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Abstract

The torch problem (also known as the bridge problem or the flashlight problem) is about getting a number
of people across a bridge as quickly as possible under certain constraints. Although a very simply stated
problem, the solution is surprisingly non-trivial. The case in which there are just four people and the capacity
of the bridge is two is a well-known puzzle, widely publicised on the internet. We consider the general
problem where the number of people, their individual crossing times and the capacity of the bridge are all
input parameters. We present two methods to determine the shortest total crossing time: the first expresses
the problem as an integer-programming problem that can be solved by a standard linear-programming
package, and the second expresses the problem as a shortest-path problem in an acyclic directed graph,
i.e. as a dynamic-programming problem. The complexity of the linear-programming solution is difficult
to predict; its main purpose is to act as an independent test of the correctness of the results returned by
the second solution method. The dynamic-programming solution has best- and worst-case time complexity
proportional to the square of the number of people. An empirical comparison of the efficiency of both
methods is also presented.
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The (capacity-C) torch problem is as follows.

N people wish to cross a bridge. It is dark, and it is necessary to use a torch when crossing the
bridge, but they only have one torch between them. The bridge is narrow and at most C people
can be on it at any one time. The people are numbered from 1 to N. Person i takes time t.i to
cross the bridge; when a group of people cross together they must all proceed at the speed of
the slowest.

Derive an algorithm that will construct a sequence of crossings to get all N people across in the
shortest time. Prove that the algorithm does indeed find the shortest time.

The torch problem is a generalisation of a problem involving four people wishing to cross a bridge of
capacity two and with specific concrete times. In this form, the problem is believed to have first appeared
in 1981. Rote [Rot02] gives a comprehensive bibliography.
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The main interest in the torch problem is that what is “obvious” or “intuitive” is often wrong. For
example, the “obvious” solution of letting the fastest person repeatedly accompany C−1 people across the
bridge is wrong. (If N =4, C=2 and the travel times are 1, 1, 2 and 2, this solution takes time 7 whereas
the shortest crossing time is 61.) Also, the “obvious” property that the shortest time is achieved when the
number of crossings is minimised is incorrect. (If N =5, C=3 and the travel times are 1, 1, 4, 4 and 4, the
shortest time is 8, which is achieved using 5 crossings. The shortest time using 3 crossings is 9.) It is not
difficult to determine an upper bound on the crossing time, even in the general case. Nor is it difficult to
provide counterexamples to incorrect solutions. The difficulty is to establish an irrefutable lower bound on
the crossing time. A proper solution to the problem poses a severe test of our standards of proof.

We present two practical solutions to the problem: an integer-programming solution and a dynamic-
programming solution. The practicality of the solutions is made possible by a transformation of the prob-
lem from finding sequences of crossings to finding bags (multi-sets) of crossings. The formal basis for the
transformation is outlined in section 1 and developed further in section 2. The significance of the trans-
formation from sequence to bags cannot be underestimated; it is vital to constructing solutions that are of
polynomial-time complexity and not exponential-time. The two solution methods, which are not unrelated,
are presented in section 4. The best- and worst-case time complexity of the dynamic-programming solution

is O(N2) and its space complexity is O(N
2

C
). This means that the space requirement is proportional to N2

for small values of C (for example, C equal to 3) but reduces for larger values of C. Our experience in
practice is that the space requirement is the main practical limitation. Section 4.6 sketches the results of
a practical comparison of both the integer-programming and dynamic-programming solutions. Both have
been tested for large values of N (up to 25000) and of C (up to 50 for the largest values of N); execution
times for the dynamic-programming solution are at most seconds and for the integer-programming solution
are at most minutes. Space limitations prevented us from testing with larger values.

Henceforth, we assume that N is at least C+1. (When N is at most C, it is obvious that exactly one
crossing gives the optimal solution. When N is at least C+1, more than one crossing is required.) We
assume that C is at least 2 since, otherwise, the problem is not solvable. We also assume that crossing times
are positive (that is, 0≤ t.i for all i) and the people are sorted so that t.i≤ t.j for all i and j such that
1≤ i≤ j≤N . The motivation for the latter assumption becomes apparent in section 3. Abusing English
slightly, we say that person i is faster than person j (or j is slower than i) if i< j, even though their crossing
times may be equal. Finally, to avoid clutter, we often treat N , C and t as global parameters (constants)
on which other notions may implicitly depend. (Occasionally, N is introduced as an explicit parameter for
the purposes of an inductive proof or construction.)

In a precursor to this paper, Backhouse [Bac08] proposed a different dynamic-programming solution to
the problem. The current algorithm is simpler and its space requirements are also less. We would therefore
no longer recommend Backhouse’s solution but we have implemented it as a further check on the correctness
of our algorithms. Other improvements that we have made are to remove the requirements that all persons
have distinct crossing times and that the crossing times have to be strictly positive. Backhouse’s paper
established the theorem that is fundamental to finding an efficient algorithm (in this paper, theorem 38)
but the changes we have made have obliged us to revise all our proofs.

1. Outline Strategy

The torch problem is a classical optimisation problem: it is about designing an algorithm that construc-
tively determines the minimum of an objective function defined on a domain of putative solutions. Formally,
the minimum time is expressed by2

〈⇓s : PutativeSequence.s : TotalT ime.s〉 ,

1Our examples are chosen so that it is easy for the reader to discover the fastest crossing time. Of course, the examples in
puzzle books are deliberately chosen to make it difficult.

2The symbols ⇓ and ⇑ denote the maximum and minimum quantifiers, respectively; later we also use the symbols ↓ and ↑
to denote the binary minimum and maximum operators.
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where the predicate PutativeSequence formulates the requirement that a putative solution is a sequence of
crossings that gets everyone across in accordance with the rules, and the function TotalT ime evaluates the
time taken for all people to cross for a given putative sequence. The algorithm must be constructive in the
sense that it must explicitly construct a sequence s that realises the minimum time.

1.1. Transforming Optimisation Problems

Our solution involves a series of non-trivial transformations of the problem specification and it is as well
to begin by explaining the logical basis of such transformations.

Suppose we are given an optimisation problem in the form

〈⇓s : s∈P : T.s〉 .

The set P defines the solution space and the function T is the objective function. A transformation of the
problem in its most general form replaces P by some set Q and the objective function T by some function
U such that

〈⇓s : s∈P : T.s〉 = 〈⇓r : r∈Q : U.r〉 .

The goal of making such a transformation is to improve the efficiency of the calculation of an optimal value,
usually by reducing the space of solutions in some way. For example, transforming the space of solutions
from the set of permutations of n values to the set of subsets of n values “reduces” the size of the search
space from n! to 2n.

Establishing the correctness of the transformation typically involves an at-most-and-at-least argument.
That is, we prove

〈⇓s : s∈P : T.s〉 ≤ 〈⇓r : r∈Q : U.r〉

(the at-least argument) and

〈⇓s : s∈P : T.s〉 ≥ 〈⇓r : r∈Q : U.r〉

(the at-most argument). The required equality is then inferred from the anti-symmetry of the at-least
relation on numbers.

Both inequalities are proved by showing how one optimisation problem is transformed to another. The
logical basis for the subsequent proof obligation is the following calculation.

〈⇓s : s∈P : T.s〉 ≤ 〈⇓r : r∈Q : U.r〉

= { definition of minimum quantification }

〈∀r : r∈Q : 〈⇓s : s∈P : T.s〉 ≤ U.r〉

= { minimum is a choice operator }

〈∀r : r∈Q : 〈∃s : s∈P : T.s≤U.r〉〉

= { axiom of choice }

〈∃τ : τ ∈Q→P : 〈∀r : r∈Q : T.(τ.r)≤U.r〉〉 .

Vice-versa,

〈⇓s : s∈P : T.s〉 ≥ 〈⇓r : r∈Q : U.r〉

= { as above }

〈∃σ : σ∈P→Q : 〈∀s : s∈P : U.(σ.s)≤T.s〉〉 .
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That is, we have to prove

〈∃τ : τ ∈Q→P : 〈∀r : r∈Q : T.(τ.r)≤U.r〉〉

and

〈∃σ : σ∈P→Q : 〈∀s : s∈P : U.(σ.s)≤T.s〉〉 .

The functions τ and σ are called transformations because they transform one solution space to another.
Publications on optimisation algorithms often neglect to provide full details of the correctness proofs

— typically by not giving details of one or other of the transformations τ or σ, let alone establishing the
correctness of the transformation. In many cases the transformation and correctness proof are trivial. For
example, if the solution space Q is a subset of P and the objective functions T and U are identical, a
suitable transformation τ is the identity function on Q and the first proof obligation is trivial; the second
proof obligation is then met by establishing that every solution s in P is “subsumed” by a solution σ.s in Q.
However, some problems involve non-trivial transformations of the solution space, and objective functions
that are not identical.

In our solution to the torch problem some of the steps involve simple transformations but others are
decidedly non-trivial because the functions T and U are different and the relation between the sets P and Q

is non-trivial. It is important to give explicit details of the transformation τ in order to give a constructive
solution to the given optimisation problem. Explicit details of σ are unnecessary for this purpose but, even so,
it remains important to provide a rigorous proof of correctness. When the specification of a transformation
involves an iterative algorithm (as is the case for several of the transformations we present) it is necessary
to establish the correctness of the algorithm. This explains why this paper is perhaps longer than the length
of the final java code might at first suggest.

1.2. Putative and Regular Sequences

Recall that a sequence of crossings that gets everyone across in accordance with the rules is called a
putative sequence. Let us be more precise.

When crossing the bridge, the torch must always be carried. This means that crossings, both of groups of
people and of each individual person, alternate between “forward”and “return” “trips”. Formally, a trip is
a non-empty set of people and, given a sequence of trips, a forward trip in the sequence is an odd-numbered
element of the sequence (the first, the third, the fifth, etc.) and a return trip is an even-numbered element
of the sequence; the sequence of trips made by person p is the subsequence given by those trips of which p

is an element. A sequence of trips is putative if

(a) the sequence has odd length, and each trip has at least one and at most C elements,

(b) each person is an element of at least one trip,

(c) the sequence of trips made by each person alternates between forward and return trips, and begins and
ends with a forward trip.

The time taken by a sequence of trips is the sum of the times taken by each element of the sequence. The
time taken by an individual trip is the time taken by the slowest person in the trip, who we call the “leader”
of the trip. Given our global assumption that the crossing-time function t is monotonic, the leader of a trip
is the highest-numbered person in the trip.

We say that one putative sequence subsumes another putative sequence if the time taken by the first
is at most the time taken for the second. An optimal sequence is a putative sequence that subsumes all
putative sequences. The problem is to find an optimal sequence.

A forward trip is regular if it is made by at least two people, and a return trip is regular if it is made by
exactly one person. A sequence of trips is regular if it is a putative sequence that consists entirely of regular
forward and return trips. Given a sequence of trips s the bag of trips FwdBag.s is obtained from s by
removing the return trips and ignoring the order in which the trips are made. It is important to note that
the total time taken by a regular sequence s of trips can always be calculated knowing just FwdBag.s. This
is because every person makes one fewer return trips than forward trips and each return trip in a regular
sequence is made by just one person; so the total time for the return trips can be deduced.
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1.3. Outline Transformations

An outline of our solution is as follows.

1. Lemma 10 reduces the search space to the space of regular sequences.
This has the consequence that the search space for an optimal solution becomes finite: there are at
most N−1 forward trips in any regular sequence. More importantly, the time taken by a regular
sequence can be evaluated knowing only which forward trips are made. This suggests the next step.

2. Definition 15 defines a “regular” bag of forward trips and theorem 30 reduces the search space to the
space of such bags. It does so by establishing a formal correspondence between regular sequences of
forward and return trips and regular bags of forward trips.
The step from sequences to bags is the most important in designing an efficient algorithm because it
eliminates attributes of sequences that are not relevant to the total time taken whilst still retaining
a constructive algorithm in the sense that it is also possible to construct a sequence of crossings that
achieves the minimum time.

3. Theorem 38 reduces the search space yet further from the space of regular bags to the space of ordered
bags, as defined in definition 37.

4. Section 4 presents two methods for calculating an optimal ordered bag of forward trips.
Both methods exploit the property that a trip in an ordered bag can be represented by two people:
the slowest person in the trip (who we call the “leader” of the trip), and the slowest “nomad” in the
trip. (A “nomad” is a person who makes at least one return trip.) Section 4.4 shows how to use
integer programming to determine the minimum time and section 4.5 shows how to exploit dynamic
programming.
The integer-programming solution has unpredictable complexity; our main purpose in formulating such
a solution was to check the results determined by our dynamic-programming solution against the re-
sults determined by a standard, open-source linear-programming package. The dynamic-programming
solution has best- and worst-case time complexity proportional to the square of the number of people,
as shown in section 4.5.1. Section 4.6 summarises an empirical comparison of the efficiency of both
solutions.

5. Section 5 reflects on what has been achieved.

1.4. Terminology

Henceforth, by a person we mean a number in the range 1..N and by a trip we mean a subset of {1..N}
that has at least 1 and at most C elements. The forward trips in a sequence of trips are the odd-numbered
trips (that is, the first, the third, the fifth, etc.); the return trips are the even-numbered trips.

