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Triaging informative cis-regulatory elements for
the combinatorial control of temporal gene
expression during Plasmodium falciparum
intraerythrocytic development
Karen Russell1, Richard Emes2,3 and Paul Horrocks1*

Abstract

Background: Over 2700 genes are subject to stage-specific regulation during the intraerythrocytic development

of the human malaria parasite Plasmodium falciparum. Bioinformatic analyses have identified a large number

of over-represented motifs in the 5′ flanking regions of these genes that may act as cis-acting factors in the

promoter-based control of temporal expression. Triaging these lists to provide candidates most likely to play a

role in regulating temporal expression is challenging, but important if we are to effectively design in vitro studies to

validate this role.

Methods: We report here the application of a repeated search of variations of 5′ flanking sequences from

P. falciparum using the Finding Informative Regulatory Elements (FIRE) algorithm.

Results: Our approach repeatedly found a short-list of high scoring DNA motifs, for which cognate specific

transcription factors were available, that appear to be typically associated with upregulation of mRNA accumulation

during the first half of intraerythrocytic development.

Conclusions: We propose these cis-trans interactions may provide a combinatorial promoter-based control of

gene expression to complement more global mechanisms of gene regulation that can account for temporal control

during the second half of intraerythrocytic development.

Keywords: AP2 transcription factor, Bioinformatics, Cis-acting DNA motifs, Combinatorial control, Finding

informative regulatory elements, Malaria, Stage-specific expression

Background

The human malarial parasite Plasmodium falciparum

adopts numerous morphologically distinct forms as it

completes its complex life cycle in the human host and

mosquito vector. As the parasite invades, colonises and

multiplies within these diverse host environments a com-

plex programme of developmentally-linked gene expres-

sion, utilising a diverse range of molecular mechanisms to

exert control, has been described; for reviews see [1-3].

These are perhaps best exemplified during asexual intraer-

ythrocytic development, where morphological transition

from the newly invaded ring form progresses over a

48 hour period, through trophozoites and schizonts, to

produce merozoites ready to reinitiate invasion in a

new host erythrocyte. Over this 48 hr period, a well-

defined cascade of peak mRNA steady-state accumula-

tion has been described for some 50% of the parasite’s

genome, with temporally- and functionally-linked clus-

ters of genes being expressed in time to meet their

biological demand [4-7].

With little apparent inter-strain variation in mRNA

profiles during intraerythrocytic development, and mini-

mal changes resulting from drug perturbations, this tran-

scriptional cascade has been described as “hard-wired”

[7-11]. Analyses of the molecular mechanisms that govern
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this developmentally-linked gene expression suggest that

this “hard-wiring” is likely the result of globally-acting

regulatory mechanisms, specifically; stage-specific varia-

tions in nucleosome positioning, processivity of the RNA

polymerase II complex and stage-specific variations in the

stability of the mRNA transcript [12-19]. Hypotheses that

considered regulation of stage-specific gene expression

exerted at the level of individual promoters, through

specific transcription factor biding to cis-regulatory DNA

motifs, fell out of favour in the early 2000′s due to the

apparent absence of transcription factors in the P. falcip-

arum genome [1,20,21]. In 2008, however, a restricted

number of specific transcription factors, sharing the ape-

tela 2 (AP2) DNA binding motif, were found in P. falcip-

arum, with homologues quickly identified throughout all

apicomplexans, leading to their designation as ApiAP2

transcription factors [22-25]. ApiAP2 have subsequently

been shown to be critical regulators in the regulation of

gene expression throughout the Plasmodium spp. life

cycle as well as potentially playing a role in the monoalle-

lic expression of the PfEMP1 virulence protein family

through modulation of the local chromatin environment

[26-31]. In 2010, using protein binding arrays, the cognate

cis-acting DNA motif for 24 of the 27 P. falciparum

ApiAP2 were determined [32]. Interestingly, these DNA

motifs are widely distributed within intergenic regions,

with many intergenic regions sharing multiple ApiAP2

binding sites. Whilst this multiplicity of ApiAP2 binding

sites may represent the means for a model of multifactor-

ial control (a point that will be picked up later), whether

all predicted DNA binding sites actually act as cis-regula-

tory sites remains to be addressed. In the absence of well-

defined transcription start sites for P. falciparum, our in-

ability to relate the position of a predicted ApiAP2 to this

key transcriptional landmark hampers our efforts to de-

sign functional studies to explore their role in the control

of transcription initiation.

