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Abstract 

Periods of rapid growth seen during the early stages of fetal development, including 

cell proliferation and differentiation, are greatly influenced by the maternal 

environment. We demonstrate here that over-nutrition, specifically exposure to a 

high fat diet in utero, programmed the extent of atherosclerosis in the offspring of 

ApoE*3 Leiden transgenic mice. Pregnant ApoE*3 Leiden mice were fed either a 

control chow diet (2.8% fat, n=12) or a high-fat, moderate-cholesterol diet (MHF, 

19.4% fat, n=12). Dams were fed the chow diet during the suckling period. At 28d 

postnatal age wild type and ApoE*3 Leiden offspring from chow or MHF-fed 

mothers were fed either a control chow diet (n=37) or a diet rich in cocoa butter 

(15%) and cholesterol (0.25%), for 14 weeks to induce atherosclerosis (n=36). 

Offspring from MHF-fed mothers had 1.9-fold larger atherosclerotic lesions 

(p<0.001). There was no direct effect of prenatal diet on plasma triglycerides or 

cholesterol, however transgenic ApoE*3 Leiden offspring displayed raised 

cholesterol when on an atherogenic diet compared to wild-type controls (p=0.031). 

Lesion size was correlated with plasma lipid parameters after adjustment for 

genotype, maternal diet and postnatal diet (R2=0.563, p<0.001). ApoE*3 Leiden 

mothers fed a MHF diet developed hypercholesterolemia (plasma cholesterol 2-fold 

higher than in chow fed mothers, p=0.011). The data strongly suggest that maternal 

hypercholesterolaemia programmes later susceptibility to atherosclerosis. This is 

consistent with previous observations in humans and animal models. 
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Introduction 

Whilst the etiology of major disease states is influenced by a variety of factors, 

including genotype and environmental factors such as dietary pattern, susceptibility 

to chronic disease in adult life is influenced by the quality and quantity of nutrition 

experienced by the fetus during critical stages of development1-3. The 

developmental origins of adult health and disease hypothesis, established by the 

large number of studies reporting relationships between the risk of adult disease 

and early-life events4, is the basis of the ╅programming╆ concept that disturbances to 
the normal fetal environment can result in irreversible changes to tissue structure, 

function and morphology1,5. These changes directly alter physiological functions and 

hence susceptibility to developing disease6,7.  

Animal models of nutrient restriction are commonly used as tools to investigate 

early life programming8. The feeding of a low protein diet during rat pregnancy, for 

example, has been shown to programme hypertension and metabolic syndrome in 

the offspring9-12. The same protocol, with the atherosclerosis-prone ApoE*3 Leiden 

mouse, was found to increase the extent of atherosclerotic lesion formation13. 

However over-nutrition is emerging as one of the major issues for pregnancy in 

developed countries. High weight gain in pregnancy is associated with poor 

pregnancy outcomes and long-term disease for babies exposed to this weight gain. 

The worldwide increase in the prevalence of being overweight and obese is 

increasingly impacting across all age groups in the population14,15. As a result, all 

developed countries are reporting high levels of obesity among women of 

childbearing age. The children of mothers who gain excessive weight in pregnancy 
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are themselves at greater risk of increased adiposity and associated disease16. The 

effects of maternal over-nutrition on programming have primarily been modeled 

through feeding rodents high fat diets during pregnancy17, or by inducing obesity in 

females before conception18. The programming effects of high fat diets are 

remarkably similar to those observed with undernutrition suggesting a common 

aetiology1. In the present study we aimed to assess the programming effects of 

feeding a high-fat diet, rich in saturated fat, during pregnancy, on the development 

of atherosclerosis in ApoE*3 Leiden transgenic offspring. We hypothesized that fetal 

exposure to a maternal high-fat diet would increase atherosclerotic lesion size in 

later life. 