Let us suppose a putative sequence of trips is given. By extracting just the forward trips in the sequence
and ignoring the order in which they are made, we obtain a bag (multiset) of non-empty sets. We use F to
denote such a bag. Note that a bag is a set with multiplicities. We sometimes use a notation exemplified by
{|{3,4} ,2 ∗ {1,4} ,2 ∗ {1,2,4}|} to denote a bag; the example is a bag of trips in which the trip {3,4} occurs
once (that is, has implicit multiplicity 1), and the trips {1,4} and {1,2,4} occur twice.

For the purposes of formalising our algorithms, it is useful to equate a set of elements of type S with
a function of type S→bool (effectively, its membership relation) and a bag of elements of type S with a
function of type S→IN. This convention has some notational advantages: if b is a bag of elements of type S,
then, for all x in S, the multiplicity of x in b is b.x and the set of elements of b is defined to be the function e

where, for all x in S, e.x ≡ 0<b.x. Also, the size of b, denoted as usual by |b|, is Σb (that is, 〈Σx :x∈S : b.x〉
where S→IN is the type of b).

In this way, if {1..N} identifies the set of people, a trip T is a function of type {1..N}→bool and a bag
F of trips is a function of type ({1..N}→bool)→ IN; also person i is an element of the trip T if T.i and the
multiplicity of T in F is F.T . By a slight abuse of notation, we write x∈b and call x an element of b if x is
an element of the set underlying bag b, that is, if 0<b.x. Similarly, we also write i∈T instead of T.i.

For brevity, we sometimes define a bag b of type S→IN by specifying b.x only for those x such that b.x
is greater than 0. For elements y of S not included in the definition, the convention will be that b.y is 0.
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For a given bag of forward trips F , the number of times person i makes a forward trip is given by the
function f defined by

f.F.i = 〈ΣT : i∈T :F.T 〉 .(1)

The number of times that each person returns is given by the function r; since each person makes one more
forward trip than return trip, we let

r.F.i = f.F.i− 1 .(2)

A person who makes a return trip is called a nomad :

nomad.F.i ≡ r.F.i > 0 .(3)

A settler is a person who crosses but does not return:

settler.F.i ≡ r.F.i = 0 .(4)

We divide the forward trips into “pure”, “nomadic” and “mixed”. A pure trip is a trip in which everyone is
a settler:

pure.F.T ≡ 〈∀j : j∈T : settler.F.i〉 .(5)

A nomadic trip is a trip in which everyone is a nomad:

nomadic.F.T ≡ 〈∀i : i∈T :nomad.F.i〉 .(6)

A mixed trip is a trip that is neither pure nor nomadic (that is, a trip that involves both settlers and
nomads). A full trip is a trip that has C elements and a non-full trip is one that has less than C elements.

Given our assumption that the crossing-time function t is monotonic, the leader of a trip is defined to
be the person in the trip with the highest number:

lead.T = 〈⇑i : i∈T : i〉 .(7)

Mixed and pure trips have multiplicity 1 in the bag F , and each settler is an element of exactly one element
of F . It is therefore possible to define a function from settlers to people that identifies the highest-numbered
person in the trip made by the settler. Let us call this function boss.F . Then the defining property of boss.F
is

〈∀ i,T : settler.F.i ∧ T∈F ∧ i∈T : lead.T = boss.F.i〉 .(8)

For nomads, the function boss.F is undefined.

Example 9 (Nomads and settlers, nomadic, mixed and pure trips). Suppose N =9 and C=3.
Let F be the bag

{|2∗{1,2} ,{3,4,5} ,{3,6,7} ,{7,8,9}|} .

Persons 1, 2, 3 and 7 are nomads and persons 4, 5, 6, 8 and 9 are settlers. The trip {1,2} is nomadic and
non-full and the trips {3,4,5}, {3,6,7} and {7,8,9} are mixed and full. There are no pure trips.

The tables below exemplify the different functions. The leftmost table shows the forward and return
counts for each person, the middle table shows the lead function for each of the trips and the rightmost
table shows the boss function for each of the settlers.

Later (example 31) we show that F is the bag of forward trips defined by a regular sequence of trips
that gets 9 people across a bridge of capacity 3.

A simple example of a bag that does have pure trips is

{|2∗{1,2} ,{3,4}|} .

(The trip {3,4} is pure and the trip {1,2} is nomadic.) This is also the bag of forward trips defined by a
regular sequence of trips, this time to get 4 people across a bridge of capacity 2.
✷
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i f.F.i r.F.i

1 2 1
2 2 1
3 2 1
4 1 0
5 1 0
6 1 0
7 2 1
8 1 0
9 1 0

T lead.T

{1,2} 2
{3,4,5} 5
{3,6,7} 7
{7,8,9} 9

i boss.F.i

4 5
5 5
6 7
8 9
9 9

2. Regular Sequences Versus Regular Bags

This section is crucial to the rest of the paper. We show in theorem 30 that the search space can be
limited to bags of forward trips as opposed to sequences of forward and return trips. To do so, we exploit
the “regularity” property. Recall that a “regular” sequence is a sequence in which each forward trip involves
at least two people and each return trip involves exactly one person. We begin with a lemma that restricts
attention to just the regular sequences. Then in section 2.1 we show how regular sequences of forward and
return trips can be reconstructed from a bag of forward trips (with certain minimal properties).

Lemma 10. Every putative sequence is subsumed by a regular sequence.

Proof The proof is similar to the one given by Rote [Rot02, Lemma 1] for the case that the capacity is
2. It differs because we do not assume that crossing times are distinct or strictly positive. However, we do
need to assume that crossing times are positive.

We describe an iterative algorithm that initialises variable s to the given putative sequence and terminates
when s is regular. At each iteration, s is replaced by a sequence s′ that subsumes s. The algorithm makes
progress by always reducing the total number of person-trips (that is, it reduces the sum over persons p of
the total number of trips made by p).

Suppose a given putative sequence s contains irregular trips. There are two cases to consider: the first
irregular trip is a return trip and the first irregular trip is a forward trip.

If the first irregular trip is a return trip, choose one person, p say, making the return trip. Identify the
(regular) forward trip made by p prior to the return trip, and remove p from both trips. Because the crossing
times are positive, the result is a putative sequence that subsumes the given sequence; it also has a smaller
person-trip count.

Now suppose the first irregular trip is forward. There are two cases to consider: the irregular trip is the
very first in the sequence, and it is not the very first.

If the first trip in the sequence is not regular, it means that one person crosses and then immediately
returns. These two trips can be removed. Because the crossing times are positive, the result is a putative
sequence that subsumes the given sequence; it also has a smaller person-trip count.

If the first irregular trip is a forward trip but not the very first, let us suppose it is person q who crosses,
and suppose p is the person who returns immediately before this forward trip. (There is only one such
person because of the assumption that q’s forward trip is the first irregular trip.) Consider the latest trip
that precedes p’s return trip and involves p or q. There are two cases: it is a forward trip involving p or it
is a return trip involving q.

If it is a forward trip, replace p by q in the trip and remove p’s return trip and q’s irregular trip. The
result is a putative sequence that subsumes the given sequence (since, crossing times are positive and, for
any positive x, t.p↑x + t.p + t.q ≥ t.q ↑x) and has a smaller person-trip count.

If it is a return trip, replace q by p in the trip, and remove p’s return trip and q’s irregular trip. The
result is a putative sequence that subsumes the given sequence (since t.p+ t.q+ t.p ≥ t.q) and has a smaller
person-trip count.
✷
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Theorem 11.

〈⇓s :PutativeSequence.s :TotalT ime.s〉 = 〈⇓s :RegularSequence.s :TotalT ime.s〉

where the predicates PutativeSequence are RegularSequence are as defined in section 1.3.

Proof As discussed in section 1.1, lemma 10 establishes that the left side of the equation is at least the
right side. By definition, a regular sequence is a putative sequence so the identity transformation witnesses
the opposite inequality.
✷

2.1. Scheduling Forward Trips

In view of theorem 11, we now consider bags of forward trips in the image set of the function FwdBag.
(Recall that FwdBag.s is obtained from sequence s by removing return trips and ignoring the order of the
forward trips.) Suppose s is a regular bag of trips and F =FwdBag.s. Because s is regular (and hence also
putative), F has a number of properties. First, each person must cross at least once:

〈∀i : 1≤ i≤N : 1≤ f.F.i〉 .(12)

In a regular sequence, each forward trip involves at least 2 and at most C people:

〈∀T : T∈F : 2≤|T |≤C〉 .(13)

Finally, since the number of forward trips is |F | and each return trip is undertaken by exactly one person,

|F | = 〈Σi : 1≤ i≤N : r.F.i〉 +1 .(14)

Properties (12), (13) and (14) play a central role. Their importance is highlighted by the following definition.

Definition 15 (Regular bag). A bag of trips, F , is said to be regular if it satisfies (12), (13) and (14)
(for given values of N and C).
✷

Crucially, given an arbitrary regular bag of trips, F , it is possible to construct a regular sequence s such
that F =FwdBag.s. To establish this theorem, we first prove several properties relating the number of pure
trips, the number of nomads and the number of non-pure trips in F .

We define the functions bnc (“bag nomad count”), tnc (“trip nomad count”), rc (“return count”), pc
(“pure-trip count”) and npc (“non-pure trip count”) as follows. In the definitions, G is an arbitrary bag
of trips. That is, G is a function of type ({1..N}→bool)→ IN. Variable T ranges over elements of G and
variable i ranges over {1..N}. See earlier for the definitions of the functions nomad, settler, pure and r.

bnc.G = 〈Σi : nomad.G.i : 1〉 .(16)

tnc.G.T = 〈Σi : nomad.G.i ∧ i∈T : 1〉 .(17)

rc.G = 〈Σi : nomad.G.i : r.G.i〉 .(18)

pc.G = 〈ΣT : pure.G.T : 1〉 .(19)

npc.G = 〈ΣT : ¬(pure.G.T ) : G.T 〉 .(20)

(Note that pure trips always have a multiplicity of 1.)

Lemma 21. Suppose G is a bag of trips. Then

bnc.G ≤ rc.G ,(22)

rc.G = 〈ΣT :: tnc.G.T ×G.T 〉 − bnc.G ,(23)

npc.G 6=1 .(24)
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Proof Properties (22) and (23) are straightforward. Property (24) is proved as follows.

npc.G=1

= { definition of npc }

〈ΣT : ¬(pure.G.T ) : G.T 〉 = 1

⇒ { definition of pure and arithmetic }

〈∃j : nomad.G.j : 〈ΣT : j∈T : G.T 〉 ≤ 1〉

⇒ { definition of nomad and f }

〈∃j : 1 < f.G.j : f.G.j ≤ 1〉

= { inequalities }

false .

✷

Corollary 25. If G is a bag of trips such that |G| = rc.G + 1 then

bnc.G=0 ≡ |G|=1 , and(26)

〈∀T ::¬(pure.G.T )〉 ⇐ bnc.G=1 .(27)

Proof First,

bnc.G=0

= { (16), arithmetic }

〈∀i ::¬(nomad.G.i)〉

= { definition of nomad, (18), arithmetic }

rc.G=0

= { assumption: |G| = rc.G + 1 }

|G|=1 .

Second,

〈∀T ::¬(pure.G.T )〉

⇐ { definition of pure, arithmetic }

〈∀T :: tnc.G.T =1〉

⇐ { 〈∀T : T∈G : tnc.G.T ≤ 1〉 ⇐ bnc.G=1, arithmetic }

bnc.G=1 ∧ 〈ΣT :: G.T 〉 = 〈ΣT :: tnc.G.T ×G.T 〉

= { |G| = 〈ΣT :: G.T 〉, (23) }

bnc.G=1 ∧ |G| = rc.G + bnc.G

= { assumption: |G| = rc.G + 1 }

bnc.G=1 .

✷

In general, the implication in (27) cannot be strengthened to an equivalence. For example, the bag G

equal to {{1,3} ,{1,2,4} ,{2,5}} satisfies the property that |G| = rc.G + 1 and every trip in G is non-pure.
However, the set of nomads in G is {1,2}. That is, bnc.G 6=1.
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Lemma 28. Suppose G is a bag of trips satisfying |G| = rc.G + 1 and suppose 1< |G|. Then G contains
a non-pure trip T such that tnc.G.T − 1 ≤ pc.G.

Proof

〈∃T : T∈G∧¬(pure.G.T ) : tnc.G.T − 1 ≤ pc.G〉

= { G is non-empty, property of minimum }

〈⇓T : T∈G∧¬(pure.G.T ) : tnc.G.T 〉 ≤ pc.G + 1

⇐ { pigeon-hole principle (the minimum of a non-empty

bag of integers is at most the average),

(20) and integer inequalities }

〈ΣT : T∈G∧¬(pure.G.T ) : tnc.G.T ×G.T 〉 < npc.G × (pc.G + 2)

= { (23) }

rc.G + bnc.G < npc.G × (pc.G + 2)

⇐ { (22) }

2 × rc.G < npc.G × (pc.G + 2)

= { by range splitting, |G| = pc.G + npc.G ; |G| = rc.G + 1 }

2× (pc.G + npc.G − 1) < npc.G × (pc.G + 2)

⇐ { arithmetic }

2 ≤ npc.G

= { (24) }

0 6= npc.G

= { (26) and assumption: 1< |G| }

true .