In silico approaches have also been used to identify

DNA motifs enriched within the flanking sequence of

genes that share temporal peak mRNA profiles, function

(utilising Gene Ontology terms) or share homologues in

other Plasmodium spp [33-38]. Unfortunately, the cata-

logue of motifs predicted by each approach poorly over-

lap. Moreover, searches typically take an arbitrary length

of flanking sequence for analysis. Our recent work

exploring the size of flanking sequences in P. falciparum,

highlight the challenge with such an arbitrary approach

as we showed that the size of intergenic regions flanking

a gene varies according to the nature of the transcrip-

tional activity that takes place over this region [39]. In

this same study we also predict that transcription start

sites lie further upstream of the start of the open reading

frame than has previously been suggested and thus, key

information may have been missed in these studies.

Recognising the challenge in defining DNA motifs that

are most likely playing a role in the promoter-based

control of transcription initiation in the absence of tran-

scription start site data, we established a programme of

work to; i) identify high-scoring DNA motifs that are re-

peatedly linked with genes that share the same temporal

profile of peak mRNA accumulation and ii) undertake a

search for potential new DNA motifs that lie further

upstream from regions of intergenic sequences explored

to date. To carry out this study we utilised the Finding

Informative Regulatory Elements (FIRE) algorithm to

explore correlations between DNA motifs located in

intergenic sequences upstream of genes that share the

same temporal profile of steady-state mRNA levels [33].

Methods
The source code and P. falciparum accessory files for

the FIRE algorithm were obtained from the authors of

the original FIRE study [33] and utilised on a PC operat-

ing a UNIX environment using the default sensitivity

and stringency settings. These files are currently hosted,

and freely available, online at https://tavazoielab.c2b2.

columbia.edu/FIRE/. 5′ gene flanking sequences were

obtained from a bespoke PERL script (intergenic.dis-

t.2FASTA.pl available from https://sites.google.com/site/

emesbioinformatics/group-software) using the P. falcip-

arum General Feature Format (GFF) and genome sequence

file downloaded from PlasmoDB5.5 (https://www.plasmo

DB.org/plasmo). The intergenic.dist.2FASTA.pl program

allows the user to specify the windows of 5′ flanking se-

quence to occur (-1000 to 0 and-1500 to-500 bp upstream

of the start codon) and whether to capture sequences up to

adjacent flanking genes if they fall within this window, or

only when a full 1000 bp intergenic sequence can be

captured. The FIRE output files for each search secured in

separate folders. The FIRE motif heat maps and FIRE inter-

action heat maps resulting from the search of Groups A to

D are attached in the Additional file 1. Analysis of the dis-

tribution of mutual information score(s) for the same motif

discovered in one search (singleton) or multiple searches

were performed using a Kruskall-Wallace one way analysis

of variance with Dunn’s post-test (GraphPad Prism v5.1).

WebLogos of DNA-binding specificities of all 27 members

of the ApiAP2 protein family from P. falciparum along

with their mRNA abundance profiles during intraerythro-

cytic development were sourced from the protein binding

array study of Campbell et al. [32].

Results and discussion
Repeated discovery of DNA motifs associated with the

temporal cascade of transcription during intraerythrocytic

development

The Finding Informative Regulatory Elements (FIRE) algo-

rithm discovers DNA motifs whose presence or absence
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in gene flanking sequences provides the most information

about the expression profile of the associated flanking

gene. For P. falciparum, peak mRNA accumulation data

for some 2700 genes is available from a published tem-

poral microarray study undertaken in 2 hr increments

over the entire 48 hr of intraerythrocytic development [4].

These data provide a continuous expression profile that

can be used to discover overrepresented DNA motifs in

the flanking intergenic sequences of genes that share the

same temporal profile of peak mRNA accumulation.

Using such an approach, FIRE has previously been used to

discover 21 DNA motifs in a search of 1000 bp of 5′ flank-

ing sequence in P. falciparum [33]. We adopt here an

approach that searches different permutations of a more

recent annotation of P. falciparum gene 5′ flanking se-

quences to identify DNA motifs that are repeatedly dis-

covered – thus offering an insight into their likelihood as

cis-regulatory elements. Using our own recently published

observations relating to the likely placement of tran-

scription start sites between 600–1350 bp upstream of

P. falciparum open reading frames [39], we also use an

additional, but same sized, window to search further up-

stream than the original FIRE study to explore whether

any potential new informative regulatory sites can be

determined.

