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ABSTRACT

In risky and other multiattribute choices, the process of choosing is well described by random walk or drift diffusion models in which evidence
is accumulated over time to threshold. In strategic choices, level-k and cognitive hierarchy models have been offered as accounts of the choice
process, in which people simulate the choice processes of their opponents or partners. We recorded the eye movements in 2 × 2 symmetric
games including dominance-solvable games like prisoner’s dilemma and asymmetric coordination games like stag hunt and hawk–dove. The
evidence was most consistent with the accumulation of payoff differences over time: we found longer duration choices with more fixations
when payoffs differences were more finely balanced, an emerging bias to gaze more at the payoffs for the action ultimately chosen, and that
a simple count of transitions between payoffs—whether or not the comparison is strategically informative—was strongly associated with the
final choice. The accumulator models do account for these strategic choice process measures, but the level-k and cognitive hierarchy models do
not. © 2015 The Authors. Journal of Behavioral Decision Making published by John Wiley & Sons Ltd.
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When we make decisions, the outcomes that we receive often

depend not only on our own choices but also on the choices of

others. The related cognitive hierarchy and level-k theories

are perhaps the best developed accounts of reasoning in

strategic decisions. In these models, people choose by best

responding to their simulation of the reasoning of others. In

parallel, in the literature on risky and multiattribute choices,

drift diffusion models have been developed. In these models,

evidence accumulates until it hits a threshold and a choice is

made. In this paper, we consider this family of models as an

alternative to the level-k-type models, using eye movement

data recorded during strategic choices to help discriminate

between these accounts. We find that while the level-k and

cognitive hierarchy models can account for the choice data

well, they fail to accommodate many of the choice time and

eyemovement process measures. In contrast, the drift diffusion

models account for the choice data, and many of their signature

effects appear in the choice time and eye movement data.

LEVEL-K THEORY

Level-k theory is an account of why people should, and do,

respond differently in different strategic settings. In the

simplest level-k model, each player best responds assuming

that everyone else is one level of reasoning behind them

(Costa-Gomes & Crawford, 2006; Nagel, 1995). To reason

up to level k�1 for other players means, by definition, that

one is a level-k player. A simple starting point is that level-

0 players choose randomly from the available strategies. A

level-1 player is assumed to best respond under the assump-

tion that everyone else is a level-0 player. A level-2 player is

assumed to best respond under the assumption that everyone

else is a level-1 player. More generally, a level-k player best

responds to a level k�1 player. This approach has been gen-

eralized by assuming that each player chooses assuming that

their opponents are distributed over the set of simpler strate-

gies (Camerer et al., 2004; Stahl & Wilson, 1994, 1995).

Thus, a level-2 player is assumed to best respond to a mixture

of level-0 and level-1 players. More generally, a level-k

player best responds based on their beliefs about the distribu-

tion of other players over levels 0 to k�1. By fitting the

choices from experimental games, estimates of the propor-

tion of people reasoning at each level have been constructed.

Typically, there are few k = 0 players, mostly k=1 players,

some k=2 players, and not many players following other

strategies (Camerer et al., 2004; Costa-Gomes & Crawford,

2006; Nagel, 1995; Stahl & Wilson, 1994, 1995).

These models make predictions about the cognitive pro-

cessing involved in strategic decision making, and experi-

mental economists and psychologists have begun to test

these predictions using process-tracing methods like eye

tracking or Mouselab (where participants must hover the

mouse over information to reveal it). What sort of eye

movements or lookups are predicted by a level-k strategy?

Information acquisition predictions for level-k theory

We illustrate the predictions of level-k theory with a 2 × 2

symmetric game taken from our experiment (Figure 1a). Two

players must each choose a strategy, with their payoffs deter-

mined by their joint choices. We will describe games from

the point of view of a player choosing between top and bottom

rows who faces another player choosing between left and right

columns. For example, in this game, if the row player chooses

top and the column player chooses right, then the row player

receives a payoff of 30, and the column player receives 60.
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Figure 2 illustrates the payoff information needed at each

stage for different levels of level-k reasoning, following

Costa-Gomes, Crawford, and Broseta (2001). A level-0

player chooses randomly and could do this with his or her

eyes closed! A level-1 player best responds to the random

choice of a level-0 player. This means that he or she must

view his or her own payoffs, highlighted in red in the level-

1 row of Figure 2, to select the action with the highest

expected payoff. A level-2 row player must first simulate

the column player using level-1 reasoning. A level-1 column

player will look up his or her own payoffs and determine

which column offers the higher expected payoff under the

assumption of a level-0 row player choosing a row randomly.

Having identified the choice of his or her level-1 column

playing opponent, the player must then look up his or her

own payoffs for that column to select a row. Thus, a level-

2 player should first examine the other player’s payoffs and

then examine one column of his or her own payoffs. A

level-3 player first examines his or her own payoffs as they

simulate the other player at level-2 simulating them as a

level-1 player. Then they examine the other player’s payoffs

for the action the other player thinks they themselves will

take. Finally, having identified how the other player will

choose, they examine their own payoffs for that action.

ASSUMPTIONS RELATING THEORY AND PROCESS

MEASUREMENTS

In the previous section, a number of assumptions relating the

level-k theory to information acquisition patterns were

implicit. Table 1 lists the most common assumptions made

Figure 1. (a) An example 2 × 2 symmetric game. This game happens to be a prisoner’s dilemma game, with top and left offering a cooperating
strategy and bottom and right offering a defect strategy. The row player’s payoffs appear in green. The column player’s payoffs appear in blue.
(b) The labeling of payoffs. The player’s payoffs are odd numbers; their partner’s payoffs are even numbers. (c) A screenshot from the exper-
iment showing a prisoner’s dilemma game. In this version, the player’s payoffs are in green, and the other player’s payoffs are in blue. The
player is playing rows. The black rectangle appeared after the player’s choice. The plot is to scale, with axes indicating screen coordinates

in pixels
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by researchers, which we review later in detail. In doing so,

we summarize previous research on process tracing in strate-

gic choice, which has focussed upon looking for process

patterns that discriminate between level-k, learning, and

rational choice models.

The least controversial assumption is that people must

view the payoffs, which are used in the model. People cannot

be making a decision using information that they have not

viewed. For example, Costa-Gomes et al. (2001) score

models as complying when all payoffs used in the model

are viewed but do not penalize a model if it fails to predict ob-

served viewings of payoffs which are not used by the model.

Some researchers make the further assumption that view-

ing information that is not required by a model is evidence

against that model. For example, Knoepfle, Wang, and

Camerer (2009) explored learning in normal-form games by

comparing adaptive learning models against strategic choice

models. The eye movement data show that players looked at

their opponent’s payoffs about as often as their own payoffs.

The opponent’s payoffs play no role in the adaptive learning

models, and Knoepfle et al. conclude that viewing the oppo-

nent’s payoffs is evidence against the adaptive models and

evidence in favor of the strategic models. Knoepfle et al. also

construct a hit rate measure—the proportion of fixations to

payoffs required by a model. Fixations to non-required

payoffs reduce the hit rate and count against the model.

One step beyond simply measuring whether required

payoffs are viewed is to take the number of lookups or their

Figure 2. Eye movements expected in level-k theory, illustrated for levels 0–3. At each stage, relevant payoffs are highlighted in red. The il-
lustration is for a particular prisoner’s dilemma game, the fourth in Table 2
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duration as a measure of attention to that payoff. This is

common in eye movement studies of other types of decision

(in risky choice, e.g., Stewart, Hermens, & Matthews, 2015,

or in consumer choice, e.g., Krajbich, Armel, & Rangel

2010). In strategic choice, Wang, Spezio, and Camerer

(2010) tracked the eye movements of senders in a sender–

receiver game, finding that senders attended to the true action

too much and failed to take the perspective of the receiver,

who was ignorant of the true action. In another example,

Costa-Gomes et al. (2001) use the number of lookups of

the different types of payoff (e.g., the player’s versus his or

her opponents) as diagnostic of type of the player (Table 4).

Memory is a costly activity—remembering even a small

set of numbers is hard (e.g., Miller, 1956). So while a player

could simply read each payoff in the game once and then

make the decision based entirely on that memory, this is

probably not what is happening. In strategic choice, payoffs

are often revisited multiple times (Costa-Gomes et al.,

2001), just as they are in risky choice even for simple gam-

bles (Stewart, Hermens, & Matthews, 2015) and in choices

between familiar snacks (Krajbich et al., 2010). It is cogni-

tively cheaper to make a reacquisition eye movement than

try to remember.

