up to several hundred

data points entails losing valuable information about the shape of the underlying

curve. For instance, the curves in Figure ?? all have very similar average readout

and AUC. Yet clearly they are qualitatively rather different, with different lengths

of lag phases, maximal growth rates and carrying capacities. This is the problem at

the heart of Biolog data analysis that we seek to address.
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Fig. 1. Respiration data taken from four different phenotypes in the datasets. Plot shows coloration

(Biolog units) vs. time. All four curves have very similar AUC, yet it is clear that they are
qualitatively different, with different lengths of lag phase and maximal growth rates.

Some previous research has been carried out in this area, but has been limited in

its scope. For instance ? focus on visualizing the raw Biolog data without any param-

eter estimation. A more recent approach published in ? provides both visualization

as well as parameter estimation using the grofit R package. This package uses

non-linear least squares regression to fit Gompertz and Richards models to growth

curves, but also provides a model-free spline fit ?. The logistic growth model has

also been found to be effective in fitting Biolog data and has been used to facilitate

normalisation and data comparison?.

In this paper, we describe a method to extract further information from these

curves. We employ a Bayesian approach using Markov Chain Monte Carlo (MCMC)

techniques to sample from the posterior distributions of the parameters of several

different growth models fitted to given Biolog data. Such an approach not only of-

fers robust estimates of both best-fit model parameters but also model-independent

characteristics such as lag time, maximal growth rate, and maximal carrying capac-

ity. We have tested these methods using data from customised PM plates, developed
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to assess the potential of PM technology in the differentiation of 100 proprietary

brewing yeast strains in different worts. The focus of the paper is on the modelling

and methodology and these data are brought as relevant examples.

We anticipate that these ideas have the potential to transform the capacity of

research groups to obtain useful and meaningful information from Biolog Phenotype

Array data.

2. Methods

2.1. Modeling aspects

A number of different growth models have been proposed in the literature ?. These

have different statistical properties ? and it can be argued that their are limitations

of the interpretations of these models ?. These models are generally derived in the

form of an ordinary differential equation or as a system of ODEs, though many of

them also have a closed-form expression. We will focus on two models in particular,

described in the sections below. As the Biolog Omnilog PM machines measure

respiration rather than growth, it is not a priori clear that any of the traditional

growth models will be able to accurately fit the data produced in PM experiments.

However, empirically we found that these models provide useful results.

2.2. The Baranyi model

We chose to focus mainly on the model developed by Baranyi and Roberts. This

was first introduced in ?, and discussed in more detail for instance in ?, ?. The model

is based on the Richards model?, but introduces another inhibition term to model

the lag phase. The inclusion of a lag phase is important, as growth and metabolism

of microorganisms in fresh media typically results in an initial period of delayed

activity. Consequently much of the data we analyzed includes a distinct lag phase;

this can be seen in the example data shown in Figure ??. Thus models that do

not include a lag phase (e.g. logistic growth), or models where there is insufficient

flexibility over the shape and time of the lag phase (e.g. Gompertz models ?) do not

perform well. The form of the model we used is as in ?:

d

dt
y = r · y · u(y) · α(t), (1)

where α(t) accounts for the inhibition at the beginning of growth. For an isother-

mal batch culture environment (e.g. as provided by Omnilog), the authors suggest

setting

α(t) =
q0

q0 + exp(−ν · t)
(2)

With u(y) as in the Richard’s model this gives a closed-form expression as fol-

lows:

log(y(t)) = log(y0) + r ·A(t)− 1

m
log
(

1 +
emrA(t) − 1

em(log(ymax)−log(y0))

)
(3)
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where

A(t) =

∫ t

0

α(s)ds = t+
1

ν
log
(e−νt + q0

1 + q0

)
(4)

In addition to the four parameters (y0, ymax, r,m) of the Richards model, this

introduces another two parameters, ν and q0 that control the length and shape of

the lag phase. This term is motivated biologically: q0 is to be taken as the initial

physiological state of the cells, while ν gives the rate at which they adapt to their

new environment. This gives the full Baranyi model a high degree of freedom in

accommodating a wide range of growth curve data; as others have noted ? the

Baranyi model performs very well in fitting empirical growth curve data.

