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We explore the possibility of calculating electronic excited states by using perturbation the-
ory along a range-separated adiabatic connection. Starting from the energies of a partially
interacting Hamiltonian, a first-order correction is defined with two variants of perturbation
theory: a straightforward perturbation theory, and an extension of the Görling–Levy one that
has the advantage of keeping the ground-state density constant at each order in the perturba-
tion. Only the first, simpler, variant is tested here on the helium and beryllium atoms and on
the hydrogene molecule. The first-order correction within this perturbation theory improves
significantly the total ground- and excited-state energies of the different systems. However, the
excitation energies mostly deteriorate with respect to the zeroth-order ones, which may be ex-
plained by the fact that the ionization energy is no longer correct for all interaction strengths.
The second (Görling–Levy) variant of the perturbation theory should improve these results
but has not been tested yet along the range-separated adiabatic connection.
Keywords: Excitation energies; Range separation; Perturbation theory; Adiabatic connection

1. Introduction

In density-functional theory (DFT) of quantum electronic systems, the most widely
used approach for calculating excitation energies is nowadays linear-response time-
dependent density-functional theory (TDDFT) (see, e.g., Refs. [1, 2]). However,
in spite of many successes, when applied with the usual adiabatic semilocal ap-
proximations, linear-response TDDFT has serious limitations for describing sys-
tems with static (or strong) correlation [3], double or multiple excitations [4], and
Rydberg and charge-transfer excitations [5, 6]. Besides, the Hohenberg–Kohn the-
orem [7] states that the time-independent ground-state density contains all the
information about the system implying that time dependence is in principle not
required to describe excited states.
Several time-independent DFT approaches for calculating excitation energies ex-

ist and are still being developed. A first strategy consists in simultaneously optimiz-
ing an ensemble of states. Such an ensemble DFT was pioneered by Theophilou [8]
and by Gross, Oliveira and Kohn [9] and is still a subject of research [10–13], but
it is hampered by the absence of appropriate approximate ensemble functionals. A
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second strategy consists in self-consistently optimizing a single excited state. This
approach was started by Gunnarsson and Lundqvist [14], who extended ground-
state DFT to the lowest-energy state in each symmetry class, and developed into
the pragmatic (multiplet-sum) ∆SCF method [15, 16] (still in use today [17]) and
related methods [18–20]. Great efforts have been made by Nagy, Görling, Levy,
Ayers and others to formulate a rigorous self-consistent DFT of an arbitrary indi-
vidual excited state [21–33] but a major difficulty is the need to develop approx-
imate functionals for a specific excited state (see Ref. [34] for a proposal of such
excited-state functionals). A third strategy, first proposed by Grimme, consists in
using configuration-interaction (CI) schemes in which modified Hamiltonian matrix
elements include information from DFT [35–38].
Finally, a fourth possible approach, proposed by Görling [39], is to calculate the

excitation energies from Görling–Levy (GL) perturbation theory [40, 41] along the
adiabatic connection using the non-interacting Kohn–Sham (KS) Hamiltonian as
the zeroth-order Hamiltonian. In this approach, the zeroth-order approximation to
the exact excitation energies is provided by KS orbital energy differences (which,
for accurate KS potentials, is known to be already a fairly good approximation [42–
44]). It can be improved upon by perturbation theory at a given order in the cou-
pling constant of the adiabatic connection. Filippi, Umrigar, and Gonze [45] showed
that the GL first-order corrections provide a factor of two improvement on the KS
zeroth-order excitation energies for the He, Li+, and Be atoms when using accurate
KS potentials. For (nearly) degenerate states, Zhang and Burke [46] proposed to
use degenerate second-order GL perturbation theory, showing that it works well for
a simple one-dimensional model. This approach is conceptually simple as it uses
the standard adiabatic connection along which the ground-state density is kept
constant (in contrast to approaches introducing generalized adiabatic connections
keeping an excited-state density constant [21, 22, 24, 29]). In spite of promising
early results, this approach has not been pursued further, perhaps because it can
be considered an approximation to TDDFT [47].
In this work, we explore further this density-functional perturbation-theory ap-

proach for calculating excitation energies, introducing one key modification in com-
parison to the earlier work of Refs. [39, 45]: As a zeroth-order Hamiltonian, instead
of using the non-interacting KS Hamiltonian, we use a partially interacting Hamil-

tonian incorporating the long-range part only of the Coulomb electron–electron
interaction, corresponding to an intermediate point along a range-separated adia-
batic connection [48–53]. The partially interacting zeroth-order Hamiltonian is of
course closer to the exact Hamiltonian than is the non-interacting KS Hamiltonian,
thereby putting less demand on the perturbation theory. In fact, the zeroth-order
Hamiltonian can already incorporate some static correlation.
The downside of this approach is that a many-body method such as CI theory

