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Abstract

In this article we explore the problem of constructing

person-specific models for the detection of facial Action

Units (AUs), addressing the problem from the point of view

of Transfer Learning and Multi-Task Learning. Our starting

point is the fact that some expressions, such as smiles, are

very easily elicited, annotated, and automatically detected,

while others are much harder to elicit and to annotate. We

thus consider a novel problem: all AU models for the tar-

get subject are to be learnt using person-specific annotated

data for a reference AU (AU12 in our case), and no data or

little data regarding the target AU. In order to design such

a model, we propose a novel Multi-Task Learning and the

associated Transfer Learning framework, in which we con-

sider both relations across subjects and AUs. That is to say,

we consider a tensor structure among the tasks. Our ap-

proach hinges on learning the latent relations among tasks

using one single reference AU, and then transferring these

latent relations to other AUs. We show that we are able to

effectively make use of the annotated data for AU12 when

learning other person-specific AU models, even in the ab-

sence of data for the target task. Finally, we show the ex-

cellent performance of our method when small amounts of

annotated data for the target tasks are made available.

1. Introduction

Automatic facial expression recognition is an active topic

in computer vision and machine learning. It has seen so

much activity that it already contributed to the creation of

three new research directions: Affective Computing [17],

Social Signal Processing [24], and Behaviomedics [22]. Im-

buing machines with the ability to correctly identify the

non-verbal cues humans express, such as facial expressions,

would certainly allow a whole new level of interaction be-

tween a human being and a machine.

The problem of reliable automatic facial expression

Figure 1. Example of facial displays and their constituent Action

Units (AUs).

recognition is a complex one due to the very high level of

variability introduced by factors unrelated to facial expres-

sions, such as identity, head pose or variations in the light-

ing conditions. The problem is even more complex when

we consider non-prototypical facial expressions. There are

only six prototypical expressions (often referred to as the six

basic emotions; anger, disgust, fear, happiness, sadness and

surprise), which makes for a nicely tractable problem from

a computer science perspective. Unfortunately, people do

not frequently display such strong expressions as anger or

disgust in everyday life [24]. Instead, a much wider range of

mental states and social intentions are communicated. An

often cited number of facial displays shown in day to day

life is 7,000.

To simplify the decoding of such a vast expression space,

many researchers take the principled approach of recognis-

ing the individual facial muscle actions that contribute to

make up a facial expression. Most often the Facial Action

Coding System (FACS) [6] is used for this. It was originally

developed by Ekman and Friesen in 1978 [7], and revised

in 2002 [6]. The revision specifies 32 atomic facial muscle

actions, named Action Units (AUs), and 14 additional Ac-

tion Descriptors (ADs) that account for miscellaneous ac-

tions. FACS is comprehensive and objective in its descrip-

tion. Since any facial expression results from the activation



Figure 2. Overview of Regularised Latent Task Structure Transfer Learning of task AU12 with known ground truth to un-annotated task

AU4. Relations between subjects of learned parameters for AU12 are assumed to be a good initialisation for AU4, and used to constrain

its latent structure.

of a set of facial muscles, every possible facial display can

be comprehensively described as a combination of AUs [7]

(as shown in Fig. 1).

An important issue for the automatic analysis of facial

action units remains the poor generalisability to unseen

data, in particular to unseen data of new subjects. Even

state-of-the-art methods [5, 10, 21] are trained and opti-

mised on relatively small amounts of laboratory-recorded

data, limiting their ability to perform adequately under test-

time conditions. This problem is exacerbated by the recent

interest in applying expression recognition under so-called

in-the-wild conditions [15]. That is to say, the community

is increasingly veering towards considering unconstrained

test-time scenarios, boosting test-time data variability. In-

evitably, any serious attempt to cope with this includes ac-

quiring annotated data under these novel conditions. With-

out automatic help, this effort is largely unapproachable due

to both its time-consuming nature and the scarce availabil-

ity of highly expert annotators. This paper presents a novel

transfer learning method that will be of great value for mov-

ing towards semi-automatic annotation.

The learning problem becomes simpler if it can be bro-

ken down into a set of sub-problems, each of them com-

prising significantly lower variability in the relevant data.

Specific instances of this approach would be the creation

of pose-specific or person-specific models. In this work

we focus on the latter. Our aim is to train an AU detec-

tor tailored to the specific characteristics of a target subject.

However, we avoid the need of a full set of person-specific

training data. The training of person-specific models can

benefit from considering a joint learning problem where all

person-specific models are learnt together. In this way the

learning process can exploit the commonalities between the

tasks and reduce the need for large training sets.