As people refixate rather than remember, the sequencing

of lookups of payoffs can be used to discriminate between

models. Knoepfle et al. (2009) recorded eye movements in

4× 4 normal-form games, imposing “a simple order restric-

tion requiring at least one lookup in a stage’s lookup area be-

fore lookups in the next stage’s area count as hits” (p. 396).

Johnson, Camerer, Sen, and Rymon (2002) also used weak

constraints in the ordering of lookups to test whether people

used backwards induction in a three-round sequential

bargaining game. Chen, Huang, and Wang (2011) used the

ordering of transitions to identify a player’s k level in a

spatial beauty contest.

While the previous examples involve weak assumptions

about the sequence of lookups, inferences are often made

from pairs of temporally adjacent lookups where one immedi-

ately follows the other. For example, in risky choice, consec-

utive lookups of probability and then amount within a gamble

are taken as evidence for an expected value calculation,

whereas consecutive lookups of the amount in one gamble

and then the amount in another gamble, for example, are

taken as evidence of a trading off between amounts (Russo

& Dosher, 1983; see Stewart, Hermens, & Matthews, 2015,

for a review). Similar assumptions are made in multiattribute

choice (Noguchi & Stewart, 2014). Indeed, instructing people

to trade off or calculate expectations changes the proportions

of these consecutive lookups (Arieli, Ben-Ami, & Rubinstein,

2011), which is strong causal evidence that different consec-

utive lookups result from different strategies.

Costa-Gomes et al. (2001) made use of consecutive

lookups to identify the k level of their participants. Their

adjacency criteria required that “each comparison in some

minimal set needed to identify a [level-k] type’s decision is

represented by an adjacent look-up pair at least once in the

subject’s look-up sequence” (p. 1210). That is, if a model

requires a comparison between a pair of payoffs, those

payoffs should appear next to one another at some point in

the ordered sequence of payoffs viewed. Devetag, Di Guida,

and Polonio (2015) also assumed that consecutive lookups

indicate comparisons of those payoffs in their 3 × 3 games.

CURRENT CONCLUSIONS FROM PROCESS DATA IN

GAMES

Having constructed Table 1, we can summarize the key

conclusions that have emerged from those who have used

normal-form games. Costa-Gomes et al. (2001) conclude that

Mouselab lookups and choices were most consistent with

level-1 and level-2 models, with no participants classified

as best responding either as rational maximizers. Knoepfle

et al. (2009) explored learning in normal-form games and

found that although the adaptive learning models fitted

choice behavior best but not eye movements, whereas

level-k-like models fitted eye movements best but not

choices. Devetag et al. (2015) used 3×3 normal-form games

and conclude that players are behaving as if they make level-

1 choices or select obvious focal points.

Beyond these normal-form game studies, other types of

strategic scenarios have been considered. As described previ-

ously, Camerer, Johnson, Rymon, and Sen (1993) and

Johnson et al. (2002) used lookups revealed by Mouselab

Table 1. Assumptions about eye movements in strategic choice made by previous researchers

Assumption Source

Information acquisition
For a model to fit, all necessary payoffs must be viewed. Costa-Gomes et al. (2001), Devetag et al. (2015), and Knoepfle et al.

(2009)
Looking at unnecessary information counts as evidence against a
model.

Costa-Gomes et al. (2001) and Knoepfle et al. (2009)

Attention
The number/durations of fixations of a payoff indicate attention to
that payoff.

Costa-Gomes et al. (2001), Johnson et al. (2002), Knoepfle et al.
(2009), and Wang et al. (2010)

People re-fixate rather than remember payoffs. Costa-Gomes et al. (2001)
Transitions
Order—fixations to payoffs involved in later stages only count as
hits if they occur after all of the fixations required for earlier stages.

Camerer et al. (1993), Chen et al. (2011), Johnson et al. (2002), and
Knoepfle et al. (2009)

Adjacency—comparisons of payoffs appear as a fixation to the first
payoff immediately followed by a fixation to the second payoff.

Costa-Gomes et al. (2001) and Devetag et al. (2015)
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to conclude that untrained players do not use backwards

induction in a three-round sequential bargaining game. Wang

et al. (2010) concluded from eye movements in sender–

receiver games that senders choose as if they have different

levels of k making eye movements consistent with those

levels (and see Chen et al., 2011, for a similar agreement in

a spatial beauty contest). To sum up thus far, perhaps one

conclusion can be drawn: under minimal assumptions, eye

movements are more consistent with level-k reasoning with

k=1 or 2 than they are with the rational model.

A second approach taken by experimenters is to compare

eye movements in strategic decisions with the eye move-

ments of control groups instructed to follow certain strate-

gies. This approach neatly side steps the issue of making

assumptions about which eye movements are to be expected

for certain cognitive processes. For example, in addition to

the analysis described previously, Costa-Gomes et al.

(2001) taught some players game theory including how to

use dominance, iterated dominance, dominance solvability,

and pure strategy equilibrium. These trained participants

made different eye movements, making more comparisons

of payoffs across a change in action than the untrained partic-

ipants. These differences suggest that, without training,

participants were not using methods from game theory (see

also Funaki, Jiang, & Potters, 2011).

ACCUMULATOR MODELS

Accumulator models have been extremely successful in the

domains of risky choice and choice between multiattribute

alternatives like consumer goods. Figure 3 illustrates a basic

but quite general model. The bold black line illustrates how

the evidence for choosing top over bottom could unfold over

time as four discrete samples of evidence are considered. The

first, third, and fourth samples provide evidence for choosing

top, while the second sample provides evidence for choosing

bottom. The process finishes at the fourth sample with a top

response because the net evidence hits the high threshold.

We consider exactly what the evidence in each sample is

based upon in the following discussions. In the case of the

discrete sampling in Figure 3, the model is a random walk,

and in the continuous case, the model is a diffusion model.

Perhaps people’s strategic choices are not so different

from their risky and multiattribute choices and could be well

described by an accumulator model. In risky choice, Stewart,

Hermens, and Matthews (2015) examined the eye move-

ments that people make during choices between gambles.

Among the models that they compared were two accumula-

tor models: decision field theory (Busemeyer & Townsend,

1993; Diederich, 1997; Roe, Busemeyer, & Townsend,

2001) and decision by sampling (Noguchi & Stewart, 2014;

Stewart, 2009; Stewart, Chater, & Brown, 2006; Stewart,

Reimers, & Harris, 2015; Stewart & Simpson, 2008). These

models were broadly compatible with the choices, choice

times, and eye movements. In multiattribute choice, Noguchi

and Stewart (2014) examined the eye movements that people

make during choices between non-risky goods, finding evi-

dence for a series of micro-comparisons of pairs of alterna-

tives on single dimensions as the basis for choice. Krajbich

et al. (2010) and Krajbich and Rangel (2011) have developed

a drift diffusion model that, by assuming that people accumu-

late evidence more rapidly for an alternative when they fixate

it, is able to explain aggregate patterns in choice, choice time,

and fixations. Here, rather than focus on the differences

between these models, we use the class of accumulator

models as an alternative to the level-k accounts of cognitive

processes in strategic choice.

While the accumulator models do not specify exactly what

evidence is accumulated—although we will see that the

Figure 3. An example accumulator model

Eye Movements 141N. Stewart et al.

© 2015 The Authors. Journal of Behavioral Decision Making published by John Wiley & Sons Ltd. J. Behav. Dec. Making, 29, 137–156 (2016)

DOI: 10.1002/bdm



difference in payoffs across actions is a good candidate—the

models do make some key predictions about eye movements.

Assuming that the evidence for an alternative is accumulated

faster when the payoffs of that alternative are fixated, accu-

mulator models predict more fixations to the alternative ulti-

mately chosen (Krajbich et al., 2010). Because evidence is

sampled at random, accumulator models predict a static pat-

tern of eye movements across different games and across time

within a game (Stewart, Hermens, & Matthews, 2015). But

because evidence must be accumulated for longer to hit a

threshold when the evidence is more finely balanced (i.e., if

steps are smaller, or if steps go in opposite directions, more

steps are required), more finely balanced payoffs should

give more (of the same) fixations and longer choice times

(e.g., Busemeyer & Townsend, 1993). Because a run of evidence

is needed for the difference to hit a threshold, a gaze bias effect

is predicted in which, when retrospectively conditioned on the

alternative chosen, gaze is made more and more often to the

attributes of the chosen alternative (e.g., Krajbich et al.,

2010; Mullett & Stewart, 2015; Shimojo, Simion, Shimojo,

& Scheier, 2003). Finally, if the nature of the accumulation is

as simple as Stewart, Hermens, and Matthews (2015) found

for risky choice, the association between the number of

fixations to the attributes of an action and the choice should

be independent of the values of the attributes.