is required to generate the eigenstates and eigenvalues of the zeroth-order Hamil-
tonian. However, if the partial electron–electron interaction is only a relatively
weak long-range interaction, we expect a faster convergence of the eigenstates and
eigenvalues with respect to the one- and many–electron CI expansion than for
the full Coulomb interaction [52, 54], so that a small CI or multi-configuration
self-consistent field (MCSCF) description would be sufficiently accurate.
When using a semi-local density-functional approximation for the effective po-

tential of the range-separated adiabatic connection, the presence of an explicit
long-range electron–electron interaction in the zeroth-order Hamiltonian has the
additional advantage of preventing the collapse of the high-lying Rydberg excitation
energies [48, 55, 56]. In contrast to adiabatic TDDFT, double and multiple excita-
tions can be described with this density-functional perturbation-theory approach,
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although this possibility was not explored in Refs. [39, 45]. Finally, approximate
excited-state wave functions are obtained in the course of the calculations, which is
useful for interpretative analysis and for the calculation of properties. We envisage
using this density-functional perturbation theory to calculate excited states af-
ter a range-separated ground-state calculation combining a long-range CI [57, 58]
or long-range MCSCF [59, 60] treatment with a short-range density functional.
This would be a simpler alternative to linear-response range-separated MCSCF
theory [61, 62] for calculations of excitation energies.
In this work, we study in detail two variants of range-separated density-functional

perturbation theory based either on the Rayleigh–Schrödinger (RS) or Görling–
Levy (GL) perturbation theories and test the first, simpler variant on the He and
Be atoms and the H2 molecule, performing accurate calculations along a range-
separated adiabatic connection without introducing density-functional approxima-
tions.
The two variants of the range-separated perturbation theory are presented in

Section 2. Except for the finite basis approximation, no other approximation is
introduced and the computational details can be found in Section 3. Finally, the
results obtained for the He and Be atoms and for the H2 molecule are discussed in
Section 4. Section 5 contains our conclusions.

2. Range-separated density-functional perturbation theory

2.1. Range-separated ground-state density-functional theory

In range-separated DFT (see, e.g., Ref. [52]), the exact ground-state energy of
an N -electron system is obtained by the following minimization over normalized
multi-determinantal wave functions Ψ

E0 = min
Ψ

{

〈Ψ|T̂ + V̂ne + Ŵ lr,µ
ee |Ψ〉+ Ēsr,µ

Hxc[nΨ]
}

,

(1)

where we have introduced the kinetic-energy operator T̂ , the nuclear attraction
operator V̂ne =

∫

vne(r)n̂(r)dr written in terms of the density operator n̂(r), a
long-range (lr) electron–electron interaction

Ŵ lr,µ
ee =

1

2

∫∫

wlr,µ
ee (r12)n̂2(r1, r2)dr1dr2, (2)

written in terms of the error-function interaction wlr,µ
ee (r)=erf(µr)/r and the pair-

density operator n̂2(r1, r2) and finally the corresponding complement short-range
(sr) Hartree–exchange–correlation density functional Ēsr,µ

Hxc[nΨ] evaluated at the
density of Ψ. The density and pair density are obtained as expectation values of
the density and pair density operators respectively

nΨ(r) = 〈Ψ|n̂(r)|Ψ〉, (3)

n2,Ψ(r1, r2) = 〈Ψ|n̂2(r1, r2)|Ψ〉. (4)

The parameter µ in the error function controls the separation range, with 1/µ
acting as a smooth cut-off radius.
The Euler–Lagrange equation for the minimization of Eq. (1) leads to the (self-

3
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consistent) eigenvalue equation

Ĥ lr,µ|Ψµ
0 〉 = Eµ

0 |Ψ
µ
0 〉, (5)

where Ψµ
0 and Eµ

0 are taken as the ground-state wave function and associated en-
ergy of the partially interacting Hamiltonian (with an explicit long-range electron–
electron interaction)

Ĥ lr,µ = T̂ + V̂ne + Ŵ lr,µ
ee + ˆ̄V sr,µ

Hxc , (6)

which contains the short-range Hartree–exchange–correlation potential operator,

ˆ̄V sr,µ
Hxc =

∫

v̄sr,µHxc[n0](r)n̂(r)dr, (7)

where v̄sr,µHxc[n](r) = δĒsr,µ
Hxc[n]/δn(r), evaluated at the ground-state density of the

physical system n0(r) = 〈Ψµ
0 |n̂(r)|Ψ

µ
0 〉 for all µ.