A natural framework to cast this problem in is that of

Transfer Learning (TL) and associated frameworks such as

Domain Adaptation (DA) and Multi-Task Learning (MTL)

[4, 19, 3]. TL techniques are often divided into inductive

and transductive [16]. Inductive techniques are those that

exploit annotated data both in the source domain (the do-

main knowledge is transferred from) and in the target do-

main (the domain knowledge is transferred to). The induc-

tive scenario is often tackled from the perspective of MTL

[19, 3]. Instead, for the transductive scenario, TL is tackled

from the DA perspective, as no labelled data is available for

the target task [4]. MTL and TL have been previously ap-

plied to facial expressions recognition and facial AU detec-

tion problems. For example, [28] defined each task to relate

to a different face region, and used MTL to find a sparse set

of face regions capturing facial expressions. Instead, [27]

used MTL to detect correlated groups of AU jointly.

In this paper we focus on exploiting the MTL framework

for TL. A task is defined as a binary classification problem

for a specific AU and a specific subject. Tasks are in this

case related to others tasks when the subject varies but the

AU is the same, or when the subject is the same but the

AU varies. Defining the problem in these terms results in

a tensorial structure. This duplicity of relations regarding

AU and subjects has already been noted and exploited in

the literature [18].

Similar to [18], our work also exploits the tensorial rela-

tions between tasks. However, we our approach differs both

on the scenario considered and in the technical approach

followed. We assume an asymmetry on the annotated data,

as we consider one AU to be a reference task. Sufficient

annotated data is available for the reference task, including

for the target subject. In practice this will be an AU that is

comparatively easy to elicit and to annotate, such as a smile

(AU12). However, the amount of data available for other

AUs can be limited or even non-existent.

This scenario is justified by the practicalities of data ac-

quisition: eliciting and annotating a smile is very easy. In-

stead, capturing expressive information for e.g. sadness,

anger, or less common or subtle AU, can be very challeng-

ing. This situation is not only common at test time, but also

typical for currently existing datasets, where subjects sel-



dom exhibit the exhaustive range of AU targeted and data is

much more frequent for some AU than for others. We sum-

marise this scenario in the research question we are consid-

ering: Can we make use of annotated data for a specific

facial expression/AU, and transfer this information to build

subject-specific models of other facial expressions/AUs with

no or very little annotated data?

Our approach to answer this question is as follows: in-

spired by the GOMTL approach [11], we develop a Transfer

Learning approach by first considering a learning problem

for each AU where the structure of task relations is esti-

mated. We then harness the tensorial information by con-

straining the underlying latent relational information. Our

reasoning is that while the optimal parameters for differ-

ent subjects will be similar, this is not true when varying

the AU instead. For example, optimal parameters for AU12

and AU1 are unlikely to be close in the parameter space

even for a fixed subject identity, as AU12 is mouth-related

and AU1 is eye-related. However, this is different when we

consider the latent relations among subjects. The fact that

subjects are related for a specific AU is likely to be based

on shared appearance characteristics (gender, age, having a

beard, etc). These relations are thus likely to be valid for

other AUs. Thus, our aim is to capture the latent relations

between subjects using a specific easy-to-annotate, easy-to-

elicit and easy-to-detect AU, and then transfer this informa-

tion to the problem of learning to detect other AUs.

In summary, the main contributions of our work are:

• We define a new TL scenario for automatic AU analy-

sis reflecting the practicalities of data acquisition.

• We propose an extension of the MTL framework ca-

pable of harnessing latent structures in problems with

tensorial structure.

• We show the effectiveness of our TL approach even in

the extreme case where no annotated data is available

for the target task, obtaining better prediction accuracy

than any other existing MTL-based TL method.

• We show that adding small amounts of labelled data

of the target task very quickly improves performance,

staying above any other method for any quantity of an-

notated data on both datasets tested.

2. Literature Review

MTL and TL techniques: MTL approaches can be

grouped into techniques that regularise the parameter space,

and techniques that learn the relevant features jointly.

Multi-task feature learning tries to avoid spurious correla-

tions between the features and the labels by learning jointly

which features are important for inference. Examples of

this approach are [1] and [18], where all the tasks are learnt

on a shared sparse subset of the original features.

MTL techniques that regularise the parameter space as-

sume instead that related tasks result in related optimal pa-

rameters. Similarities in the parameter space can be har-

nessed through either a soft constraint (e.g. being close in

an Euclidean sense), or a hard constraint (e.g. lying on a

subspace). A notable example is that of [9], where a regu-

lariser was used to enforce the task parameters to be close

to the mean of all task parameters in an L2 sense. This

work was extended in [8], where binary relations among

tasks could be defined manually. A common setting of this

framework is to use the average of pairwise distances be-

tween task parameters as a regulariser. At its core, these

methods use the optimal parameters for all the tasks to build

an empirical regulariser over the parameter space.