We elected to use search windows of 1000 bp. Not

only did this allow a comparison to the original FIRE

study, but we have also recently shown that this distance

represents approximately half of the median size of an

intergenic space that contains two promoter regions in

P. falciparum [39]. In total, four groups of 5′ flanking

sequences (groups A to D) were secured for our analysis

(Figure 1A). Group A most closely represents the se-

quences secured in the original FIRE report, i.e. 1000 bp

of the most immediate flanking sequence. Based on our

prediction that transcription start sites likely lie further

upstream than considered in the original FIRE study,

group C sequences were secured from a 1000 bp win-

dow located between 500 and 1500 bp upstream of each

open reading frame. For both groups A and C, if the

1000 bp window overlapped with an adjacent open read-

ing frame, the sequence captured was truncated to en-

sure only intergenic sequences were selected. Thus, two

sets of sequences of up to 1000 bp for each gene were

secured. Given our interest in repeatedly searching for

the enrichment of the same DNA motif, two additional

Group A

Group B

Group C

Group D

5’  0.050   20.5   10/10     - - 0.99  TTCTACA

5’  0.092   40.4   10/10     - - 1.00  ATATAGA

A

B

Ring
Trophozoite

Schizont

Figure 1 Repeated FIRE searches of 5′ gene flanking regions in P. falciparum. (A) Schematic representation of sequences used for the

repeated FIRE analysis. The relative position of three hypothetical head-to-head orientated genes (pentagonal arrows) are illustrated with a scale

for the intergenic distance (bp) shown above. In groups A and C, up to 1000 bp of intergenic sequence from either the start of the right-hand

gene (group A) or from a position 500 bp upstream of the gene (group C) are secured. Where this 1000 bp window overlaps with the flanking

left-hand gene, the sequences are truncated at the start of that gene. For groups B and D, the position of the window is the same as groups A

and C, respectively. In this case only when all 1000 bp of sequence can be captured is this done. In this way, different, but related input sequence

files can be subjected to a FIRE search. (B) Examples of FIRE motif heat-map output. The colour map illustrates over-representation (yellow) and

under-representation (blue) of discovered DNA motifs in 5′ flanking regions of genes that share the same temporal profile of mRNA accumulation

during intraerythrocytic development. The approximate morphological staging of these time points is illustrated above the colour map. To the

right of the colour map the seed search sequence and the optimized motif (as a WebLogo) are shown along with qualitative and quantitative

data reporting the score of the discovered motif, the reliability of the search and data relating to bias in position and orientation. These variables

are explained in the main text. Full data for all groups are provided in Additional file 1.
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sets of upstream flanking sequences were secured.

Whereas groups A and C captured up to 1000 bp of se-

quence, groups B and D secure the corresponding win-

dows of 1000 bp sequence, respectively, but only when

the entire 1000 bp sequence could be obtained. We

hypothesised that those DNA motifs more likely associ-

ated with the control of stage-specific expression would

be repeatedly identified in each of the groups, albeit with

slightly different scores based on the different amount of

sequences secured. Here, groups A to D consisted of

5579, 4300, 5297 and 3099 upstream flanking sequences,

respectively.

FIRE analysis was performed on groups A to D, with

8–17 DNA motifs reported from each search. The

algorithm produces a FIRE motif heat-map (see Figure 1B

for example, see Additional file 1 for all files) for each

search that provides a range of information for each

DNA motif discovered. A colour-map is used to describe

the correlation between either the over-representation

(yellow) or under-representation (blue) of the DNA mo-

tif in genes that sharing the same peak mRNA accumula-

tion profile (with the morphological stage representative

of these timepoints indicated in Figure 1B). Correlations

where this data is significantly over or under-represented

(p < 0.05 after a Bonefori correction) are highlighted by

bold red or blue surrounding lines, respectively. To the

right of the heat map, the sequences of the seed motif for

the search and the final optimized motif (as a WebLogo

image) are shown alongside qualitative and quantitative

evaluations of this DNA motif. Qualitatively, the location

of the DNA motif in the 5′ flanking sequence is indicated

for all motifs discovered here as well as any evidence of a

positional or orientation bias following randomization

trails. In the absence of well mapped transcription start

sites in P. falciparum with which to correlate with these

data, and the relatively few biases observed, no further

analysis of these qualitative outcomes was performed here.