For µ = 0, the Hamiltonian Ĥ lr,µ of Eq. (6) reduces to the standard non-

interacting KS Hamiltonian, Ĥ lr,µ=0 = ĤKS, whereas, for µ → ∞, it reduces
to the physical Hamiltonian Ĥ lr,µ→∞ = Ĥ. Therefore, when varying the parameter
µ between these two limits, the Hamiltonian Ĥ lr,µ defines a range-separated adi-
abatic connection, linking the non-interacting KS system to the physical system
with the ground-state density kept constant (assuming that the exact short-range
Hartree–exchange–correlation potential v̄sr,µHxc(r) is used).

2.2. Excited states from perturbation theory

Excitation energies in range-separated DFT can be obtained by linear-response
theory starting from the (adiabatic) time-dependent generalization of Eq. (1) [63],
where the excited states and their associated energies are obtained from time-
independent many-body perturbation theory. In standard KS theory, the single-
determinant eigenstates and associated energies of the non-interacting KS Hamil-
tonian,

ĤKS|ΦKS
k 〉 = EKS

k |ΦKS
k 〉, (8)

where ĤKS = T̂ + V̂ne + V̂Hxc, give a first approximation to the eigenstates and
associated energies of the physical Hamiltonian. To calculate excitation energies,
two variants of perturbation theory using the KS Hamiltonian as zeroth-order
Hamiltonian have been proposed [39, 45]. We here extend these two variants of
perturbation theory to range-separated DFT. As a first approximation, it is natural
to use the excited-state wave functions and energies of the long-range interacting
Hamiltonian

Ĥ lr,µ|Ψµ
k〉 = Eµ

k |Ψ
µ
k〉, (9)

where Ĥ lr,µ is the Hamiltonian of Eq. (6) with the short-range Hartree–exchange–

correlation potential ˆ̄V sr,µ
Hxc evaluated at the ground-state density n0. These excited-

state wave functions and energies can then be improved upon by defining pertur-
bation theories in which the Hamiltonian Ĥ lr,µ is used as the zeroth-order Hamil-
tonian.

4
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2.2.1. RS-based variant of perturbation theory

The simplest way of defining such a perturbation theory is to introduce the
following Hamiltonian dependent on the coupling constant λ

Ĥµ,λ = Ĥ lr,µ + λŴ sr,µ, (10)

where the short-range perturbation operator is

Ŵ sr,µ = Ŵ sr,µ
ee − ˆ̄V sr,µ

Hxc , (11)

with the short-range electron–electron interaction

Ŵ sr,µ
ee = (1/2)

∫∫

wsr,µ
ee (r12)n̂2(r1, r2)dr1dr2 (12)

defined with the complementary error-function interaction wsr,µ
ee (r) = erfc(µr)/r.

When varying λ, Eq. (10) sets up an adiabatic connection linking the long-range

interacting Hamiltonian at Ĥµ,λ=0 = Ĥ lr,µ, to the physical Hamiltonian Ĥµ,λ=1 =
Ĥ, for all µ. Importantly, the ground-state density is not kept constant along this
adiabatic connection.
The exact eigenstates and associated eigenvalues of the physical Hamiltonian can

be obtained by standard RS perturbation theory—that is, by Taylor expanding the
eigenstates and eigenvalues of the Hamiltonian Ĥµ,λ in λ and setting λ = 1:

|Ψk〉 = |Ψµ
k〉+

∞
∑

n=1

|Ψ
µ,(n)
k 〉, (13a)

Ek = Eµ
k +

∞
∑

n=1

E
µ,(n)
k , (13b)

where Ψµ
k ≡ Ψ

µ,(0)
k and Eµ

k ≡ E
µ,(0)
k act as zeroth-order eigenstates and energies.

Using orthonormalized zeroth-order eigenstates 〈Ψµ
k |Ψ

µ
l 〉 = δkl and assuming non-

degenerate zeroth-order eigenstates, the first-order energy correction for the state
k becomes

E
µ,(1)
k = 〈Ψµ

k |Ŵ
sr,µ|Ψµ

k〉. (14)

As usual, the zeroth+first-order energy is simply the expectation value of the phys-
ical Hamiltonian over the zeroth-order eigenstate:

E
µ,(0+1)
k = Eµ

k + E
µ,(1)
k = 〈Ψµ

k |Ĥ|Ψµ
k〉. (15)

This expression is a multi-determinantal extension of the exact-exchange KS energy
expression for the state k, proposed and studied for the ground state in Refs. [64–
66]. The second-order energy correction is given by

E
µ,(2)
k = −

∑

l 6=k

|〈Ψµ
l |Ŵ

sr,µ|Ψµ
k〉|

2

Eµ
l − Eµ

k

, (16)