 

Methods 

All experiments involving mice were performed in accordance with the Animals 

(Scientific Procedures) Act 1986 and subject to UK Home Office regulations. The 

work was approved by the University of Nottingham Animal Ethics Committee and 

covered by license PPL40/2435. Throughout the procedures steps were taken to 

minimize animal suffering. Male and female mice (10-12 weeks) were maintained in 

a controlled environment (21oC; 55% humidity) with a 12h light-dark cycle. Animals 

were maintained on a standard laboratory chow diet (B&K Universal, Hull, UK) and 

had ad libitum access to food and water at all times. ApoE*3 Leiden mice were 

originally a gift from Dr Louis Havekes (TNO Pharma, The Netherlands) and the 

animals used in this study were obtained from the local Nottingham colony. Female 

ApoE*3 Leiden transgenic mice, on a C57Bl/6J background, were mated with wild-
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type C57Bl/6J males. The ApoE*3 Leiden transgene is lethal to homozygotes so this 

mating strategy was necessary to produce mice that were heterozygous for the 

transgene and would therefore be atherosclerosis-prone19. All litters in the study 

contained a mixed population of wild-type and transgenic offspring. 

Pregnant females were fed either a control (MC; 2.8% fat; n=12) or a maternal high 

fat (MHF; 19.4% fat; n=12) diet. A further group of non-pregnant ApoE*3 Leiden 

mice (control: n=8, MHF: n=12) were fed the same diets to examine the impact of the 

two diets independently of pregnancy. The MHF diet was prepared by mixing the 

control chow with fat derived from beef dripping (135g/kg diet), corn oil (21.5g/kg 

diet) and tripalmitin (15g/kg diet). This diet contained 2g/kg cholesterol (standard 

chow was 0.31g/kg). Feeding of the MHF diet commenced when females were 

housed with males for breeding. Pregnancy was confirmed by the appearance of a 

mating plug. Five to six mothers per group, together with parallel groups of non-

pregnant females, were terminated at d17 of pregnancy and maternal blood and 

liver were collected as described below. At birth all remaining animals were 

transferred to the same standard chow diet. Litters were not handled from birth to 

weaning to avoid losses, as C57 mothers are highly sensitive to handling stress. 

Variation in litter size was limited with the number of pups to litter spanning 4-9. 

Offspring were genotyped using a polymerase chain reaction assay before weaning 

at 28d postnatal age. Previous work with this animal model13 demonstrated that 

male ApoE*3 Leiden mice develop little or no atherosclerotic lesions when fed an 

atherogenic diet. Therefore only female offspring were randomised to be fed either 

a chow diet (2.8% fat) or an atherogenic diet, again based on the control chow diet 
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(15% cocoa butter, 40.5% sucrose and 0.25% cholesterol). The latter diet is 

designed to induce the atherosclerotic disease process. The fatty acid composition of 

each of the three diets used in this study are shown in Table 1. In the ApoE*3 Leiden 

mice cholesterol in the diet produces proportionate increases in circulating 

cholesterol19. In total 8 groups of mice were available for study; MC/Chow, 

MHF/Chow, MC/Athero and MHF/Athero, for each of wild-type and ApoE*3 Leiden 

strains. 

Our previous work with the ApoE*3 Leiden mouse model indicated that exposure of 

the animals to atherogenic diet for 3 months was sufficient to induce physiologically 

significant atherosclerotic lesions. After 14 weeks of postnatal feeding, animals were 

sacrificed using a rising concentration of carbon dioxide and were not fasted before 

cull. Whole blood was collected into vacutainers by heart puncture and plasma 

prepared by centrifugation at 13 000 g at 4oC for 10min. The liver, adipose 

(perirenal and gonadal depots), kidneys, gastrocnemius muscle and abdominal 

aorta were dissected from each animal, weighed to the nearest 0.1mg and snap-

frozen in liquid N2. Hearts and the aortic root were dissected from each animal and 

infused with OCT fixing compound (Miles Inc., Elkhart, IN, USA) and snap-frozen in 

OCT until sectioning. 

 

Genotyping of transgenic mice 

Genomic DNA was extracted from ear punches by standard procedures20. 

Polymerase chain reaction assay was performed on genomic ear DNA using primers 

spanning the ApoEこぬ Leiden mutation ゅforward primer の╆ 
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GCCCCGGCCTGGTACACTGC ぬ╆┹ reverse primer の╆ GGCACGGCTGTCCAAGGAGC ぬ╆ょ as 

described previously13. 