There are two things we would like to point out. Firstly, the form of α(t) makes it

entirely independent of the rest of the Baranyi model. That is, it is straightforward

to incorporate this lag term into other models, and we have done so for instance

with a simple diauxic model which we discuss below. Secondly, for any given lag

phase length λ, there is an infinite number of combinations of q0 and ν that satisfy

the formula for α given above. We have found it more convenient to parameterize

the Baranyi model (and other models using α(t)) with λ and ν rather than q0 and

ν. We then derive q0 by

q0 =
1

eνλ − 1
(5)

for use in the closed-form expression of the Baranyi model respectively α(t). In

this form, one parameter controls the duration of the lag phase itself, whereas ν

controls its shape. Figure ?? (right) shows A(t) for a fixed λ and varying values of

ν. Higher values of ν make the lag phase more pronounced, whereas lower values

make the effect more subtle (in the figure, the topmost curve is the one with the

lowest value for ν).
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Fig. 2. Numerical derivation of a lag phase length from a Baranyi curve. (a) The calculated lag is

27.87 whereas the model lag parameter is 30. (Other model parameters: y0 = 100, ymax = 300, r =

0.1, ν = 0.2,m = 1) (b) A(t) for λ = 10 and ν = 0.2, 0.5, 1, 2. Dotted red line shows y = t− λ.
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Baranyi suggested a slight simplification of the original model, setting m = 1

and ν = r ?. The resulting model is simpler than the original one and still fits most

of the data we have seen; On the other hand, the original model is more flexible

in fitting less typical growth curves. We thus adopted a two-fold strategy and used

both the original and the simplified versions of the model, as well as two versions

that incorporate either one of the proposed modifications.

2.3. Diauxic growth

As will be seen below, the example data we analyse (from worts), typical of growth

on complex mixtures of substrates, includes curves that show a clear diauxic effect.

We modeled this using a simple diauxic growth model based on Monod-type sub-

strate inhibition terms. As a starting point we used the following model, in ODE

form:

dy

dt
= r1s1y +

k

k + s1
r2s2y (6)

ds1
dt

= −r1s1y,
ds2
dt

= − k

k + s1
r2s2y (7)

While s1 is large, this essentially gives logistic growth on substrate 1. As sub-

strate 1 is being used up, the inhibition term k
k+s1

increases and logistic growth

on substrate 2 starts. Smaller values of the inhibition constant k give a more pro-

nounced diauxic effect due to the stronger influence of s1 on the inhibition term.
k

k+s1
is a hyperbolic inhibition term that is supposed to model the inhibitory effects

happening within the cells as s1 is being exhausted.

We amended this model to include a Baranyi-like lag phase term. In its non-

integral form α(t) this transfers to our ODE model in a straightforward fashion,

giving the following for our diauxic growth model:

dy

dt
= α(t)

(
r1s1y +

k

k + s1
r2s2y

)
(8)

ds1
dt

= −α(t)
(
r1s1y

)
,
ds2
dt

= −α(t)
( k

k + s1
r2s2y

)
(9)

Arguably, this model is a rather simplified view of the biological processes hap-

pening but has empirically proven to be useful. A number of other models for diauxic

growth have been proposed ?,?. Our model is simpler (for example Kompala et al.’s

1986 model has five parameters per substrate, ours has eight in total), but still

sufficiently flexible to be able to describe virtually all of the diauxic growth curves

we have seen.

2.4. Gompertz model

For comparison purposes we also fitted a Gompertz model ? to the data. The Gom-

pertz model does not include a lag phase, so it is useful to determine when the

Baranyi model is helpful in identifying lag phase lengths.
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2.5. Parameter estimation

We adopted a Bayesian approach ? to infer model parameters from the time-series

data recorded by Biolog machines. In particular we used a variant of the Metropolis-

Hastings algorithm? to sample from the posterior distribution of these parameters.

This algorithm starts with an initial state vector θ(0). At each iteration a candidate

state vector θ′ is generated by drawing from a proposal distribution q(.|θi). With

probability α(θi, θ
′) that move is accepted, where

α(θi, θ
′) = min

(
1,
p(θ′)q(θi|θ′)
p(θi)q(θ′|θi)

)
(10)

If accepted, we set θi+1 = θ′, otherwise set θi+1 = θi. The θi form a Markov chain,

and the stationary distribution of this chain is the desired posterior distribution

p(θ) irrespective of the proposal distribution q(.|.) ? or ?.

A number of modifications and amendments to the original Metropolis-Hastings

algorithm have been proposed to better explore the target distribution or to im-

prove the algorithm’s rate of convergence. In particular, significant attention has

been drawn to the construction of adaptive algorithms, i.e. algorithms which do

not require the specification of the tuning variance of the proposal distribution

q(.|.). One of the most commonly used algorithms is the Adaptive Metropolis (AM)

algorithm ? that has been discussed in detail in the literature ?,?,?,?.

The use of an adaptive algorithm is important for the analysis of high throughput

PM data because of the large number of data sets being analysed. Each PM plate

contains 96 wells, and with an experiment of 100 plates this leads to 9,600 separate

curves. It is not possible to manually tune the parameters for each curve so an

automated, adaptive approach is necessary. We implemented an AM algorithm with

global scaling as described in algorithm 4 in Andrieu and Thoms 2008 as follows:?