5
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where the first-order wave-function correction is given by (using intermediate nor-

malization so that 〈Ψµ
k |Ψ

µ,(n)
k 〉 = 0 for all n ≥ 1)

|Ψ
µ,(1)
k 〉 = −

∑

l 6=k

〈Ψµ
l |Ŵ

sr,µ|Ψµ
k〉

Eµ
l − Eµ

k

|Ψµ
l 〉. (17)

For µ = 0, this perturbation theory reduces to the first variant of the KS pertur-
bation theory studied by Filippi et al., see Eq. (5) of Ref. [45].
To understand the numerical results in Section 4, we now consider how the

zeroth+first-order energies with respect µ near the KS system (µ = 0) and near the
physical system (µ → ∞). The total energies up to the first order of perturbation
theory are given by the expectation value of the full Hamiltonian over the zeroth-
order wave functions in Eq (14). Using the Taylor expansion of the wave function

Ψµ
k = ΦKS

k + µ3Ψ
(3)
k + O(µ5) around the KS wave function [53], the zeroth+first-

order energies are thus given by

E
µ,(0+1)
k = 〈ΦKS

k |Ĥ|ΦKS
k 〉+ 2µ3〈ΦKS

k |Ĥ|Ψ
(3)
k 〉+O(µ5), (18)

where Ψ
(3)
k is the contribution entering at the third power of µ in the zeroth-order

wave function.
From the asymptotic expansion of the wave function Ψµ

k = Ψk + µ−2Ψ
(−2)
k +

O(µ−3), which is valid almost everywhere when µ → ∞ (the electron-electron coa-
lescence needs to be treated carefully) [53], the first correction to the zeroth+first-
order energies are seen to enter at the fourth power in µ

E
µ,(0+1)
k = Ek +

1

µ4
E

(0+1,−4)
k +O

(

1

µ6

)

, (19)

where E
(0+1,−4)
k is the contribution entering at the fourth power of 1/µ.

2.2.2. GL-based variant of perturbation theory

A second possibility is to define a perturbation theory based on a slightly more
complicated adiabatic connection, in which the ground-state density is kept con-

stant between the long-range interacting Hamiltonian and the physical Hamilto-
nian, see Appendix A. The Hamiltonian of Eq. (10) is then replaced by

Ĥµ,λ = Ĥ lr,µ + λŴ sr,µ − V̂ sr,µ,λ
c,md , (20)

where Ŵ sr,µ is now defined as

Ŵ sr,µ = Ŵ sr,µ
ee − V̂ sr,µ

Hx,md, (21)

in terms of a short-range “multi-determinantal (md) Hartree–exchange” potential
operator

V̂ sr,µ
Hx,md =

∫

δEsr,µ
Hx,md[n0]

δn(r)
n̂(r) dr, (22)

6
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and a short-range “multi-determinantal correlation” potential operator

V̂ sr,µ,λ
c,md =

∫

δEsr,µ,λ
c,md [n0]

δn(r)
n̂(r) dr, (23)

that depends non-linearly on λ so that the ground-state density n0 is kept constant

for all µ and λ. The density functionals Esr,µ
Hx,md[n] and Esr,µ,λ

c,md [n] are defined in
Appendix A.
One can show that, for non-degenerate ground-state wave functions Ψµ

0 , the

expansion of V̂ sr,µ,λ
c,md in λ for λ → 0 starts at second order:

V̂ sr,µ,λ
c,md = λ2 V̂

sr,µ,(2)
c,md + · · · . (24)

Hence, the Hamiltonian of Eq. (20) properly reduces to the long-range Hamiltonian

at λ = 0, Ĥµ,λ=0 = Ĥ lr,µ, whereas, at λ = 1, it correctly reduces to the physical
Hamiltonian, Ĥµ,λ=1 = Ĥ. This is so because the short-range Hartree–exchange–
correlation potential in the Hamiltonian Ĥ lr,µ can be decomposed as

ˆ̄V sr,µ
Hxc = V̂ sr,µ

Hx,md +
ˆ̄V sr,µ
c,md, (25)

where ˆ̄V sr,µ
c,md = V̂ sr,µ,λ=1

c,md is canceled by the perturbation terms for λ = 1. Equa-

tion (25) corresponds to an alternative decomposition of the short-range Hartree–
exchange–correlation energy into “Hartree–exchange” and “correlation” contribu-
tions based on the multi-determinantal wave function Ψµ

0 instead of the single-
determinant KS wave function ΦKS

0 [64–66], which is more natural in range-
separated DFT. This decomposition is especially relevant here since it separates
the perturbation into a “Hartree–exchange” contribution that is linear in λ and a
“correlation” contribution containing all the higher-order terms in λ.
As before, the first-order energy correction is given by Eq. (14) but with the

perturbation operator of Eq. (21), yielding the following energy up to first order:

