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ABSTRACT

Understanding the relationships between objectives in many-
objective optimisation problems is desirable in order to de-
velop more effective algorithms. We propose a technique
for the analysis and visualisation of complex relationships
between many (three or more) objectives. This technique
looks at conflicting, harmonious and independent objectives
relationships from different perspectives. To do that, it uses
correlation, trade-off regions maps and scatter-plots in a four
step approach. We apply the proposed technique to a set of
instances of the well-known multiobjective multidimensional
knapsack problem. The experimental results show that with
the proposed technique we can identify local and complex
relationships between objectives, trade-offs not derived from
pairwise relationships, gaps in the fitness landscape, and re-
gions of interest. Such information can be used to tailor the
development of algorithms.

Categories and Subject Descriptors

G.1.6 [Optimisation]; 1.2.8 [Problem Solving, Control
Methods, and Search)|

Keywords

multiobjective fitness landscape analysis; trade-off region
maps; fitness landscape visualisation

1. INTRODUCTION

It is important to understand the relationships between
objectives in multiobjective optimisation problems (MOPs)
because this can help to tailor the search according to the
multiobjective fitness landscape. This is particularly when
tackling large real-world MOPs with many objectives (more
than two). In the multiobjective optimisation literature, the
focus is often on MOPs that exhibit strong conflict relation-
ships between objectives as this is part of the motivation for
applying multiobjective techniques. However, the conflict
relationship between objectives could be local rather than
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global. A global conflict relationship would hold throughout
most, if not all of, the search space. On the other hand,
a local conflict relationship would hold in a restricted re-
gion of the search space, e.g. the objectives could be in
conflict early in the search but not conflicting later. This
was discussed by Knowles and Corne [1] in the context of
the multiobjective quadratic assignment problem. Castro-
Gutierrez et al. [2] studied the objectives’ relationships in
multiobjective vehicle routing problems.

As the number of objectives increases, composite relation-
ships between objectives might emerge, i.e. relationships
between objectives (conflicting or otherwise) that are not
global but localised and more complex. Several techniques
have been previously applied for the analysis and visualisa-
tion of relationships between objectives in MOPs. These in-
clude parallel coordinates, scatter-plots (which both involve
graphical representations), Kendall correlation [3] (a quant-
itative metric), and statistical measures [4], among others.
Purshouse and Fleming [5] discussed these techniques in
their research into the relationships between objectives in
MOPs. Other works that have used some of these techniques
include Castro-Gutierrez et al. [2] on multiobjective vehicle
routing problems, and Ishibuchi et al. [6] on many-objective
problems with correlated objectives. One limitation of these
techniques is that they are most suited to identify only pair-
wise relationships between objectives.

In this work, we propose a technique to analyse and visu-
alise global and local relationships between many object-
ives in order to achieve a clearer understanding of the fit-
ness landscape in a MOP. The technique requires a set of
non-dominated solutions to be supplied (which can be ob-
tained in any way) and uses Karnaugh maps [7] to visual-
ise composite relationships between many objectives. The
technique also uses correlation and scatter-plots to comple-
ment the analysis. The technique involves four steps: ana-
lyse global pairwise relationships between objectives in the
given non-dominated set, estimate the range of values for
each objective, identify objective trade-offs using Karnaugh
region maps, and identify local relationships between object-
ives using scatter-plots. This technique seeks to analyse the
objectives’ relationships from multiple perspectives in order
to better understand the fitness landscape in many-objective
combinatorial optimisation problems, which are well known
for having irregular and difficult to assess fitness landscapes.

Section 2 surveys some related work. Section 3 provides
the motivation for this work. Section 4 describes the pro-
posed technique while experimental results applying the pro-
posed technique to several instances of the multiobjective



multidimensional 0-1 knapsack problem [8, 9] are presented
in Section 5. Our main observation is that different instances
of the same problem may exhibit very different relationships
between objectives. Finally, Section 6 concludes the paper.

2. RELATED WORK

Better understanding of fitness landscapes has been bene-
ficial in multiobjective combinatorial optimisation (MOCO)
problems. For example, Garrett and Dasgupta [10] [11] ad-
apted single-objective landscape analysis techniques (distri-
bution of optima, fitness distance correlation, ruggedness,
random walk analysis and analysis of the geometry of the
solution space) for tailoring multiobjective evolutionary al-
gorithms. They applied such techniques to quadratic as-
signment and generalised assignment problems with two ob-
jectives. They concluded that the performance of hybrid
algorithms benefits from using knowledge of the fitness land-
scape. Castro-Gutierrez et al. [2] used the objectives’ pair-
wise dependency correlation analysis proposed by Purshouse
and Fleming [5] to assess the conflicting nature of objectives
in multiobjective vehicle routing problems.