These methods assume that all of the tasks are related in

the same way. This can lead to sub-optimal performance

or even to the so-called negative transfer, i.e., the perni-

cious effect introduced by learning unrelated tasks together.

This observation has led to recent works exploring differ-

ent ways of defining the relations in a more flexible man-

ner. Recently, some works have aimed at automatically es-

timating the structure of relations among the different tasks

[11, 13, 29]. That is to say, these works find a latent struc-

ture that reflects the relations among tasks, allowing for se-

lective transfer.

We pay special attention to [11] and [13]. Both of these

works regularise the parameter space by constraining all of

the task parameters to lie in a shared subspace. Further-

more, the subspace is learnt by making use of sparse coding

techniques, so that the target tasks are explained using only

a handful of the dimensions of the subspace. This approach

has a strong relation with sparse coding for face recognition

[25], and relies on the concept that two examples are only

related if they contribute to explain each other as succinctly

as possible. Learning within this framework proceeds by

alternating the learning of a set of basic tasks (the generator

of the subspace), and learning the parameters for each of

the tasks, expressed now in terms of the sparse coefficients

within the linear subspace.

To the best of our knowledge, the only existing attempt

to harness task relations within a tensorial structure is that

of [18]. However, the aim and technical approach is very

different from ours. Specifically, 1) [18] corresponds to the

feature learning MTL family, while our work belongs to the

parameter regularisation family. No effort has been done

so far to harness these relations from the perspective of pa-

rameter constraints 2) unlike [18], we account for different

levels of relatedness among tasks 3) our method explicitly

considers the case of TL while [18] does not. It is interest-

ing to note that the tensorial structure stems naturally from

the data rather than because of a particularity on the system

design. Furthermore, since AU occur at different parts of

the face and relate to different facial actions, it is counter-



intuitive to think that optimal parameters across AU should

“look alike”. The core aspect of our approach is realising

that parameter across AU should not be close, but rather

they should have a similar latent structure of task relations.

This is a profound change in perspective and it corresponds

to an intuitive and natural yet powerful aspect of the nature

of the data.

Person-specific models for automatic AU analysis: The

creation of person-specific models using TL techniques has

only very recently been addressed. Of the works doing so,

some have aimed at transductive TL (i.e., TL without mak-

ing use of labels for the target subject). For example, [4]

proposed a re-weighting of the source (training) distribu-

tion to match that of the domain (test) distribution. The

classifier is then modified to be optimal with respect to the

weighted training set. A similar approach, also relying on

the weighting of the training examples to minimise the dis-

tribution mismatch, was proposed in [3]. A different idea

was followed in [20] and in [26], where the authors pro-

posed to learn discriminative mappings from the space of

training distributions to the parameter space. To this end,

they trained a set of person-specific models, used as the

training examples to learn the mapping. A kernel repre-

sentation to measure similarity between distributions was

employed.

On the inductive TL side, some works have considered

the creation of person-specific models in the presence of an-

notations for the target domain. For example, [3] also pro-

posed a method for the creation of person-specific models

based on a boosting TL technique. A set of basis classi-

fiers were computed in the source domains, and then lin-

early combined in the target domain. By employing both a

Transductive and an Inductive TL technique they were able

to objectively measure the gain of using labelled data of the

target task.

Instead, [19] explored different formulations of MTL for

the problem of person-specific AU detection, comparing a

parameter space constrained method [8] and two MTL fea-

ture learning approaches. Finally, [18] presented a multi-

linear extension to the MTL convex feature learning ap-

proach of [1]. The learning of person-specific AU models is

one of the applications chosen for the experimental valida-

tion of their MTL framework due precisely to the tensorial

nature of the AU-subject relations.

Our approach has an inherently different aim from Trans-

ductive TL approaches, as we assume some amount of eas-

ily obtained labelled data is available. We distinguish our-

selves from previous Inductive TL approaches in that the

different AU play an asymmetric role, and in that it is our

aim to exploit the tensorial relations between tasks.

3. Learning the latent task relations

In this section we first review the work presented in [11].

This methodology is used for finding the latent relations

among tasks when organised in matrix form. That is to say,

we first consider the problem of creating subject-specific

models for one specific AU (independently of other AUs),

and review the methodology used to estimate the underly-

ing structure of tasks relations. In Sec. 3.2 we extend this

technique by incorporating information from the tensorial

structure so that we consider two modes of relations be-

tween tasks: subjects and AU. We will do so by relating

and constraining the latent structure of relations learnt for

each of the different AU-specific MTL problems. The re-

sulting extended problem is then minimised jointly through

alternated gradient descent.