E
µ,(0+1)
k = Eµ

k + E
µ,(1)
k = 〈Ψµ

k |Ĥ + ˆ̄V sr,µ
c,md|Ψ

µ
k〉. (26)

The second-order energy correction of Eq. (16) becomes

E
µ,(2)
k = −

∑

l 6=k

|〈Ψµ
l |Ŵ

sr,µ|Ψµ
k〉|

2

Eµ
l − Eµ

k

− 〈Ψµ
k |V̂

sr,µ,(2)
c,md |Ψµ

k〉, (27)

whereas the expression of the first-order wave function correction is still given by
Eq. (17) but with the perturbation operator of Eq. (21).
For µ = 0, this density-fixed perturbation theory reduces to the second variant

of the KS perturbation theory proposed by Görling [39] and studied by Filippi
et al. [Eq. (6) of Ref. [45]], which is simply the application of GL perturbation
theory [40, 41] to excited states. In Ref. [45], it was found that the first-order
energy corrections in density-fixed KS perturbation theory provided on average a
factor of two improvement on the KS zeroth-order excitation energies for the He,
Li+, and Be atoms when using accurate KS potentials. By contrast, the first-order
energy corrections in the first variant of KS perturbation theory, without a fixed
density, deteriorated on average the KS excitation energies.

7
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The good results obtained with the second variant of KS perturbation theory
may be understood from that fact that, in GL perturbation theory, the ionization
potential remains exact to all orders in λ. In fact, this nice feature of GL theory
holds also with range separation, so that the GL-based variant of range-separated
perturbation theory should in principle be preferred. However, it requires the sep-
aration of the short-range Hartree–exchange–correlation potential into the “multi-
determinantal Hartree–exchange” and “multi-determinantal correlation” contribu-
tions (according to Eq. (25)), which we have not done for accurate potentials or
calculations along the double adiabatic connection with a partial interaction de-

fined by Ŵ lr,µ
ee +λŴ sr,µ

ee (cf. Appendix A). We therefore consider only the RS-based
variant of range-separated perturbation theory here but note that the GL-based
variant can be straightforwardly applied with density-functional approximations—
using, for example, the local-density approximation that has been constructed for
the “multi-determinantal correlation” functional [64, 67].

3. Computational details

Calculations were performed for the He and Be atoms and the H2 molecule with
a development version of the DALTON program [68], see Refs. [69–71]. Following
the same settings as in Ref. [53], a full CI (FCI) calculation was first carried out
to get the exact ground-state density within the basis set considered. Next, a Lieb
optimization of the short-range potential vsr,µ(r) was performed to reproduce the

FCI density with the long-range electron–electron interaction wlr,µ
ee (r12). Then, an

FCI calculation was done with the partially-interacting Hamiltonian constructed

from wlr,µ
ee (r12) and vsr,µ(r) to obtain the zeroth-order energies and wave functions

according to Eq. (9). Finally, the zeroth+first order energies were calculated ac-
cording to Eq. (15). The second-order correction of Eq. (16) is not calculated in this
work. The basis sets used were: uncontracted t-aug-cc-pV5Z for He, uncontracted
d-aug-cc-pVDZ for Be, and uncontracted d-aug-cc-pVTZ for H2.

4. Results and discussion

All the zeroth-order curves shown hereinafter correspond to the curves of Ref. [53]
as the partially interacting Hamiltonian act as starting point for the perturbation
theory.

4.1. Helium atom

The ground- and excited-state total energies to first order along the range-separated
adiabatic connection of helium are shown in Figure 1. In the KS limit, when µ =
0, the total energies are significantly improved with respect to the zeroth-order
ones. In fact, as shown for the ground-state energy, the zeroth-order total energies
are off by approximately 1.2 hartree with respect to the energies of the physical
system. When the first-order correction is added, the error becomes smaller than
0.06 hartree for all states. Moreover, the singlet and triplet excited-state energies
are no longer degenerate. With increasing range-separation parameter µ, a faster
convergence towards the total energies of the physical system is also observed at
first order for all states.
The description of the total energies is therefore much improved with the addition

of the first-order correction. The linear term in µ present in the zeroth-order total

8
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µ
k

= E
µ
k

− E
µ
0 and zeroth+first-order (dashed

line) excitation energies ∆E
µ,(0+1)
k

= E
µ,(0+1)
k

− E
µ,(0+1)
0 (in hartree) of the helium atom as a function

of µ (in bohr−1). The excitation energies of the physical system ∆Ek = Ek −E0 are plotted as horizontal
dotted lines.