To preempt our results, the signature effects of accumulator

models described previously appear in our eye movement

data. That is, a simple accumulation of payoff differences to

threshold accounts for both the choice data and the choice time

and eye movement process data, whereas the level-k and

cognitive hierarchy models account only for the choice data.

THE PRESENT EXPERIMENT

In the present experiment, we explored the choices and eye

movements made by participants in a range of symmetric

2 × 2 games. Our approach is to build statistical models,

which describe the eye movements and their relation to

choices. The models are deliberately descriptive to avoid

missing systematic patterns in the data that are not predicted

by the contending theories, and so our more exhaustive

approach differs from the approaches described previously

(see also Devetag et al., 2015). We are extending previous

work by considering the process data more deeply, beyond

the simple occurrence or adjacency of lookups.

METHOD

Participants

Fifty-four undergraduate and postgraduate students were

recruited from Warwick University and participated for a

payment of £5 plus a further payment of up to £5 contingent

upon the outcome of a randomly selected game. For four ad-

ditional participants, we were not able to achieve satisfactory

calibration of the eye tracker. These four participants did not

begin the games. Participants provided written consent in

line with the institutional ethical approval.

APPARATUS

Stimuli were presented on an LCD monitor viewed from ap-

proximately 60 cm with a 60-Hz refresh rate and a resolution

of 1280 × 1024. Eye movements were recorded with an

Eyelink 1000 desk-mounted eye tracker (SR Research,

Mississauga, Ontario, Canada), which has a reported average

accuracy between 0.25° and 0.50° of visual angle and root

mean square resolution of 0.01° (www.sr-research.com).

We tracked participants’ right eye movements using the

combined pupil and corneal reflection setting at a sampling

rate of 500Hz. Head movements were tracked, although we

used a chin rest to minimize head movements.

Games

Each participant completed the sixty-four 2 × 2 symmetric

games, listed in Table 2. The y columns indicate the payoffs

in £. Payoffs are labeled 1–8, as in Figure 1b. The partici-

pant’s payoffs are labeled with odd numbers, and the other

player’s payoffs are labeled with even numbers. Games were

symmetric, so the column player’s payoffs are a transpose of

the row player’s payoffs (i.e., y1= y2, y3= y6, y5= y4, and

y7= y8).

The x columns indicate how we generated the 64 games,

as follows. x1, x3, x5, and x7 define the player’s payoffs, with

the actual y payoffs generated from the x values by multiply-

ing by £10 and adding £30 so that payoffs were in the range

£0–£90. For 2 × 2 symmetric games, games can be mapped

onto a set of strategically equivalent games in two-

dimensional space (Weibull, 1995). The dimensions are

defined by x1� x5 and x3� x7 (given in the second and third

columns of Table 2). x1� x5 is the difference in payoffs

available to the player when their opponent chooses left.

x3� x7 is the difference in payoffs available to the player

when their opponent chooses right.

So that we can explore how eye movements vary across

games, we varied x1� x5 and x3� x7 systematically, with

each difference taking values from {�3, � 1, 1, 3} creating

16 (x1� x5, x3� x7) pairs in a 4 × 4 grid. With x1� x5 and

x3� x7 set, we need to fix one of x1 and x5 and one of x3
and x7 to define a game. For top 16 games in Table 2, we

fixed x1 and x3 or, equivalently, y1 and y3. The green high-

light indicates the fixed payoffs. Subsequent sets of 16 games

were generated using the same (x1� x5, x3� x7) pairs but

with other xs fixed.

Defining games in the (x1� x5, x3� x7) space is useful

because the type of the game depends on the signs of these

two differences. Dominance solvable–conflict games, when

x1� x5< 0 and x3� x7< 0, are dominance solvable and have

a conflict between cooperation and maximizing one’s own

payoff and include some prisoner’s dilemma games. Symmet-

ric coordination games, when x1� x5>0 and x3� x7< 0,

include some stag hunt (or assurance) games. Asymmetric

coordination games, when x1� x5< 0 and x3� x7> 0,

include hawk–dove (or chicken or snowdrift), battle-of-the-

sexes, and leader games. Dominance solvable–no conflict

games, when x1� x5>0 and x3� x7>0, are dominance
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solvable but with no conflict between cooperation and

maximizing one’s own payoff.

Stimuli

Figure 1c shows how games were presented. To avoid com-

plicating eye movements, the display was as simple as possi-

ble. The presentation of payoffs in a small font and circle

ensures that participants cannot read one payoff while fixat-

ing another and must make an eye movement. In this

screenshot, the player is playing rows, with their payoffs

highlighted in green and the other player’s payoffs

highlighted in blue. The black rectangle appeared post-

response and indicated whether the player chose, in this case,

top or bottom. Between participants, we counterbalanced

whether the participant played rows or columns, whether

the participant’s payoffs were green or blue, and whether

the participant’s payoffs appeared in the top left or bottom

right of each cell. Randomly, for each presentation of each

game, we swapped rows top to bottom and columns left to

right.

Procedure

Participants were seated in front of the experiment computer

and eye tracker. Participants were shown an example game.

Written instructions explained how one player was selecting

rows and the other columns and how each player would

Table 2. Games used

Note: Actual payoffs in £ are given by y1� y8. The x columns define the games (as described in the main text), with the y payoffs given by multiplying by £10
and adding £30. Highlighting indicates the payoffs that were held constant, with other payoffs generated using x1� x5 and x3� x7.
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receive the payoff at the intersection of the chosen row and

column. Horizontal and vertical black rectangles appeared

(like the one in Figure 1c) to indicate the intersection. Parti-

cipants then received a practice trial and were encouraged to

ask the experimenter, who was present throughout the

experiment, any questions. Participants were told that, after

all participants had been tested, participants would be paired

up, a random game selected, and outcomes paid according to

their choice and the other player in their pair. Payments were

subject to an experiment exchange rate, and participants

could win up to £5.

Each trial began with a drift correction fixation cross,

before a game appeared. Row players pressed the up or down

cursor key to indicate their choice. Column players used the

left and right keys. No information about the other player’s

choices was given. A 13-point calibration was used initially

and every 10 trials to maintain accuracy. Participants were

encouraged to stretch and be comfortable before each calibra-

tion. The experiment typically took about 30min to complete.

RESULTS

We have recoded results so that we can describe the data in

terms of a participant who was making row choices, had their

payoffs in green, and had their payoffs in the top left of each

cell and received games with rows and columns ordered as in

Figure 1b.

In the eye movement data, each fixation was classified as

being to a particular payoff if it fell within a 100-pixel-radius

circle of the center of the payoff. This crude classification

produces almost identical results to a maximum likelihood

assignment of fixations to clusters for each payoff (Stewart,

Hermens, & Matthews, 2015).

Choices

Figure 4a shows how choices varied across games by plot-

ting the proportion of top choices as a function of the

differences x1� x5 and x3� x7. Larger differences make the

payoffs on the top row larger and make players more likely

to choose top. A logistic mixed effects regression that

predicts choice as a function of x1� x5, x3� x7, and their in-

teraction, necessarily including full random slopes, estimates

no meaningful interaction, odds ratio =0.99, 95% confidence

interval (CI) [0.96, 1.02], but large and about equal effects of

x1� x5, odds ratio = 2.3, 95% CI [2.1, 2.5], and x3� x7, odds

ratio =2.5, 95% CI [2.2, 2.8]. Thus, the differences x1� x5
and x3� x7, which capture the strategic differences between

games, capture the differences in player’s choices across

games well.

The variation in choice proportions is large. In the domi-

nance solvable–conflict games (x1� x5<0 and x3� x7<0),

which includes some prisoner’s dilemma games, people

almost always select bottom. This level of defection is high,

but compared with the other games, cooperation in these

games is relatively unappealing (Vlaev & Chater, 2006). In

dominance solvable–no conflict games (x1� x5> 0 and

x3� x7> 0) where top is the dominant strategy, offering the

highest outcomes irrespective of the other player’s choice,

people almost always choose top. Choice proportions are

intermediate for the other games. Table 3 tracks the key

results, of which this is the first.