Brownlee and Wright [12] proposed a visualisation tech-
nique to evaluate the quality of a non-dominated set based
on a ranking of the objectives. However, this technique may
not be suitable for large solution sets as it is based on the in-
dividual analysis of solutions. Other visualisation techniques
include objective wheels, bar graphs and colour stacks as ex-
plored by Anderson and Dror [13].

Verel et al. [14] adapted single-objective landscape ana-
lysis techniques to set-based multiobjective problems with
objective correlation. Later, Verel et al. [15] conducted a
study on the landscape of local optima in such problems.
Verel et al. [16] proposed to carry out a priori analysis of
a problem by evaluating the problem size, its epistasis, the
number of objectives and the correlation values between ob-
jectives, to suggest the best way to tackle it. They concluded
that, depending on the problem features, different types of
algorithms (scalar or Pareto approach) and sizes of the solu-
tion archive should be employed.

Walker et al. [17] reviewed different methods (scatter plots,
parallel coordinates and heat maps) to visualise solution sets
for many-objective problems. They also proposed two tech-
niques: a data mining visualisation tool to plot a convex
graph, and a new similarity measure of solutions to plot
them in a two-dimensional space.

Giagkiozis and Fleming [18] proposed a technique to es-
timate the Pareto front of a continuous optimisation prob-
lem, and then use the estimated front to obtain values for
the decision variables of interesting solutions. They pro-
posed using a multiobjective algorithm to obtain an initial
solution set, which is then used to calculate a projection
matrix of the optimal Pareto set. They tested their tech-
nique on convex benchmark problems.

Tusar and Filipic [19] presented a comprehensive survey
and assessment on several visualisation techniques for many-
objectives approximation sets. They also presented a visual-
isation method that uses orthogonal projections of a section
and applied it to four-dimensional approximation sets.

It is clear that understanding the fitness landscape of mul-
tiobjective optimisation can help to develop better solution
methods. It is also clear that the analysis and visualisa-
tion of objectives’ relationships, particularly in combinator-
ial landscapes with many objectives, is a topic of interest for

1 w =
&,
08 [~ vb}.u -
*d,

~ 0.6 [ %80 o —d
N 13 %
041 .'Z‘:‘:" |

J)"‘"

0.2 - e
| | ')"'q\ |
02 04 06 0.8
Z1

Figure 1: Example of complex relationship between two ob-
jectives Z1 and Z2 in a 3-objective optimisation problem.

researchers. The technique proposed in this paper seeks to
make a contribution in this area.

3. OBJECTIVES RELATIONSHIPS IN
MULTIOBJECTIVE OPTIMISATION

The focus of this research is to investigate the relation-
ship between objectives in MOPs by analysing the non-
dominated approximation set and its coverage of the solu-
tion space. We use the concepts of conflict, harmony and
independence between objectives as proposed by Purshouse
and Fleming [5].

Results from some existing techniques to assess the con-
flicting nature of objectives can be deceiving. The literature
includes studies of pairwise relationships between objectives
[2, 6, 20]. However, analysis techniques such as Kendall
correlation [3] only manage to identify global relationships
between objectives. Figure 1 shows a Pareto-front between
two maximisation objectives, Z; and Zs, in a scenario with
three objectives (we omit the scatter-plots for Z3). Clearly,
when Z; < 0.5, the objectives are conflicting while when
Z1 > 0.5 the objectives are harmonious. However, if the
number of solutions with Z; lower than 0.5 is roughly the
same as the number of solutions with Z; higher than 0.5,
simply applying the Kendall correlation technique would res-
ult in a correlation value close to 0. The conclusion could be
drawn that the objectives are independent, when in reality
there may be local relationships that could be exploited.

Some existing techniques might not reveal trade-offs which
result from composite relationships between two and more
objectives. Figure 2a lists a set of non-dominated fitness vec-
tors for three maximisation objectives and Figure 2b shows
their scatter-plot matrix and correlation values. We can ob-
serve that high values (51-100) appear simultaneously only
in up to two of the three objectives. Two points in Figure
2a have only one good objective value. Four points are good
for only Z; and Z». Three points are good for only Z; and
Zs, and the remaining points are good for only Z» and Zs.
No solution present has values higher than 50 for all three
objectives simultaneously. The scatter plot and correlation
values do not help us to appreciate the three-way trade-off.
Likewise, we can see that the correlation values do not in-
dicate any strong pairwise correlation.