3.1. Finding Latent Relations Among Subjects

Grouping and Overlap in Multi-Task Learning (GOMTL)

[11] aims to improve classification performance for a num-

ber of related tasks by learning them jointly, simultane-

ously discovering the degree of mutual relationship between

tasks and exploiting these relations for learning the individ-

ual task parameters. Let T be the number of tasks1 and

Zt = {(xi
t, y

i
t)}i=1,...,Nt

be the training set for task t. The

goal is to learn the parameter matrix W of size d×T , where

d is the feature dimensionality and T the number of tasks.

By W:,t we indicate the column t of matrix W, which

stores the parameters of task t.

The idea of GOMTL is to constrain the parameter space

by imposing that all the task parameters must lie on a com-

mon linear subspace. It is thus assumed that there are K ba-

sis tasks that are the generators of this subspace, and every

observed task is then represented as a linear combination of

the basis tasks. This assumption makes it possible to write

matrix W as:

W = LS (1)

where L contains the parameters of the basis tasks, result-

ing in a d ×K dimensionality, and S is the K × T matrix

containing the linear coefficients for the tasks. In order to

favour grouping of tasks, a sparsity constraint is imposed

on the linear coefficients of each task. The resulting loss

function then takes the following general form:

E(L,S) + λ‖S‖1 + µ‖L‖2F (2)

where the first term is defined as:

E(L,S) =

T
∑

t=1

Nt
∑

i=1

L
(

yit,L
′
S
′
:,tx

i
t

)

(3)

1Bold lower-case letters indicate (column) vectors. Matrices are indi-

cated with upper-case bold typeset letters. All non-bold letters are scalars.



That is to say, E is the accumulated empirical error term

of all tasks, the ℓ1 regulariser imposes independent sparsity

constraints over the coefficients of each task, and the typical

ℓ2 regularisation is imposed over each of the K latent tasks.

The interaction between the different tasks however comes

from the fact that all W:,t depend on the shared variable

L. Through this formulation, the level of relation between

tasks is captured in the commonalities of the column-wise

sparse parameters of matrix S.

The above loss function is not convex overall. However,

it is convex in L for a fixed S and vice-versa. In conse-

quence, [11] adopted an alternating optimisation strategy,

first minimising for S with a fixed L, and then minimising

for S while fixing L. More formally, we first solve T inde-

pendent minimisation problems:

S:,t = argmin
s

Nt
∑

i=1

L(yit, s
′
L
′
x
i
t) + λ‖s‖1, (4)

followed by the minimisation of:

argmin
L

E(L,S) + µ‖L‖2F . (5)

This alternating minimisation procedure is initialised by

training T independent models, storing them in a matrix

W
(0), and then computing an SVD decomposition of W(0).

L is defined as the set of eigenvectors corresponding to the

K largest eigenvalues.

It is interesting to note that no form for the error term has

been defined yet. This highlights the flexibility and gener-

ality of this formulation. Since we are addressing a binary

classification problem, in our experiments we use a Logistic

Regression loss function.

While this algorithm has been shown to outperform sin-

gle task as well as a number of MTL approaches, it fails

however to harness and exploit tensorial relations. It is thus

necessary for its practical application to AU problems to

have a manually annotated set of examples for each AU, re-

sulting in an unrealistic scenario.

3.2. Regularising the Latent Relations

Let us now extend the notation to allow for two modes of

variation within the tasks. Specifically, a task will now

be indexed by subject, t1 ∈ {1, . . . , Ts}, and AU, t2 ∈
{1, . . . , TAU}. Let Zt1,t2 denote the per-task training set.

W is now a tensor of dimensions d × Ts × TAU . The pa-

rameters of task {t1, t2} is now noted W:,t1,t2. The same

notation holds for S and L.