Level-k choices

For each game, the level-k model predicts a choice of the top

row, the bottom row, or a random selection. Table 4 lists the

predictions for each x1� x5 and x3� x7, as predictions are the

same for games with matching x1� x5 and x3� x7. For these

games, odd-numbered levels (1, 3, 5, 7, …) predict the same

choices, and even numbered levels except 0 (2, 4, 6, 8, …)

predict the same choices.

The level-k fit to the choice proportions is shown as a

dashed line in Figure 4a. To fit the level-k model, we have

estimated the predictions of a mixture of different k levels.

The best fitting mixture proportions were 19.5% level 0,

54.8% level 1, and 25.7% level 2. The level-kmodel captures

the qualitative pattern in the choice data quite well. These

proportions match those reviewed in the Introduction, with

mostly level-1, few level-0, and few level-2.

Accumulator choices

Accumulator models fit the choice proportion effects well

too. For example, in the drift diffusion model, the proba-

bility of a choice is a logit function of the drift rate

(e.g., Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006).

Here, we consider the difference in payoffs for the top and

bottom rows, (x1� x5) + (x3� x7), as the drift rate. But this is

just the form for the logistic regression used previously to

model how choice proportions varied over games, and so with

a straightforward assumption about the evidence accumu-

lated, the accumulator models account for choice data quite

naturally.

Choice times

Figure 4b plots choice time (from game onset to keypress) as

a function of x1� x5 and x3� x7. Where the differences

x1� x5 and x3� x7 have the same sign (i.e., point towards

the same row), people are faster. Figure 4c, where choice

time is plotted against the choice proportions from Figure 4a,

makes the pattern in choice times obvious: choice times are

longest for games where choice proportions are most finely

balanced, and choice times are shortest for games where

there is a strong preference either for top or for bottom.

Because, as we see next, the duration of individual fixations

is pretty much constant across games and time course, this

means that choice time is extremely strongly correlated with

the number of fixations per choice (r=.98, 95% CI [.95, .99])

and thus that the number of fixations shows the same rela-

tionship with choice proportions.

Choice times

The most straightforward way to consider choice time

predictions for level-k is to assume that choice time is
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proportional to the number of payoffs required for a decision.

For example, Figure 2 shows that, for a level-2 decision, six

payoffs must be looked up and compared.

Figure 4d plots the number of fixations predicted by level-k.

Higher levels require more lookups, and, when k=0 or 1, all

games require the same number of fixations, and, for k≥ 2,

more fixations are required when (x1� x5) =� (x3� x7) be-

cause, in these cases, simulated strategies for the lower levels

involve the need to consider the best response to a mixed

strategy. No matter what proportions that we assume for the

Figure 4. (a) The proportion of “top” choices as a function of x1� x5 and x3� x7. The gray lines show the best-fitting predictions from a level-k
model with a mixture of levels 0, 1, and 2 participants. (b) Choice time as a function of x1� x5 and x3� x7. (c) Choice time as a function of the
proportion of “top” choices. (d) Predictions of a level-k model for the number of fixations required for a decision. (e) Absolute difference in

top-row and bottom-row payoffs. (f) Do x1� x5 and x3� x7 match in sign? Error bars are 95% confidence intervals
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different levels of k, the level-k model fails to capture the

pattern in the choice time data, as noted in Table 3.

Accumulator choice times

In accumulator models, choices take longer when the evi-

dence for each alternative is more finely balanced. In the pre-

vious discussions, we considered a drift rate of (x1� x5) +

(x3� x7) to explain the choice data. Rearranged, the drift rate

is (x1+ x3)� (x5+ x7), which is the top payoffs less the bot-

tom payoffs. The absolute value of this difference is plotted

in Figure 4e. Zero differences, when evidence is most finely

balanced, are plotted at the top, because these should corre-

spond to the slowest times. Larger differences, when the

evidence clearly points in one direction, are plotted at the

bottom, because these should be faster. But a modification

of this prediction is informative. Figure 4f notes whether

the differences x1� x5 and x3� x7 have the same sign or

not. When they agree in sign, both are evidence in the same

direction—either both point to a top choice or both point to a

bottom choice. When they differ in sign, one comparison

favors a top-row choice, and the other favors a bottom-row

choice. People should be faster when signs match, and so

matching has been plotted at the bottom of the plot. By

collapsing together x1� x5 and x3� x7 differences of the

same sign—for this is the difference between Figure 4e and

4f—the qualitative pattern is choice time predictions quite

close to the data in Figure 4b.

Fixation durations

The average duration of a fixation was 290milliseconds.

Such brief fixations are typically associated with automatic

rather than deliberative processing (Fiedler & Glöckner,

2012; Horstmann, Ahlgrimm, & Glöckner, 2009, but see

Su et al., 2013).

We examined how fixation durations varied over games. A

mixed effects model of fixation duration as a function of the

x1� x5 difference, the x3� x7 difference, and their interaction,

which necessarily included full random effects, shows that

fixation durations hardly vary at all across games with unit

changes in x1� x5, x3� x7, and their interaction all affecting

durations by at most only 2milliseconds (βx1 � x5
¼ �0:2mil-

liseconds, 95% CI [�0.8, 0.3]; βx3 � x7
¼ �0:5milliseconds,

95% CI [�1.1, 0.1]; and β x1 � x5ð Þ � x3 � x7ð Þ ¼ 0:24 milli-

seconds, 95% CI [0.0, 0.5]).

Fixation durations are also constant over the time course of

a trial. A mixed effects model of fixation duration as a function

of fixation number, which necessarily included full random

effects for fixation duration, shows that each successive

fixation is only 2.6milliseconds faster, 95% CI [1.7, 3.3].

Fixation durations are important in the analysis of read-

ing, because variation in their duration indicates differences

in processing (Rayner, Pollatsek, Ashby, & Clifton, 2012).

The stability of duration here across games and over the time

course of a choice suggests constant cognitive processes

across and throughout choices.

Table 4. Level-k choice predictions

x1� x5 x3� x7

Level-k prediction

Level 0 Level 1 Level 2

�3 �3 Guess Bottom Bottom
�3 �1 Guess Bottom Bottom
�3 1 Guess Bottom Top
�3 3 Guess Guess Guess
�1 �3 Guess Bottom Bottom
�1 �1 Guess Bottom Bottom
�1 1 Guess Guess Guess
�1 3 Guess Top Bottom
1 �3 Guess Bottom Bottom
1 �1 Guess Guess Guess
1 1 Guess Top Top
1 3 Guess Top Top
3 �3 Guess Guess Guess
3 �1 Guess Top Top
3 1 Guess Top Top
3 3 Guess Top Top

Table 3. A summary of key results

Result Level-k Accumulator

Higher top-row payoffs increase top-row choices. ✓Good fit ✓Good fit
Choices take longer, the closer choice proportions
are to .5.

✕Only predicts that games requiring
a mixed strategy (where (x1� x5) =
� (x3� x7)) take longer

✓Predicts that games where the signs of x1� x5
and x3� x7 agree should be faster

Players fixate their own payoffs more than the
other player’s.

✓But only odd k predicts an own-
payoff bias

–No prediction

Within-cell, within-row, and within-column
transitions are all frequent, with a higher frequency
of within-row transitions between the player’s
payoffs.

✕Does not predict any within-cell
transitions. Does not predict frequent
within-row transitions between the
player’s payoffs

✓Higher-frequency within-row own-payoff
transitions follow assuming integration of payoffs
within a row to form the drift rate

Larger payoffs are fixated a little more often. ✕Only predicts more fixations when
(x1� x5) =� (x3� x7)

–No prediction

A bias to fixate the payoffs on the ultimately
chosen row develops over the course of a choice.

✕No gaze bias ✓The gaze bias is a signature effect in
accumulator models

Transitions to a row predict choice of that row … ✕ Predicts that transitions are
independent of choice

✓Assuming evidence for an option is accumulated
at a higher rate when that option is fixated

… whether or not they are informative. ✕Predicts that dumb transitions are
not informative

✓Assuming evidence for an option is accumulated
at a higher rate when that option is fixated
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Fixation and transition frequencies

Immediately in the following text, we describe the pattern of

fixation and transition frequencies. Afterward, we present a

statistical estimation confirming this pattern. The mean,

across participants, of the number of fixations made per game

is 17, which is enough to fixate each payoff about twice.

