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a b s t r a c t

Textile models are often assumed to have homogenous and well defined cross-sections. For these models,

the use of a power elliptical cross-sectional shape has been found to be beneficial as different shapes can

be created, e.g. lenticular, elliptical or rectangular, with a single function. The cross-sectional area of a

power ellipse is usually determined numerically as the analytical determination of the cross-sectional

area is not straightforward. This short communication presents an analytical solution for this shape.

� 2015 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Textile reinforcements used in fibre reinforced composites are

usually based on yarns which are bundles of a large number of

individual filaments. These reinforcements are often modelled on

the meso-(yarn) scale which assumes a homogeneous structure

of the fibre bundles. For numerical models, the yarn shapes are

usually assumed to be elliptical, lenticular or rectangular [1–4].

The super-ellipse (Fig. 1A) also known as Lamé curve is defined

as:
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with the major and minor ellipse axes, a and b [5,6]. A special form

of this is the power-ellipse [7] for which the exponent, n, on the

width term (x) is kept constant and defined as:
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Unlike for the super-ellipse which results, for example, in star

shapes for n > 2, the advantage of this expression is that for the

entire range of exponents n > 0 realistic yarn cross-sectional

shapes can be generated (Fig. 1B). For n = 1, the yarn shape

describes an ellipse, for n > 1 a lenticular shape and for n < 1 a rect-

angle with rounded edges is resulting.

For a precise and fast determination of the yarn volume frac-

tion, it is desirable to determine the cross-sectional area of a yarn

shape analytically which is straightforward for e.g. ellipses. How-

ever, determining the area of a power ellipse is more challenging.

To derive the cross-section of an arbitrary area which can be

drawn with a continuous, non-overlapping line, Green’s Theo-

rem [8] of a line integration can be used. For a practical application

of this theorem, a number of equispaced points around the cross-

section can be sampled and the trapezoidal rule [9] applied. This

numerical technique approximates the area by assuming that it

consists of a finite number of trapezoids. Its accuracy depends on

the number of points sampled.

In this work, an analytical expression to determine the area of a

power ellipse is derived which uses the gamma function, C. This

function is similar to the factorial for an integer, n, but shifted by

�1; hence C(n) = (n � 1)!. The main benefit of the gamma function

compared to the factorial is that it is defined for any real number.

2. Derivation of the analytical power-ellipse area

The analytical expression of the area of a power ellipse, S, can be

performed in a similar way as for a super-ellipse [5,6]. A power

ellipse, as used for example in TexGen [2], can be expressed as

[10]:

x ¼ a sin h ð3Þ

y ¼ b cosn h ð4Þ
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This parametric representation needs to be integrated. As the

equations are oscillating, only a quarter of the power ellipse needs

to be analysed. The integration is therefore in the form:

S
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ydx ð5Þ

Replacing dx in this equation with the first derivative of x in Eq.

(3) to h:

dx ¼ a cos hdh ð6Þ

and placing Eqs. (4) and (6) in (5) gives:
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This expression can be reduced to:
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The integral of Eq. (8) can now be evaluated considering the

following trigonometric expression [5,11]:
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where B represents the beta function. Using this for the integral in

Eq. (8) multiplied with an additional term of sin0
h ¼ 1 to comply

with the format in Eq. (9) gives:
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The beta function can be expressed in terms of the gamma func-

tion, C, [12] which leads to
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Considering that C 1
2
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p
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and replacing Eq. (11) for the inte-

gral in Eq. (8) and rearranging the equation results in the analytical

form of the area of a power-ellipse:
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3. Accuracy and time

Mathematically speaking, Eq. (12) gives the exact area of the

power ellipse. However, this is given in terms of the Gamma func-

tion, which is the integral of a transcendental expression, and does

not have a closed form expression, except when its argument is

integer valued, in which case the Gamma function becomes the

well-known factorial function. In spite of this, approximations such

as those provided by Lanczos [13] and Spouge [14] provide

efficient algorithms to estimate the Gamma function to arbitrary

precision. Both of these approximations, themselves corrections

of the Stirling algorithm, are formed by truncating a convergent

series expansion of the Gamma function in terms of elementary

functions at the appropriate order. The efficiency of the Lanczos

approximation is demonstrated by the rapid convergence of the

approach: including only 13 terms in the series expansion gives

an error O(10�16) [15] when working at fixed precision.

In contrast to the explicit formula provided by Eq. (12), the

trapezium rule provides an approximation whose error scales the

square of the interval size (assuming a uniform step). For a fixed

error of e, the Lanczos and Spouge algorithms require O(�log(e))
steps, whilst the trapezium rule requires O(1/sqrt(e)) points. There
exist more efficient algorithms for numerical integration, such as

Gaussian quadrature, but these will still be inefficient compared

to these approximations to the Gamma function. The relevant algo-

rithms are readily available, for example as part of Matlab’s built-in

functions [16] and the GNU Scientific Library [17].

Using the derived equation Eq. (12) compared to the use of the

Trapezoidal rule [9], the solution accuracy is no longer dependent

Fig. 2. Example of a geometrical textile model of a 3D weave with homogenous yarns using a power elliptical cross-sectional shape created in TexGen [1]. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 1. Examples of (A) super-elliptical and (B) power elliptical shapes for different exponents, n. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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of the number of points used. In addition, the area of a power

ellipse can be derived significantly faster. Compared to the Trape-

zoidal rule with 1000 equispaced points sampled around the cir-

cumference of a power ellipse using the GetArea function in

TexGen [1], the speed is 3� faster using the analytical solution in

Eq. (12) as a Python implementation of Lanczos’ approximation

[13] on a standard desktop computer. This increased speed can

be beneficial when analysing, for example, the volume fraction in

geometric textile models (Fig. 2).

4. Concluding remarks

An analytical form of the area of a power ellipse has been

derived. Implementing this in, for example, geometrical textile

pre-processors will allow yarn volume fractions to be determined

in a fast and more accurate way compared to using numerical

approximations such as the Trapezoidal rule. In addition, the ana-

lytical expression of the area will make implementation of power

elliptical shapes more readily accessible to developers of geometric

textile models. The need for more complicated approximations, e.g.

numerical estimates of areas (and volumes), which may also

require determination of equispaced points at the cross-sectional

circumference, is overcome.
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