(1) For an initial segment of the chain (i < i0, for some sensible choice of i0) per-

form a “Random-Walk Metropolis with global scaling” with proposal covariance

matrix λiΣ0, with Σ0 an initial “best guess” of the true covariance matrix.

(2) For the remainder of the chain, do as above but use λiΣi as the covariance

matrix for the proposal distribution, where Σi is the sample covariance matrix

of the previous history of the chain, and λi is a varying scaling factor. We

update Σi iteratively.

We used i0 = 2500 (chosen empirically). For i < i0 we updated Σi and λi only

when we accept a move, as suggested in Haario et al., 2001. ? We reset λi to its

original value of 2.42/dim(θ) in iteration i0, where θ is the parameter vector. ? We

also added εI to Σi in each step to keep it from becoming singular for some small ε.
? If ever it still became singular due to rounding errors, we added εI to it until it was

not singular anymore. We did not use any form of thinning, always discarded the

initial 50000 iterations as burn-in, and in production runs used 500000 iterations in

total.
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We used uninformative or uniform priors on suitable regions, and utilized sim-

ple heuristics to give rough estimates of the initial parameter vector for the AM

algorithm (See Appendix for details). These heuristics proved to be effective in that

all Markov chains converged to a stationary distribution (see subsection on Per-

formance below) after appropriate burn-in. Alternative approaches could be to use

an iterative least-squares approach to obtain initial parameter values near to the

stationary distribution ?. To calculate the likelihood function, we assumed normally

i.i.d. measurement errors, which we heuristically estimated from the raw data as

detailed in the appendix.

2.6. Model choice

In addition to inferring parameters from them, we used the Deviance Information

Criterion ?,?. This is defined as follows:

DIC = D̄ + pV (11)

where D is the deviance defined by

D(θ) = −2 log(p(x|θ)) (12)

and D̄ is the mean of this deviance. The model complexity pV is given as pV =

var(D)/2. An alternate definition of DIC uses pD = D̄−D(θ̄) to account for model

complexity. We have found however that this is highly dependent on the quality of

the estimation of the posterior. In some cases where our posterior sample was not

a good estimate, we saw the pD term dropping to artificially low (often negative)

values leading to a bad, artificially low estimate of DIC. While it is possible to

check that the posterior sample is reasonable before calculating DIC this way, we

expect that in any high-throughput environment there will be individual data that

slip through such checks. Thus we have found that using pV was in practice more

suitable for our purposes. For comparison purposes we have also calculated BIC for

all models ?, using the highest likelihood observed in the posterior sample for the

BIC estimate.

We used the DIC to choose which model to use to derive estimated parameters

for each well. Furthermore, we were looking to get an indication as to whether

our models provide a reasonable fit at all. To this end we compared them to a

simple “dummy” model defined by y(t) = c for a constant parameter c. This is

non-informative, and similar to a classical H0 model. A comparison via DIC or BIC

to the constant model is meant to show whether the model fits the data at all.

2.7. Parameter comparisons between models

One potential issue with fitting a number of different models to data is that param-

eters of one model do not necessarily relate easily to those of another. Therefore,

in addition to the model-specific parameters we used model-independent measure-

ments of three key growth characteristics, which we derived numerically from the
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fitted curves. This is to allow for simple quantitative comparisons between wells

that show qualitatively different behaviour.

In the following paragraphs we will take y(t; θ) to mean the signal level predicted

by our model and the parameter vector θ at time t. Firstly, for A, the maximum

coloration change achieved, we simply used y(tlast; θ)−y(0; θ), that is, the absolute

increase in coloration our model predicts over the period of time that was recorded in

the experiment. It may be argued that for all the models we are using we could also

compute a similar A from the y0 and ymax (respectively y0 and s1, s2). However, we

found that if the recorded respiration data stops before a maximum is attained, the

maximum or substrate level parameters are effectively inestimable, and so would A

be with such a definition. Note that if a maximum is effectively reached within the

experiment record, these two definitions will for practical purposes be equivalent.

For µmax we took the steepest slope of y(t; θ) (again within the experiment

period), as derived numerically from the fitted curve. This is not a transformation

of the model’s rate parameter(s) alone, but is model-independent and coincides with

a more natural definition of the maximal respiration rate.

For the lag time L an essentially model-independent definition is slightly trickier,

and a number of possible definitions could be used ?. We define L to be the t-

coordinate of the intersection of the tangent at the steepest point of y(t; θ) with the

line y ≡ y(0, θ) ?. For y0 ∼ ymax this will approximate the lag parameter in α(t)

almost exactly. Figure ?? (left) illustrates our definition of the lag phase length.