Figure 5a displays the frequencies of fixations to each payoff

and the frequencies of transitions between those payoffs. The

area and blackness of the circles at each payoff are propor-

tional to the frequency of fixation, and the larger darker

circles for y1, y3, y5, and y7 compared with y2, y4, y6, and y8
indicate that players fixate their own payoffs a little more

often than the other player’s. We note this in Table 3.

Two types of transition: common and rare

The thickness and blackness of the arrows in Figure 5a are

proportional to the frequency of transitions between payoffs.

It is useful to consider two categories of transition we will

call common and rare—theory agnostic labels based on fre-

quency. Common transitions involve exactly one change in

either the payoff’s owner (e.g., y1→ y2), the player’s action

(e.g., y1→ y5), or other player’s action (e.g., y1→ y3).

Figure 5b repeats Figure 5a, displaying only the common

transitions and omitting the rare transitions. Rare transitions

involve multiple changes (e.g., y1→ y8, where the payoff

owner and both actions change). Common transitions make

up 76% of all transitions; rare transitions are the remaining

24%. On average, any given common transition is 5.3 times

more frequent than any given rare transition.

Common transitions could be useful comparisons. For

example, transitions within a cell where only the owner of

the payoff changes (e.g., y1→ y2) could be useful if people

have other-regarding preferences. Transitions where only the

player’s action changes (e.g., y1→ y5) could be useful for

calculating the difference in payoffs for each row. Transitions

where only the other player’s action changes (e.g., y1→ y3)

contain information about how the player’s payoff changes if

the other player switches action. It is harder to tell a story about

the use to which rare transitions could be put. Too many things

are changing at once. But some proportion of rare transitions is

to be expected as people switch between comparisons.

Considering the common transitions, the darker, thicker

arrows between y1 and y3 and between y5 and y7 in Figure 5b

Figure 5. (a) Fixation and transition frequencies. (b) As (a) but with rare transitions omitted for clarity. (c) Level-k predictions for fixation and
transition frequencies. The area and blackness of the circles at the payoffs indicate the fixation frequencies. The thickness and blackness of

arrows indicate the transition frequencies
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show that players make frequent eye movements between

their payoffs within a row. That is, players compare the

payoffs they will receive across the two actions of the other

player. Other common transition frequencies are smaller

and about equal. We note this pattern in Table 3.

A Poisson regression for fixation and transition frequencies

To describe the fixation and transition frequencies, we have

fitted them using a mixed effects Poisson regression with full

random effects. We used 24 dummy variables to code the

properties of each of the transitions in Figure 5b. The model

is saturated—there are 24 coefficients that fit the 24 transition

frequencies without error. As fixation frequencies are an ag-

gregation over transition frequencies, these are also modeled.

Thus, the Poisson regression provides an exhaustive analysis

of the fixation frequencies and their first-order sequential

dependence. This approach contrasts with considering only

the subset of patterns predicted by existing theories and

ensures that we do not miss any systematic pattern. Stewart,

Hermens, and Matthews (2015) provide a complete descrip-

tion of this approach as applied to risky choice.

The coefficients are displayed in the first column of

Table 5 (ignore later columns for now). We have presented

exponentially transformed coefficients because, in Poisson

regression, frequencies are given by the products of trans-

formed coefficients. The intercept coefficient of 20.64 repre-

sents the overall number of transitions made by a player.

(Summed over all 64 games, 20.64 is the geometric mean,

across participants, of the geometric mean number of times

that the transitions illustrated in Figure 5b were made.) This

means that each of these transitions is made about once every

three games.

The next seven coefficients in the “Fixation Frequencies”

section of Table 5 describe how the fixation frequencies differ

over payoffs. Using the variable own, we dummy coded each

region as +1 if it was the player’s own payoff and�1 if it was

the other player’s payoff. The coefficient for Own at 1.20

means that the base frequency must be increased by a factor

of 1.2 to obtain the frequency for fixations to the player’s pay-

offs and divided by 1.2 to the frequency for fixations to the

other player’s payoffs. Thus, the proportion of fixations to

the player’s own payoffs is 1.2/(1.2 + 1 / 1.2) = 0.59. The

coefficients for the six remaining dummies are all small, as

demonstrated by the limits of the 95% CIs, making no more

than a 3% change to fixation counts (i.e., coefficients are

between 0.97 and 1.03): players have no tendency to fixate

any row or column more often than another (the left and top

coefficients), and there is no interaction between the owner

and location of the payoff.

Table 5. Exponentially transformed coefficients and their 95% confidence intervals for the saturated model of the transition matrix

Note: Coefficients have been exponentially transformed. Coefficients with confidence intervals that do not contain 1 are highlighted.
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The remaining 16 coefficients in the first column, in the

“Within vs. Between-Cell” and “Row vs. Column” sections,

describe how the foregoing fixation frequencies vary as a

function of the location of the previous fixation. The eight

“Within vs. Between-Cell” coefficients are adjustments to

the fixation frequencies depending on whether the transition

is within a cell between payoffs (e.g., y1↔ y2) or a

between-cells change in (only one) action (e.g., y1↔ y3 or

y1↔ y5). For example, the own coefficient in this section at

0.83 indicates that bias described previously for a player to

fixate his or her own payoffs is reduced by a factor of 0.83

when the transition is between the payoffs within a cell

(e.g., y1↔ y2) and increased by a factor of 1/0.83 when the

transition is not within a cell (e.g., y1↔ y3 or y1↔ y5). The

eight “Row vs. Column” coefficients are adjustments to tran-

sition frequencies depending on whether the transition is

within columns (e.g., y1↔ y5) or within rows (e.g., y1↔ y3).

For example, the adjustment coefficient at 0.83 indicates that

within-column transitions are less frequent than within-row

transitions. The 95% CIs for the others among these 16

coefficients indicate that the other effects are all small. This

confirms the pattern in Figure 5b described previously:

transitions across columns are more frequent than transitions

within cells or transitions across rows. Devetag et al. (2015)

also find this result.

Table 5 omits the coefficients for modeling the transitions

in our rare category, which involve more than one change

(e.g., y1↔ y4 or y1↔ y8). We did not find any notable

patterns in the coefficients we have omitted.

Level-k fixations and transitions

Figure 5c gives the fixation and transition frequencies

predicted by level-k. For the fixation frequency predictions,

we assumed that each payoff required at each stage is looked

up once. For the transition frequency predictions, we as-

sumed that all transitions across rows or columns (but not

both) within a stage, in any order, are possible. For example,

for the k=2 case in Figure 2, we assume that all transitions

between the other player’s payoffs are possible in the stage

“Simulate level 1” (i.e., y2↔ y4, y2↔ y6, y4↔ y8, and

y6↔ y8), and then all transitions between the level-1 choice

column are possible in the stage “Respond to level-1 choice”

(i.e., y3↔ y7). Thus, we do not make assumptions about

adjacency as strong as those of Devetag et al. (2015) and

Costa-Gomes et al. (2001), because we are allowing any or-

dering of fixations between payoffs within a stage of level-k

reasoning. Source code is available.

Figure 5c shows that level-k does predict an own-payoff

bias when k is odd. When k is even, the bias reverses. But,

because in fitting choice data, the proportion of level-1

required was higher than the proportion of level-2, level-k

predicts a net bias to fixate own payoffs more. So although

the model could also predict the reverse bias, we have logged

this as a success for level-k in Table 3.

Figure 5c also shows that the level-k model, or any blend

of level-ks, misses the pattern of transitions. First, the model

never predicts within-cell transitions (there are no diagonal

arrows). The within-cell transitions suggest incorporating

with other-regarding preferences in the level-k model.

Second, the model does not predict the higher frequency of

between-column transitions between the player’s own

payoffs.

Accumulator models and fixations and transitions

In fitting choice and choice time data, we assumed a drift rate

based on the difference in the payoffs in each row of

(x1� x5) + (x3� x7). So we would expect the player’s payoffs

to be fixated equally often. It is less clear how a bias to fixate

the player’s own payoffs more than the other player’s

follows. Because the games are symmetric, the information

in x1, x3, x5, and x7 is repeated in the other player’s payoffs,

and so any bias is consistent with our earlier assumptions.