Hence, to better analyse and visualise the multiobjective
nature of optimisation problems, we need techniques that
help us to identify global, local and composite relationships
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(a) Non-dominated points.

7 -0.30 -0.33
SERPEN Zs -0.33
o o ° L4 ° . ° . Z3

(b) Scatter-plot matrix and correlation coefficients.

Figure 2: Three-way conflicting objectives

between objectives as well as interesting trade-offs in the
fitness landscape.

4. A FOUR STEPS ANALYSIS AND
VISUALISATION TECHNIQUE

We propose a four-step technique to analyse and visual-
ise objectives relationships. It requires some knowledge of
the problem domain (the desirable range of objective val-
ues) and an approximation set of non-dominated solutions,
which could be obtained using any multiobjective algorithm
(MOA), such as those available in frameworks like JMetal
[21] and ParadiseEO [22]. The quality of the approxima-
tion set given may affect the conclusions from the analysis
because inaccurate ranges and scatter plots could lead to in-
accurate observations, thus combining the results from the
application of a number of well-accepted MOAs may be wise.

The scope of our technique is to aid the study of a sub-
set of problem instances, to aid in tailoring an algorithm for
solving other problem instances. Our aim in this work is to
investigate the suitability of our technique, hence we test it
on scenarios for which good algorithms are known. Although
the approach requires some instances to be solved before-
hand, the increased understanding of the problem should
help in identifying the strengths and weaknesses of novel al-
gorithms. Solution of these many-objectives problems are
computationally expensive thus any help in tailoring fast
techniques that can provide good-enough results has value,
and this technique may allow a user to identify similarities
between instances which could be exploited.

Each step in the proposed technique aggregates some in-
formation about the relationship between objectives, the
coverage of the feasible solution space and the trade-offs in
the fitness landscape. The four steps are described here and

are illustrated by applying them to benchmark instances of
the multiobjective multidimensional knapsack problem.

Step 1 — Global Pairwise Relationship Analysis:

First, the Kendall correlation values [3] are calculated, as in
[5], to identify global pairwise relationships. Strongly con-
flicting correlations (values < —0.5) immediately indicate
that a trade-off surface exists, whilst strongly harmonious
correlations (values > 0.5) indicate that objectives could be
aggregated or clustered. Correlation values showing that ob-
jectives are independent indicate that the data is not glob-
ally dependent, but do not imply the absence of local trade-
offs in the fitness landscape. If independence is detected,
the problem could be decomposed by separating the decision
variables according to the objectives, to solve each object-
ive (or groups of objectives) separately as such an approach
provides improved performance [23].

Step 2 — Objective Range Analysis:

Here, the range (difference between best and worst values)
is calculated for each objective in the given approximation
set. Then, using problem domain knowledge the objectives
which are interesting for further exploration are identified.
A meaningful objective is an objective with a range which is
large enough so that solutions can be classified into different
quality categories regarding that objective value (e.g. good
to bad, high to low, etc). Analogously, a non-meaningful
objective is an objective with a range so small that the vari-
ability in the solution quality regarding that objective is
considered negligible, thus not worth exploring further.

One way to deal with non-meaningful objectives is to ig-
nore them during the optimisation. It is possible that by op-
timising the other objectives, the non-meaningful ones will
present acceptable values within their small range anyway.
Having a small range on the given approximation set does
not mean that the range will be small across the entire solu-
tion space. The non-meaningful objective could be removed,
the MOA re-executed and the ranged recalculated for the ex-
cluded objective. If the new solution set still exhibits only
a small range for the excluded objective, it can be safely ig-
nored. Another way to deal with non-meaningful objectives
is to combine or cluster them [20].

Step 3 — Trade-off Regions Analysis:

We apply a quantitative method, namely Karnaugh maps
[7], to classify the solution space into regions to help with
the identification of trade-offs and the complex relationships
between objectives. A Karnaugh map is a method for simpli-
fying boolean algebra expressions using a truth table. The
map has 2% cells where ¢ is the number of variables. The
cells are labelled with binary numbers following the Grey
code, meaning that any two adjacent cells differ in one bit.
Hence, in a three variable scenario, the cells adjacent to cell
0 (0002) are cells 1(0012), 2(0102) and 4(1002). Karnaugh
maps make it easy to visualise patterns that are used to
group boolean variables.