The tangent of the steepest point is shown in blue, and the derived lag length L in

red. We note that for y0 � ymax this estimate will differ substantially from the lag

parameter λ. However, so long as the relative difference between initial and final cell

concentration is constant across a dataset, our estimate of L will still be comparable

between wells and, crucially, between different models.

2.8. Identifying presence and absence of growth

In order to identify whether a given well exhibits significant levels of growth at all,

we compared the maximum coloration attained A to a 95% quantile of the same

parameter for a control well present on each plate.

2.9. Data preprocessing

In a small number of cases we observed anomalous behavior where coloration actu-

ally decreases significantly after attaining a maximum. The causes of this behavior

are as yet unknown (in principle the reduction of the tetrazolium dye should be a

one-way process), but we still want to be able to extract meaningful information

from the data. We used a simple heuristic to remove the aberrant parts of the data.

More precisely, we looked at the maximum y′max (attained at tmax) of a smoothed

curve as above (using a 9-point window). We then removed the tail of the data series

if in any interval [tmax, t], t > tmax at least 90% of data points (of the unsmoothed



January 27, 2016 12:1 WSPC/INSTRUCTION FILE
Gerstgrasser˙Biolog˙JBCB˙preprint

12 Authors’ Names

curve) were at least 0.5 standard deviations (using the numerically estimated mea-

surement error) below ymax. We would then remove the tail of the data series after

the least such t. However we always left at least the initial 40 data points.

3. Results and Discussion

3.1. Our models fit the data

The model was applied to 40 Biolog arrays comprising a total of 3840 time courses.

Of these, 2989 exhibited significant growth compared to a known control well. Ac-

cording to DIC 598 of these wells were fitted best by the Baranyi model, 2382 by the

diauxic model, 9 by the Gompertz model and none by the constant dummy model.

The remaining 851 wells exhibited no significant growth, and model fit between the

Baranyi, diauxic and Gompertz models was almost arbitrary.

According to BIC the picture is similar, with a slight bias against the diauxic

model (2160 diauxic cases with growth) and toward simpler models (793 Baranyi,

36 Gompertz). Again no wells were fitted by the constant dummy model.

Furthermore, in all cases in which the Gompertz model was preferred over

Baranyi or diauxic models, DIC scores of these models were very close to each

other (within one percent of absolute values). The converse was not the case. Best-

fit models usually achieved a DIC score in the range of 200 - 400. For cases where

the Gompertz model scored best, the mean difference between the Gompertz model

and the second-best model was 1.7; Conversely, where the Gompertz model did

not score best, the mean difference in BIC score between the best model and the

Gompertz model was 658.

This demonstrates that the Baranyi model, and the diauxic model with Baranyi

lag phase, are effective tools for the analysis and interpretation of Biolog PM data.

Example fits where the Baranyi model and the diauxic model with Baranyi lag

fit best are shown in Figures ??(a) and (b) respectively. Plotted also is a fitted

Gompertz model, demonstrating the relevance of the models we have used. In these

cases, the Baranyi and diauxic models receive much the best BIC scores (Table ??).

Figure ??(c) shows one well with no growth, and a slight decrease in coloration,

together with fits by the Baranyi and constant models.
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Fig. 3. Example data curves with model fits. (a) A typical data curve where the Baranyi model

is best. The Baranyi model fits the data much better than the Gompertz model, that cannot
fit either the shape off the lag phase or the shape of the transition to stationary phase. As a
consequence, the Gompertz model would overestimate both the length of the lag phase and the
maximal growth rate. (b) A typical data curve where diauxic model fits best. Neither the Baranyi

nor the Gompertz model can capture the dynamics. (c) A curve with a preferred Gompertz model

according to DIC. A fitted Baranyi-curve is also shown. (d) A curve showing no significant growth
compared to a control well. Due to a slight increase in coloration this is fitted best equally by a

diauxic and Baranyi model. Absence of growth is detected by comparing to the control well. (e)

A borderline case that shows slight diauxic behavior. (f) Diauxic curve with high growth on s2.

Table 1. BIC scores for the relevant models in figure ??.

Strain DIC Baranyi DIC Diauxic DIC Gompertz DIC No-Growth

(a) P105-A12 388.5 398.0 2497.8 361073

(b) P106-E01 5457.6 431.1 5819.9 376824
(c) P107-G03 123.3 123.1 123.0 272838

(d) P106-H12 114.4 114.2 120.8 258

(e) P106-B11 548.1 401.7 555.5 135383
(f) P108-C10 3715.5 142.9 6502.7 491623
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Further evidence for the value of the Baranyi model and Baranyi lag term in

the diauxic model in fitting this type of data can be seen from the relative wide

spread of the estimated mean for the curvature parameter of the lag phase, ν in

both models, as well as the curvature parameter m in the Baranyi model (Figure

??). Thus we consider it likely that any model lacking such an extra parameter

would fail to accommodate the range of curve shapes we have encountered.
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Fig. 4. Histograms for m, ν in the Baranyi and ν in the diauxic model, for curves where these

were the respective best-fit model and where significant growth was detected. The wide spread of
these distributions is indicative of the importance of these parameters in fitting a range of data.