 

Measurement of plasma metabolites 

Total circulating plasma cholesterol and TAG were assayed using commercially 

available kits (ThermoTrace, Noble Park, Vic, Australia), according to the manufacturer╆s instructions┻ Assay linearity was にど mmol【l for cholesterol and など 
mmol/l for TAG. 

 

Histological analysis of the heart and aortic root 

Frozen heart and aortic root samples were sectioned using a cryostat (Bright 

Instruments, Huntingdon, Cambs, UK). Alternate sections of the aortic root (

thickness) were collected, stained with Oil Red O and imaged using a Nikon phase 

contrast 2 microscope and a Micropublisher 3.3 RTV camera (Q Imaging, St Helens, 

Lancs, UK). Atherosclerotic lesions were analyzed and quantified using the method 

of Paigen et al.21 using Image Pro-Plus software (Media Cybernetics, Inc., Bethesda, 

MD, USA) to determine the percentage of the total area of the aortic intima 

exhibiting atherosclerotic lesions. The average lesion area for each animal was 

calculated using data from fifteen sections per animal13.  

 

Statistical Analysis 

All data are presented as mean values ± standard error. Unless otherwise stated in 

the text, data were analysed using a mixed-model analysis using SPSS (version 17.0; 



 8 

SPSS, Inc., Chicago, IL, USA). In the case of plasma TAG, cholesterol and mean 

atherosclerotic lesion area, maternal diet, postnatal diet and genotype were the 

fixed factors and the results adjusted for within-litter effects22. This adjustment 

removed the influence of having littermates within some of the groups and is an 

analytical approach we have used in our previous studies of programming13,23,24. 

Post hoc tests were not performed where ANOVA indicated an interaction between 

groups. The primary outcome measure was atherosclerotic lesion area and the 

study was powered against this variable. 

 

Results 

Maternal weight gain during pregnancy was similar in the two groups of animals 

(Control; 13.99 ± 1.21, MHF; 15.01 ± 0.44 g,  not significant). In comparison to non-

pregnant mice, the pregnant mice exhibited increased (1.98-fold) maternal liver 

weight at day 17 gestation (non-pregnant Control; 0.95± 0.04, non-pregnant MHF; 

0.95 ± 0.06 pregnant control; 1.24 ± 0.04 pregnant MHF; 1.33 ± 0.04 g, p=0.022 

when adjusted for body weight,) and hypertriglyceridemia (p=0.02; Figure 1a), but 

pregnancy had no significant effect on maternal total plasma cholesterol levels 

(Figure 1b). Feeding a MHF diet did not impact on triglyceride levels but increased 

maternal total cholesterol 2-fold (p=0.011; Figure 1b). 

Pregnant ApoE*3 Leiden mice fed control or a MHF diet gave birth to litters of 

similar size (control, 5.9 ± 0.8 pups per litter; MHF, 7.4 ± 0.6 pups per litter). The 

proportion of ApoE*3 Leiden mice produced was not significantly different between 

the two maternal diet treatments (P>0.05 ɖ 2 test; control, 28.75% transgenic; MHF 
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25.0% transgenic). Maternal food intake was similar between groups (p=0.36, Chow 

fed 2.88±0.60 g/day; MHF fed 2.75±0.20 g/day). Offspring were not weighed at 

birth to avoid maternal distress, but significant effects of maternal diet on body 

weight were apparent when the animals were weaned at 28d postnatal age (Figure 

2a). Offspring that were exposed to a MHF diet during gestation were lighter 

(p<0.001) than those from mothers fed a control chow diet, and this effect was 

independent of genotype. At the end of 14 weeks postnatal feeding offspring from 

MHF-fed mothers remained lighter (p=0.021), although this effect was restricted to 

the ApoE*3 Leiden transgenic strain (Figure 2b). The full growth trajectories of the 

offspring are shown in Supplementary Figure 1. 

Figure 3 shows plasma triglycerides and total cholesterol levels after 14 weeks of 

postnatal feeding. Plasma cholesterol and triglyceride concentrations were similar 

in wild-type C57Bl/6J and ApoE*3 Leiden transgenic offspring fed the chow diet. 