✷

Lemma 29. Suppose G is a bag of trips such that |G| = rc.G+1. Let the set of people P be the set
of nomads and settlers in G. That is, P = {i | nomad.G.i∨ settler.G.i}. Then there is a sequence s of
forward and return trips with the properties that

(a) the sequence has odd length, and each return trip has exactly one element;

(b) for each person i in P , the subsequence of s consisting of trips made by person i alternates between
forward and return trips, and begins and ends with a forward trip;

(c) G=FwdBag.s .

Proof By induction on |G|. If |G|=1 then rc.G=0. Let T be the unique element of G. Define s to be [T ]
(the sequence of length one consisting of T ). It is easy to verify that the required properties are satisfied.

Now suppose 1< |G|. Then, by lemma 28, we can choose a non-pure trip T such that tnc.G.T − 1 ≤ pc.G.
Define the bag G′ and the sequence s0 as follows. The sequence s0 begins with the trip T and has total length
2× tnc.G.T . The trip T is followed in s0 by a sequence of alternating return and forward trips, beginning and
ending with a return trip. The return trips are made by the tnc.G.T nomads in T , the order being arbitrary;
the tnc.G.T − 1 forward trips are distinct pure trips taken from G, their choice also being arbitrary. The bag
G′ is the result of removing all the forward trips in the sequence s0 from the bag G. It is straightforward
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to check that |G′| = |G|− tnc.G.T and rc.G′ = rc.G− tnc.G.T . It follows that |G′| = rc.G′ +1. Moreover
|G′|< |G| (since T is a non-pure trip, i.e. 0<tnc.G.T ); so the induction hypothesis can be applied to G′.
Let s′ be the sequence constructed from G′. Define s to be s0++ s′. It is then straightforward to verify that
s satisfies the induction hypothesis.
✷

Theorem 30. Suppose F is a regular bag of trips. Then there is a regular sequence of trips s such that
F =FwdBag.s.

Proof Immediate from lemma 29 with G :=F and the definition of a regular sequence (noting that
1≤ i≤N ≡ nomad.F.i∨ settler.F.i).
✷

Example 31 (Regular bag). As an example of the algorithm given in lemma 29, let F be the bag

{|2∗{1,2} ,{3,4,5} ,{3,6,7} ,{7,8,9}|} .

Recall that this was the bag introduced in example 9. From the data given there, it is easy to verify that F
satisfies (12), (13) and (14) when N is 9 and C is 3.

Since the algorithm is non-deterministic, there are typically several different sequences that might be
constructed. In this case there are eight valid sequencings of the bag captured by the algorithm. Variable G
is initialised to equal F so that the initial number of pure trips in G is 0. As a consequence, the first trip T

that is chosen may be {3,4,5} or {7,8,9}. Choosing the former, the trip {3,4,5} is scheduled together with
a return trip by person 3. Then G still has no pure trips so the next trip T that is chosen may be either
{3,6,7} or {7,8,9}. (Note that person 3 is no longer a nomad in G.) Choosing {3,6,7}, this forward trip is
scheduled together with a return trip by person 7. After removal of the trip from G, trip {7,8,9} is pure and
one of the two occurrences of {1,2} must be chosen. In this way, the sequence of trips that is computed is
the following.

+{3,4,5} ;−{3} ;+{3,6,7} ;−{7} ;+{1,2} ;−{1} ;+{7,8,9} ;−{2} ;+{1,2} .

(Interchanging the trips +{3,6,7} and +{7,8,9} in the above is also a valid sequencing of the bag. The
return trips −{1} and −{2} may also be interchanged. Similarly, a further four possibilities are obtained by
choosing +{7,8,9} as the first element in the sequence. There are other valid sequencings not captured by
the algorithm. For example, there are valid sequencings that begin with the trip +{3,6,7}.)
✷

3. The Optimisation Problem

Let us summarise the development so far. Theorem 11 proves that the solution space can be restricted to
the set of regular sequences of trips. A regular sequence of trips is then easily transformed to a regular bag of
trips (by forgetting the return trips and the sequencing) and, vice versa, any such bag can be transformed into
a regular sequence of trips (see theorem 30). We have thus transformed the solution space from sequences
to bags but must now show how to transform the objective function. This is straightforward because the
time taken is independent of the order of the trips in a sequence, and knowing just the forward trips made
by each person in a regular sequence of trips, we can easily calculate the bag of return trips that are made.

This section begins by formulating the objective function for our new optimisation problem. We then
introduce theorem 38 which shows how to reduce the solution space yet further to “ordered” bags of trips.

Let T be a trip. The time taken to make the trip T is, by definition, the time of the slowest person in
the trip. Determining the time is facilitated if persons are sorted so that t.i≤ t.j if i≤ j; the time taken by
the trip is then the time taken by the leader of the trip:

time.T = t.(lead.T ) .(32)

(Recall that the leader of a trip is the highest numbered person in the trip. See (7).)
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Let G be a bag of non-empty trips. (So G has type ({1..N}→bool)→ IN and G.∅=0.) We extend the
function time to G by adding individual trip times:

time.G = 〈ΣT : T∈G : G.T × time.T 〉 .(33)

Now, suppose a regular sequence of trips is given and suppose F is the bag of forward trips in the sequence.
The bag of return trips in the given sequence is calculated from F by the function RetT rips defined by

RetT rips.F.{i} = r.F.i .(34)

The total time taken by the sequence is then defined by the function TotT ime:

TotT ime.F = time.F + time.(RetT rips.F ) .(35)

Spelling out the definition of time and RetT rips, TotT ime.F is equal to

〈ΣT : T∈F : t.(lead.T ) × F.T 〉 + 〈Σi :: t.i× r.F.i〉 .

(Forward trip T takes time t.(lead.T ) and has multiplicity F.T , and person i makes r.F.i return trips each
of which takes time t.i because the sequence is regular.)

In summary, assuming that persons are sorted so that t.i≤ t.j if i≤ j, we have:

Theorem 36.

〈⇓s : RegularSequence.s : TotalT ime.s〉 = 〈⇓F : Regular.F : TotT ime.F 〉

where the predicate Regular is given by Definition 15 and the objective function TotT ime is given by (35).

✷

Our optimisation problem has thus been transformed to a constructive computation of

〈⇓F : Regular.F : TotT ime.F 〉 .

That is, we have to determine a regular bag F of forward trips that realises the minimum total time. The
algorithm described in lemma 29 may then be applied to compute Seq.F giving an optimal putative sequence
of forward and return trips.

We continue to use the notion of “subsumption” but now applied to (regular) bags rather than sequences.
So regular bag F subsumes regular bag G if F ’s total travel time is at most that of G. A bag is optimal if
it is regular and subsumes all other bags.

Theorem 38, below, reduces the search space yet further to bags that are also ordered. The notion of an
“ordered” bag is defined as follows.

Definition 37 (Ordered). We say that a bag of trips, F , is ordered if it is regular and it also satisfies
the following properties.

(a) For each T in F , the nomads in T are persons 1 thru tnc.F.T . That is,

〈∀i,T : T∈F ∧ i∈T : nomad.F.i ≡ 1≤ i≤ tnc.F.T 〉 .

(b) The function boss.F is monotonically increasing. That is, for all settlers i and j,

boss.F.i≤ boss.F.j ⇐ i≤ j .

(c) All pure trips in F are full. All mixed trips in F are full with the possible exception of the fastest3

mixed trip.

3Two mixed trips may have the same crossing time. However, recall our convention that if people i and j have the same
crossing time, i is faster than j if i < j.
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(d) The settler count sc defined by

sc.F.T = 〈Σi : settler.F.i∧ i∈T : 1〉 .

is a monotonically increasing function of the leader of the trip. That is, for all trips T and U in F ,

sc.F.T ≤ sc.F.U ⇐ lead.T ≤ lead.U .

For all non-nomadic trips, the function tnc is a monotonically decreasing function of the leader of the
trip. That is, for all non-nomadic trips T and U in F ,

tnc.F.T ≥ tnc.F.U ⇐ lead.T ≤ lead.U .

(e) If the fastest mixed trip is not full, it has bnc.F nomads.

In anticipation of later usage, we say that a bag of trips, F , is semi-ordered if it satisfies properties (a), (b),
(c) and (e) but not necessarily property (d).
✷

Theorem 38. Every regular bag of trips is subsumed by an ordered bag of trips.

✷

In words, 37(a) expresses the property that the nomads are the fastest, and always make forward trips
in a contiguous group4 which includes person 1. Property 37(b) expresses the property that the trips
in a regular bag divide the settlers into contiguous groups. So, in summary, theorem 38 establishes the
“intuitively obvious” property that the search for an optimal solution can be restricted to bags of trips in
which, in order of increasing travel times, the groups of people are: the nomads, the settlers in a non-full
mixed trip, the settlers in full mixed trips and the pure settlers. Moreover, the number of settlers increases
as the trips get slower.

To prove theorem 38 we present an algorithm that accomplishes the required transformation. The
algorithm is a sequential composition of several iterative algorithms that in turn establish properties 37(a),
(b) and (c), followed by (d) and (e). Property 37(a) is established in section 3.1, properties 37(b) and (c)
are established in section 3.2 and properties 37(c) and (d) in section 3.3. Of course, it is necessary to ensure
that the algorithm to establish one property maintains the properties earlier in the list.

Non-nomadic trips have multiplicity 1 in F . Thus, for non-nomadic trips T , there is no confusion between
the trip T and the individual occurrences of T in F . On the other hand, nomadic trips may have multiplicity
greater than 1 in F . For such trips, we are careful to make clear whether the transformation is applied to
all occurrences of the trip or just one.

3.1. Choosing Nomads

We begin with property 37(a). The transformation algorithm is a combination of two iterative algorithms,
presented in lemmas 40 and 41. Both algorithms maintain the regularity property whilst choosing the fastest
people to be the nomads in non-pure trips. Accordingly, the measure of progress is

〈Σi : 1≤ i≤N : f.F.i× i〉 .(39)

We first establish that the nomads are persons 1 thru n, for some n.

Lemma 40. Every regular bag of trips is subsumed by a regular bag in which all settlers are slower than
all nomads.

4A “contiguous” group of people is a set of people of the form {i..j} for some i and j.

13



Proof Suppose that, within regular bag F , i is the fastest settler and j is the slowest nomad. Suppose i

is faster than j (that is, i< j and t.i≤ t.j).
Interchange i and j everywhere in F . We get a regular bag, F ′. The return time is clearly reduced by

at least t.j− t.i.
The times for the forward trips in F involving j are not increased in F ′ (because t.i≤ t.j). The time

for the one forward trip in F involving i is increased in F ′ by an amount that is at most t.j− t.i. This is
verified by considering two cases. The first case is when j is an element of i’s forward trip. In this case,
swapping i and j has no effect on the trip, and the increase in time taken is 0. In the second case, j is not
an element of i’s forward trip. In this case, it suffices to observe that, for any x (representing the maximum
time taken by the other participants in i’s forward trip),

t.i↑x + (t.j− t.i)

= { distributivity of sum over max, arithmetic }

t.j ↑ (x+(t.j− t.i))

≥ { t.i≤ t.j, monotonicity of max }

t.j ↑x .

Finally, the times for all other forward trips are unchanged.
The net effect is that the total time taken does not increase. That is, F ′ subsumes F . Repeating the

process is guaranteed to terminate because the measure of progress (39) is decreased by

(1×i + f.F.j× j) − (f.F.j× i + 1×j)

and 1<f.F.j and i< j; that is, the measure of progress is strictly decreased.
✷

Lemma 41. Every regular bag of forward trips is subsumed by a regular bag that satisfies 37(a).

Proof Suppose a regular bag F of forward trips is given. By lemma 40, we may assume that the nomads
in F are persons 1 thru bnc.F . (If not, apply the transformation detailed in lemma 40 first.)

Suppose T is a trip in F such that the nomads in T are not persons 1 thru tnc.F.T . (Recall that tnc.F.T
is the number of nomads in trip T .) Replace one occurrence of T in the bag F by the trip T ′ where

T ′ = (T ∩ {i | settler.F.i}) ∪ {i | 1≤ i≤ tnc.F.T } .

This replaces F by a bag F ′. To see that F ′ is regular, we consider the three sets T∩T ′, T ∩¬T ′ and
T ′∩¬T . We have

〈∀i : i∈T∩T ′ : f.F.i = f.F ′.i〉 ,

〈∀i : i ∈ T ∩¬T ′ : f.F.i = f.F ′.i+1 ∧ tnc.F.T < i≤ bnc.F 〉 ,

〈∀i : i ∈ T ′∩¬T : f.F ′.i = f.F.i+1 ∧ 1≤ i≤ tnc.F.T 〉 .