The quantitative data reported includes; (i) mutual infor-

mation, which indicates the extent of the association of

the DNA motif with genes that share the same temporal

profile of peak mRNA accumulation, (ii) the statistical sig-

nificance (Z-score) of this association when compared to

10,000 randomizations of the input sequences, (iii) robust-

ness of the association, i.e. how often the same motif is

found in 10 separate jack-knife trials that remove one

third of input sequences and (iv) the conservation index,

indicates the shared presence of this motif in the flanking

regions of orthologous genes in the murine malaria para-

site P. yoelii (with indices of >0.95 considered significant).

Inspection of the lists of motifs identified in these

searches reveal a total of 28 distinct DNA motifs (see

Additional file 1). Of these, 14 had been previously

described in the original FIRE study. The remaining 14

novel DNA motifs all share the common feature of each

being discovered only once across groups A to D. A

similar representation of singleton motif discovery in the

original FIRE report can now be drawn by comparison

to the searches performed here. Here, seven of the 21

motifs were not rediscovered in our analysis. Compari-

son of the mutual information scores between motifs

discovered in two or more of the five groups (A to D

and the original study) and those only discovered in a

single search revealed a significantly lower score (one

way analysis of variance with Dunns post-test, p < 0.05)

in the singleton group. A second aspect of the search ad-

dressed whether searches for motifs in sequences located

between 500 and 1500 bp upstream of the open reading

frame would identify new motifs. Only four motifs were

uniquely discovered in this region; all as singletons with

low mutual information scores (0.027 to 0.031). Whilst

it was hoped that this approach may have discovered

additional motifs, it was recognised that the efficiency of

the search algorithm in discovering motifs is dependent

on the total sequences available for analysis. The use of

windows located further upstream of the open reading

frame will increase the likelihood over overlap with an

adjacent open reading frame, thus limiting the total

amount of sequences captured for such an analysis.

This outcome supports the approach adopted here in

using repeated rediscovery of DNA motifs; those DNA

motifs that are repeatedly discovered have a higher mutual

information score. Taking the distribution of mutual infor-

mation scores in the singleton DNA motifs (0.030 ±

0.004), a cut-off of 0.04 was established for the mutual

information score for DNA motifs to be taken forward

here. Thus, a short-list of 11 FIRE motifs (Fm1–11) was

created, each motif being found in at least two of groups

A to D as well as in the original FIRE analysis (Figure 2).

Fm1-11: a network of cis-acting motifs regulating

ring-stage expression in P. falciparum?

To explore whether Fm1–11 represent likely cis-acting

regulatory motifs, they were compared to consensus

high affinity DNA binding motifs determined for the P.

falciparum AP2 specific transcription factors [24,32].

Comparison of these AP2 DNA binding motifs against

those of Fm1–11 revealed that six of these (Fm1, 2, 4, 8,

9 and 11) could be unambiguously attributed to a spe-

cific AP2 protein. Two further Fm (Fm5 and 6), sharing

a degenerate CACA sequence, could not be attributed to

a single AP2 transcription factor; instead a cluster of

three AP2 transcription factors sharing affinity for these

motifs were identified. Thus, of the 11 Fm identified

here, eight appear to have a cognate specific transcrip-

tion factor(s) available to bind them. Intriguingly, for

the two Fm (Fm7 and 10) with the highest mutual infor-

mation scores we could not identify a cognate AP trans-

acting factor. These two motifs, therefore, may represent

Russell et al. Parasites & Vectors  (2015) 8:81 Page 4 of 9



either cis-acting sites for non-AP2 transcription factors or

other factors within the RNA polymerase II complex. Of

note is that no other DNA motif identified from the ana-

lysis of groups A to D, or from the original FIRE study,

had a reliably identifiable cognate AP2 binding partner.