There were no significant alterations in plasma triglyceride levels (Figure 3(a)) 

although the ApoE*3 Leiden transgenic mice displayed a trend for elevated 

triglyceride concentrations (p=0.084) when comparing mice fed atherogenic diet to 

those fed chow. ApoE*3 Leiden offspring developed 3-fold higher cholesterol levels 

when placed on the atherogenic diet (p<0.031 compared to chow). There was no 

additional effect of the in utero exposure to the MHF diet (Figure 3(b)). 

When animals were killed livers were dissected and carefully weighed. There was a 

significant effect of prenatal diet on liver size (p=0.007), with animals being exposed 

to a MHF diet in utero displaying smaller livers (Figure 4). However this difference 

was no longer present when animals were fed an atherogenic diet (interaction of 
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prenatal diet and postnatal diet, p=0.005). These effects remained when liver weight 

was corrected for total body weight. 

The extent of atherosclerotic lesions found in the aortic intima is shown in Figure 

5(a), with representative sections of aorta stained for lesions shown in Figure 5(b). 

C57Bl/6J animals displayed no significant lesions, neither were there any significant 

effects of maternal or postnatal diets. The challenge of the atherogenic diet induced 

lesion formation to a greater degree (1.9-fold) in ApoE*3 Leiden animals exposed to 

the MHF diet during gestation compared to those exposed to the control chow diet 

(p<0.001). Although there was no significant effect of the MHF maternal diet on 

plasma cholesterol levels, the amount of cholesterol in the blood was directly 

correlated to the extent of atherosclerotic lesions in the aortic intima (R=0.750, 

p<0.001) in ApoE*3 Leiden mice. 

 

Discussion 

Human epidemiological studies and experiments using animal models have clearly 

demonstrated that maternal diet can have a significant impact on the susceptibility 

of the offspring to metabolic disease, including type 2 diabetes, hypertension and 

atherosclerotic cardiovascular disease1,6. Using the ApoE*3 Leiden mouse model we 

have previously shown that the female offspring of mother fed a low protein diet 

had increased susceptibility to atherosclerosis13. This was associated with increased 

plasma cholesterol, in response to an atherogenic diet compared to the offspring of 

mothers fed a control diet. It is also clear that over-nutrition in pregnancy can also 

impact on the susceptibility of the offspring to metabolic disease, though it remains 
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to be established whether this is a result of maternal obesity, changes in maternal 

carbohydrate or lipid metabolism or other factors25-30. As in our previous work13, 

the inclusion of wild-type C57 mice in the study demonstrates the specificity of the 

prenatal-postnatal diet interaction to the mutated ApoE background. 

Observations in humans have indicated the formation of atherosclerotic lesions in 

fetal vessels following exposure to maternal hypercholesterolaemia31. This has been 

supported by some studies using animals, indicating induction of 

hypercholesterolaemia during pregnancy is associated with the development of 

atherosclerosis in the offspring32,33. However, a number of inconsistencies are 

apparent within the animal literature. Palinski and Napoli32 originally suggested 

that the increased susceptibility to atherosclerosis in offspring born to 

hypercholesterolaemic mice, was not associated with any changes in plasma lipids 

of the offspring. This work was performed in homozygous LDL- receptor deficient 

pregnant mice fed dietary cholesterol, which induced massive 

hypercholesteroaemia (25-30mmol/l). It should be noted that such levels of plasma 

cholesterol are only seen in humans suffering from familial hypercholesterolaemia. 

By contrast, Madsen et al., failed to demonstrate any increased atherosclerosis in the 

heterozygous offspring of homozygous ApoE knock-out females fed normal chow, 

despite exhibiting average plasma cholesterol levels of 10mmol/l34. Offspring were 

fed an atherogenic diet and developed hypercholesterolaemia (average of 

approximately 12 mmol/l) and atherosclerosis independently of maternal diet.  

However, another study in ApoE knockout mice showed that chow-fed heterozygous 

offspring of homozygous ApoE knockout females (mated with wild-type males), had 
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increased plasma cholesterol and more atherosclerosis than those born of wild-type 

females (mated with homozygous ApoE knockout males)35. Thus the relative impact 

of maternal hypercholesterolaemia on plasma lipids and development of 

atherosclerosis in the offspring remains unclear. 