energies [53] vanishes for the zeroth+first order total energies, which instead depend
on the the third power of µ for small µ (cf. Eq. (18)). At large µ, the error relative
to the physical energies enters as 1/µ4 rather than as 1/µ2 in the zeroth-order case,
explaining the observed faster convergence of the first-order energies.
The excitation energies of the helium atom correct to zeroth and first orders are

plotted in Figure 2. As previously noted, at µ = 0, the degeneracy of the zeroth-
order singlet and triplet excitation energies is lifted by the first-order correction.
However, the excitation energies correct to first order overestimate the physical
excitation energies by 0.1–0.2 hartree so that the error is actually larger than at
zeroth order. For the 11S → 13P excitation energy, the correction is even going in
the wrong direction and the singlet–triplet splitting is too large by about a factor
1.5.
When the extreme long-range part of the Coulombic interaction is switched on

with positive µ close to 0, this initial overestimation is corrected. In fact, for small µ,
all excitation energies decrease in the third power of µ, in agreement with Eq. (18).
When µ ≃ 0.5 − 1, this correction becomes too large and the excitation energies
of the partially interacting system become lower than their fully interacting limits.
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As µ increases further so that more interaction is included, the excitation energies
converge toward their fully interacting values from below. The zeroth-order exci-
tation energies, which do not oscillate for small µ, converge monotonically toward
their physical limit and are on average more accurate than the zeroth+first order
excitation energies. In short, the first-order correction does not improve excitation
energies, although total energies are improved.
The inability of the first-order correction to improve excitation energies should

be connected to the fact that, since the ground-state density is not kept constant
at each order in the perturbation, the ionization potential is no longer constant to
first order along the adiabatic connection. This behavior results in an unbalanced
treatment of the ground and excited states. Moreover, high-energy Rydberg excita-
tion energies should be even more sensitive to this effect, as observed for transitions
to the P state. The second GL-based variant of perturbation theory should correct
this behavior by keeping the density constant at each order, as shown in the KS
case [41, 45].

4.2. Beryllium atom

When the first-order perturbation correction is applied to the ground-state and
valence-excited states of beryllium, total energies are again improved (not illus-
trated here). In Figure 3, we have plotted the zeroth- and first-order valence exci-
tation energies of beryllium against the range-separation parameter µ.
Since valence excitation energies should be less sensitive to a poor description of

the ionization energy than Rydberg excitation energies, the first-order correction
should work better for the beryllium valence excitations than for the helium Ry-
dberg excitations. However, although the singlet excitation energy of beryllium is
improved at µ = 0 at first order, the corresponding triplet excitation energy is not.
In fact, whereas the triplet excitation energy is overestimated at zeroth order, it is
underestimated by about the same amount at first order.
As the interaction is switched on, a bump is observed for small µ for the singlet

excitation energy but not the triplet excitation energy, which converges monoton-
ically to its physical limit. The convergence of the excitation energies with µ is
improved by the first-order excitation energies, especially in the singlet case.
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Figure 3. Valence excitation energies of the beryllium atom (in hartree) at zeroth order ∆E
µ
k

(plain line)

and zeroth+first order ∆E
µ,(0+1)
k

(dashed line), as a function of µ (in bohr−1). The excitation energies of
the physical system ∆Ek are plotted as horizontal dotted lines.
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Figure 4. Zeroth-order ∆E
µ
k

(plain line) and zeroth+first-order ∆E
µ,(0+1)
k

(dashed line) excitation ener-

gies of the hydrogen molecule (in hartree) as a function of µ in bohr−1 at the equilibrium distance (left)
and three times the equilibrium distance (right). The excitation energies of the physical system ∆Ek are
plotted as horizontal dotted lines.

4.3. Hydrogen molecule

In Figure 4, we have plotted the excitation energies of H2 as a function of µ at the
equilibrium distance Req and at 3Req. At the equilibrium geometry, the first-order
correction works well. At µ = 0, the correction is in the right direction (singlet
and triplet excitation energies being raised and lowered, respectively); for nearly
all µ > 0, the error is smaller than for the zeroth-order excitation energies.
Unfortunately, when the bond is stretched, this is no longer the case. At the

stretched geometry, the first excitation energy 11Σ+
g → 13Σ+

u becomes negative
for small values of µ and the error with respect to the physical excitation energy
is higher than in the zeroth-order case. Moreover, the ordering of the two singlet
excitation energies is incorrect at small µ and they exhibit strong oscillation when
the interaction is switched on. In this case, therefore, the zeroth-order excitation
energies are better approximations to the physical excitation energies.