It follows that people that are settlers in F are also settlers in F ′ but some people may be nomads in F but
settlers in F ′. However, the number of forward trips made by each person remains strictly positive (since
a nomad makes at least 2 forward trips, by definition). Moreover, |T |= |T ′| and |T ∩¬T ′|= |T ′∩¬T |. It
follows that (12), (13) and (14) are invariant under the replacement. That is, F ′ is regular. Clearly, F ′

subsumes F and, by a similar argument to that used in lemma 40, the measure of progress (39) is strictly
decreased. If in F ′ there is a nomad that is slower than a settler, the construction in lemma 40 can be used
to rectify the situation. In this way, repeated application of the transformation is guaranteed to terminate
with a bag satisfying 37(a).
✷
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Property 37(a) of a regular bag F guarantees that the number of nomads in F is at most C because
tnc.F.T ≤C for each trip T in F .

From now on, we assume that we are given a regular bag F that satisfies 37(a). The transformations
detailed in the lemmas below rely on this assumption and are designed to maintain the property.

Except where otherwise stated, the measure of progress we use in both section 3.2 and 3.3 is

〈ΣT : T∈F : lead.T 〉 .(42)

Note that a transformation that guarantees a strict decrease of (42) whilst making no change to the nomads
automatically guarantees the subsumption relation because the total time is a monotonic function of the
leaders of the trips.

3.2. Permuting Settlers

In this section, we consider properties 37(b) and (c).

Lemma 43. Every regular bag is subsumed by a regular bag that satisfies 37(b).

Proof Suppose F does not satisfy 37(b). Take any two settlers i and j such that boss.F.i> boss.F.j

and i≤ j. It follows that i 6= j and they must be in different trips, T and U say. Swap boss.F.j in trip
U with person i in trip T . Then, using primes to denote the new trips, lead.T ′= lead.T = boss.F.i and
lead.U ′<lead.U because boss.F.j has been replaced by i and i< j≤ boss.F.j. So the measure of progress
(42) strictly decreases and F ′ subsumes F . Repeated application of the transformation is thus guaranteed
to terminate with a bag that subsumes the given bag and satisfies 37(b). The nomads are unaffected so
37(a) is maintained.
✷

In order to prove 37(c), we consider pure and mixed trips separately. Lemmas 44 and 45 show, respec-
tively, how pure trips and mixed trips are filled.

Lemma 44. Every regular bag is subsumed by a regular bag in which all pure trips are full.

Proof Suppose T is a non-full pure trip in F . Among such trips, choose the one with the fastest leader. By
combining property 37(a) with corollary 25, we can choose a non-pure trip with at least 2 nomads, and let
U be one occurrence of the trip. (The possibility that bnc.F =0 is excluded because of the assumption that
C<N .) Add person 1 to T. Remove the slowest nomad from U . Additionally, if the size of U is reduced
to 1, remove U altogether from F . This results in a regular bag that has total travel time at most the
total travel time for F . (The forward time for T is not changed because of 37(a), the forward time for U

does not increase or is eliminated entirely, and the total return time is not increased by the removal of the
slowest nomad from U and the addition of person 1 to T .) That is, we have constructed a regular bag that
subsumes F and has one fewer non-full pure trips. Repeating the process until there are no non-full pure
trips is guaranteed to terminate with a bag that subsumes F .
✷

Lemma 45. Every regular bag is subsumed by a regular bag satisfying 37(c).

Proof Suppose F is a regular bag of trips satisfying 37(a) and (b). Apply lemma 44 in order to ensure
that all pure trips are full. Sort the mixed trips in F in descending order of their leaders. Now rearrange
the settlers so that the mixed trips are filled in order whilst maintaining 37(b). That is, the slowest mixed
trip is first filled (if not already full) by shunting settlers from the next slowest mixed trip into the trip
in descending order of crossing time. Then the next slowest trip is filled, and so on. For example, if the
capacity is 5, the nomads are persons 1, 2, and 3, and the non-nomadic trips in descending order of leader
are

{1,12,11,10} , {1,2,9,8,7} , {1,2,6,5} , {1,2,3,4}
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replace the trips by

{1,12,11,10,9} , {1,2,8,7,6} , {1,2,5,4} , {1,2,3} .

The transformation may result in one or more trips with just one element (inevitably person 1 because of
property 37(a)). If so, remove this trip.

The transformation strictly decreases the measure of progress (42) and so does not increase the total
travel time. The number of non-full mixed trips is reduced to at most one which is necessarily the fastest.
✷

3.3. Monotonicity Properties

We now turn to properties 37(d) and (e). We begin by proving monotonicity of the settler count just for
the full non-nomadic trips.

Lemma 46. Every regular bag is subsumed by a regular bag for which for all full non-nomadic trips the
settler count sc is a monotonic function of the leader of the trip.

Proof We assume that F satisfies 37(a), (b) and (c) and construct F ′ to satisfy the lemma whilst
maintaining these properties.

Suppose the lemma is not satisfied. Then there must be full trips T and U in F such that sc.F.T >sc.F.U

and lead.T ≤ lead.U . Because sc.F.T > 0 and F satisfies 37(a), lead.T is a settler. But settlers are elements
of exactly one trip. We conclude that sc.F.T >sc.F.U > 0, both T and U have multiplicity 1 in F , and
lead.T < lead.U .

In order to preserve property 37(b), we must choose T and U so that the settlers in T∪U form a
contiguous group. This is achieved by (for example) ordering the trips by their leaders and looking for the
first consecutive pair of trips T and U that violate the monotonicity property.

Rearrange the settlers in T and U so that sc.F.T and sc.F.U are unchanged (thus guaranteeing a regular
bag) and the slowest settlers are in T and the fastest settler are in U . Using primes to denote the lowest
values of T and U , we have that lead.T ′= lead.U (since U is the slowest settler) and lead.U ′≤ lead.T (since
sc.F ′.U ′= sc.F.U <sc.F.T and U ′ contains the fastest settler). It follows that the measure of progress (42)
strictly decreases and

t.(lead.T ′)+ t.(lead.U ′) ≤ t.(lead.T )+ t.(lead.U) .

That is, F ′ subsumes F and repeated application of the transformation is guaranteed to terminate in a bag
with the required property. Properties 37(a), (b) and (c) are clearly maintained; in particular, property
37(c) remains true because the transformation only affects full trips.
✷

Lemma 47. Every regular bag F is subsumed by a regular bag such that any non-full mixed trip in F

has bnc.F nomads.

Proof By the foregoing lemmas, we may assume that F satisfies properties 37(a), (b) and (c), the settler
count for full non-nomadic trips is a monotonic function of the leader of the trip and any non-full mixed
trip in F is the fastest mixed trip. Suppose the fastest mixed trip in F is U . Suppose U is not full and
tnc.F.U <bnc.F . (Recall that tnc.F.U is the number of nomads in U and bnc.F is the number of nomads
in F .) There must be at least two trips with strictly more nomads than U . The transformation consists of
two steps: the first step ensures that all mixed trips are full or no nomadic trips have bnc.F nomads; the
second step ensures that no mixed trip has more nomads than U.

The first step repeats the following transformation while U is non-full, tnc.F.U <bnc.F and there is a
nomadic trip with bnc.F nomads.

Choose a nomadic trip T such that tnc.F.T = bnc.F . Let n equal bnc.F . Add tnc.F.U+1 to U and
remove n from one occurrence of T . If the resulting trip has size 1, remove it from F . The transformed bag
is regular and the total time does not increase. It also satisfies properties 37(a) and (b). In the transformed
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bag of trips, n may be a settler; if, in addition, U remains non-full the transformed bag may not satisfy
37(c). If this is the case then, before the transformation, the trip T has multiplicity 2 in F . Move person n

from the second occurrence of T to U ; remove the trip from F if its size is now 1. The transformed bag is
regular, it satisfies 37(a) and (b), and the total time does not increase. The bag now also satisfies 37(c). If
the settler count for full mixed trips is no longer a monotonic function of the leader of the trip, apply the
construction in lemma 46 to reinstate the property.

Repeated application of the above transformation is guaranteed to terminate because the size of U strictly
increases at each iteration.

On termination of this first step, suppose that U is still non-full and has fewer than bnc.F nomads.
There is now no nomadic trip with bnc.F nomads. Because all other non-nomadic trips are full and the
settler count for these trips is a monotonic function of the leader of the trip, the bag F contains a subbag of
{|U1 . . . Uk|} of k full mixed trips, for some k at least 2, each of which has bnc.F nomads; moreover, since the
settler count for full non-nomadic trips is a monotonic function of the leader of the trip, these are the fastest
full mixed trips in F . Let U0 be U and assume that the trips are indexed in decreasing order of speed. (So,
by 37 (c), U0 is faster than U1 which is faster than U2, and so on.) Let n be tnc.F.U . Remove bnc.F from
Uk and add n+1 to U0. Now fill each of U1 to Uk by moving the leader of Ui into Ui+1 for each i, 0≤ i<k.
This rearranges the settlers in the trips so that F remains regular and satisfies properties 37(a), (b) and
(c). The number of settlers in Uk increases by 1 but, by choosing the largest possible value for k, this does
not invalidate the property that the settler count is monotonically increasing. The number of nomads may
remain constant or may be reduced by 1; in the latter case, k=2 and the settler count of U1 increases by 1.
This does not invalidate the monotonicity of the settler count. The size of U remains unchanged; it has one
more nomad and one fewer settler. Repeating the process until U has bnc.F nomads is therefore guaranteed
to terminate with a bag of trips that satisfies all the required properties.
✷

Corollary 48. Every regular bag that satisfies properties 37(a), (b) and (c) is subsumed by a regular
bag that also satisfies 37(d) and 37(e).

Proof Comparing lemma 46 with 37(d), we have to show that the settler count increases monotonically
with the leader of the trip for all trips and not just the full trips. We also have to show that the nomad
count is a monotonically decreasing function of the leader for all non-nomadic trips.

By lemma 46, the nomad count is a monotonically decreasing function of the leader for all full non-
nomadic trips since, if T is full, sc.F.T + tnc.F.T = C. Lemma 47 extends this property to all non-nomadic
trips because any non-full nomadic trip is the fastest mixed trip (37(c)) and bnc.F is the slowest nomad. It
is then an immediate consequence that the settler count is a monotonically increasing function of the leader
for all trips. (The settler count for nomadic trips is 0 and the nomadic trips have the fastest leaders by
37(a).)
✷

Theorem 49.

〈⇓F : Regular.F : TotT ime.F 〉 = 〈⇓F : Ordered.F : TotT ime.F 〉

where F ranges over bags of (forward) trips and the predicate Ordered expresses the property that F is
ordered.

Proof The lemmas and corollaries from lemma 40 through to corollary 48 establish theorem 38 and, hence,
that the left side of the equation is at least its right side. Since ordered bags are by definition regular, the
left side is trivially at most the right side.
✷
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4. Constructing an Optimal Bag of Forward Trips

Theorem 49 has transformed our problem to determining a bag of trips F that realises

〈⇓F : Ordered.F : TotT ime.F 〉 .

A direct way of solving the problem would be to encode some (efficient) procedure for searching the space
of all ordered bags of trips whilst evaluating the total time incurred by the bag. This was the basis of
the solution in [Bac08]. But this is not necessarily the most efficient way to solve the problem. Instead of
searching the space of ordered bags, an optimal solution can be determined by computing

〈⇓F : SemiOrdered.F : TotT ime.F 〉(50)

for some predicate SemiOrdered such that

〈∀F :: Ordered.F ⇒ SemiOrdered.F ⇒ Regular.F 〉 .(51)

In words, an algorithm will correctly solve the optimisation problem if it effectively searches a space of regular
bags of trips that is guaranteed to include all ordered bags. Choosing the predicate SemiOrdered is dictated
by implementation considerations — such as whether an integer-programming or dynamic-programming
solution is desired.

In this section, we present two solutions to the problem of finding an optimal regular bag of trips. The
first (section 4.4) is an integer-programming solution. By formulating the problem in this way, it can be
solved using a freely available linear-programming package. (We have used the package called lp solve.) The
disadvantage of this solution method is that the time needed to calculate an optimal solution is unpredictable.
The second solution formulates the problem as solving an acyclic system of simultaneous equations (a so-
called “dynamic programming” problem); because the system of equations is acyclic, the equations can be
solved in (best- and worst-case) time proportional to the number of terms in the equations.

Since the effectiveness of an integer-programming solution is unpredictable, our interest in it is as a semi-
independent test of the correctness of our implementation of the dynamic-programming solution. The main
focus of this section is therefore the dynamic-programming solution and the integer-programming solution
is a by-product. We begin in section 4.1 with an explanation of the essence of dynamic programming.
In brief, a dynamic-programming solution requires an inductive formulation of the solution space together
with a “cost” function that respects this inductive structure. In order to realise these requirements, we
introduce an encoding of a trip as a pair of numbers, which we call an “NCL pair”, in section 4.2. NCL
is an abbreviation for “nomad-count, lead”. Section 4.3 then shows how a bag of trips is encoded as a
bag of NCL pairs and how such bags are assigned costs. This encoding is the basis for both the integer-
programming and dynamic-programming solutions but neither solution is an exact encoding of ordered
bags of trips. The integer-programming solution discussed in section 4.4 encodes minimal requirements on
“semi-ordered” bags of trips whilst the dynamic-programming solution detailed in section 4.5 encodes more
stringent requirements. The key properties are discussed in section 4.3.