In the present study we aimed to extend previous work and hypothesized that fetal 

exposure to a maternal high-saturated fat/moderate cholesterol diet would increase 

atherosclerotic lesion size in later life. In heterozygous ApoE*3 Leiden pregnant 

mice, such a diet induced a more modest increase in plasma cholesterol than seen in 

ApoE knockout animals (approximately 5mmol/l compared to 3mmol/l in chow fed 

animals)34,35. Although it would have been interesting to profile blood lipids over 

pregnancy to see how changes developed over pregnancy and between genotypes, 

this was not possible within the current experiment. When the offspring were 

challenged with an atherogenic diet, animals exposed to a MHF diet in utero 

developed 1.9-fold greater lesioned area compared to animals exposed to a chow 

diet. Interestingly, this was independent of any differences in plasma lipids in the 

offspring, thus supporting the original premise of Napoli and colleagues32,33,36 that 

other factors are involved in such programming. 

The ApoE*3 Leiden mouse is a unique research tool in that the atherogenic diet is an 

absolute requirement for the development of atherosclerotic lesions, thereby 

mirroring the etiology of the human disease13,19. The increased susceptibility to 

atherosclerosis in ApoE*3 Leiden offspring when fed the atherogenic diet would 

appear to be a specific effect of the maternal metabolic and endocrine response to 

the MHF diet fed during pregnancy, as the period of feeding was insufficient to 



 13 

produce maternal obesity. This is confirmed by the finding that maternal weight 

gain was similar in mice fed chow and MHF diet. The most likely explanation of the 

observations is that atherosclerotic lesions are already forming in the ApoE*3 

Leiden fetuses during development, as there is no clear metabolic effect of the diet 

later in life (offspring did not exhibit dyslipidaemia). It is evident that the 

programming of atherosclerosis in the ApoE*3 Leiden offspring is a very specific 

effect of the maternal diet. There was no effect of the MHF diet on litter size, birth 

weight, male:female ratio, wildtype:transgenic ratio or postnatal survival. Food 

intake and growth rates were comparable between the groups (data not shown). 

ApoE*3 Leiden animals exposed to a MHF diet during pregnancy were lighter at 

weaning (28d postnatal age) than their relative controls (p<0.001) and this 

difference persisted after 14 weeks feeding an atherogenic diet (p=0.021).  

The cause of this increase in susceptibility to diet-induced atherosclerosis has not 

been fully identified, but in humans Liguori et al.,37 found that C-reactive protein 

was elevated in hypercholesterolaemic women, suggesting that increased 

inflammation may drive fetal lesions. Normal pregnancy is an inflammatory state 

and this could be exacerbated by diets rich in pro-inflammatory lipids.  Such a 

possibility could be further investigated by examining maternal cytokine profiles, 

and additionally by assessing offspring inflammatory markers and circulating 

cholesterol prior to feeding the atherogenic diet. The current observation that the 

prenatal diet impacts upon liver weight may also suggest that there is some 

programming of a hepatic phenotype, which in itself could impact upon lipid 

metabolism and development of atherosclerosis. The case for maternal 
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hypercholesterolaemia as a driver of programmed disease is weakened by the 

observation of Alkemade and colleagues38. Offspring of ApoE deficient (ApoE+/-) fed a 

1% cholesterol diet, did not exhibit fetal lesions or develop spontaneous 

atherosclerosis, but formed more severe plaques were atherosclerosis was induced 

with a carotid cuff38. 

There is currently considerable interest in the possible effects of maternal diet upon 

the fetal epigenome. Resetting of epigenetic marks, such as DNA methylation, can 

have a long-term effect upon gene expression and the response to dietary or 

environmental challenges39,40. Lipid metabolism, particularly lipogenesis, has been 

shown to be programmed through such resetting of epigenetic marks41,42. Grimaldi 

et al.43 reported that non-coding RNAs regulate endothelial function, lipid 

metabolism and inflammatory responses and that this may contribute to the 

regulation of gene expression by cholesterol and hence the development of 

atherosclerosis. ApoE deficient offspring of hypocholesterolaemic ApoE knockout 

mice developed more pronounced atherosclerosis when fed an atherogenic diet 

postnatally44. This is associated with differential epigenetic patterning in the 

vasculature. Vascular smooth muscle cells and endothelial cells in the carotid 

arteries had altered methylation of histones (3Me-K4-H3, 3Me-K9-H3 and 3Me-K27-

H3) in response to atherogenic diet, dependent upon maternal cholesterol 

concentrations44. 