In this step, for each objective Z; where (i = 1,2,...m),
we define a threshold ¢; such that values above t; (maximisa-
tion problem) are considered good or acceptable, and values
below t; are considered inadequate. These ¢; can be set us-
ing some knowledge of the problem domain or empirically
— for example, using the average value for each objective as
its threshold. Next, we classify each objective value in each



solution as good (1) or bad (J). Finally, we draw a region
map similarly to a Karnaugh map, but showing the count
of solutions in each region rather than 0-1 output variables,
and using solutions classifications (labelled 1 and |) instead
of the input variable values. The map is built with 2" re-
gions such that each region represents a single combination
of good and/or bad objectives. We number the regions 7y
using a binary encoding such that the least significant digit
represents Z; and the most significant digit is Z,,, T= 0 and
J= 1. For instance, the region Z3i, Z; and Z%, would be
region 75, since binary 101z is 5.

g 1
Zy Z;
Z:,T To T1 r3 T2
Z§ T4 T5 7 T6
T 1 T
Z Zy Zy
(a) Three Objectives
T .
Zy Zy
ZT To 1 3 T2 Z;
Yl ra | 75 7| T 7t
P r12 | T13 T14 3
4| rs | rg | ena| ro | 2]
Z zy |Z)
(b) Four Objectives
+
Zs
z3 zy
Z1 1T 1 T3 T2 | Tie
Yl ra | s | mr | T | T2
P 12 | T13 T14 | T28
4 T8 T9 Ti1 | 710 | T24

zi |z Zy
(c) Five Objectives

Figure 3: Region map schematics.

Figure 3 presents the region map schematics for 3, 4 and
5 objectives. Each region is identified with the r;. Regions
with the same number of good solutions are highlighted with
the same shade of grey in such a way that lighter tones
represents a higher number of good solutions while darker
tones represents fewer good solutions.

The main advantage of the region map is that we can
easily identify which objectives simultaneously present good
values and the existence of trade-offs. If the region ¢ is
not empty, then we have solutions with acceptable values in
all objectives, meaning that the problem could potentially
be tackled with single-objective algorithms. A range ana-
lysis on the solutions in this region could provide additional
information on which approach is appropriate. On the con-
trary, when most solutions fall into region rom_1, it means
that the thresholds may have been set too high and should
be lowered for more accurate results. When there are no
solutions in 7o, but there are solutions scattered across the
regions, there are trade-offs and the map can be used to
visualise them.

Step 4 — Multiobjective Scatter-plot Analysis:

The last step is an analysis using scatter plots. First, for
each instance we normalise the values of all objectives. Then,
we select an objective and draw a scatter plot of all remain-

ing objectives against the selected objective. Finally, we
can combine all scatter plots into a single one. By visually
inspecting this combined graph we can identify local rela-
tionships (conflicts and harmony), interesting patterns, gaps
in the solution space, and well-spread trade-offs or isolated
regions. This information can help us to tailor a solution
algorithm by directing the search towards the regions of in-
terest. When the landscape of the solution space is consist-
ent throughout all instances analysed in this way, we could
have a clearer idea of what type of solutions to expect when
solving unseen instances.

When picking an objective for this process, it is prefer-
able to select one that has a wider range of values rather
than being concentrated in only a small range, otherwise
the resulting graph may be more difficult to read. It may be
interesting to test different objectives in order to spot which
provide more useful information, or, if multiple objectives
provide different insights, all of them could be considered
instead of only one.

The next section presents experimental results from ap-
plying the proposed analysis and visualisation technique to
five sets of benchmark instances of the multiobjective mul-
tidimensional knapsack problem.

S. SAMPLE ANALYSIS

In order to illustrate the analysis technique we apply it
to different scenarios of the multiobjective multidimensional
knapsack problem (MOMKP) [8]. We aim to show that
within the same problem, the proposed technique can identify
multiple scenarios with distinct multiobjective natures.

In the MOMKP, we have n items (i = 1,...,n) with m
weights w} (j = 1,...,m) and p profits ¢;, (k = 1,...,p).
A set of items must be selected to maximise the p profits
while not exceeding the capacities W; of the knapsack. This
problem can be formulated as follows:

n
maximise E CLTi k=1,...,p
1=1

n
subject to Zw§xi§Wj i=1....m
i=1

z; €0,1 i=1,...,n

We considered five MOMKP datasets, each with five in-
stances, all with m = 4, p = 4, n = 1000 and W; =
50000. The first four datasets were generated following the
guidelines in Bazgan et al. [9] and are as follows:

e Set A: Indepe_ndent random instances where wi EN
[1,1000] and ¢}, €n [1,1000].