4.1. The Essence of Dynamic Progamming

A so-called “dynamic programming” solution to an optimisation problem

〈⇓s : PutativeSoln.s : Cost.s〉

in its most common form can be briefly described as finding an optimal path from one node to another
in a finite, acyclic graph. There are thus three components that are crucial to such a solution method.
First, the optimisation problem must be generalised by the introduction of a parameter corresponding to
nodes of the graph. Second, since paths in a graph are formed of individual edges and the graph is required
to be acyclic (equivalently, there is a well-founded ordering on the nodes of the graph), the (generalised)
solution space must be characterised inductively5. That is, the set of putative solutions for a given node n

5We prefer the word “inductively” to the more common “recursively” because “recursion” can be unrestricted, making
formal reasoning difficult, whereas “induction” has a clear mathematical meaning allied to formal proof.
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in the graph must be formulated as a composite of the edges n 7→n′ from the node and the set of putative
solutions for the nodes n′. Finally, the cost function must have the same inductive structure as the space
of putative solutions, thus enabling it to be evaluated inductively in a topological (“bottom-up”) search of
the nodes of the graph. (The cost function must obey the so-called “principle of optimality”.) Note that
this last component is important not only to the efficient evaluation of the optimal cost but is also crucial
to determining the optimal solution — it would be pointless to determine, say, the length of a shortest path
between two points if the route could not also be found just as efficiently.

These three components are evident in the classic examples of dynamic programming. For example, the
ubiquitous matrix-multiplication algorithm (see, for example, [Sed88]) solves the problem of determining
how to minimise the number of arithmetic operations when multiplying a sequence of matrices. It does so
by generalising the problem to determining how to efficiently multiply subsequences of the given sequence.
The inductive structure of the solution space is inherited from the inductive structure of the subsequence
relation. Finally, and crucially, the fact that addition distributes over minimum means that the cost function
(the total number of arithmetic operations) has the same inductive structure as the subsequence relation.

(The matrix-multiplication algorithm is not a shortest-path algorithm in the sense that the inductive
definition of the cost function is non-linear; nevertheless, it does conform to the general structure described
above provided a more liberal definition of “path” is understood.)

The dynamic programming solution to the torch problem follows this pattern. The solution space (the
set of ordered bags of trips) is first generalised: the number n of people is an obvious generalisation but, as
anticipated in section 4.4, we add an extra parameter e called the “excess”. The excess of a bag of forward
trips b is the difference between |b|−1 and the number of return trips encoded by b; the required solution is
the case that the excess is 0 but the solution method extends the solution space to cases when the excess
is not 0. Crucially, by choosing to order pairs of numbers n and e lexicographically, the introduction of the
excess parameter allows us to formulate the solution space inductively. It is then straightforward to exploit
the fact that addition distributes over minimum (equivalently, the “principle of optimality” for shortest-path
problems) to also formulate the optimal total travel time inductively — indeed, as a classic shortest-path
problem. This completes the solution method: the optimal total travel time is computed in topological
order of pairs n and e; the relevant choices are recorded simultaneously so that an optimal solution can be
reconstructed on completion of the evaluation.

The running time of a dynamic-programming solution is dependent on the total number of terms in
the inductive definition of the cost function. The best- and worst-case running times are the same and
proportional to the total number of terms; the space requirements are proportional to the number of nodes
in the underlying graph structure. Because the latter is not monotonic in the subset relation on the set of
putative solutions, it can be more efficient to explore a larger solution space and less efficient to explore
a smaller solution space! This is of relevance here. Instead of formulating the set of ordered bags of trips
inductively (which is what we did in [Bac08]), it is better to construct an inductive characterisation of a
set of putative solutions that encodes a superset of such bags. These are the NCL-pair bags satisfying the
predicate SemiOrdered.N introduced in definition 81.

4.2. Representing Trips As Pairs

If T is a trip in an ordered bag F , the nomads in T are, by 37(a), persons k where 1≤k≤ tnc.F.T ; the
settlers in T are the settlers k such that boss.k= lead.T . Since the boss function is monotonic (37(b)), the
settlers are persons k, where k′<k≤ lead.T , for some k′. The value of k′ is governed by 37(a), (c) and
(e). This suggests the representation of a trip T by the pair (tnc.F.T , lead.T ). Specifically, we define the
function fwd of type {0..C}×{2..N}→Trip by, for all (i, j)∈{0..C}×{2..N},

fwd(i, j) = {k |1≤k≤ i} ∪ {k | i↑(j−(C−i))<k≤ j} .(52)

Trip T is represented by the pair (tnc.F.T , lead.T ) in the following sense:

Lemma 53. Suppose the bag of trips F is ordered. Then

〈∀T : T∈F : T = fwd(tnc.F.T , lead.T )〉 .
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Moreover, if T is a nomadic trip in F or T is a non-full mixed trip in F ,

T = fwd(i , lead.T ) ⇐ 0≤ i≤ tnc.F.T .

Proof For all T∈F , lead.T ≥C equivales T is full. (Clearly, if lead.T <C, T is not full. Vice-versa, by
37(c), if T is not full it is either a nomadic trip or the fastest mixed trip. In the former case, by 37(a),
lead.T <C. In the latter case, by 37(e), (a) and (b), the people in the trip are the nomads 1 .. (bnc.F )
together with persons (bnc.F +1) .. (lead.T ); that is, T = {k | 1≤k≤ lead.T }. Hence, lead.T <C.)

This suggests a case analysis on the type of trips: pure and full mixed trips, nomadic trips and non-full
mixed trips. In the case of a pure trip T , tnc.F.T =0. Since, by 37(c), all pure trips are full, it follows that
lead.T ≥C and it is easily checked that T = fwd(0 , lead.T ). For full mixed trips T , it is again the case
that lead.T ≥C and the property follows from properties 37(a) and (b) of an ordered bag.

The case of nomadic trips follows from 37(a). (For nomadic trip T , tnc.F.T = lead.T .) Finally, for a
non-full mixed trip T , properties 37(a), (b) and (e) guarantee that the trip is {k | 1≤k≤ lead.T }, where
lead.T <C.
✷

Lemma 53 allows some flexibility in representing the nomadic trips and a non-full mixed trip which we
return to later.

Definition 54 (NCL-pair bag). A function b of type {0..C}×{2..N}→ IN with the property that

〈∀ i,j : 0≤ i≤C ∧ 2≤ j≤N ∧ 0<b(i, j) : i≤ j ∧ (i=C⇒ j=C)〉(55)

is called an NCL-pair bag.
✷

“NCL” is an abbreviation of “nomad-count, lead”. An NCL-pair bag b represents the bag Fwd.b where6

Fwd.b = 〈⊎ i,j : 0≤ i≤C ∧ 2≤ j≤N : {|b(i, j)∗ fwd(i, j)|}〉 .(56)

The constraint (55) is necessary to guarantee that person j is the slowest person in trip fwd(i, j). Specifically,

Lemma 57. If b is an NCL-pair bag then

〈∀ i,j : 0≤ i≤C ∧ 2≤ j≤N ∧ 0<b(i, j) : lead.(fwd(i, j))= j〉 .

It follows that

〈∀ i,j : 0≤ i≤C ∧ 2≤ j≤N ∧ 0<b(i, j) : time.(fwd(i, j))= t.j〉

and

time.(Fwd.b) = 〈Σ i,j : 0≤ i≤C ∧ 2≤ j≤N : b(i, j)× t.j〉 .

✷

The lemma is easily checked by expanding the definitions.
As well as representing a bag of forward trips, an NCL-pair bag also represents a bag of return trips.

Specifically, the function rets with domain {0..C}×{2..N} and range the power set of the set of return trips
is defined by, for all (i, j)∈{0..C}×{2..N},

rets(i, j) = {k: 1≤k≤ i: {k}}(58)

and the function Rets with domain {0..C}×{2..N}→ IN and range Trip→IN, is defined by

Rets.b = 〈⊎ i,j,k : 0≤ i≤C ∧ 2≤ j≤N ∧ 1≤k≤ i : {|b(i, j)∗{k}|}〉 .(59)

6⊎ denotes the bag-union quantifer.
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Note that rets(0, j) is the empty set, for all j.
In this way, an NCL-pair bag represents a bag of forward trips and a bag of return trips. The total trip

time for the two bags is defined by the function Cost where

Cost.b = 〈Σ i,j : 0≤ i≤C ∧ 2≤ j≤N : b(i, j)×cost(i, j)〉(60)

and

cost(i, j) = t.j+ 〈Σk : 1≤k≤ i : t.k〉 .(61)

4.3. Representing Bags of Trips

Lemma 53 allows some flexibility in representing a forward trip by an NCL pair. For example, a nomadic
trip with n nomads can be represented by (n, n) or by (0, n); both represent the forward trip {k: 1≤k≤n: k}.
However, they differ in the set of return trips they represent. Specifically, rets(n, n) = {k: 1≤k≤n: {k}}
whilst rets(0, n) is the empty set. We now want to transform our optimisation problem from finding an
optimal regular bag of trips to that of finding an NCL-pair bag that optimises the function Cost. There is
yet more flexibility in the search space that we choose. It is not necessary that NCL-pair bags in the search
space encode regular bags of trips, nor that they encode ordered bags of trips. But we do need to impose
some conditions on NCL-pair bags in order that the flexibility is limited in a way that guarantees that the
transformation is correct.

Until now, the number of people, N , and the capacity, C, have been implicit parameters. In anticipation
of our dynamic-programming solution, it is necessary to make the parameter N explicit. The “excess”
parameter, discussed earlier, will also be introduced shortly.

For our integer-programming solution, we introduce the predicate RegularNCL.N on NCL-pair bags
in definition 66; for our dynamic-programming solution, we introduce the predicate SemiOrdered.N on
NCL-pair bags in definition 81. Then, with dummy F ranging over bags of trips and dummy b ranging over
NCL-pair bags, we show that

〈⇓F : Regular.F : TotT ime.F 〉 ,(62)

〈⇓b : RegularNCL.N.b : Cost.b〉 ,(63)

〈⇓b : SemiOrdered.N.b : Cost.b〉 and(64)

〈⇓F : Ordered.F : TotT ime.F 〉(65)

are all equal. We do this by an at-most and at-least proof. The proof takes the following form:

〈⇓F : Regular.F : TotT ime.F 〉

≤ { definition 66; lemma 72 and corollary 77 }

〈⇓b : RegularNCL.N.b : Cost.b〉

≤ { lemma 82 }

〈⇓b : SemiOrdered.N.b : Cost.b〉

≤ { definition 81; lemma 83 }

〈⇓F : Ordered.F : TotT ime.F 〉 .

Because we have already established the equality of (62) and (65), the equality of all four quantifications
follows by transitivity and anti-symmetry of the at-most relation.
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Definition 66. Suppose b is an NCL-pair bag (that is, b has type {0..C}×{2..N}→ IN and satisfies (55)).
Then b satisfies the predicate RegularNCL.N iff it satisfies two constraints. The first constraint is that the
number of forward trips represented by b is one more than the number of return trips:

|Rets.b|+1 = |Fwd.b| .(67)

The second constraint is that for every person the number of forward trips is one more than the number of
return trips:

crosses.N.b(68)

where crosses.N.b is the predicate

〈∀k : 1≤k≤N : fwdNo.b.k = 1+ retNo.b.k〉(69)

and fwdNo and retNo are defined by

fwdNo.b.k = 〈Σ i,j : k∈ fwd(i, j) : b(i, j)〉 ,(70)

retNo.b.k = 〈Σ i,j : {k}∈ rets(i, j) : b(i, j)〉 .(71)

As the abbreviations suggest, fwdNo and retNo count the number of forward and return trips of each
person.
✷

We now show that

〈∃τ : τ ∈ RegularNCL.N → Regular : 〈∀b :: TotT ime.(τ.b)≤Cost.b〉〉 .

Unsurprisingly, the transformation τ is the function Fwd:

Lemma 72. Suppose b satisfies RegularNCL.N . Then RetT rips.(Fwd.b)=Rets.b. Moreover, Fwd.b is
a regular bag and, if b satisfies (55), Cost.b=TotT ime.(Fwd.b).

Proof First, we have for all k, 1≤k≤N ,

RetT rips.(Fwd.b).{k}

= { definition of RetT rips: (34) }

〈ΣT : k∈T : Fwd.b.T 〉 − 1

= { definition of Fwd: (56) }

〈Σ i,j : k∈fwd(i, j) : b(i, j)〉 − 1

= { (68) }

〈Σ i,j : {k}∈rets(i, j) : b(i, j)〉

= { definition of Rets: (59) }

Rets.b.{k} .

We conclude that

RetT rips.(Fwd.b) = Rets.b .(73)

To show that Fwd.b is a regular bag, we have to show that

〈∀ i,j : 0≤ i≤C ∧ 2≤ j≤N ∧ 0<b(i, j) : 2≤|fwd(i, j)|≤C〉(74)
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(that is, every forward trip involves at least two and at most C people: see (13)),

|Fwd.b| = |RetT rips.(Fwd.b)|+1 .(75)

(that is, the total number of forward trips is one more than the total number of return trips: see (14)) and

〈∀k : 1≤k≤N : 1≤ f.(Fwd.b).k〉(76)

(that is, each person crosses at least once: see (12)).
Property (74) is immediate from (52). Property (75) is an immediate consequence of (67) and (73);

property (76) is an immediate consequence of (68) and (73). Finally,

TotT ime.(Fwd.b)

= { definition of TotT ime }

time.(Fwd.b)+ time.(RetT rips.(Fwd.b))

= { RetT rips.(Fwd.b)=Rets.b }

time.(Fwd.b)+ time.(Rets.b)

= { lemma 57, definition of time and Rets }

〈Σ i,j : 0≤ i≤C ∧ 2≤ j≤N : b(i, j)× (t.j+ 〈Σk : 1≤k≤ i : t.k〉)〉

= { definition }

Cost.b .