Ranking Fm1–11 by the time during intraerythrocytic

development their over-representation correlates with the

peak of mRNA accumulation identifies an interesting

common temporal property. Fm1–11 are overrepresented

in the 5′ flanking sequence of genes that share a peak of

mRNA accumulation within the first 24 hours of intraery-

throcytic development – correlating with the ring and

early trophozoite morphological stages. This contrasts

with nuclear transcription run-on data that indicates that

overall transcriptional activity during intraerythrocytic

development is low during the first third of the cycle (ring

stages) [18]. This then increases gradually as the para-

sites mature in trophozoites and peaks in mid-schizont

stages – some 12–16 hours past the latest timepoint

linked with Fm1–11. Two additional global processes

that also contribute to nucleic acid metabolism also ap-

pear to be at play later during intraerythrocytic develop-

ment. First, mRNA half-life increase as intraerythrocytic

development progresses; ranging from a mean of 9.5

minutes in ring stage parasites to 65 minutes in mature

schizonts [17]. Second, nucleosome occupancy over inter-

genic regions is most compact in ring and late-schizont

stage parasites [12,13,15,16,19]. The lowest level of nu-

cleosome occupancy is in the mature trophozoite stages,

and presumably reflects an increased accessibility of the

Figure 2 FIRE motifs (Fm1–11) – a triaged list of putative cis-regulatory elements. Eleven DNA motifs were repeatedly discovered from

searches of sequences groups A to D. The triaged list consist of those motifs which were found in two or more groups of sequences search and

met a minimum threshold of 0.04 for the mutual information score. The WebLogo of each discovered motif is represented under the group of

sequences in which it was found. To the right, the WebLogo motif of the binding site for a potential cognate AP2 transcription factor is indicated

along with the PlasmoDB reference code for the gene that encodes it. Note, the redundancy between Fm5 and Fm6 and those of the indicated

cognate AP2 do not allow unambiguous allocation.
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genomic DNA for nucleic acid metabolism, i.e. transcrip-

tion and replication. These global mechanisms would

appear to provide a reasonable explanation for the

characteristic temporal transcriptional upregulation of

hundreds of genes during the later stages of intraery-

throcytic development. They do not, however, provide

a clear insight into the temporal control of gene ex-

pression during stages. Our data, to this point, would

lead us to suggest that Fm1–11 are cis-acting factors

that play a role in the promoter-based control of genes

expressed during the first 24 hours of intraerythocytic

development.

Our last observation relevant to this evolving model of

cis-trans promoter based control of ring-stage expres-

sion comes from a second output file from the FIRE al-

gorithm - a motif interaction heat map. This colour-map

illustrates any co-localization of the identified motifs

within the same 5′ flanking region. Taking Fm1–11, we

determined whether we could repeatedly find the same

co-localization of these motifs in each of the searches we

performed. Thus, by excluding co-localization of Fm1–

11 that occur in only one search of groups A to D, we

developed a qualitative network of interactions that were

repeatedly discovered between Fm1–11 in two or more

searches. This is illustrated in Figure 3 where the thick-

ness of the line emphasizes how often the co-localization

was discovered. The strongest link in the network was be-

tween Fm4 and Fm8, which was found in all four groups

analysed. Interestingly, the AP2 transcription factors asso-

ciated with Fm4 and Fm8 both share the same ring-stage

profile of expression as do the flanking regions of genes in

which these motifs are over-represented. This suggests

that binding of AP2 to Fm4 and Fm8 may function as

positive regulators in the upregulation of transcription of

these genes within the ring-stage parasite. As a contrasting

observation, expression of the cognate AP2 partner for

motifs Fm1, 2, 5 and 6 (as determined from transcrip-

tional and proteomic profiles) is actually upregulated in

mature trophozoite stages. This observation could be

rationalised if we consider AP2 binding to these Fm motifs

acts as a negative regulator of gene expression. That is, a

corollary of ring-stage specific expression is that these

genes are not subject to global mechanisms that upregu-

late gene expression in the mature trophozoite stages –

thus, AP2 binding to these Fm DNA motifs may act

as an isolating negative regulator in maintaining the

developmentally-linked expression pattern for these

genes. Of note, however, is that whilst the potential

for negative regulation though cis-trans promoter in-

teractions has been suggested from promotor deletion

studies, no direct demonstration for such a role for

AP2 has been demonstrated thus far [40,41].