We first consider, for each AU, the learning problem as

defined in Sec. 3.1. That is to say, we consider a GOMTL

problem for each AU ∈ {1, . . . , TAU}. This consists of

learning a matrix of weights W:,:,t2 so that it is decom-

posed into L:,:,t2 and S:,:,t2 . We however extend the loss

resulting from combining all these problems. Our extended

loss function is defined as:

TAU
∑

t2=1

E(L:,:,t2 ,S:,:,t2 ,Z:,t2)+µ‖L‖2F +λ‖S‖1+R(S) (6)

The relations between the TAU GOMTL models is har-

nessed through R(S). Let us first explain the intuition be-

hind the proposed regulariser. Firstly, we note that all the

tasks for a given AU can reasonably be expected to be re-

lated, in the sense that their optimal parameters should be

close. Instead, this property does not hold for tasks across

AU, mainly because different AU are localised in different

parts of the face and thus the optimal parameters will not

be close2. Directly regularising the task parameters across

AUs would thus result in a case of negative transfer. How-

ever, we note that instead the latent relations can be con-

strained. That is to say, if subject i is related to subject j for

a specific AU, then both subjects are likely to be related for

any other AU. We capture this intuitive idea by defining a

regulariser over the latent structures across different AUs.

It is possible now to apply the same principles that have

been used previously for parameter regularisation within

MTL, such as the mean-regularised MTL [9], the pairwise

regularisation of [8], or even to apply again the same idea

of GOMTL on S. However, we invoke now our scenario

of interest: we consider that some AUs are much easier to

elicit, annotate, and even detect automatically than others.

Of those, AU12 (a smile) is probably the most paradig-

matic case, as smiles are easily identifiable (see for ex-

ample the results on the FERA challenge [23]). We then

refer to AU12 as the reference AU. Let us thus re-define

the notation to highlight the asymmetry of the role between

tasks. Let t∗ ∈ {1, 2, . . . , TAU} denote the reference AU,

for which we assume that the associated training sets Zt1,t∗ ,

t1 = 1, . . . , Ts contain sufficient training examples, includ-

ing for that of the target subject. What we aim is to cap-

ture the latent structure of relations between subjects using

AU12, and then transfer the latent structure to any other AU.

Then we define the regulariser over the latent structures as:

R(S) = τ

TAU
∑

t=1,t 6=t∗

‖S:,:,t − S:,:,t∗‖
2
F (7)

The minimisation relies again on alternating minimisa-

tions. Specifically, it is possible to loop over the tasks, first

minimising:

S:,t1,t2 = argmin
s

E(L:,t1,t2 , s,Zt1,t2) + λ‖s‖1

+τ‖s − S:,t1,t∗‖
2
2 (8)

2It is actually common to use a different set of features, e.g., upper face

features for upper face AU



where the last term vanishes if t2 = t∗. Then we proceed

by minimising L:,:,t2 looping over t2 in an identical fashion

to that in Eq. (5).

Let us now consider the Transfer Learning scenario ex-

plicitly. We assume that there exists a reference task t∗, for

which all subjects have annotated data. Let us simplify this

scenario by considering only one target task at a time. That

is to say, we consider only one AU at a time besides the

reference AU, and we aim to learn a model for that AU for

a specific subject n making use of very few or even no an-

notated data of the target task. In the latter case (the most

interesting in terms of applicability), the constraint imposed

by Eq. (7) means that the latent structure will be transferred

directly, i.e., S:,tn,t2 = S:,tn,t∗ , while the latent tasks L:,:,t2

and L:,:,t∗ remain the same.

In fact, we can understand the regularisation in Eq. (7) as

an extreme case of an empirical prior over the latent struc-

ture S:,tn,t2 . It is perfectly feasible to consider more than

one reference task, and in this case the interpretation as an

empirical prior would be more natural. However, this would

push us away from our scenario of interest. In the presence

of annotated data for the target task, the transfer is attained

by minimising the joint loss function defined in Eq. (6) by

alternating between Eqs. (5) and (8).

The RLTS learning process is described in algorithm 1.

Input:

Zt1,t2 : Training set for all subjects t1 and AUs t2
λ, µ, τ : Regularisation parameters

t∗ : Reference AU index

K : Number of latent tasks

Output: Linear predictors W for all TAU and Ts

tasks.

1: Learn all tasks independently to obtain in W
(0)
:,:,t2 .

2: Initialise L:,:,t2 for all t2 as indicated in section 3.1.

while not converged do
3: Solve Eq. 8 for all subjects and AU to update S

4: For all AU, fix S:,:,t2 and update L:,:,t2 (Eq. 5)

end

5: Obtain W:,:,t2 = L:,:,t2S:,:,t2 for all t2.

Algorithm 1: RLTS - Reguralised Latent Task Structure.