5. Conclusion

We have considered two variants of perturbation theory along a range-separated
adiabatic connection. The first and simpler variant, based on the usual Rayleigh–
Schrödinger perturbation theory, was tested on the helium and beryllium atoms and
on the hydrogen molecule at equilibrium and stretched geometries. Although total
energies are improved to first order in the perturbation, excitation energies are not
improved since the theory does not keep the density constant along the adiabatic
connection at each order of perturbation. It would be interesting to examine the
evolution of the ionization potential to understand better the effect of this variant
of the perturbation theory on our systems of interest.
The second variant of the perturbation theory, based on Görling–Levy theory,

should improve the results significantly by keeping the ground-state density con-
stant at each order in the perturbation [41], as already observed on the KS sys-
tem [45]. However, this more complicated theory has not yet been implemented for
µ > 0.
An interesting alternative to perturbation theory is provided by extrapolation,

which make use of the behavior of the energies with respect to µ near the physical
system to estimate the exact energies from the energy of the partially interacting
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system at a given µ and its first- or higher-order derivatives with respect to µ [72,
73]. Work using this approach will be presented elsewhere.
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[60] E. Fromager, F. Réal, P. Wåhlin, U. Wahlgren, and H. J. A. Jensen, J. Chem. Phys. 131,

54107 (2009).
[61] E. Fromager, S. Knecht, and H. J. A. Jensen, J. Chem. Phys. 138, 084101 (2013).
[62] E. D. Hedeg̊ard, F. Heiden, S. Knecht, E. Fromager, and H. J. A. Jensen, J. Chem. Phys.

139, 184308 (2013).
[63] E. Fromager, S. Knecht, and H. J. A. Jensen, J. Chem. Phys. 138, 84101 (2013).
[64] J. Toulouse, P. Gori-Giorgi, and A. Savin, Theor. Chem. Acc. 114, 305 (2005).
[65] P. Gori-Giorgi and A. Savin, Int. J. Quantum Chem. 109, 1950 (2009).
[66] A. Stoyanova, A. M. Teale, J. Toulouse, T. Helgaker, and E. Fromager, J. Chem. Phys. 139,

134113 (2013).
[67] S. Paziani, S. Moroni, P. Gori-Giorgi, and G. Bachelet, Phys. Rev. B 73, 155111 (2006).
[68] C. Angeli, K. L. Bak, V. Bakken, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K.

Dalskov, T. Enevoldsen, B. Fernandez, et al., DALTON, a molecular electronic structure

program, Release DALTON2011, URL http://daltonprogram.org/.
[69] A. M. Teale, S. Coriani, and T. Helgaker, J. Chem. Phys. 130, 104111 (2009).
[70] A. M. Teale, S. Coriani, and T. Helgaker, J. Chem. Phys. 132, 164115 (2010).
[71] A. M. Teale, S. Coriani, and T. Helgaker, J. Chem. Phys. 133, 164112 (2010).
[72] A. Savin, J. Chem. Phys. 134, 214108 (2011).
[73] A. Savin, J. Chem. Phys. 140, 18A509 (2014).
[74] J. Toulouse, P. Gori-Giorgi, and A. Savin, Int. J. Quantum Chem. 106, 2026 (2006).
[75] Y. Cornaton and E. Fromager, Int. J. Quantum Chem. 114, 1199 (2014).
[76] M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979).
[77] M. Levy, Phys. Rev. A 26, 1200 (1982).
[78] E. H. Lieb, Int. J. Quantum Chem. XXIV, 243 (1983).

Appendix A. Double adiabatic connection with a constant density

We here present a double adiabatic connection, depending on two parameters, that
keeps the ground-state density constant. It is the basis for the perturbation theory
presented in Section 2.2.2. A different density-fixed double adiabatic connection
was considered in Refs. [74, 75].
The Levy–Lieb universal density functional for the Coulomb electron–electron
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interaction Ŵee is given by [76–78]

F [n] = min
Ψ→n

〈Ψ|T̂ + Ŵee|Ψ〉 = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉, (A1)

We here generalize it to the interaction Ŵ lr,µ
ee +λŴ sr,µ

ee , where Ŵ lr,µ
ee and Ŵ sr,µ

ee are
long-range and short-range electron–electron interactions, respectively, that depend
on both a range-separation parameter µ and on a linear parameter λ:

Fµ,λ[n] = min
Ψ→n

〈Ψ|T̂ + Ŵ lr,µ
ee + λŴ sr,µ

ee |Ψ〉

= 〈Ψµ,λ[n]|T̂ + Ŵ lr,µ
ee + λŴ sr,µ

ee |Ψµ,λ[n]〉.