✷

Corollary 77.

〈⇓F :Regular.F :TotT ime.F 〉 ≤ 〈⇓b :RegularNCL.b :Cost.b〉

Proof Immediate from lemma 72 and the general theory of transforming optimisation problems discussed
in section 1.1.
✷

We now turn to the definition of “semi-ordered” NCL-pair bags. Because dynamic programming in-
evitably involves an inductive definition of the search space, we need to make the inductive parame-
ters explicit. The functions we introduce are parameterised by the number of people n and the so-
called “excess”. Specifically, suppose b is an NCL-pair bag. Then we define the function excess of type
IN→ ({0..C}×{2..N}→ IN)→ Int by

excess.n.b = 〈Σ i,j : 0≤ i≤C ∧ 2≤ j≤n : b(i, j)×(i−1)〉 +1 .(78)

Informally, the value of excess.n.b is the difference between the number of return trips encoded by b and
the number of return trips needed to effect the bag of forward trips in Fwd.b.

Our definition of semi-ordered is the conjunction of “quasi-ordered” and the excess is 0. In order to
defined “quasi-ordered”, we define the predicate service by

service.n.b = 〈∀k : 2≤k≤n : 0≤ excess.k.b〉 .(79)

and the predicate allsettler by

allsettler.n.b = 〈∀k : C <k≤n : fwdNo.b.k = 1〉 .(80)

Then:
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Definition 81. Suppose b is an NCL-pair bag and suppose 2≤n≤N . Then, we define the predicate
QuasiOrdered.n by

QuasiOrdered.n.b ≡ crosses.n.b∧ service.n.b∧allsettler.n.b

and the predicate SemiOrdered.n by

SemiOrdered.n.b ≡ QuasiOrdered.n.b∧ (excess.n.b=0) .

(The requirement service.n.b does not guarantee that Fwd.b is an ordered bag but it does guarantee that
any pure trips in Fwd.b are “serviced” by trips that involve faster people. That is, all the properties of an
ordered bag are satisfied except for the property 37(d) — the number of settlers may not be an increasing
function of the leader of a trip.)
✷

Lemma 82.

〈⇓b :RegularNCL.N.b :Cost.b〉 ≤ 〈⇓b :SemiOrdered.N.b :Cost.b〉 .

Proof We have, for all N and NCL-pair bags b,

SemiOrdered.N.b

⇒ { definition 81, weakening }

crosses.N.b ∧ (excess.N.b=0)

= { definition 78 }

crosses.N.b ∧ (〈Σ i,j : 0≤ i≤C ∧ 2≤ j≤N : b(i, j)×(i−1)〉 +1=0)

= { 〈Σ i,j : 0≤ i≤C ∧ 2≤ j≤N : b(i, j)×i〉 = |Rets.b|,

〈Σ i,j : 0≤ i≤C ∧ 2≤ j≤N : b(i, j)×1〉 = |Fwd.b| }

crosses.N.b ∧ (|Rets.b|− |Fwd.b|+1=0)

= { definition 66 }

RegularNCL.N.b .

That is, SemiOrdered implies RegularNCL everywhere. The lemma follows trivially: the transformation
from semi-ordered NCL-pair bags to regular NCL-pair bags is the identity function.
✷

We now show that

〈∃τ : τ ∈ Ordered → SemiOrdered.N : 〈∀F :: Cost.(τ.F )≤TotT ime.F 〉〉 .

It is at this point that the flexibility in the choice of NCL pairs discussed in lemma 53 becomes important.

Lemma 83. Suppose F is an ordered bag. Define the bag b as follows. First, among all the trips with
bnc.F nomads choose one that has the smallest lead value. Call this lasttrip. (The choice can always be
made by definition of bnc.F ; it is called lasttrip because it is always a candidate for selection as the last trip
when executing the algorithm given in the proof of theorem 30 to transform F into a sequence of forward
and return trips.) Let G be the result of removing one occurrence of lasttrip from F . Define b by

b = 〈⊎T :T∈G : {|G.T ∗ (tnc.F.T , lead.T )|}〉 ⊎ {|1∗(0 , lead.lasttrip)|} .

Then b is an NCL-pair bag and satisfies SemiOrdered.N . Moreover, Cost.b=TotT ime.F .
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Proof We observe first that

lasttrip = fwd(0 , lead.lasttrip) .(84)

The proof is by a case analysis: lasttrip is either a nomadic trip or a mixed trip. (It can’t be a pure trip
because 0<bnc.F ; see (26).) In both cases, we have

fwd(0 , lead.lasttrip)

= { definition of fwd }

{k |1≤ k≤ 0} ∪ {k | 0↑(lead.lasttrip−C)<k≤ lead.lasttrip}

= { 1≤k≤ 0 ≡ false, set calculus }

{k | 0↑(lead.lasttrip−C)<k≤ lead.lasttrip} .

Suppose lasttrip is a nomadic trip. Then

{k | 0↑(lead.lasttrip−C)<k≤ lead.lasttrip}

= { lasttrip is a nomadic trip and F is ordered;

so, by choice of lasttrip and 37(a), lead.lasttrip= bnc.F ≤C }

{k | 0<k≤ bnc.F}

= { lasttrip has bnc.F nomads and F is ordered; 37(a) }

lasttrip .

Suppose lasttrip is a mixed trip. Then

{k | 0↑(lead.lasttrip−C)<k≤ lead.lasttrip}

= { lasttrip has bnc.F nomads and is the fastest mixed trip,

also F is ordered; so, by 37(b), lead.lasttrip≤C }

{k | 0<k≤ lead.lasttrip}

= { arithmetic, set union }

{k | 1≤k≤ bnc.F} ∪ {k | bnc.F <k≤ lead.lasttrip}

= { lead.lasttrip≤C, definition of fwd }

fwd(bnc.F , lead.lasttrip)

= { lasttrip has bnc.F nomads, lemma 53 }

lasttrip .

We have thus verified (84) in both cases.
Since F is regular, it follows that b has the right type.
We now have to establish properties (55), (67), (68), (79) and (80). That b satisfies (55) is an immediate

consequence of property 37(a) of an ordered bag (the nomads in T are persons 1 thru tnc.F.T ).
That b satisfies (67) and (68) is a consequence of the fact that Fwd.b=F and Rets.b=RetT rips.F . The

properties are thus inherited from the properties of the return trips of F. We prove the two equalities as
follows.

Fwd.b

= { definition }

〈⊎T :T∈G : {|G.T ∗ (tnc.F.T , lead.T )|}〉 ⊎ {|1 ∗ fwd.(0 , lead.lasttrip)|}
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= { lemma 53 and (84) }

〈⊎T :T∈G : {|G.T ∗T |}〉 ⊎ {|1∗lasttrip|}

= { definition of G }

F .

Also,

Rets.b

= { definition of b and Rets: (59) }

〈⊎ i,j,k : 1≤k≤ i : 〈⊎T : T∈G ∧ (tnc.F.T , lead.T )=(i, j) : {|G.T ∗ {k}|}〉〉

= { one-point rule }

〈⊎T : T∈G : 〈⊎k : 1≤k≤ tnc.F.T : {|G.T ∗ {k}|}〉〉

= { lasttrip.F has bnc.F nomads }

〈⊎T : T∈F : 〈⊎k : 1≤k≤ tnc.F.T : {|F.T ∗ {k}|}〉〉

− 〈⊎k : 1≤k≤ bnc.F : {|1∗{k}|}〉

= { F is ordered; so, for all trips T , the nomads in T are persons k

such that 1≤k≤ tnc.F.T , definition of f.F : (1) }

〈⊎k : 1≤k≤ bnc.F : {|(f.F.k− 1)∗{k}|}〉

= { definition of r.F : (2) }

〈⊎k : 1≤k≤ bnc.F : {|r.F.k ∗ {k}|}〉

= { definition of RetT rips: (34) }

RetT rips.F .

Consequently,

TotT ime.F

= { (35) }

time.F + time.(RetT rips.F )

= { above calculations }

time.(Fwd.b) + time.(Rets.b)

= { lemma 57 }

Cost.b .

We now show that b satisfies (79).
A brief, informal summary of the proof is that the value of excess.n.b is decreased by pairs (0, n) such

that 0<b(0, n) and is increased by pairs (i, n) such that 0<b(i, n) and 2≤ i. That is, the excess is decreased
by lasttrip and by pure trips and is increased by nomadic and mixed trips. If F is ordered, lasttrip is either
a slowest nomadic trip or the fastest mixed trip, and the pure trips are the slowest trips. Hence, the value
of excess.n.b is always at least 0.

We split the formal proof into three cases determined by the value of lead.lasttrip and the number of
pure trips in F . The first case is n≤ lead.lasttrip, the second case is lead.lasttrip < n ≤ N − C×pc.F

and the final case is N − C×pc.F < n ≤ N .
We first show that lead.lasttrip ≤ N − C×pc.F . We use proof by contradiction:
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lead.lasttrip > N − C×pc.F

= { arithmetic }

〈∃j :: N − C×pc.F < j ≤ lead.lasttrip〉

⇒ { by 37(c) and definition of lasttrip,

j≤ lead.lasttrip ⇒ j ∈ lasttrip }

〈∃j : N − C×pc.F < j : j∈lasttrip〉

⇒ { 37(c) and (d) }

lasttrip is a pure trip

⇒ { definition of lasttrip }

bnc.F =0

= { (26) and C <N }

false .

Now recall the definition of lasttrip: it is a trip in F that has the smallest lead value among those trips with
bnc.F nomads. Thus lasttrip is either a nomadic trip or, because of property 37(e), it is the fastest mixed
trip. By a simple case analysis, it follows that, for all trips T in F ,

lead.T ≤ lead.lasttrip ⇒ T = lasttrip ∨ 0<tnc.T(85)

and

b(0 , lead.lasttrip) = 1 .(86)

Now we begin our analysis of the three cases identified above. First, assume n≤ lead.lasttrip. Then

0≤ i≤C ∧ 2≤ j≤n ∧ 0<b(i, j)

= { definition of b, 37(a) }

〈∃T : T∈G : i= tnc.F.T ∧ j= lead.T ∧ 2≤ lead.T ≤n〉

∨ (0= i ∧ j= lead.lasttrip)

⇒ { assumption: n≤ lead.lasttrip }

〈∃T : T∈G : i= tnc.F.T ∧ j= lead.T ∧ 2≤ lead.T ≤ lead.lasttrip〉

∨ (0= i ∧ j= lead.lasttrip)

⇒ { (85) }

0<i ∨ (0= i ∧ j= lead.lasttrip)

⇒ { (86) }

0≤ i−1 ∨ b(i, j)=1 .

For lead.lasttrip < n ≤ N − C×pc.F , abbreviating lead.lasttrip to ll, we have

excess.n.b

= { definition: (78), range splitting }

excess.ll.b + 〈Σ i,j : 0≤ i≤C ∧ ll < j≤n : b(i, j)×(i−1)〉

≥ { excess.ll.b≥0 }
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〈Σ i,j : 0≤ i≤C ∧ ll< j≤n : b(i, j)×(i−1)〉

≥ { assumption: ll < n ≤ N − C×pc.F ; so, by 37(d),

〈∀T : T∈F ∧ ll< lead.T ≤n : 0<tnc.F.T 〉 ; definition of b }

0 .

and in the case that N − C×pc.F < n ≤ N , we have

excess.n.b

= { definition: (78), range splitting }

excess.N.b − 〈Σ i,j : 0≤ i≤C ∧n<j≤N : b(i, j)×(i−1)〉

= { excess.N.b=0, negation distributes through summation }

〈Σ i,j : 0≤ i≤C ∧n<j≤N : b(i, j)×(1−i)〉

= { assumption: n ≥ N − C×pc.F ; so, by 37(d),

〈∀T : T∈F ∧ n< lead.T ≤N : 0= tnc.F.T 〉 ; definition of b }

〈Σ i,j : 0≤ i≤C ∧n≤ j <N : b(i, j)〉

≥ { b(i, j)≥ 0 }

0 .

This completes the proof of the fact that b satisfies (79).
Finally, b satisfies (80) because F is ordered and so satisfies 37(a). (Everyone crosses and the nomads

—the non-settlers— are persons 1 to tnc.F , where tnc.F ≤C.)
✷

Corollary 87. Suppose F is an ordered bag of trips. Then

〈⇓b :SemiOrdered.N.b :Cost.b〉 ≤ 〈⇓F :Ordered.F :TotT ime.F 〉 .