° S(-;t B: Uncorrelated harmonious instances where
wy, €n [1,1000], ¢i €n [1,1000] and ¢}, €n [maz {c,_1
—100,1} ,min{c;_; + 100,1000}] for k = (2, 3,4).

e Set C: Ungorrelated conﬂicting_ instances where w’k EN
[1,1000], ¢1 €n [1,1000] and ¢, €n [maz{900 — cj,_,
1}, min{1100 — ¢;,_,, 1000}] for k = (2,3,4).

e Set D: Correlated conflicting instances where w! €y
[maz{900 — |ci — ¢4, 1}, min{1100 — |¢i — c4|, 1000}],
wh €n [maz{900 — |ck — ck_|, 1}, min{1100 — |ci —
ci_1],1000}], ¢i €n [1,1000] and ci €x [maz{900 —
ci_1,1}, min{1100 — c¢i_;,1000}] for k = (2,3,4).



Set A contains only independent objectives. In set B all
objectives are harmonious. Set C' contains three pairs of
conflicting objectives, (Z2, Z1), (Zs, Z2) and (Z3, Z4), while
the weights are uncorrelated. Set D has conflicting object-
ives, as set C, but the weights are correlated to the objective
values. The fifth set X was generated using data from a real-
world home health-care scheduling problem.

Set A Al A2 A3 A4 A5 Mean

Zy-Z» -0.15 -0.33 -0.21 -0.39 -0.49 -0.314
Zy-Z3  -0.02  0.09 -043 -0.34 0.11 -0.118
Z-Zy -021  0.09 -0.18 0.20 0.07 -0.006
Zy-Z3 -0.30 -0.37 0.17 0.01 -042 -0.182
Zy-Zy 0.06 -0.22 -0.17 -0.41 -0.09 -0.166
Z3-Zy -0.25 -020 -0.22 -0.26 0.19 -0.148

Set C  Cl1 C2 C3 C4 Ch Mean

Zy-Z> -096 -097 -0.98 -0.98 -0.98 -0.974
Zy-Z3 093 095 095 096 096 0.950
Zy-Zy -093 -092 -0.92 -097 -0.95 -0.938
Zy-Z3 -096 -0.96 -0.97 -0.97 -0.96 -0.964
Zy-Zy 095 092 093 096 094 0.940
Z3-Zy -098 -094 -0.95 -0.97 -0.97 -0.962

Set D D1 D2 D3 D4 D5 Mean

Z1-Z>  -092 -092 -0.94 -094 -0.94 -0.932
Zy-Z3 088 084 0.88 0.87 0.87 0.868
Zy-Zy -0.84 -0.84 -0.87 -0.87 -0.87 -0.858
Zy-Z3 -0.87 090 -0.91 -0.90 -0.90 -0.896
Zy-Zy 082 086 0.87 0.87 0.87 0.858
Z3-Zy -092 -093 -0.93 092 -0.92 -0.924

Set X X1 X2 X3 X4 X5 Mean

Z1-Zy -0.26 -0.29 -0.13 -0.24 -0.32 -0.248
Zy-Z3 -0.13 -0.24 -0.27 -0.25 -0.27 -0.232
Z-Zy -0.29 -0.12 -0.29 -0.21 -0.07 -0.196
Zy-Z3 -0.25 -0.13 -0.26 -0.23 -0.19 -0.212
Z>-Zy -0.13 -0.28 -0.22 -0.11 -0.27 -0.202
Z3-Zy -024 -0.23 -0.14 -0.21 -0.18 -0.200

Table 1: Results for the pairwise relationship analysis (1.0
is completely harmonious, -1.0 is completely conflicting).

For each instance we run a single-objective genetic al-
gorithm on each objective alone, then both NSGAII [24]
and MOEA /D [25] algorithms on each pair and triple of ob-
jectives. We then combined all the obtained non-dominated
solutions into an archive. We randomly drew from the archive
half of the individuals for the initial population and the other
half were randomly generated. We performed three runs for
the MOEA/D and three runs for the NSGA-II with all ob-
jectives. The approximation non-dominated set was formed
with all non-dominated solutions which were found in the
process. Both NSGAII and MOEA /D used a population of
200 individuals, binary tournament selection and half uni-
form crossover [26] for 1500000 function evaluations. Over-
all, we obtained non-dominated sets with approximately 900
solutions for set A, 3 for set B, 550 for set C', 1500 for set
D and 2500 solutions for set X.