This paper reports the novel findings of a preliminary study that investigated the 

impact of maternal high-fat feeding in programming long-term risk of 

atherosclerosis. As such it is observational in nature and was not powered or 
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designed to consider mechanistic aspects of this programming. It is noteworthy that 

no previous study has delivered a full mechanistic understanding of the association 

between maternal diet and atherosclerosis in the offspring. There is now a need for 

further experiments to consider the hypothesis that high-fat feeding during fetal 

development induces the development of atherosclerotic lesions in fetal ApoE*3 

Leiden mice. It would also be of interest to assess the impact of high-fat feeding on 

inflammatory markers in both mothers and offspring. Consideration should also be 

given to effects of the maternal diet upon gene expression in fetal life and upon 

expression of microRNAs and other epigenetic marks that regulate expression.  

This study provides additional support for both Barker╆s developmental origins of 
adult disease hypothesis45 and Napoli╆s maternal hypercholesterolemia 
hypothesis31,33,36,46. Our work also demonstrates that maternal 

hypercholesterolemia is an important factor that should be included in the 

assessment of the risk of atherosclerosis. With increasing focus on the long-term 

effects of maternal obesity and maternal over-nutrition during pregnancy, we have 

demonstrated that relatively acute changes to maternal nutrition can have major 

and presumably lifelong effects upon health in the next generation. 
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Figure Legends 

Figure 1. Maternal plasma triglyceride (a) and cholesterol (b) concentrations at day 

17 gestation. MC, maternal chow; MHF, maternal MHF. Data are means, with 

standard errors. For Non-Pregnant MC n=3, Pregnant MC n=4. For Non-Pregnant 

MHF n=4 , Pregnant MHF n=5. (a) ANOVA indicated significant effects of pregnancy 

(p=0.02). * Mean value was significantly different from Non-Pregnant. (b) ANOVA 

indicated significant effects of maternal MHF diet (p=0.011). ** Mean value was 

significantly difference from mothers fed a maternal chow (MC) diet (P<0.01). 

 

Figure 2. Body weight at 28d postnatal age (a) and after 14 weeks of postnatal 

feeding (b). MC, maternal chow diet; MHF, maternal MHF diet; Chow, postnatal 

chow diet; Athero, postnatal atherogenic diet. Data are means with standard errors. 

For C57Bl/6J mice: MC Chow n=9; MHF Chow n=9; MC Athero n=8; MHF Athero 

n=11. For ApoE*3 Leiden mice: MC Chow n=7; MHF Chow n=11; MC Athero n=8, 

MHF Athero n=8. (a) ANOVA indicated significant effects of prenatal diet (p<0.001). 

*** Mean value was significantly different from offspring (both C57Bl/6J and 

ApoE*3 Leiden) from mothers fed a chow diet. (b) ANOVA indicated significant 

effects of prenatal diet (p=0.001), postnatal diet (p=0.001) and genotype (p=0.038). 

There were interactions of prenatal diet and postnatal diet (p=0.031) and prenatal 

diet and genotype (p=0.021). * Mean value was significantly different from C57Bl/6J 

offspring from mothers fed either a chow or a MHF diet, and from ApoE*3 Leiden 

offspring from mothers fed a chow diet (P<0.05). 
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Figure 3. Plasma triglyceride (a) and cholesterol (b) concentrations in the offspring. 

MC, maternal chow; MHF, maternal MHF. Data are means, with standard errors. For 

C57Bl/6J mice: MC Chow n=9; MHF Chow n=9; MC Athero n=8; MHF Athero n=11. 