Proof Immediate from lemma 83 and the general theory of transforming optimisation problems discussed
in section 1.1.
✷

Combining corollary 87, lemma 82 and corollary 77 with the fact that (62) and (65) are equal, we
conclude:

Theorem 88. The quantifications (62), (63), (64) and (65) are all equal to the minimum time required
for N people to cross the bridge under the given constraints.

✷

4.4. Integer-Programming Solution

The problem of evaluating 〈⇓b : RegularNCL.b : Cost.b〉 is already in the form of an integer program-
ming problem. The equations (67) and (68) are both linear constraints on b and the constraint (55) simply
reduces the number of variables in the integer-programming problem. The function Cost is also clearly a
linear function.

Optionally, a third constraint can be added:

〈∀ i,j : 2≤ i≤C ∧ C <j≤N : b(i, j)≤ 1〉 .

This constraint is implied by (80).
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4.4.1. Example

Let us give a simple, concrete example. We take the classic case of 4 people and a bridge of capacity 2.
That is, N =4 and C=2. We assume that 0≤ t.1≤ t.2≤ t.3≤ t.4. The problem is to compute a function
b indexed by pairs (i, j) that satisfy the constraints: 0≤ i≤ 2, 2≤ j≤ 4, i≤ j and i=2⇒ j=2 (cf. (55)).
In the table below, the first two columns list values of i and j satisfying these constraints. The remaining
columns show the values of four functions on such pairs, the column header giving the name of the function.

i j fwd(i, j) rets(i, j) time.(fwd(i, j)) time.(rets(i, j))
0 2 {1,2} ∅ t.2 0
0 3 {2,3} ∅ t.3 0
0 4 {3,4} ∅ t.4 0
1 2 {1,2} {{1}} t.2 t.1
1 3 {1,3} {{1}} t.3 t.1
1 4 {1,4} {{1}} t.4 t.1
2 2 {1,2} {{1},{2}} t.2 t.1+ t.2

Now the problem is to minimise Cost.b, i.e. to minimise

b(0, 2)×(t.2+0)+ b(0, 3)×(t.3+0)+ b(0, 4)×(t.4+0)

+ b(1, 2)×(t.2+ t.1)+ b(1, 3)×(t.3+ t.1)+ b(1, 4)×(t.4+ t.1)

+ b(2, 2)×(t.2+(t.1+ t.2))

subject to two sets of constraints. The first set is the constraints given by (68). These are given without
simplification below. In order, the constraints specify that persons 1, 2, 3 and 4 each make one more forward
trip than return trips.

b(0, 2)+b(1, 2)+b(1, 3)+b(1, 4)+b(2, 2) = 1+b(1, 2)+b(1, 3)+b(1, 4)+b(2, 2)

b(0, 2)+b(0, 3)+b(1, 2)+b(2, 2) = 1+b(2, 2)

b(0, 3)+b(0, 4)+b(1, 3) = 1

b(0, 4)+b(1, 4) = 1

(Note that the first equation simplifies to b(0, 2)=1 and the second then simplifies to b(0, 3)+b(1, 2) = 0.)
The second set of constraints has just one element obtained by instantiating the constraint (78). It is too
long to write out in full. Simplified, it is the equation:

b(0, 2)+b(0, 3)+b(0, 4)−b(2, 2)−1 = 0 .

Performing the obvious simplifications by hand7, the problem becomes to minimise

t.2 + b(0, 4)×t.4 + b(1, 3)×(t.3+ t.1) + b(1, 4)×(t.4+ t.1) + b(2, 2)×(t.1+2×t.2)

subject to

b(0, 4)+b(1, 3) = 1

7In our implementation, these simplifications are done automatically in order to minimise the number of variables and the
total size of the equations in the linear-programming model. See the appendix for an example.
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b(0, 4)+b(1, 4) = 1

and

b(0, 4) = b(2, 2) .

This corresponds to the standard solution to the problem [Rot02, Bac11]: the choice is between b(0, 4)=1
with time t.2+ t.4+(t.1+2× t.2) and b(1, 3)= b(1, 4)=1 with time t.2+(t.3+ t.1)+ (t.4+ t.1). That is, the
slowest person, person 4, crosses in a pure trip if 2× t.2 is at most t.3+ t.1 and in a mixed trip (with person
1) if t.3+ t.1 is at most 2× t.2.

Of course, knowing the solution to the integer-programming problem is insufficient: the desired solution
is how to get the people across, not how long it will take! This is why the calculation of Fwd.b (and its
correctness as expressed in lemma 72) and the algorithm to calculate a regular sequence from a regular bag
(see theorem 30) are indispensable.

The appendix shows the lp solve code for an example with 11 people and a capacity of 3.

4.5. Dynamic-Programming Solution

In this section, we show how to use dynamic programming to solve the torch problem.
Let dummy b range over NCL-pair bags. Then our dynamic-programming solution determines the value

of B where

B = 〈⇓b : QuasiOrdered.N.b ∧ (excess.N.b=0) : Cost.b〉 .

As shown in section 4.3, B equals the optimal total travel time to get all N people across a bridge of capacity
C where their individual crossing times are given by the function t.

Since the “excess” plays a crucial role, we begin by introducing a parameter e in the equations for B:

B = s(N,0)

where s(n,e) is expressed formally as follows:

s(n,e)

= 〈⇓b

: QuasiOrdered.n.b

∧ (excess.n.b= e)

∧ 〈∀ i,j : 0≤ i≤C ∧ n<j≤N : b(i, j)=0〉

: Cost.b

〉 .

The dummy b continues to range over NCL-pair bags. The function s is parameterised by variables n and
e where 2≤n≤N . The requirement service.n.b in the definition of QuasiOrdered.n means that s(n,e) is
only defined for values of e such that 0≤ e. Moreover, since

excess.n.b

= { definition: (78), arithmetic }

excess.N.b− 〈Σ i,j : 0≤ i≤C ∧n<j≤N : b(i, j)×(i−1)〉

= { excess.N.b=0, arithmetic }

〈Σj :n<j≤N : b(0, j)〉 − 〈Σ i,j : 2≤ i≤C ∧n<j≤N : b(i, j)×(i−1)〉

≤ { arithmetic }
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〈Σj :n<j≤N : b(0, j)〉

≤ { allsettler.N.b and j∈fwd(0, k) ≡ k−C<j≤k }
⌊

N−n

C

⌋

the requirement also implies the upper bound e≤
⌊

N−n

C

⌋

.
The first step is to identify the inductive structure of the range of variable b. Observing that

excess.n.(b⊎{|(i, n)|}) = excess.n.b+(i−1)

we infer two equations for the range of dummy b. First for C <n it is clear from (71) that retNo.b.n=0.
From (70) it follows that fwdNo.b.n=1. In order to meet this requirement and the requirement in the
definition of s(n,e) that b(i, j) is 0 for all j such that n<j≤N , it is necessary that

〈∃i,b′ : 0 ≤ i < C : b= b′ ⊎{|(i, n)|}〉 .

That is, b must encode a trip led by person n with i nomads, for some i. The number of nomads i must also
be at most (e+1), otherwise it is impossible to choose b′ so that the predicate service is satisfied everywhere.
Moreover, the remaining n−(C−i) people must be at least 2 and must be “serviced” by b′. So, we obtain
that for C<n and 0≤ e≤

⌊

N−n

C

⌋

,

s(n,e)

= 〈⇓i : 0 ≤ i ≤ (C−1)↓(e+1) ∧ 2≤n−(C−i)

: 〈⇓b′

: QuasiOrdered.(n−(C−i)).b′

∧ (excess.(n−(C−i)).b′ = e+1−i)

∧ 〈∀k,j : 0≤k≤C ∧ n−(C−i)<j≤N : b′(k, j)= 0〉

: Cost.(b′ ⊎{|(i, n)|})

〉

〉 .

By using the equality Cost.(b′ ⊎{|(i, n)|}) = Cost.b′+ cost(i, n) and factoring out the term cost(i, n), we thus
obtain that, for C <n and 0≤ e≤

⌊

N−n

C

⌋

,

s(n,e) = 〈⇓i : 0↑(C+2−n) ≤ i ≤ (C−1)↓(e+1) : s(n−(C−i) , e+1−i) + cost(i, n)〉 .(89)

(It is necessary to check that e+1−i≤
⌊

N−(n−(C−i))
C

⌋

if e≤
⌊

N−n

C

⌋

and 0≤ i. This is easily done.) Now

we formulate equations for the case that n≤C. In this case, the allsettler constraint in the definition of
QuasiOrdered is no longer relevant. If the excess is 0 and there are at most C people left, there is only one
possible choice for the NCL-pair bag b, namely {|(0, n)|}. So, for 2≤n≤C,

s(n,0) = cost(0, n) .(90)

If the excess is greater than 0 and n is at most C, any NCL-pair bag b in the definition of s(n,e) must
include a pair (i, n) where 2≤ i (so that the excess is decreased) and i≤ e+1 (so that the excess remains
positive). In order to guarantee the predicate crosses, the number i of return trips becomes the number of
people remaining to cross again. So, for 2≤n≤C and 0<e≤

⌊

N−n

C

⌋

,

s(n,e) = 〈⇓i : 2≤ i≤ (e+1)↓n : s(i , e−i+1)+ cost(i, n)〉 .(91)

The inductive equations (89), (90) and (91) constitute the dynamic-programming solution to the capacity-C
torch problem.
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4.5.1. Solving the Equations

Finding the total travel time incurred by an optimal bag of forward trips is achieved by solving the
equations in s. First, the (N−1)×(C+1) values of the cost function are tabulated using N×(C+1) addi-
tions. Then, for n in the range 2..C, the (C−1)×(

⌊

N−n

C

⌋

+1) values of s(n,e) can be computed in order

of increasing n and increasing e. This requires at most (C−1)×(
⌊

N−2
C

⌋

+1)×C additions/comparisons.

Next,
⌊

N−n

C

⌋

+1 values of s(n,e) must be computed for each n greater than C. This requires at most

(N−C)×(
⌊

N−2
C

⌋

+1)×C additions/comparisons. In this way, the optimal solution can be determined with
O(N2) additions/comparisons. The space requirements are dictated by the need to store values of the func-

tion s: in total, at most O(N
2

C
) storage locations are required. For small values of C (for example, C equal

to 2) the space requirement is O(N2) but it is less when C is proportional to N .
A bag of pairs that realises the minimum time is calculated at the same time as the equations are solved:

whenever s(n,e) is evaluated, for some n and e, a value of i that realises the minimum quantification in the
equation for s is recorded. Once the value of s(N,0) has been calculated, the bag of pairs can be accumulated
by retracing the sequence of choices.

Java code for the complete algorithm is given in the appendix. The code uses the array nmds (short for
“nomads”), indexed by the number of people and the excess, to record a value of i that realises the minimum
in the equations for s given above. The code for computing a sequence of crossings (rather than just the
bag of forward trips) is also included.

The evaluation of s(N,0) is equivalent to a shortest-path problem. The nodes in the graph are pairs (n, e)
where 2≤n≤N and 0≤ e≤

⌊

N−n

C

⌋

. There is also a single terminal node. The start node is the node (N, 0).
The edges are defined by cost terms in the equations. There is an edge of length cost(0, n) from each node
(n, 0), where n≤C, to the terminal node. For pairs (n, e) where C <n, there is an edge of length cost(i, n)
from the node (n, e) to the node (n−(C−i) , e+1−i) for each i such that 0↑(C+2−n) ≤ i ≤ (C−1)↓(e+1).
For pairs (n, e) where n≤C and 0<e there is an edge of length cost(i, n) from the node (n, e) to the node
(i , e+1−i) for each i such that 2≤ i≤ (e+1)↓n. That s is inductively defined is equivalent to the graph
being acyclic. The algorithm sketched above is a topological search algorithm with best- and worst-case time
complexity proportional to the number of edges in the graph, and best- and worst-case space complexity
proportional to the number of nodes.

4.6. Evaluation

In order to evaluate our dynamic-programming solution, we have implemented it and the earlier, more
complicated solution [Bac08] in Java; we have also implemented the integer-programming solution. A
substantial number of test cases was used to evaluate the efficiency of the different solutions and the results
compared. For some tests we forced the number of pure trips to be at least a certain number by choosing
extremely large crossing times for a certain proportion of the people. (To force at least p pure trips, the
crossing times for p×C people are chosen to be, say, 103×C whilst the crossing times for the remaining
people are chosen randomly but much smaller — for example, in the range 1 to 102.) Further details
of the methodology used for the comparisons are in the second author’s MSc dissertation [Tru11]. The
results of the comparison in [Tru11] are, however, now out of date because we have since improved both the
dynamic-programming algorithm and the generation of the integer-programming model.

The primary goal of implementing the integer-programming solution was to have a semi-independent
test of the correctness of the dynamic-programming solution. The test is independent in the sense that we
used a publicly available package. However, it cannot be regarded as completely independent because both
solutions rely on the same representation of a solution as a bag of pairs of numbers. Our implementation
generates from given input values an integer-programming problem expressed in the syntax of lp solve. See
the appendix for an example. The number of variables in the lp solve program is approximately N×C.

This element of the evaluation was successful: all three methods returned the same value for the optimal
value of the total crossing time in all tests (more precisely, in all tests where all three methods successfully
ran to completion).