Only a few non-dominated solutions were found for set
B, the objectives there are strongly harmonious. Therefore,
when maximising one of the objectives, the other object-
ives are also maximised. The data is therefore not enough
for some of the analysis steps. However, the results are
presented for completeness and illustrate that the number

Set A Al A2 A3 A4 A5 Mean

Max 105269 105591 98845 109048 98562 103463.0
Z1  Min 81507 84910 72393 82400 78259 79893.8
Range 22.6% 19.6% 26.8% 24.4% 20.6% 22.8%
Max 105565 102067 101879 107485 106290 104657.2
Z>  Min 84618 78862 75194 78073 82345 79818.4
Range 19.8% 22.7% 26.2% 27.4% 22.5% 23.7%
Max 100267 105755 106024 110554 102331 104986.2
Z3  Min 76363 80682 78207 82257 77085 78918.8
Range 23.8% 23.7% 26.2% 25.6% 24.7% 24.8%
Max 107607 110827 105888 103686 106472 16895.4
Zy  Min 84932 88405 75817 76770 86274 82439.6
Range 21.1% 20.2% 28.4% 26.0% 19.0% 22.9%
Set B B1 B2 B3 B4 B5 Mean
Max 103713 n/a 104141 111900 n/a 106584.7
Z1  Min 102748 n/a 104107 111622 n/a 106159.0

Range 0.9% n/a 0.1% 0.2% n/a 0.4%
Max 104952 n/a 107233 113620 n/a 108601.7
Za Min 104410 n/a 106638 113496 n/a 108181.3
Range 0.5% n/a 0.6% 0.1% n/a 0.4%
Max 106633 n/a 109010 113821 n/a 109821.3
Zs3 Min 106274 n/a 108175 113479 n/a 109309.3
Range 0.3% n/a 08% 0.3% n/a 0.5%

Max 107347 n/a 108361 113926 n/a 109878.0
Zy Min 107025 n/a 107324 113663 n/a 109337.3

Range 0.3% n/a 1.0% 0.2% n/a 0.5%

Set C C1 C2 C3 C4 C5 Mean
Max 109142 105928 114773 115084 112290 111443.4

Zy Min 34911 33631 35449 35317 33157 34493.0
Range 68.0% 68.3% 69.1% 69.3% 70.5% 69.0%
Max 111124 109863 110290 114339 112559 111635.0

Zs Min 37928 36764 33189 30491 32431 34160.6
Range 65.9% 66.5% 69.9% 73.3% 71.2% 69.4%
Max 109775 104817 113400 115214 112467 111134.6

Z3 Min 35859 33066 35326 35508 33004 34552.6
Range 67.3% 68.5% 68.8% 69.2% 70.2% 68.9%
Max 109569 108055 109242 113106 113391 110272.6

Zy Min 38774 37107 34277 32074 34062 35258.8
Range 64.6% 65.7% 68.6% 71.6% 69.4% 68.0%

Set D D1 D2 D3 D4 D5 Mean
Max 186945 190209 188157 170337 179792 183088.0

Zy Min 58152 65554 69709 53810 64747 62394.4
Range 68.9% 65.5% 63.0% 68.4% 64.0% 65.9%
Max 180305 188813 197847 183889 191691 188509.0

Za Min 64198 58680 68608 55859 63604 62189.8
Range 64.4% 68.9% 65.3% 69.6% 66.8% 67.0%
Max 185349 189131 187175 169153 180283 182218.2

Z3 Min 56697 63717 68430 52449 67272 61713.0
Range 69.4% 66.3% 63.4% 69.0% 62.7% 66.1%
Max 182878 188835 196048 182326 190441 188105.6

Zy Min 66673 61884 70145 59158 66344 64840.8
Range 63.5% 67.2% 64.2% 67.6% 65.2% 65.5%

Set X X1 X2 X3 X4 X5 Mean
Max 29105 30825 29173 29906 30536 29909.0

A Min 4930 3703 5317 4685 4429 4612.8
Range 83.1% 88.0% 81.8% 84.3% 85.5% 84.6%
Max 28885 30180 29314 28990 31422 29758.2

Zy Min 4706 4506 5024 4027 4190 4490.6
Range 83.7% 85.1% 82.9% 86.1% 86.7% 84.9%
Max 299949 29488 28154 31445 30055 29818.2

Z3 Min 4096 4288 4298 4652 4102 4287.2
Range 86.3% 85.5% 84.7% 85.2% 86.4% 85.6%
Max 30040 30478 30063 31103 29206 30178.0

Zy Min 5075 3749 3673 4334 4563 4278.8

Range 83.1% 87.7% 87.8% 86.1% 84.4% 85.8%

Table 2: Results for the objective ranges analysis.

of solutions obtained can have a major impact on the ana-
lysis and that, it is important to have a comprehensive set,
with enough well-spread solutions.