We log no clear prediction in Table 3.

Do fixation counts and transition probabilities change as

payoffs change?

The “Game Interactions” columns in Table 5 show how the

fixation and transition frequencies change across games as

x1� x5 and x3� x7 vary. We constructed a second mixed

effects Poisson regression including (x1� x5), (x3� x7),

(x1� x5) × (x3� x7), and their interactions with the original

24 dummy variables. The payoff differences were scaled so

that coefficients represent the effect of payoff differences

changing from minimum to maximum. The top Intercept

row with coefficients 0.92, 0.97, and 0.58 shows how the

number of fixations varied across games. Some games have

nearly twice as many fixations as others. Because fixation

counts are so highly correlated with choice time, as we

described earlier, we have already seen this effect as games

with more finely balanced choice proportions taking longer

and thus more fixations (recall Figure 4b). In particular, the

0.58 coefficient indicates that when x1� x5 and x3� x7 are

either both large (+3) or both small (�3), choices are fast

because both differences point in the same direction.

The remaining coefficients in the “Fixation Frequencies”

rows of the “Game Interactions” columns indicate how the

distribution of fixations varies across games. The coefficients

are all small, and the limits of the 95% CIs mean that we can

say that variations in x1� x5 and x3� x7 made no more than a

10% difference in fixation counts. The Own, Top, and Left

rows show that players looked a little more at larger payoffs.

There is also a tendency for players to look more at the lead-

ing diagonal when x1� x5 and x3� x7 were either both large

or both small. But to a first approximation, players fixated

payoffs equally often across games.

The coefficients in the “Within- vs. Between Cell” and

“Row vs. Column” rows of Table 5 describe how transition

frequencies vary across games. All of these interactions are

small, typically making no more than a 10% difference in

transition counts. For example, we have already seen that

players are less likely to make transitions to their own

payoffs if the transition is within a cell rather than across

rows or columns (see the foregoing discussions; the 0.83

coefficient in the Own row of the “Within- vs. Between Cell”

section). The 0.87 value for the interaction of the Own
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dummy and (x1� x5) × (x3� x7), which appears in the

“Within- vs. Between Cell” rows of the (x1� x5) × (x3� x7)

column, indicates that this effect is even stronger when

x1� x5 and x3� x7 agree in sign. But the overall pattern is

for only small variation in transition frequencies across

games. To sum up how eye movements vary across games,

players make nearly twice as many eye movements on some

games compared with others, but the type of eye movements

they make changes very little across games—players just do

more of the same eye movements on more balanced games.

Do fixation counts and transition probabilities change

over the time course of a single trial?

The final columns headed “Gaze Bias Interactions” of Table 5

evaluate how fixations and transitions depend on what peo-

ple ultimately choose and how this effect emerges over the

time course of a trial. We ran a third Poisson regression with

dummy variables indicating whether a transition was in the

first or second half of the fixation sequence, whether the

choice was top row or bottom row, their interaction, and

the interactions with the original 24 dummy variables. The

Intercept row is uninteresting and just indicates that there

are more fixations in the second half of a trial (because the

middle fixation was arbitrarily assigned) and slightly more

trials where the top action was selected. The only effect in

the “Fixation Frequencies” section is that people make more

fixations to the payoffs in the row that they ultimately choose

and that this pattern develops over time. Figure 6a indicates

this clearly. The last panel plots the proportion of fixations

to the top payoffs as a function of time conditioned by the

action chosen. On trials where top is ultimately chosen, a

bias for top locations develops from about halfway through

a trial. Similarly, a bias against top locations (i.e., for bottom

locations) develops if bottom is ultimately chosen. This is the

classic gaze bias effect (Fiedler & Glöckner, 2012; Shimojo

et al., 2003; Stewart, Hermens, & Matthews, 2015), noted

in Table 3. Other biases are much smaller.

The sections “Within- vs. Between Cell” and “Row vs.

Column” show exactly which transitions change in fre-

quency to create the overall gaze bias. Breaking the gaze

cascade effect down into transitions, when top is ultimately

chosen, the transitions that increase are the top-row transi-

tions, and the transitions that decrease are the bottom-row

transitions.

Level-k and the gaze bias effect

Level-k does not predict the gaze bias effect. Figure 6b plots

the sequence of fixations predicted by level-k, which were

calculated by simulating out the process in Figure 2 and

plotting out fixation location over time as a function of the

chosen row. In level-k, for all k>0, the last pair of fixations

is across rows. This means that level-k is predicting no over-

all bias for the top or bottom row in the last two fixations,

which is not consistent with the bias to fixate the ultimately

chosen row being strongest at this point. We note this in

Table 3.

Accumulator models and the gaze bias effect

Mullett and Stewart (2015) demonstrated that the gaze bias

effect is a signature of accumulator models with a

difference-based stopping rule. For example, to reach the

threshold for an option in a drift diffusion model, a run of

evidence is needed for one option over the other. Under the

assumption that evidence is accumulated at a higher rate for

the fixated option (Krajbich et al., 2010), this means that

when conditioned on choice, there should be a run of fixa-

tions to the attributes of the chosen option leading up to the

choice. Thus, as we note in Table 3, the gaze bias effect is

an inevitable prediction of the accumulator models, provi-

ding that a difference-based stopping rule is used.

Differences between row and column players

We have also explored the differences in the transitions made

by row versus column players (which we counterbalanced

between participants) by including a dummy variable for

orientation and interactions with this dummy in the Poisson

regression. The only notable difference is that, for between-

cell transitions, players like to make more horizontal than

vertical eye movements, which means that row players make

more transitions across the actions of the other player than

column players do.

Choice from eye movements

Because we expect eye movements to be related to cognitive

processing, we expect there to be an association between the

choice that people ultimately make and their eye movements

(see also Devetag et al., 2015; Stewart, Hermens, &

Matthews, 2015). Table 6 explores this, listing the accuracy

with which choices can be modeled. Each model is a simple

logistic regression, fitting the choice on a trial from various

properties of the payoffs, fixations, or transitions. The inter-

cept model describes the fact that 56% of choices were top.

The attributes model uses x1� x5, x3� x7, a dummy for

which of the xs was the base pair, and all of the interactions

between these to fit choices. The model allows separate

coefficients for each level of x1� x5 and x3� x7 (rather than

a single slope), effectively allowing free functional forms

for people’s sensitivity to these payoff differences and their

interactions. This model uses a separate coefficient for each

of the 64 games. No other choice model could do better. This

model achieves an accuracy of 80.0%. But this flexibility is

not warranted—a model with only single slope coefficients

for x1� x5 and x3� x7 and no interactions (i.e., choice∼ 1+

(x1� x5) + (x3� x7), where (x1� x5) and (x3� x7) entered as

numerical and not factors)—achieves accuracy of 79.6%,

and is preferred by Schwartz’s Bayesian information crite-

rion (BIC). Note that BIC values were corrected for the

nesting of choices within subjects.

We described earlier that the accumulator models predict

choice probabilities as a logit function of drift rates. That

the aforementioned simple logit model, with only x1� x5
and x3� x7 and no interactions, is preferred over the much

more complicated model means that the choice data do not

support assuming anything more complicated than the
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difference in payoffs between rows is driving the evidence

accumulation.

The fixations model uses only the counts of fixations to

each location to fit choice and achieves accuracy of 67.3%.

Figure 7a plots the best-fitting coefficients. Fixations to

top-row locations increase the likelihood of a top choice.

Fixations to bottom-row locations increase the likelihood of

a bottom choice. Actually, an improper model, where all

coefficients are constrained to take the same magnitude

(i.e., choice∼ 1+ I((F1+F2+F3+F4)� (F5+F6+F7+F8)),

where the I() identity function aggregates the difference in

fixations so that a single slope is used in this model), achieves

66.9% accuracy, and is preferred by BIC. In essence, all that

matters is how often participants looked at the top versus the

bottom locations.

The attributes and fixations model fits better than either

the attribute model or the fixations models and is preferred

by BIC demonstrating that combining eye movement data

with payoff data improves the ability to fit choices.