4. Experiments & Results

Data: We have used the DISFA dataset [14] and the UNBC-

McMaster Shoulder Pain Expression dataset [12] to perform

our experiments. The facial expressions displayed in both

datasets are spontaneous. The head is usually kept in a near-

frontal pose with respect to the camera. DISFA is annotated

for 12 AU out of the possible 32 AU, while the McMaster

dataset is annotated for 10 AU. Both databases also provide

very accurate landmark locations on a frame-by-frame basis

AUs # Subjects # Positives # Episodes

1 17 8524 144

2 14 7041 89

4 24 24502 226

5 8 2201 68

6 25 19469 167

9 17 6774 62

12 27 30794 247

15 17 7684 84

17 22 12764 260

20 13 3904 72

25 27 46052 289

26 27 24976 313

Table 1. Action Units statistics on the DISFA dataset. The sub-

jects column contains the number of subjects which had enough

positives (around 250 per task).

for a total of 66 facial points, which were annotated by the

authors in a semi-automatic manner.

Table 1 shows some statistics regarding the AU occur-

rence on the DISFA dataset. The table clearly shows how

both the number of annotated frames and the number of

episodes varies greatly between AUs. Frames within an

episode tend to be more correlated. Thus, the number of

episodes is the better indicator of the variability of the data,

and can also be used as an indicator of how easy it is for a

certain AU to be elicited.

Features: We employ a set of geometric features derived

from the facial landmark locations. We use the set of 49

inner-facial landmarks and discard the contour landmarks.

We then select the set of facial landmarks for which their

location does not change with facial expression activation

and refer to them as the stable points. This set consists in

our case of the four eye corners and the nose region.

Each face shape is aligned first to the mean shape of

the dataset3 through a non-reflective affine transformation

aligning the stable points of the current frame and the refer-

ence shape. The first set of 98 features are simply the differ-

ence between the registered shape and the reference shape.

The next 98 features are computed as the displacement of

the registered shape locations from the previous frame to

the current frame. We generate another 49 features by cal-

culating the median of the stable points and computing the

Euclidean distance from it to each of the landmarks. The re-

maining features are extracted from three face regions, the

left eyebrow and eye, the right eyebrow and eye, and the

mouth region. For each of these regions, features are ob-

tained by taking the Euclidean distance and angle between

two pairs of points belonging to the same components.

Task definition: So far there has been no explicit definition

3Any other frontal-looking face shape can in any case be used instead

as a reference shape.



AUs SVM MLMTL GOMTL RLTS

1 0.346 0.038 0.547 0.541

2 0.516 0.500 0.544 0.717

4 0.461 0.460 0.552 0.588

5 0.192 0.137 0.176 0.265

6 0.708 0.720 0.576 0.619

9 0.289 0.287 0.377 0.375

15 0.293 0.166 0.394 0.376

17 0.381 0.319 0.379 0.345

20 0.336 0.294 0.199 0.254

25 0.699 0.685 0.772 0.740

26 0.699 0.549 0.704 0.717

Mean 0.447 0.378 0.474 0.503

Table 2. Evaluation results measured in accumulated F1 score

when using no training examples of the target task (DISFA).

AUs SVM MLMTL GOMTL RLTS

1 0.354 0.779 0.719 0.809

2 0.620 0.839 0.713 0.872

4 0.484 0.872 0.765 0.874

5 0.290 0.464 0.274 0.476

6 0.736 0.806 0.797 0.831

9 0.311 0.728 0.602 0.770

15 0.294 0.661 0.575 0.705

17 0.437 0.701 0.518 0.694

20 0.457 0.559 0.338 0.628

25 0.725 0.832 0.824 0.854

26 0.724 0.843 0.7084 0.699

Mean 0.494 0.735 0.621 0.746

Table 3. Evaluation results measured in accumulated F1 score with

60 training instances of the target task (DISFA).

of the empirical error term. The presented framework can

be used with any definition of empirical error that is convex

and can be minimised through an efficient gradient descent.

In our case, we consider a binary problem per AU, and we

have used a logistic regression function. The methodol-

ogy could be readily extended to AU intensity estimation

by considering, e.g. a linear regression loss function.

Each task is defined to contain at least 150 positive ex-

amples, so that there are enough instances to perform cross-

validation. As a consequence, we used only 6 out of the

10 AU annotated in the McMaster dataset, while we used

every AU annotated in the DISFA dataset, but we restrict

ourselves to a subset of the subjects. For example, there

are 27 subjects on the DISFA dataset with enough AU12

annotations, which can result in a slow minimisation pro-

cedure when performing cross-validation. When compar-

ing against other MTL methodologies, the tasks for each

of the methods are defined over exactly the same training

data. That is to say, the partitions are pre-computed and then

passed to the learning and testing routines of each method.