For ApoE*3 Leiden mice: MC Chow n=7; MHF Chow n=11; MC Athero n=8, MHF 

Athero n=8. (b) ANOVA indicated significant effects of postnatal diet (p<0.001) and 

genotype (p=0.004). There was an interaction of postnatal diet and genotype 

(p=0.031). * Mean value was significantly different from C57Bl/6J offspring from 

control and MHF fed mothers fed a postnatal atherogenic diet (P<0.05). 

 

Figure 4. Liver weight. MC, maternal chow diet; MHF, maternal MHF diet; Chow, 

postnatal chow diet; Athero, postnatal atherogenic diet. Data are means with 

standard errors. For C57Bl/6J mice: MC Chow n=9; MHF Chow n=9; MC Athero n=8; 

MHF Athero n=11. For ApoE*3 Leiden mice: MC Chow n=7; MHF Chow n=11; MC 

Athero n=8, MHF Athero n=8. ANOVA indicated significant effects of prenatal diet 

(p=0.007) and postnatal diet (p=0.05). There was an interaction of prenatal and 

postnatal diets (p=0.005). ** Mean value was significantly different from offspring 

on a chow diet exposed to a chow diet in utero (P<0.01). 

 

Figure 5. (a) Area of aortic intima exhibiting atherosclerotic lesions in female 

ApoE*3 Leiden mice. (b) Examples of atherosclerotic lesions in equivalent sections 

from atherogenic diet‒fed A) wild-type offspring exposed to chow diet in utero, B) 

wild-type offspring exposed to MHF diet in utero, C) ApoE*3 Leiden offspring 

exposed to chow diet in utero, D) ApoE*3 Leiden offspring exposed to MHF diet in 
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utero. Arrows indicate positive Oil Red O staining for neutral lipid. Data are means 

with standard errors. For C57Bl/6J mice: MC Chow n=9; MHF Chow n=9; MC Athero 

n=8; MHF Athero n=11. For ApoE*3 Leiden mice: MC Chow n=7; MHF Chow n=11; 

MC Athero n=8, MHF Athero n=8. (a) ANOVA indicated significant effects of 

genotype (p<0.001), prenatal diet (p<0.001), postnatal diet (p<0.001) and 

interactions of genotype, prenatal and postnatal diets (p<0.001). *** Mean value was 

significantly different from ApoE*3 Leiden offspring from mothers fed a chow diet 

that were fed the same atherogenic postnatal diet (P<0.001).  
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Table 1. Fatty acid composition of mouse diets 

 

Fatty acid Chow MHF Atherogenic Diet 
C14:0 4.4 3.2 N.D 
C16:0 24.4 31.4 25.2 
C18:0 10.5 16.7 36.13 
C18:1 27.4 28.6 33.27 
C18:2 27.9 12.8 2.94 

Data is shown as percentage of the total fatty acids present in the diet. Chow diet was 28g 
fat/kg; MHF 171.5 g fat/kg diet; Atherogenic diet 160 g fat/kg. N.D. Not detected 
*derived from figures published in Tarling et al (2009)47  
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Figure 2. 
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Figure 3. 

(a)  

M
C
/C

how

M
H
F/C

how

M
C
/A

th
er

o

M
H
F/A

th
er

o

0.0

0.5

1.0

1.5

2.0
C57Bl6

ApoE*3Leiden

P
la

s
m

a
 T

ri
g

ly
c
e
ri

d
e

(m
m

o
l/

L
)

 

(b) 

M
C
/C

how

M
H
F/C

how

M
C
/A

th
er

o

M
H
F/A

th
er

o

0

2

4

6

8
C57Bl6

ApoE*3Leiden
* *

P
la

s
m

a
 C

h
o

le
s
te

ro
l

(m
m

o
l/

L
)

 

 



 31 

Figure 4. 
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Figure 5. 
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Supplementary Figure 1. Growth of offspring from weaning/ 

Offspring were weaned onto either chow diet or atherogenic diet and growth was 

followed for 14 weeks. 

 

Body weight was influenced by genotype (P=0.002), maternal diet (P=0.001) and 

interactions of maternal and postnatal diet (P=0.018) and genotype and 

maternal diet (P=0.015). 
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