The last fixation model uses only the location of the last

fixation and fits choices with accuracy 70.0%. Recall from

the discussion of the gaze bias effect that people have an

Figure 6. (a) The development of a bias towards fixating own, left, and top payoffs over time by choice. Fixations were binned into deciles,
with early fixations in the first bin and the fixations at choice in the last. (b) Level-k predictions for the gaze bias effect. Rows plot predictions

for different levels of k. Columns break predictions down by the predicted choice
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emerging tendency to fixate the row that they ultimately

choose. Note that the fixations model, which does not have

any information about the ordering of fixations, is doing only

slightly worse in accuracy.

The transitions model uses the transition frequencies for

each trial to fit the choice on that trial. The model achieves

71.1% accuracy and, despite its extra complexity, is preferred

by BIC over the fixations model (but not the really simple last

fixation model, which does nearly as well in terms of accu-

racy). Figure 7b plots the coefficients for each transition.

The size of a coefficient is the effect of one transition of that

type on the likelihood of a top-row choice, and transitions

with a stronger effect are drawn with thicker arrows. Color

indicates the direction of the effect. It is the between-row

transitions that matter (within-row and within-cell transitions

have very small coefficients). Including only the between-row

transitions gives an accuracy of 64.9%. And improper

modeling, where between-row coefficients are constrained

to have the same magnitude (i.e., choice∼1þ I T51þðð T61 þ
T71 þ T81 þ T52 þ T62þ T72þ T82 þ T53 þ T63 þ T73 þ
T83 þ T54 þ T64 þ T74 þ T84Þ � T15 þ T25 þ T35þðð T45 þ
T16 þ T26 þ T36 þ T46 þ T17 þ T27 þ T37 þ T47 þ T18 þ
T28 þ T38 þ T48ÞÞÞÞ;fits nearly as well with an accuracy of

62.9% and is preferred by BIC because of its increased

simplicity. Note that the transitions that are important for

fitting are the between-row transitions, but the transitions that

increased over time to give the gaze bias effect described pre-

viously were the within-row transitions for the selected row.

We have also taken into account the association between

the difference in between-row transition counts and the loca-

tion of the last fixation. For example, if starting from the top

row, the number of transitions to the top row from the bottom

row minus the number of transitions to the bottom row from

the top row must, necessarily, be 0 or �1. When the differ-

ence is 0, one is back where one started, and so the last

fixation must be to the top row. When the difference is �1,

the last fixation must be to the bottom row. By simply enter-

ing the last fixation into the regression before the transition

frequencies, we have corrected the transition frequency

coefficients for the last fixation. Although the coefficients

are all a little smaller in magnitude, the pattern in Figure 7b

remains.

Overall, transitions to a row increase the likelihood of a

choice of that row (coefficients for transitions to y1� y4 are

positive; coefficients for transitions to y5� y8 are negative).

An interesting feature of the corrected coefficients (and the

uncorrected coefficients) is that many rare-category transi-

tion frequencies are associated with the choice even though

the comparison they are associated with is uninformative.

For example, y1↔ y6 transitions involve a swap between

payoffs for the player and the other player and simulta-

neously a swap of action by the player. Even though this

direct comparison is not informative for strategy selection,

it is associated with choice. Of the 15 transitions, which have

a strong effect on choice, 11 are rare-category transitions.

It is useful to consider how much of the variance in

choices is fitted by attribute values alone, transitions alone,

and by both together. The Nagelkerke pseudo-R2 measure

is used because it is additive, with a value of zero indicating

that no variance is explained and a value of one indicating

that choices are perfectly fitted. The Nagelkerke R2 values

are reported in Table 6. For the attribute model, Nagelkerke

R2=.56. For the transitions model, Nagelkerke R2=.27. If

attributes and transitions were each making a unique contri-

bution, the combined Nagelkerke R2 would therefore be .56

+.27=.83, .17 higher than the actual Nagelkerke R2=.66 for

the transitions and attributes model. This means that about

two-thirds (.17/.27) of the variance explained by transitions

is also explained by attribute values. Or, equivalently, about

one-third (.17/.56) of the variance explained by attribute

values is also explained by transitions. Using the fixations

models instead, we can say that about one-sixth of the varia-

tion in choice explained by attributes is explained by fixa-

tions, and two-thirds of the variation in choices explained

by fixations is also explained by attribute values. So some,

but by no means all, of the processing of payoffs is picked

Table 6. Accuracy with which choices can be fitted based on choice attributes, eye movements, or both

Model Accuracy BIC Nagelkerke R
2

Intercept .56 4658 .00
choice ∼1

Attributes .80 3085 .56
choice ∼1 + (x1� x5) * (x3� x7) * base

Fixations .67 4285 .15
choice ∼1 +F1+F2+ · +F8

Attributes and fixations .83 2928 .60
choice ∼1 + (x1� x5) * (x3� x7) * base +F1 +F2 + · +F8

Last fixation .70 4094 .21
choice ∼1 +Flast

Transitions .71 4112 .27
choice ∼1 +T12 + T13 + · · + T78

Transitions and attribute values .85 2835 .66
choice ∼1 + (x1� x5) * (x3� x7) * base + T12 + T13 + · +T78

Note: Schwartz’s Bayesian information criterion (BIC) values are corrected for the nesting of choices within subjects. The BIC values show that better fitting
models do provide a better account of the data and that the extra model parameters are warranted. In the R-style regression equations, choice is a dummy variable
for top versus bottom, 1 indicates that an intercept was included, payoff differences (x1� x5) and (x3� x7) were included as factors so that they were coded with
a dummy for each payoff difference, base is a set of dummies indicating which quarter of Table 2 games came from,* indicates main effects of each term and
interactions, Fi is the frequency of fixations to payoff i, and Tij is the frequency of transitions from payoff i to j.
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up by eye movements. And some of the effect of eye move-

ments has an effect on choice independent of the attribute

values.

THE INTERACTION BETWEEN EYE MOVEMENTS

AND PAYOFFS IN FITTING CHOICES

The last thing that we explored was whether the effect on an

eye movement on choice varied depending on the magnitude

of the payoff fixated. In risky choice, Stewart, Hermens, and

Matthews (2015) surprisingly found that this was not the

case: looking at larger or more probable payoffs had the

same effect as looking at smaller or less likely payoffs. Here,

we find that fixation frequency×payoff value interactions are

small. Including the interaction in the attributes and fixations

model improves accuracy in fitting choices by 0.6%, although

this small improvement is preferred by BIC. Because the

cumulative effect of these interactions is only a very small

improvement in accuracy, we do not discuss it further.

GENERAL DISCUSSION

Our participants played a set of 2 × 2 symmetric games

where the payoffs were systematically varied to create

dominance-solvable games and symmetric- and

asymmetric-coordination games, including prisoner’s di-

lemma, stag hunt, and hawk–dove games. We tracked partic-

ipants’ eye movements while they chose and explored

whether and how eye movements varied within the time

course of a choice and across the different types of games.

In a second wave of modeling, we explored the relationship

between eye movements and choice. We close with a sum-

mary of the core results and their implications for the

level-k and accumulator models.

Our players were very sensitive to the type of game

presented, with choice proportions varying over a large range

and systematically with the payoffs. Players clearly engaged

with our games and differentiated between games in their

choice behavior. A level-k model that assumed a mixture of

levels 0, 1, and 2 participants (or strategies within a partici-

pant) captured much of the variation in choice proportions.

But the accumulator model, which predicted choice propor-

tions as a logistic function of the difference in payoffs across

rows, also fitted well.

Choice times were very strongly related to choice propor-

tions, such that for games where the difference in payoffs

across rows was more finely balanced, choice proportions

were nearer 0.5, and choice times were much longer. This

pattern is ubiquitous (e.g., Busemeyer & Townsend, 1993;

Mosteller & Nogee, 1951; Petrusic & Jamieson, 1978). The

level-k model is unable to predict this choice time pattern,

but it is a natural consequence of the accumulator framework

in which finely balanced evidence means lower drift rates

and thus longer times to threshold.

Individual fixation durations were brief, about 290milli-

seconds, and unaffected by the game in question. Such brief

fixations are typically associated with automatic processing

as in accumulator models. But brief fixations are not consis-

tent with a literal deliberative calculation of strategy as

assumed by the level-k and rational models.

The stability of fixation duration over the time course of a

choice together with the stability of the pattern of eye move-

ments over the time course does not offer any evidence of

changes in cognitive processing over time. This suggests, for

example, that there is not a reading phase (which would be

associated with relatively brief fixations) followed by a delib-

erative calculation phase (which would be associated with

slower fixations). Instead, this stability is more consistent with

a constant processing over time, as in accumulator models.