Optimisation procedure: GOMTL is initialised as ex-

plained in Sec. 3.1, i.e., we run linear SVM with fixed

margin parameter C = 1 to create independent tasks from

which to initialise L. For our method, we proceed by initial-

ising each matrix L:,:,t2 in this same manner, and then alter-

nate the minimisation of S:,t2 , for all tasks, and L:,:,t2 , for

all tasks. In both cases, the minimisation is performed by

gradient descent using a line search algorithm. Parameter

optimisation was performed using a 5-fold cross-validation

strategy. For our method, we optimised the three regulariser

parameters (λ in Eq. 6, µ and τ in Eq. 8) and the number

of basis tasks K. For MLMTL we optimised all parameters

possible, for linear SVM we optimised the margin, and for

GOMTL we optimised λ, µ and K as defined in Sec. 3.1.

The parameter search was conducted using a simple grid

search within a pre-define range of values. If the optimal

value was on an extreme of the range, the search was ex-

tended.

Baseline methods: We benchmark the performance of our

method against linear SVM (for which we use the LIB-

SVM implementation [2]), GOMTL [11] and MLMTL

[18]. SVM is an exemplar of a learning method where

the person-specific models are trained independently, and it

serves the purpose of highlighting the performance increase

we obtain through the use of MTL methods. GOMTL is the

most related approach to ours as it captures latent relations

among subjects. However, it does not incorporate tenso-

rial task relations. It thus serve the purpose of showing the

performance gain we obtain by considering also the task re-

lations across AU. As with our method, GOMTL allows for

the use of any error function. We use logistic regression to

further improve the relevance of the comparison. Finally,

MLMTL is the only MTL besides ours that considers both

relations across subjects and across AU. We use the non-

convex formulation, reported to be the best in [18].

Evaluation protocol: Throughout our experiments we em-

ploy a Leave-One-Task-Out (LOTO) evaluation approach.

For the sake of simplicity, we only consider one AU at a

time besides the reference task. Performance is reported in

terms of the combined F1 error across the whole data set,

i.e., the predictions obtained for the different subjects are

concatenated into a single vector from which the F1 error is

computed (where of course only the predictions for the tar-

get subject are obtained for each LOTO step). In this way

we correct for composition unbalance on the test set.

Results: We perform an experiment in which we measure

performance while increasing the amount of annotated data

available for the target task. The results for our method and

the baseline methods are shown in Fig. 3 for the DISFA

dataset, and in Fig. 4 for the McMaster dataset. We can

clearly see how the proposed RLTS method stays atop all

of the baseline methods for all amounts of data and for both



Figure 3. Performance on the DISFA dataset. The y-axis shows

the accumulated F1-score, while the x-axis shows the number of

examples of the target task used.

datasets.

As a specific case of particular interest, Table 2 sum-

marises the performance on the DISFA dataset of the dif-

ferent algorithms when no training data for the target task

is available. While this is a transductive scenario, we can

still use the regularisation obtained from the structure for

AU12 to contribute to the prediction of the target task. In

this case we use the mean task across subjects (other than

the target subject) for the evaluation of each of the base-

line methods. This is the best guess possible for the case

of independent tasks and for GOMTL. While MLMTL also

uses tensor information, the problem aims to learn features

jointly, and no constraint is imposed on the parameter space.

It is thus again only possible in this case to use the mean

task. Instead, we are able to do better than using the mean

task. This is because our method uses the latent structure

learnt from the reference AU, and then applies this latent

structure to the target task. Since the latent structure learnt

changes for every subject, the resulting parameters for the

target task are different for every subject despite having no

training data for them. This constitutes one of the major re-

sults of our work, as we are learning an empirical prior over

the transfer learning process. That is to say, we effectively

learn to transfer.

The per-AU performance for the DISFA dataset when

using 60 training instances of the target task is shown in

Table 3. Remarkably, we obtain a 20% relative average per-

formance increase with respect to GOMTL, highlighting the

importance of taking the tensorial structure into considera-

tion. In fact, our method outperforms any other baseline

method for all AU except for AU26 and AU17, where per-

formance is marginally smaller than for MLTML.

Figure 4. Performance on the McMaster dataset. The y-axis shows

the accumulated F1-score, while the x-axis shows the number of

examples of the target task used.

5. Conclusions & Future Work

In this paper we have introduced a novel MTL and TL ap-

proach, called Regularised Latent Task Structure. The ex-

periments show the advantage of the proposed approach

over the most relevant state-of-the-art MTL approaches for

learning person-specific facial AU detection models. Re-

markably, we are able to produce subject-specific AU de-

tection models even without any training data for the target

task by exploiting annotated data of the same subject but for

a different AU. This allows learning person-specific models

for facial expressions only using data easy to elicit, annotate

and automatically detect.