5.1 Application of the Proposed Technique

Step 1 - Global Pairwise Relationships Analysis.
The results for this step are in Table 1. Note that coeffi-
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Table 3: Results for the trade-off regions analysis.

cient values for set B are not provided for the reason given
above. The table presents the individual pairwise correla-
tion value for each combination of objectives. As expected
for fully independent objectives, set A has values close to
0. The values for sets C' and D are also predictably close
to either 1 or —1 indicating global conflicting or harmoni-
ous relationships. Set X has values similar to A — they do
not reveal a strong global relationship between objectives as
they are closer to 0 than to 1 or —1. Also, in set X it is
not possible to decompose the decision variables according
to the objectives, as every item has all weights and values
above zero.

Step 2 - Objective Range Analysis. The results for
this step are in Table 2. Considering set B, it can be seen,
that the set presents small ranges of less than 0.3% on av-
erage. In this dataset all objectives are harmonious and the
solutions found are all located in a small region of the solu-
tion space. These few solutions dominated all other solutions
explored. Both sets C' and D present similar results to each
other with large ranges for each objective (over 60%). This
is expected since these are instances with conflicting object-
ives and present global trade-offs. The large ranges mean
that while we have solutions with good values for a given
objective, at least one other objective has poor value.

Finally, we highlight that while the global pairwise re-
lationship analysis (step 1) hinted that sets A and X were
similar, the difference between them now becomes clear with

the results from step 2. In set A, each objective range is
around 24.0% of the maximum value — the smallest ranges
excluding the harmonious instances — whilst in set X the
ranges go up to 84.9%, the largest range found. Thus, we
can see that the ranges for set X are closer to those for set
D, a conflicting scenario with global trade-offs.

Step 3 - Trade-Off Regions Analysis. The results for
this step are in Table 3. For each instance we computed the
number of solutions in each region and the map shows the
average percentage for each set. We set the range threshold
to 1% above the mean value found for each objective, thus
considering a value slightly above the average to be good.
We can observe that on set A the front is well distributed
as we have solutions in all regions, scattered throughout the
solution space, as a result of the independent objectives.
Additionally, note that we have solutions both in r¢ and
r15. This is due to the map presenting the combined results
for all five instances in that set, and in some instances we
have solutions in rg only and in other instances in 715 only.

In sets C' and D we clearly identify the global relation-
ships. There are no solutions with good values in all object-
ives and most instances present no solution with good values
in three objectives. The majority of the solutions are situ-
ated where Z; and Z3 alone have good values and where Z»
and Z4 alone have good values, as these are the harmonious
pairs. Additionally, we can observe that almost no solutions
are present in conflicting areas. For instance, where Z; and
Z5 present good values simultaneously. Moreover, solutions
in conflicting areas should be close to the chosen threshold.

The set X does not contain solutions in 7o and there are
no solutions in regions 71, r2, r4 and rg, meaning that no
high values can be simultaneously found for three or more
objectives. We can find good values simultaneously only for
up to two objectives. The map for set X resembles the ones
for sets C' and D in the sense that we can clearly see that
there are several regions without solutions. Thus, we have
trade-offs to present to the decision-maker. This means that
the decision-maker has to choose between up to two good ob-
jective values to the detriment of the remaining objectives,
since all of the regions containing solutions have at most two
simultaneously good values.

Step 4 - Multiobjective Scatter Plot Analysis. This
analysis was performed for each instance and Figure 4 presents
the results for all instances of each set combined. We can see
in Figure 4a that although instances in dataset A are com-
pletely random, all of them show similar landscapes with
a high concentration of solutions towards the (1,1) corner.
Moreover, no local relationships can be identified, which is
expected as the data is completely random.

On sets C' and D we can clearly see the trade-off regions.
Also, there is a noticeable gap in the solution space when
Z1 is in the range from 0 to 0.5 and when the remaining
objectives are in the range from 0 to 0.4, approximately.
Moreover, the landscape of the solution space appears to be
similar for all instances of each of the sets C' and D.

Since the data was uniformly generated (these gaps are
unlikely to arise from the data itself) and could represent
limitations in the solution algorithms, indicating that they
did not explore the entire front. It is well known that the
performance of some MOEAs is limited when the number of
objectives is more than three [27].

Set X presents a unique scenario, as we can identify pat-
terns and gaps in the solution space. The first feature worth
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Figure 4: Results for the trade-off regions analysis.

noticing is that there is a lack of solutions with values within
[0.85,1]. Again, this is due to limitations of the solution al-
gorithms. However, we can see that the size of the gap
is small, confirming that instances with strongly conflict-
ing objectives present a bigger challenge to the algorithms.
We can also identify several local relationships. When Z;
ranges from 0.5 to 0.8, the three remaining objectives sim-
ultaneously conflict and harmonise. Knowing that only two
simultaneous objectives present high values (from the region
map analysis), we can conclude that whenever Z; increases,
only one of the other objectives simultaneously increases too.