We implemented two versions of the program to generate the integer-programming model. The first
version, discussed in [Tru11], made no attempt to minimise the number of variables; a second version
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identified variables that are necessarily zero in order to minimise the number of variables and the size of the
equations in the generated model. For the first version, the execution time of lp solve was dependent on
the individual crossing times and somewhat unstable. With small values of the capacity (less than 5) the
execution time was commensurate with the execution time of the dynamic-programming solution; when the
capacity was increased to 50 the execution time for 2000 people was variable up to a maximum of about 30
minutes. The time taken to generate the lp solve file is not included; it was insignificant. For larger values of
the capacity and/or number of people, the unpredictability of the execution time hindered further tests. We
were able to test the second version on the same input data as used for the dynamic programming solution,
i.e. up to 25000 people and with capacity ranging from 2 to 50. Beyond these numbers, space limitations
on the program to generate the model prevented further tests. The execution time of lp solve was slower
than the dynamic-programming solution and, for the largest problems, two to three minutes. Even so, we
were very surprised by the size of the problems that could be successfully solved.

The dynamic-programming solution is more efficient than the integer-programming solution, a major
factor being that the best- and worst-case execution times of a dynamic-programming solution are always the
same. Our earlier algorithm [Bac08] was comparable to the integer-programming solution but its significantly
larger space requirements were prohibitive for large values of N and/or C. The algorithm presented in this
paper is also limited by space: we exceeded the available heap storage with N equal to 50000 and C equal
to 50 but solutions were found (in seconds) for N equal to 25000. In general, in spite of the quadratic
complexity of the algorithm, execution times were always seconds rather than minutes.

Because the problem reduces to a shortest-path problem, it is possible to ignore the fact that the graph
is acyclic and use an alternative shortest-path algorithm. Such an algorithm may have better best-case
performance. We haven’t investigated the relative merits of such a solution method. The greatest potential
benefit is to improve the best-case space requirements (although it is unlikely that the worst-case space
requirements would be improved).

5. Conclusion

Puzzles have long been used to inspire further learning and to test problem-solving skills. The classic
torch problem of 4 people and a bridge of capacity 2, usually formulated with specific crossing times like
1, 2, 5 and 10, is an example that has apparently been used in job interviews for major companies. But
isolated examples have little long-term educational value. Once the solution has been seen, the classic torch
problem is quickly dismissed. By introducing input parameters for the crossing times, the problem becomes
an interesting introduction to conditional statements. (See section 4.4.1.)

A much bigger and more challenging step is to also parameterise the number of people. The general
capacity-2 problem offers a very good example of algorithmic problem solving. The problem is easily
understood but finding an efficient solution is very challenging. Most importantly, it demonstrates that
“obvious” solutions may be incorrect. See [Rot02] for publications and web links. Obtaining a correct
solution demands particular attention to the avoidance of unnecessary detail. Like the capacity-C problem,
the solution is obtained by focusing on just the forward trips8. The problem is sometimes used in a course
on algorithmic problem solving [Bac11] for entry-level Computer Science students at the University of
Nottingham.

The capacity-C problem appears to be much more difficult than the capacity-2 problem. By far the
greatest part of this paper has been devoted to deriving an algorithm that is correct by construction; the
final (Java) implementation of the dynamic programming algorithm is quite short. This is not atypical. The
late Edsger W. Dijkstra [Dij76] observed that the derivation of an algorithm from its (formal) specification
is typically an order of magnitude longer than the algorithm itself. This is seldom reflected in current
textbooks on algorithm design but it is indeed our own experience.

That the capacity-C problem can be solved in time proportional to the square of the number of people
appears to be new. The problem is mentioned on some (non-peer-reviewed) websites but none offers a

8The importance of bags versus sequences is mentioned by Rote [Rot02] in a footnote.
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practical solution. Our solution could be used in advanced courses on algorithm design and/or operations
research as a detailed illustration of the complexities of optimisation problems and their solutions. A number
of facets of the solution are educational: the reduction in size of the search space by a focus on bags of forward
trips rather than sequences of forward and return trips, the choice of a suitable representation of bags of
forward trips, the formulation as an integer-programming problem, and the various components essential to
a dynamic-programming solution. It is disappointing that we have not been able to discover a linear-time or
(more importantly as it turns out) linear-space algorithm. When the capacity is 2, our theorem 49 reduces
to Rote’s [Rot02] theorem 2 (albeit formulated using different terminology). A greedy algorithm, discussed
by Rote [Rot02], is then easily derived since the pure trips are in (1–1) correspondence with the nomadic
trips. Indeed, a sub-linear, binary search can be used to determine the optimal number of pure trips once
people have been sorted in order of crossing time [Bac11]. This simplification of the algorithm is reflected
in a very regular structure of the graph underlying the dynamic-programming algorithm. For capacities
greater than 2, it seems plausible that similar structural properties can be exploited in order to obtain a
more efficient algorithm but such an algorithm has so far eluded us. Note that we do not expect other
well-known shortest-path algorithms to improve on the worst-case efficiency of our dynamic-programming
solution although they may offer some improvement in the best case.
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Appendix

Integer-Programming Solution

This is an example of the lp solve file constructed for an instance of the torch problem with N equal to
11 and C equal to 3. The numbers 35, 46, etc. in the objective function are (random) crossing times for
the individual people. The variables beginning with the letter X represent the multiplicity of pairs in the
constructed bag of trips. For example, X1_7 is the multiplicity of the pair (1, 7). The variables beginning
with the letters r and f represent numbers of return trips and numbers of forward trips, respectively. For
example, r1 is the number of times person 1 makes a return trip. The variable pc is the number of pure
trips. Variables that are necessarily zero are not included. For example, there is no variable X0_10 because
person 10 can never lead a pure trip. In fact, person 10 can never lead any trip and so there is no constraint
generated by person 10. In this way, the total size of the model is reduced as much as possible.

// lpsolve citation data

// ----------------------

// Description : Open source (Mixed-Integer) Linear Programming system

// Language : Multi-platform, pure ANSI C / POSIX source code,

// Lex/Yacc based parsing

// Official name : lp_solve (alternatively lpsolve)

// Release data : Version 5.0.0.0 dated 1 May 2004

// Co-developers : Michel Berkelaar, Kjell Eikland, Peter Notebaert

// Licence terms : GNU LGPL (Lesser General Public Licence)

// Citation policy : General references as per LGPL

//

// objective function

min: 35X0_2 + 46X0_3 + 53X0_5 + 104X0_8 + 148X0_11 + 51X1_4 + 53X1_5

+ 66X1_6 + 79X1_7 + 104X1_8 + 138X1_9 + 148X1_11 + 35X2_2 + 46X2_3

+ 51X2_4 + 53X2_5 + 46X3_3 + 13r1 + 35r2 + 46r3 ;

// Each person j where j>C makes exactly one forward trip

X0_11 + X1_11 = 1 ;

X0_11 + X1_9 = 1 ;

X0_8 + X1_8 + X1_9 = 1 ;

X0_8 + X1_7 + X1_8 = 1 ;

X0_8 + X1_6 + X1_7 = 1 ;

X0_5 + X1_5 + X1_6 + X2_5 = 1 ;

X0_5 + X1_4 + X1_5 + X2_4 = 1 ;

// Return trips

X3_3 = r3 ;

X2_2 + X2_3 + X3_3 + X2_4 + X2_5 = r2 ;

X2_2 + X2_3 + X3_3 + X1_4 + X2_4 + X1_5 + X2_5 + X1_6 + X1_7 + X1_8

+ X1_9 + X1_11 = r1 ;

// Forward Trips: (Potential) Nomads

X0_3 + X0_5 + X1_4 + X2_3 + X3_3 = f3;

X0_2 + X0_3 + X2_2 + X2_3 + X2_4 + X2_5 + X3_3 = f2;

X0_2 + X0_3 + X1_4 + X1_5 + X1_6 + X1_7 + X1_8 + X1_9 + X1_11 + X2_2

+ X2_3 + X2_4 + X2_5 + X3_3 = f1;

// Relation between individual return- and forward-trip counts

r1 = f1 - 1 ;

r2 = f2 - 1 ;

r3 = f3 - 1 ;
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// Relation between total return- and forward-trip counts

pc = X0_2 + X0_3 + X0_5 + X0_8 + X0_11 ;

pc = X2_2 + X2_3 + X2_4 + X2_5 + 2*X3_3 + 1 ;

// Declarations

bin X0_2, X0_3, X0_5, X0_8, X0_11, X1_4, X1_5, X1_6, X1_7, X1_8, X1_9

, X1_11, X2_3, X2_4, X2_5;

int X2_2, X3_3;
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Java Implementation of Dynamic-Programming Solution

This appendix contains the implementation (in Java) of the dynamic-programming algorithm presented
in section 4.5.

Execution of the implementation is limited by storage requirements (which increase as C decreases).

class DynamicProgramming{

int N = CommonProperties.numPeople;

int C = CommonProperties.capacity;

int maxNoPureTrips = (int)Math.floor((double)(N-2)/C);

int[][] m = new int[N][maxNoPureTrips+1];

int[][] nmds = new int[N][maxNoPureTrips+1];

/* m[n-1][e] is optimal time for n people to cross with excess e */

/* thus m[n-1][e] = s(n,e) */

/* where the function s is as defined in the paper */

/* nmds[n-1][e] is the number of nomads in the trip with lead n */

/* in an optimal solution to n people crossing with excess e */

public int cost(int i0, int j0){

int t = CommonProperties.travellingTime[j0-1];

for (int i = 1; i <= i0; i++){

t += CommonProperties.travellingTime[i-1];

}

return t;

}

public void run(){

/* assert(2<=C && C<=N); */

// Calculate optimal travel time

/* At most C people*/

/* excess equals 0 */

for (int n= 2; n <= C; n++){

m[n-1][0] = cost(0,n);

nmds[n-1][0] = 0;

};

/* excess e>0 */

for (int n= 2; n <= C; n++){

for (int e= 1; e <= maxNoPureTrips; e++){

int i= Math.min(e+1, n);

int min= cost(i,n) + m[i-1][e-i+1];

nmds[n-1][e]= i;

i--;

while (2 <= i){

int temp;

temp= cost(i,n) + m[i-1][e-i+1];

if (temp < min){

min= temp; nmds[n-1][e]= i;

};

i--;

}
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m[n-1][e] = min;

}

};

/* n>C */

/* n=C+1 */

for (int e= 0; e <= maxNoPureTrips; e++){

/* no pure trip: mixed trip with at least one nomad */

int min = cost(1,C+1) + m[1][e];

nmds[C][e]= 1;

int temp, i;

i= 2;

while (i <= Math.min(e+1, C-1)){

temp= cost(i,C+1) + m[i][e-i+1];

if (temp < min){

min= temp;

nmds[C][e]= i;

};

i++;

}

m[C][e] = min;

}

/* n>C+1 */

for (int n= C+2; n <= N; n++){

int maxExcess= (int)Math.floor(((double)N-n)/C);

for (int e= 0; e <= maxExcess ; e++){

int min= cost(0,n) + m[n-C-1][e+1];

nmds[n-1][e]= 0;

int temp;

for (int i= 1; i <= Math.min(e+1, C-1); i++){

temp= cost(i,n) + m[n-(C-i)-1][e-i+1];

if (temp < min){

min= temp;

nmds[n-1][e]= i;

}

}

m[n-1][e] = min;

}

};

System.out.print("Optimal time = "); System.out.println(m[N-1][0]);

// compute the sequence of crossings

int [] leadPureTrips = new int[maxNoPureTrips] ;

/* stack of pure trips waiting to be scheduled */

int p= 0, pureTrips= 0;

/* p is the stack index */

/* pureTrips counts total number of pure trips */

int n= N, e= 0;

while (n > C){
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int i= nmds[n-1][e];

if (i == 0){/* stack pure trip with lead n*/

leadPureTrips[p]= n; p++; pureTrips++;

n= n-C; e++;

}

else {System.out.print("Forward Trip: nomads 1..");

System.out.print(i); System.out.print(" ; settlers ");

System.out.print(n-(C-i)+1); System.out.print("..");

System.out.println(n);

e= e-(i-1); n= n-(C-i);

System.out.print("Return Trip: nomad ");

System.out.println(i); i--;

/* unstack and schedule pure trips */

while (i>0){

System.out.print("Forward Trip: settlers ");

System.out.print(leadPureTrips[p-1]-C+1);

System.out.print("..");

System.out.println(leadPureTrips[p-1]); p--;

System.out.print("Return Trip: nomad ");

System.out.println(i); i--;

}

}

};

/* n =< C */

while (n != 0){

int i= nmds[n-1][e];

System.out.print("Forward Trip: 1.."); System.out.println(n);

n= i;

/* assert(((i==0)==(e==0)) && ((i==0)||(i>=2}})) */

if (i>0){

e= e-i+1;

System.out.print("Return Trip: nomad ");

System.out.println(i); i--;

/* unstack and schedule pure trips */

while (i>0){

System.out.print("Forward Trip: settlers ");

System.out.print(leadPureTrips[p-1]-C+1);

System.out.print("..");

System.out.println(leadPureTrips[p-1]); p--;

System.out.print("Return Trip: nomad ");

System.out.println(i); i--;

}

}

}

}

}
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