3.2. Identification of curve features beyond AUC

There are two main features of our approach: the first, as presented above, is that

we are able to fit curves that are qualitatively diverse, namely non-diauxic and

diauxic growth. The second is that we are able to estimate key relevant parameters

from Biolog data, in particular a length of lag phase, maximal growth rate and

maximal output. In many biotechnological applications, the identification of strains

or conditions with minimal lag phase or maximal growth could be particularly
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important, as such strains or conditions could speed production and/or cut costs.

Figures ??(a) and ??(b) show the curves with the shortest and longest lag phases

respectively. These curves have quite different AUCs and maximal outputs so would

be difficult to identify without a suitable modeling approach. Similarly, figures ??(c)

and ??(d) show the curves with the fastest and slowest maximal growth. These too

would be difficult to identify without a robust modeling approach.
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Fig. 5. Example data curves with potentially useful derived parameters. Some of the curves in the
data set with (a) shortest lag phase, (b) longest lag phase, (c) lowest maximum growth rate (while

still exhibiting significant growth) and (d) highest rate.

Conversely, curves with very similar AUC can differ greatly in other parameters.

Table ?? lists the mean derived parameters for the six different strains shown in the

beginning of the paper, clearly showing that AUC alone is not sufficient to allow

comparisons between qualitatively different data. The lag phases range from 12.3

hours (P103-C01) to 38.9 hours (P101-C01) and the maximal growth rates range

from 11.7 per hour (P102-B12) to 35.0 per hour (P101-C01). Both of these model-

derived parameters vary three-fold among the strains shown, demonstrating that

our approach is considerably superior to using AUC.
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Table 2. The AUC and mean estimated pa-

rameters for the four strains shown in figure

1.

Strain AUC L µmax A

P101-D06 190.6 32.6 15.3 301.2

P102-E11 190.7 10.1 9.5 163.3
P103-C05 191.5 21.7 18.1 219.5

P104-C12 192.3 16.6 6.6 162.0

We have found that a comparison to the 95% quantile of maximum coloration

of a control well works reliably in identifying whether growth occurs.

3.3. The estimated parameters and model-independent

measurements are reliable

The Bayesian approach has allowed us to use the posterior distributions to estimate

standard deviations of the individual model parameters as well as the numerically

derived model-independent growth measurements. These are generally low (typi-

cally < 1% of the parameter values) and are elevated only in cases where some

parameters are not estimable from the data, e.g. estimation of ymax when fitting a

Baranyi model to data that is cut off before stationary phase is reached (standard

deviation as high as 10% of the parameter), but also sometimes s1 and s2 when

fitting the diauxic model to data clearly depicting simple growth.

We have found that A (the maximum colouration change) very closely matches

the respective model parameter(s), and that µmax has given good comparability of

results between wells even with different best-fit models. In cases of diauxic growth,

particularly with small s2 and the bulk of growth on s1 (as is the case in the vast

majority of diauxic cases observed) the Baranyi model would sometimes give an

artificially low estimate of µmax as it tries to compensate for the (in a sense slower)

two-step approach to peak coloration by fitting an altogether slower curve. Figure

??(e) shows one such case together with fits by the Baranyi and diauxic models.

The lag time L in the vast majority of cases similarly gives good comparability

between wells and models. In one atypical case ??(f), a diauxic growth curve features

a higher growth rate on s2 than on s1. By our definition of L as the time coordinate

of the intersection of the steepest tangent with the flat line y ≡ y0, the lag time

in such cases is determined by the growth on s2 and could be significantly later

than start of growth on s1. Arguably this is not what we want, as it would not

be consistent with a physiological definition of the lag phase, since the lag time

identified includes the time grown on s1. On the other hand, in some circumstances

this output may be preferential, e.g. in an industrial research application a slow

initial growth on s1 may be of considerably less interest than the time until peak

growth rate. It would be possible in our framework to derive a specialized definition

of L tailored to diauxic models, e.g. using the steepest tangent before the point
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where s1 is effectively depleted.

While our descriptive measurements L, µmax and A give us consistent definitions

and readily comparable results for the vast majority of cases, the various model pa-

rameters we are also inferring allow us a more explanatory analysis of subsets of (or

even individual) cases. For instance, within a set of diauxic curves, our estimates

of s1 and s2 allow us to identify cases in which the bulk of growth is on the sec-

ond substrate. Again, in industrial research applications this may be of particular

interest. Similar analysis could be carried out e.g. on the curvature parameters of

the Baranyi model, to identify outliers in lag phase behaviour.