While the methodology presented in this work is aimed

at the creation of person-specific AU detection models, the

framework is naturally described without making any as-

sumption on the loss function definition, except that the er-

ror term is convex and smooth. We thus could naturally

apply this framework to AU intensity estimation. Further-

more, we assume a tensorial structure on the data. While

we consider here different AUs and subjects as factors, this

type of relations occurs in many types of data. For example,

head pose-specific models are similarly a very natural tar-

get. Totally different problems, such as recommender sys-

tems, can also be considered: Are two persons sharing their

films interests more likely to share their music preferences?
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[11] A. Kumar and H. Daumé III. Learning task grouping and

overlap in multi-task learning. In Int’l Conf. on Machine

Learning, 2012. 3, 4, 5, 7

[12] P. Lucey, J. F. Cohn, K. M. Prkachin, P. E. Solomon, and

I. Matthews. Painful data: The UNBC-McMaster shoulder

pain expression archive database. In Automatic Face and

Gesture Recognition, 2011. 6

[13] A. Maurer, M. Pontil, and B. Romera-Paredes. Sparse coding

for multitask and transfer learning. In Int’l Conf. on Machine

Learning, pages 343–351, 2013. 3

[14] S. M. Mavadati, M. H. Mahoor, K. Bartlett, P. Trinh, and J. F.

Cohn. Disfa: A spontaneous facial action intensity database.

Trans. on Affective Computing, 4(2):151–160, 2013. 6

[15] D. McDuff, R. El Kaliouby, T. Senechal, M. Amr, J. F. Cohn,

and R. Picard. Affectiva-mit facial expression dataset (AM-

FED): Naturalistic and spontaneous facial expressions col-

lected in-the-wild. In Comp. Vision and Pattern Recog. -

Workshop, 2013. 2

[16] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE

Trans. on Knowledge and Data Engineering, 22(10):1345–

1359, 2010. 2

[17] R. W. Picard. Affective computing. MIT press, 2000. 1

[18] B. Romera-Paredes, H. Aung, N. Bianchi-Berthouze, and

M. Pontil. Multilinear multitask learning. In Int’l Conf. on

Machine Learning, pages 1444–1452, 2013. 2, 3, 4, 7

[19] B. Romera-Paredes, M. S. H. Aung, M. Pontil, N. Bianchi-

Berthouze, A. C. de C. Williams, and P. Watson. Transfer

learning to account for idiosyncrasy in face and body expres-

sions. In Automatic Face and Gesture Recognition, 2013. 2,

4

[20] E. Sangineto, G. Zen, E. Ricci, and N. Sebe. We are not all

equal: Personalizing models for facial expression analysis

with transductive parameter transfer. In Int’l Conf. Multime-

dia, pages 357–366, 2014. 4

[21] T. Senechal, V. Rapp, H. Salam, R. Seguier, K. Bailly, and

L. Prevost. Facial action recognition combining heteroge-

neous features via multi-kernel learning. Trans. on Systems,

Man and Cybernetics, Part B, 42(4):993–1005, 2012. 2

[22] M. Valstar. Automatic behaviour understanding in medicine.

Proceedings ACM Int’l Conf. Multimodal Interaction, 2014.

1

[23] M. F. Valstar, M. Mehu, B. Jiang, M. Pantic, and K. R.

Scherer. Meta-analysis of the first facial expression recog-

nition challenge. Trans. on Systems, Man and Cybernetics,

Part B, 42(4):966–979, 2012. 5

[24] A. Vinciarelli, M. Pantic, and H. Bourlard. Social signal pro-

cessing: Survey of an emerging domain. Image and Vision

Computing, 27(12):1743–1759, 2009. 1

[25] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust

face recognition via sparse representation. Trans. on Pattern

Analysis and Machine Intelligence, 31(2):210–227, 2009. 3

[26] G. Zen, E. Sangineto, E. Ricci, and N. Sebe. Unsupervised

domain adaptation for personalized facial emotion recogni-

tion. In Int’l Conf. on Multimodal Interaction, pages 128–

135, 2014. 4

[27] X. Zhang and M. Mahoor. Simultaneous detection of mul-

tiple facial action units via hierarchical task structure learn-

ing. In Int’l Conf. on Pattern Recognition, pages 1863–1868,

2014. 2

[28] L. Zhong, Q. Liu, P. Yang, B. Liu, J. Huang, and D. Metaxas.

Learning active facial patches for expression analysis. In

Computer Vision and Pattern Recognition, 2012. 2

[29] J. Zhou, J. Chen, and J. Ye. Clustered multi-task learning

via alternating structure optimization. In Advances in Neural

Information Processing Systems, pages 702–710, 2011. 3