5.2 Discussion

With the proposed analysis and visualisation technique,
we can better understand the multiobjective nature of the
problem instances considered. Looking at only the correla-
tion coefficients, we could conclude that: sets A and X do
not present interesting multiobjective traits, that set B is
inconclusive and that sets C' and D present conflicting and
harmonious objectives. However, by applying our analysis
and visualisation technique we can reach a more compre-
hensive understanding of these instance sets.

As fully random instances, dataset A does not present rel-
evant global or local pairwise relationships according to the
global pairwise analysis (step 1) and the multiobjective scat-
ter plot analysis (step 4). Additionally, the objective range
analysis (step 2) shows that even though there is a large
set of non-dominated solutions, these are concentrated in a
reasonably small area of the search space. For this dataset
we can use the information from the trade-off region maps
to interact with the decision-maker to identify which regions
are of more interest and then use single-objective optimisa-
tion algorithms to find solutions in that region. Since we
have solutions in all of the regions of the map, any objective
vector could provide an adequate solution.

Set B presents a completely harmonious case and by ana-
lysing the ranges and bearing in mind that the algorithms
found just a handful of solutions, we can assume that a
single-objective algorithm aiming to maximise any of the
objectives could provide a reasonable good solution.

Sets C' and D present similar scenarios, hence the correl-
ation between weights and coefficients does not impact on
the nature of the problem. The entire solution set repres-
ents a huge trade-off. We also notice that the algorithms
found it very difficult to expand along the front and that
they mainly explored the region surrounding the intersec-
tion of the trade-off. Nonetheless, by perceiving that all in-
stances in these sets have similar landscapes and by knowing
the approximate boundaries of each objective (by applying

single-objective algorithms to each objective alone), we can
estimate the landscape of solutions for other instances in
those sets. Therefore, we could direct the search to the re-
gions of interest after presenting the expected trade-offs to
the decision-maker. However, if it is imperative to use an
a posteriori approach, the global pairwise analysis and the
scatter plots provide sufficient information to make feasible
the grouping of harmonious objectives.

Finally, set X presents a quite different picture. By only
evaluating the global pairwise analysis (step 1) we conclude
that there is no strong pairwise relationship between ob-
jectives. However, the objectives range analysis (step 2)
shows that in fact we have non-dominated solutions that
vary greatly in quality. This is an indication of the exist-
ence of trade-offs (as we can see by comparing this set with
sets C and D). The trade-off region analysis (step 3) showed
the existence of overall trade-offs as it is not possible to have
solutions with good values in more than two objectives sim-
ultaneously. Finally, the multiobjective scatter plot analysis
(step4) identified local relationships between objectives and
gaps in the solution space, pointing to the existence of local
conflicts. Therefore, instances in dataset X exhibit a dis-
tinctive multiobjective nature perhaps with interesting op-
tions for a decision-maker. A sound possibility to tackle this
problem would be to use the region map to identify the re-
gions of interest and then locate those regions in the scatter
plot. In case a selected region contains a local conflict, we
can use the algorithm proposed by [1] to reach the trade-off
front and then expand through it.

6. CONCLUSION

We proposed a technique that uses correlation, trade-
off region maps and scatter-plots as tools for the analysis
and visualisation of objectives’ relationships in multiobject-
ive optimisation problems. The technique consists of four
steps: 1) evaluate the global correlation values, 2) compute
the range of values for all objectives, 3) compute the distri-
bution of solutions in the different trade-off regions, and 4)
conduct a scatter-plot analysis of the objectives.

We applied the proposed technique to five sets of instances
for the multiobjective multidimensional knapsack problem.
The proposed technique helps to identify features such as
local and complex relationships between objectives, trade-
offs not derived from pairwise relationships, gaps in the fit-
ness landscape and regions of interest. Different conclusions
can be reached about the objectives relationships, for differ-
ent instances even though they are scenarios from the same
problem. We also discussed how the analysis and visualisa-



tion technique could be used to better understand the fitness
landscape of the problem in hand.

Future work includes applying the proposed technique to
other optimisation problems to validate further. It is also
important to study the impact that the initial approximation
set provided has on the accuracy of the analysis. Finally, we
intend to investigate how the components of this technique,
such as the trade-off region map, could be employed during
the optimisation process for a many-objectives algorithm, to
direct the search towards regions of interest.
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