As a further test of reliability, we have compared parameter estimates from wells

measuring the same conditions: each condition on these particular phenotype arrays

appears in triplicate. For the best fit data shown in Figure ??, this provides three

independent estimates for each of the three derived parameters for six models, a to-

tal of 18 comparisons. The parameter estimates were generally very consistent, with

median percentage error of 5.8%. The worst case is for Figure ??(d), where there

is no growth, and the parameter estimates vary by approximately 30%; however,

because there is no growth, this is not a problem. Full details of these comparisons

are provided in Appendix D.

3.4. Performance

The MCMC methodology based on an Adaptive Metropolis algorithm performed

well in combination with the models we used. We tested all the Markov chain

outputs for the model fits that appear in all figures for convergence using the Hei-

delberger and Welch’s convergence test as implemented in the CODA package in R

(https://cran.r-project.org/web/packages/coda/index.html). The results from this

test showed that all the chains have passed the test, i.e. have converged to the

stationary distribution. The outputs are not especially interesting (many tables of

non-significant p-values) so we have placed one example in Appendix E and have

not included the other outputs.

The adaptation to different target distributions in particular worked very well

and our algorithm required no manual fine-tuning to explore different data with

high efficiency. Figure ?? shows an initial segment of one AM chain we ran. It

is clearly visible that the mixing of the chain improves rapidly after the initial

discovery phase. Running our methodology implemented in C++ for a single plate

(comprising 96 wells recorded every 15 minutes over 72 hours) took around 50-60

minutes on a quad-core machine (Intel Xeon E3 1230v2).
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Fig. 6. Initial segment from the trace plot for λ for one AM chain. It is easy to see that the initial

acceptance rate is far from optimal, but rapidly improves after the first 2500 iterations.

3.5. Comparison to previous approaches

Vaas et al. 2012 discuss one particular case (their figure 4, left hand side) where their

model-fitting approach fares worse than their alternative spline-based method. It

appears to us that the curve in question is simply diauxic in nature, and we expect

that our approach would be able to fit this time course and identify the behaviour as

diauxic. The second example they discuss (right hand side of the same curve) could

equally likely be fitted by our methodology with an appropriate model. In either

case ?’s approach likely could not be extended easily to encompass such additional

models, using a third-party software package to do the actual parameter estimation.

4. Conclusion

We have presented a Bayesian approach to estimating curve-parameter information

from respiration data gathered in phenotype microarray experiments. We had aimed

to extract meaningful information from complex respiration curves in a statistically

sound way, and have shown that our approach succeeds in doing so.
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Our solution has several key advantages. Firstly, the Bayesian framework in

which our approach operates affords us a great deal of flexibility in extracting in-

formation from respiration curves. As we are approximating the joint posterior

distribution of all model parameters, we are free to perform further analysis on this

and can for instance derive the distribution of arbitrary functions of our model pa-

rameters from them. Model choice criteria allow us to readily identify qualitatively

different behaviour in the data on top of quantitative measurements. This gives

us a “best of two worlds” solution encompassing both unified model-independent

descriptive measurements as well as more explanatory model-specific ones.

Secondly, the Baranyi model provides an excellent model to fit a wide range of

observed growth curves. The only exception we encountered were curves exhibiting

diauxie. In these cases, our diauxic model provided us with good fits in these cases

as well. In particular, these two models outperform traditional growth models in

many cases. Our modular implementation allows us to adapt our code to new types

of experimental data with minimal effort. As PM machinery is being used in a wide

range of different areas, this allows our solution to remain applicable as new types

of data become available.

Thirdly, the model-independent measurements L, µmax and A we derive from

the fitted curves allow an immediate comparison of key values between different

time series, even if qualitatively different models were used to fit the data. This

allows us to match simpler (e.g. spline-based) approaches in their ability to per-

form quantitative comparisons between a wide range of growth behaviors. However

in addition, our approach retains information from the richer model-dependent pa-

rameters. This gives us powerful tools to perform further analysis on specific subsets

of data. In particular, we can use these to compare wells with qualitatively similar

behaviour in more detail, for instance utilisation of different substrates in diauxic

curves.

Lastly, our implementation is suited to high-throughput analysis of PM data.

Compared to previous approaches to data analysis on PM experiments, we believe

that our solution offers improvements in several areas. Even the relatively small

number of models we have implemented so far allows our solution to successfully

fit a wide range of data.