(A2)

The total universal density functional F [n] is then decomposed into Fµ,λ[n] and
a (µ, λ)-dependent short-range Hartree–exchange–correlation density functional

Ēsr,µ,λ
Hxc [n],

F [n] = Fµ,λ[n] + Ēsr,µ,λ
Hxc [n], (A3)

giving the following expression for the exact ground-state energy of the electronic
system

E0 = min
Ψ

{

〈Ψ|T̂ + V̂ne + Ŵ lr,µ
ee + λŴ sr,µ

ee |Ψ〉+ Ēsr,µ,λ
Hxc [nΨ]

}

, (A4)

where the minimization is over normalized multi-determinantal wave functions.
The Euler–Lagrange equation corresponding to this minimization is

Ĥµ,λ|Ψµ,λ
0 〉 = Eµ,λ

0 |Ψµ,λ
0 〉, (A5)

where Ψµ,λ
0 and Eµ,λ

0 are the ground-state wave function and energy, respectively,
of the Hamiltonian

Ĥµ,λ = T̂ + V̂ne + Ŵ lr,µ
ee + λŴ sr,µ

ee + ˆ̄V sr,µ,λ
Hxc , (A6)

where

ˆ̄V sr,µ,λ
Hxc =

∫

δĒsr,µ,λ
Hxc [n0]

δn(r)
n̂(r) dr (A7)

is the short-range Hartree–exchange–correlation potential operator, evaluated
at the ground-state density of the physical system at µ and λ, n0(r) =

〈Ψµ,λ
0 |n̂(r)|Ψµ,λ

0 〉. The Hamiltonian Ĥµ,λ thus sets up a double adiabatic connection
with a constant ground-state density.
The range-separated ground-state DFT formalism of Section 2.1 is recovered

in the limit λ = 0. To set up a perturbation theory in λ about 0, we rewrite
Ĥµ,λ of Eq. (A6) as the sum of the noninteracting Hamiltonian Ĥ lr,µ = Ĥµ,λ=0

and a perturbation operator. For this purpose, the Hartree–correlation–exchange
functional is written as

Ēsr,µ,λ
Hxc [n] = Ēsr,µ,λ=0

Hxc [n]− Esr,µ,λ
Hxc [n], (A8)

14
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which defines the new functional Esr,µ,λ
Hxc [n]. The Hamiltonian can now be rewritten

as

Ĥµ,λ = Ĥ lr,µ + λŴ sr,µ
ee − V̂ sr,µ,λ

Hxc , (A9)

where

V̂ sr,µ,λ
Hxc =

∫

δEsr,µ,λ
Hxc [n0]

δn(r)
n̂(r) dr (A10)

is the short-range Hartree–exchange–correlation potential operator associated with

Esr,µ,λ
Hxc [n].

The dependence on λ of Esr,µ,λ
Hxc [n] can be made more explicit. It is easy to show

that

Esr,µ,λ
Hxc [n] = 〈Ψµ,λ[n]|T̂ + Ŵ lr,µ

ee + λŴ sr,µ
ee |Ψµ,λ[n]〉

− 〈Ψµ,λ=0[n]|T̂ + Ŵ lr,µ
ee |Ψµ,λ=0[n]〉, (A11)

which leads to the following decomposition

Esr,µ,λ
Hxc [n] = λEsr,µ

Hx,md[n] + Esr,µ,λ
c,md [n], (A12)

where

Esr,µ
Hx,md[n] = 〈Ψµ,λ=0[n]|Ŵ sr,µ

ee |Ψµ,λ=0[n]〉 (A13)

is a multi-determinantal (md) generalization of the usual short-range Hartree–
exchange functional [64–66]. Using the variational property of the wave func-
tion Ψµ,λ[n], and for non-degenerate wave functions Ψµ,λ=0[n], the expansion of

Esr,µ,λ
c,md [n] in λ about 0 starts at second order:

Esr,µ,λ
c,md [n] = λ2E

sr,µ,(2)
c,md [n] + · · · , (A14)

as in standard GL perturbation theory [40, 41]. The Hamiltonian of Eq. (A9) can
now be rewritten as

Ĥµ,λ = Ĥ lr,µ + λŴ sr,µ − V̂ sr,µ,λ
c,md , (A15)

where the perturbation operator Ŵ sr,µ = Ŵ sr,µ
ee − V̂ sr,µ

Hx,md and

V̂ sr,µ
Hx,md =

∫

δEsr,µ
Hx,md[n0]

δn(r)
n̂(r) dr (A16)

has been introduced to collect all the linear terms in λ, the remaining perturbation
operator

V̂ sr,µ,λ
c,md =

∫

δEsr,µ,λ
c,md [n0]

δn(r)
n̂(r) dr (A17)

containing all higher-order terms in λ.
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