A second interesting feature of this interaction net-

work is the triad of Fm7, 8 and 10. Found in searches of

three of the four groups, these Fm represent the highest

scoring motifs by mutual information score. Disappoint-

ingly, without a cognate AP2 binding partner for Fm 7

and 10, any further discussion relating to a role in di-

recting stage-specific patterns of expression could not be

made. However, as a whole, the evidence presented here

for a network of colocalised cis-acting motifs, with cog-

nate partners that may act in a positive and negative regu-

latory role, resonates with a model of combinatorial gene

control originally proposed by van Noort and Huynen

[42]. They hypothesised that in the apparent absence of a

large number of well-defined specific transcription factors

in P. falciparum, that the necessary complexity necessary

to drive the observed cascade of temporally-linked mRNA

accumulation could be provided through the combination

of a smaller number of transcription factors. The descrip-

tion of such a small number of specific transcription fac-

tors, the AP2 family, occurred subsequent to their report

in 2006. Importantly, key elements of their model are indi-

cated here, specifically; evidence for multiple cis-trans

interactions within the same 5′ flanking region which may

positively or negatively regulate promoter function. A re-

finement we suggest here is that this molecular mechan-

ism would appear to be particularly important during the

first 24 hours of intraerythrocytic development. Subse-

quent work that indicates multiple binding affinities for

AP2 domains, the presence of multiple AP2 domains

within a single protein and the potential for AP2 heterodi-

mers suggest that there are additional layers of complexity

to explore in these cis-trans interactions [23,32,43].

The occurrence and position of eight of the Fm motifs

(Fm1, 2, 4–6, 8, 9 and 11) in all P. falciparum 5′ flank-

ing regions has been previously mapped and reported

(Additional file 1 for [32]). The frequency of Fm motif

incidence per gene varies (0.2 to 196.7), but provides

some one million occurrences in total over these inter-

genic regions. As such, it would appear that context, both

in terms of position relative to a transcription start site

and availability (accounted in part through nucleosome

occupancy) to interact with a cognate AP2 partner is im-

portant in determining whether a mapped motif actually

acts as a cis-acting regulatory site. Although transcription

start sites have been bioinformatically predicted in P.

falciparum, few sites have been confirmed experimentally

[44]. Recent work, using an improved directional, amplifi-

cation free, RNAseq approach should shortly provide

these key transcriptional landmarks (Chappell, Rayner and

Berriman, pers comm.). Access of trans-acting factors

to the DNA motifs is perhaps less on an issue, with P.

falciparum intergenic regions being relatively depleted

of nucleosomes compared to open reading frames [16,19].

Initial analysis of nucleosome binding over the predicted

AP2 binding motifs suggests that some 65–97% of the

total of all motifs are nucleosome free at some point
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during intraerythocytic development [32]. With im-

proved resolution stage-specific nucleosome occupancy

maps now available [12,13], determining the temporal

availability of Fm motifs, specifically those spatially

organised around well mapped transcription start sites,

offers an opportunity to test the hypothesis that specific

transcription factor interactions with these motifs dir-

ect stage-specific transcription early during intraery-

throcytic development.

Conclusions

Here we report a repeated bioinformatics search for

over-represented DNA motifs within 5′ flanking inter-

genic regions of P. falciparum that we consider most

likely to play a role in the stage-specific regulation of

genes during intraerythrocytic development. Our search

repeatedly identified 11 high scoring DNA motifs, and,

significantly, we could identify a likely cognate AP2 trans-

acting partner for 8 of these. Evidence of preference for

A

B

Figure 3 Temporal distribution of FIRE motif heat-maps and interaction networks for FM1–11. (A) The motif heat-maps for Fm1–11 are

listed according to the earliest point during intraerythrocytic development the associated DNA motif is over-represented. Where a cognate AP2

trans-acting factor is suggested, a heat map illustrating the stage-specific accumulation of mRNA for the AP2 during intraerythrocytic development

is shown to the right [32]. Yellow and blue colouring represents temporal patterns of up- and down-regulation of mRNA accumulation during

intraerythrocytic development. (B) An interaction network of colocalized Fm DNA motifs. Colocalization of Fm1–11 in the same 5′ flanking region was

determined from the motif interaction heat map produced for each group of sequences searched. Repeated discover of these interactions (i.e. in at

least two groups) is represented on this network, with the increasing thickness of the connecting arrows representing discovery in two, three or

four searches.
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regulation of mRNA accumulation during ring-stage

development as well as an apparent interaction network

between several of these motifs has led us to propose a

nuanced modification to the combinatorial gene control

model originally proposed by van Noort and Huynen [40].

We propose that that cis-trans control of promoter func-

tion appears to offer a model for stage-specific expression

during ring-stage development, complementing more

global mechanisms regulating gene expression during the

latter stages of intraerythrocytic development.

Additional file

Additional file 1: FIRE motif heat maps and FIRE interaction heat

maps for groups A to D of P. falciparum 5′ gene flanking regions.

Full lists of FIRE Weblogo motifs for groups A to D, as well as the original

Elemento et al. [33] study are shown.
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