We believe that our extensible approach is uniquely suited to “keep up” with

PM data, as PM machinery is being used for an increasingly wide field of different

types of experiments. As PM machinery continues to find novel usage scenarios, the

modular implementation we have chosen will allow our solution to remain flexible

in accommodating data from these scenarios.
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Program Code Availability

We have made the program code

available on GitHub at URL https://github.com/dovstekellab/mcmc-pma.git un-

der license GNU GPLv3. We also include instructions on how to compile and run

the code, as well as how to interpret the results files.
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Appendix A. Prior distributions

We used uninformative or uniform priors as follows:

(1) For models that feature a lag parameter λ, we assumed 0 ≤ λ ≤ dim(x).

(2) For all parameters where we were not dealing with their logarithm anyways, we

assumed that they are positive.

(3) Where applicable we assumed ymax > y0.

(4) In the full Baranyi model, we required r > ν, m > 1, as otherwise these param-

eters were usually inestimable due to high correlation. Similarly in the Baranyi

models where only one of ν, m are fixed.

(5) For all other parameters, we used improper uniform priors without any bounds.

Appendix B. Estimation of initial parameters

The heuristics we used to estimate initial parameter vectors are as follows:

(1) For initial cell concentration, we took the average of the first ten data points.

Similarly for the maximum concentration, we took the average of the maximum

of any ten-point interval in the time series.

(2) For the lag parameter, we fit lines to every 20-point interval of data points,

and intersected the maximum-slope line with y = y0, with y0 derived as in the

previous line.

(3) For the growth rate r, we used a simple search heuristic to guess an initial value

that we have found empirically to be effective. We start from a sufficiently large

interval of possible values [rmin, rmax], and divided this into ten equal parts

r0 = rmin, r1, ..., r11 = rmax. We then compared the maximum slope of the

modeled data with r = r1, ...r10 with the maximum slope as in the previous

line. For ri giving the smallest difference in maximum slope, we recurse by

setting rmin = ri−1, rmax = ri+1. We repeat this 100 times.
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(4) For the remaining parameters we used the same search algorithm, except we

compared the sum of squares of differences between modeled and observed data

instead of maximum slope.

Specific to each of the models we did the following: We used [0.01, 1], [2, 10],

[0.3, 1] as initial intervals for r, m, ν in this search algorithm. We first called this

for r, setting both remaining parameters to 1, then similarly for the remaining ones.

For the diauxic models, we proceed similarly, except we additionally needed to find

s1 and s2, respectively the division of the total growth between the two. To do so,

we found the maximum slope on a smoothed curve as in our estimation for the lag

parameter, and then the minimum slope between that point and when the smoothed

curve first comes within 12 standard deviations of the maximum. (In other words,

we looked for the characteristic intermittent slowing-down of growth.) We then

subtracted y0 from the value at this point, and took this as the initial guess for

s1. For the remaining parameters we proceeded similarly as in the Baranyi model,

using [10−8, 10−4], [0.05, 1], [0.0001, 11] as initial intervals for r1, ν, k1 in the search

algorithm. We always use 0.0003 for r2, as performing our search heuristic for this

parameter did not improve results.

Appendix C. Estimation of measurement error from data

We took a smoothed curve (taking the average of every nine adjacent measurements;

without taking logarithms) as reference to numerically estimate the variance. We

however always assumed a minimum variance of 5 Biolog units. That is, we defined

σ2 = min{5, 1
dim(x)

∑dim(x)−5
j=4 xj − 1

9 (xj−4 + xj−3 + · · ·+ xj+4)} .

Appendix D. Consistency analysis

Consistency of parameter estimates was tested for the six best-fit models shown in

Figure ??. These particular phenotype microarrays have triplicate wells for each

condition, so the derived model parameters shown were compared with those for

the two other triplicate wells. The full output is:
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Table 3. Parameter estimate consistency

Wells Parameter Value1 Value2 Value3 Mean St. Dev. % Error Note

P105-A10-A11-A12 lag 15.37 14.37 14.58 14.77 0.530 3.58%

rate 17.60 17.21 15.79 16.87 0.951 5.64%

max 325.3 321.2 306.8 317.8 9.69 3.05%

P106-E01-E02-E03 lag 11.79 11.31 11.80 11.63 0.284 2.44%

rate 14.03 11.78 12.00 12.60 1.24 9.83%
max 232.4 210.4 201.4 214.7 16.0 7.44%

P107-G01-G02-G03 lag 20.38 24.57 20.36 21.77 2.43 11.1%

rate 8.06 7.06 5.17 6.76 1.47 21.7%
max 186.4 183.1 183.6 184.3 1.76 0.96%

P106-H10-H11-H12 lag 3.64 5.64 3.04 4.11 1.36 33.1% No growth case
rate 0.634 0.452 0.436 0.507 0.110 21.7% No growth case