Within a game, each payoff is fixated equally often,

except for a small bias towards fixating one’s own payoffs

Figure 7. (a) Coefficients for fitting choices from the number of
fixations to each region. Red indicates positive coefficients (top
choices more likely), and black indicates negative coefficients
(bottom choices more likely). The area of the circles indicates the
magnitude of the coefficients. (b) Coefficients for fitting choices
from the number of transitions between regions. The width of the

arrows indicates the magnitude of the coefficients
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rather than the other players (also found by Devetag et al.,

2015; Hristova & Grinberg, 2005; Knoepfle et al., 2009;

Tanida & Yamagishi, 2010; Wang et al., 2010). Level-k

can predict this bias for odd levels of k. The accumulator ac-

count does not make a prediction as the framework does not

make a clear prediction about how attention is distributed—

although the pattern is not inconsistent with the model.

The pattern of eye movements varied only a little across

games with a small bias to fixate the larger payoffs. Devetag

et al. (2015) also only find small differences across games

and Stewart, Hermens, & Matthews, 2015 see this in risky

choice. The level-k and accumulator models do not predict

that larger payoffs will be fixated more.

Transitions between payoffs—that is breaking the fixa-

tions down contingent upon the immediately preceding fixa-

tion—reveal that people are making the eye movements that

have been associated with the meaningful comparison of

payoffs (Arieli, Ben-Ami, & Rubinstein, 2009a, 2009b;

Costa-Gomes et al., 2001; Knoepfle et al., 2009). By far,

the most frequent transitions are within a cell comparing

the player’s payoff with the other player’s payoff, or are

vertical eye movements comparing a pair of corresponding

payoffs when the player swaps from top to bottom, or are

horizontal eye movements comparing a pair of payoffs when

the other player swaps between left and right. We called

these the common transitions. Transitions where more than

one of these things changes at once were rare. We argued

that, because common transitions contain useful information,

their high frequency seems like strong evidence that players

understood the games and what sorts of comparisons might

be useful in solving them.

Within the common transitions, transitions between the

player’s own payoffs under a change of action by their oppo-

nent were particularly frequent (see also Devetag et al.,

2015). The level-k model was unable to predict this and also

fails to predict within-cell transitions. The pattern is not

inconsistent with the accumulator model driven by the net

difference in payoffs between rows.

Over the time course of a choice, the pattern of eye move-

ments is quite stable. Devetag et al. (2015) report stability in

3 × 3 games, and Funaki et al. (2011) report stability in

three-person dictator games. An exception to the stability

of eye movements over time is the developing bias to fixate

the payoffs of the row ultimately chosen, which emerged

from about halfway through a choice. This gaze bias effect

is ubiquitous and is seen in choice between consumer prod-

ucts, risky gambles, and even in choosing between attractive

faces (Fiedler & Glöckner, 2012; Krajbich et al., 2010;

Shimojo et al., 2003; Stewart, Hermens, & Matthews,

2015). The level-k model predicts no gaze bias effect, be-

cause the last two fixations are always a between-row com-

parison of a pair of payoffs as the participant finally selects

a row choice given their inference about the other player’s

column choice. But the gaze bias effect is a signature of an

accumulator model with a difference-based stopping rule

(Mullett & Stewart, 2015).

The small differences in eye movements across games are

sufficient to fit choices reliably (see also Devetag et al.,

2015). Using the size of the payoffs and no eye movement

information allows choices to be fitted with about 80% accu-

racy. Using eye movement information and no payoff infor-

mation allows choices to be fitted with about 70% accuracy.

Together, eye movements and payoff information allow

accuracy of about 85%. Fixations to the top row increase

the probability of choosing the top row, and fixations to the

bottom row decrease the probability of choosing the top

row. Constraining all fixations to be equally predictive fits

the data almost as well as allowing each type of fixation a

different weighting—and this indicates that it is just the num-

ber of times the top row is fixated compared with the bottom

row that matters. Breaking fixations into transitions, it is the

between-row transitions that matter. Transitions ending on

the top row increase the probability of choosing the top

row, and transitions ending on the bottom row decrease the

probability of choosing the top row. Transitions within a

row have a weak effect. Importantly, even the rare-category

transitions are associated with choices, even though these

do not obviously convey a useful comparison. So, although

people do have a tendency to make the common-category

transitions, which suggests that they are using strategically

relevant information to make a choice, actually, when using

transitions to fit choices, we see that any given uninformative

rare-category transition is just as strongly associated with

choice as any given common-category transition, if not more

so. This suggests that while people may be making sensible

eye movements, their integration of information is quite

simple, with every arrival in a row increasing the probability

of choosing that row. This pattern is not consistent with

level-k or rational choice models but is consistent with a

simple accumulator model of choice where each visit to an

alternative is associated with an increased chance of it being

chosen.

CONCLUSION

For these strategic choices, the choice time and eye movement

process data contain the signature effects of accumulator

models but are not compatible with level-k or cognitive hierar-

chy models. First, choices were longer and took more fixations

when the payoffs were finely balanced across rows. Second, as

a choice unfolds a bias to gaze at the payoffs of the ultimately

chosen row emerges. Third, transferring gaze to a row is asso-

ciated with a higher likelihood of choosing that row. Thus, we

argue that processing in strategic decisions, like processing in

risky and other multiattribute decisions, is well described as

the steady accumulation of evidence over time.

APPENDIX: INSTRUCTIONS

This experiment asks you to make choices while recording

your eye movements.

To help the eye tracker, it is useful to use a chin rest to

keep your head relatively still.

But please do feel free to wriggle between the choices as

necessary.
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We use a small sticker above your eye to help the eye

tracker track and compensate for your head movements.

The next screen will set up the eye tracker. After setting

up, you will see the description of task.

[The eye tracker was calibrated.]

Now, the eye tracker is set up.

The next screen explains how to make a choice during the

experiment. After these instructions, you will have one

practice game. If you are unsure at any time, please ask for

clarification.

Press the SPACE to proceed or the ESCAPE to go back.

Each game is a game involving you and involving another

participant. Each game has four possible outcomes for you

and four possible outcomes for the other participant. What

each of you will receive depends on your choice and the

other participant’s choice. An example is given as follows.

[A screenshot like Figure 1c was shown. The payoffs and

choices in the following text were adapted, based on the

counterbalancing.]

Your payoff will be one of the numbers in [green/blue]

color, and the other player’s payoff will be one in [blue/

green] color.

Press the SPACE to see the description of this game or the

ESCAPE to go back.

Throughout the experiment, you will choose [top/left] or

[bottom/right], and the other player selects [left/top] or

[right/bottom].

You each make your choice without knowing what the

other player has chosen. That is, you do not know what the

other person has chosen, and they do not know what you

have chosen.

Press the SPACE to proceed or the ESCAPE to go back.

Suppose that you choose [top] in the following example.

Your possible payoffs are [50] and [30], and the other

player’s possible payoffs are [50] and [60]. Which you obtain

will depend upon the other player’s selection.

Press the SPACE to proceed or the ESCAPE to go back.

Now, suppose that the other player has chosen [right].

Then, your payoff is [30], and the other player’s payoff is

[60].

But remember, neither of you can see what the other has

chosen. So you will need to think carefully about what you

prefer and what you think the other player will do.

At the end of the experiment, we are going to pair you up

with another participant (chosen at random) and pick out one

of the games you have played (again at random). Then we

will look up what you each chose. You will each win the

outcomes that your joint choices indicate, just like in the

example. Each £10 in the experiment is worth £1 for real,

so choose carefully. Depending on your choice and the other

participant’s choice, you can win anywhere from £0 to £9 of

real money.

Press the SPACE to proceed or the ESCAPE to go back.

After each game, you will see a “+” in the center of the

screen. If you look at it, you will then be taken to the next game.

Press the SPACE to proceed or the ESCAPE to go back.

You will now have a practice choice.

When you decide, please press the [↑/←] or [↓/→] arrow

key to indicate your choice.

You can rest your fingers on these keys during the exper-

iment so that you do not need to look at your hand.

Press the SPACE to proceed or the ESCAPE to go back.

[Participants completed a single practice trial.]

This is the end of instructions. If you have any questions

or the task is unclear, please ask the experimenter now.

Press the SPACE to start the experiment or the ESCAPE

to go back.
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