max 8.90 5.05 5.53 6.49 2.10 32.3% No growth case

P106-B10-B11-B12 lag 11.83 11.80 11.58 11.74 0.135 1.15%

rate 19.33 19.41 21.46 20.07 1.21 6.02%

max 256.0 253.2 265.6 258.3 6.48 2.51%

P108-C10-C11-C12 lag 31.30 30.10 28.59 30.00 1.36 4.52%

rate 18.74 15.79 15.07 16.53 1.95 11.8%
max 320.6 310.9 315.8 315.8 4.86 1.54%

Appendix E. Convergence tests

Convergence for all of the Markov chains for model fits used in the figures was carried

out using the Heidelberger and Welch’s convergence test as implemented in the

CODA package in R (https://cran.r-project.org/web/packages/coda/index.html).

All of the chains passed the test, i.e. demonstrating convergence to a stationary

distribution. The output for each chain is in the form of a table with a p-value for

each parameter. An example from one chain that is typical of all output is:

Table 4. Example convergence test output from CODA

Variable Stationarity Test Start Iteration p-value

V1 passed 1 0.357
V2 passed 1 0.547

V3 passed 1 0.560

V4 passed 1 0.297
V5 passed 1 0.602

V6 passed 1 0.853

V7 passed 1 0.218
V8 passed 1 0.173

Each row, labelled V1 to V8, represents one variable. The null hypothesis is

that the chain is from a stationary distribution and so it can be seen that the null
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hypothesis has been accepted for all variables in the chain. We obtained similar

results for all of the Markov chains tests (data not shown).
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3. Atchadé Y, Fort G, Limit theorems for some adaptive mcmc algorithms with subge-
ometric kernels, Bernoulli 16(1):116–154, 2010.

4. Bai Y, Roberts G, Rosenthal J, On the containment condition for adaptive Markov
chain Monte Carlo algorithms, Tech Rep, University of Warwick. Centre for Research
in Statistical Methodology, 2009.

5. Baranyi J, Simple is good as long as it is enough, Food Microbiology 14(4):391–394,
1997.

6. Baranyi J, Roberts T, A dynamic approach to predicting bacterial growth in food,
International journal of food microbiology 23(3):277–294, 1994.

7. Baranyi J, Roberts T, Mathematics of predictive food microbiology, International
journal of food microbiology 26(2):199–218, 1995.

8. Baranyi J, Roberts T, McClure P, A non-autonomous differential equation to model-
bacterial growth, Food Microbiology 10(1):43–59, 1993.

9. Bochner B, New technologies to assess genotype–phenotype relationships, Nature Re-
views Genetics 4(4):309–314, 2003.

10. Bochner B, Global phenotypic characterization of bacteria, FEMS microbiology re-
views 33(1):191–205, 2009.

11. Bochner B, Gadzinski P, Panomitros E, Phenotype microarrays for high-throughput
phenotypic testing and assay of gene function, Genome Research 11(7):1246–1255,
2001.

12. DeNittis M, Querol A, Zanoni B, Minati JL, Ambrosoli R, Possible use of biolog
methodology for monitoring yeast presence in alcoholic fermentation for wine-making,
J Appl Microbiol 108:1199–1206, 2009.

13. DeNittis M, Zanoni B, Minati JL, Gorra R, Ambrosoli R, Modelling biolog profiles’
evolution for yeast growth monitoring in alcoholic fermentation, Lett Appl Microbiol
52:96–103, 2010.

14. Eddy SR, What is bayesian statistics?, Nature biotechnology 22(9):1177–1178, 2004.
15. Gamerman D, Lopes H, Markov chain Monte Carlo: stochastic simulation for

Bayesian inference, Chapman & Hall/CRC, 2006.
16. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB, Bayesian data

analysis, CRC press, 2013.
17. Gilks W, Richardson S, Spiegelhalter D, Markov chain Monte Carlo in practice, Chap-

man & Hall/CRC, 1996.
18. Haario H, Saksman E, Tamminen J, An adaptive metropolis algorithm, Bernoulli pp.

223–242, 2001.
19. Hastings WK, Monte carlo sampling methods using markov chains and their applica-

tions, Biometrika 57(1):97–109, 1970.
20. Jacobsen J, Joyner D, Borglin S, Hazen T, Arkin A, Bethel E, Visualization of growth

curve data from phenotype microarray experiments, Information Visualization, 2007.
IV’07. 11th International Conference, Ieee, pp. 535–544, 2007.



January 27, 2016 12:1 WSPC/INSTRUCTION FILE
Gerstgrasser˙Biolog˙JBCB˙preprint

24 Authors’ Names

21. Kahm M, Hasenbrink G, Lichtenberg-Fraté H, Ludwig J, Kschischo M, grofit: fitting
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